1
|
Tang G, Li H, Liang C, Chen E. Cryptococcal endophthalmitis and meningitis in an immunocompetent middle-aged woman: A case report. IDCases 2024; 37:e02022. [PMID: 39100729 PMCID: PMC11295950 DOI: 10.1016/j.idcr.2024.e02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Cryptococcus neoformans is a global invasive mycosis that is known to cause significant morbidity and mortality. It is commonly observed that individuals with compromised immune systems are more prone to developing cryptococcal meningitis. Although ocular involvement is rare, previous studies have indicated that ocular lesions precede symptomatic meningitis in only 27 % of patients with central nervous system involvement. Intraocular infections typically manifest as chorioretinopathy and vitreous inflammation, often leading to severe vision loss. In this case, we present the clinical details of a 57-year-old immunocompetent woman who visited the ophthalmology department of West China Hospital of Sichuan University with a progressive loss of vision in her right eye. After a thorough evaluation, she was diagnosed with fungal endophthalmitis, and subsequently initiated on appropriate induction anti-fungal therapy for cryptococcal meningoencephalitis. This case highlights the importance of early recognition and treatment, which can potentially improve the prognosis for patients.
Collapse
Affiliation(s)
- Guo Tang
- Emergency Departments of West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Hao Li
- Department of Nephrology of West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Chen Liang
- Department of Ophthalmology of West China Hospital, Sichuan University, Cheng Du, Sichuan, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Vlasova-St. Louis I, Mohei H. Molecular Diagnostics of Cryptococcus spp. and Immunomics of Cryptococcosis-Associated Immune Reconstitution Inflammatory Syndrome. Diseases 2024; 12:101. [PMID: 38785756 PMCID: PMC11120354 DOI: 10.3390/diseases12050101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Cryptococcal infection poses a significant global public health challenge, particularly in regions near the equator. In this review, we offer a succinct exploration of the Cryptococcus spp. genome and various molecular typing methods to assess the burden and genetic diversity of cryptococcal pathogens in the environment and clinical isolates. We delve into a detailed discussion on the molecular pathogenesis and diagnosis of immune reconstitution inflammatory syndrome (IRIS) associated with cryptococcosis, with a specific emphasis on cryptococcal meningitis IRIS (CM-IRIS). Our examination includes the recent literature on CM-IRIS, covering host cellulomics, proteomics, transcriptomics, and genomics.
Collapse
Affiliation(s)
| | - Hesham Mohei
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
3
|
Kessel J, Rossaert AC, Lingscheid T, Grothe J, Harrer T, Wyen C, Tominski D, Bollinger T, Kehr AK, Kalbitz S, Hoffmann C, Cornely O, Koppe U, Stephan C, Rickerts V. Survival after cryptococcosis in Germany: A retrospective multicenter cohort study of patients diagnosed between 2004 and 2021. Int J Med Microbiol 2024; 314:151614. [PMID: 38368645 DOI: 10.1016/j.ijmm.2024.151614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
Cryptococcosis is the most prevalent fungal infection of the central nervous system worldwide. We performed a retrospective multicenter cohort study to gain insights into the epidemiology of cryptococcosis in Germany. We describe the use of diagnostic tests, clinical management and patient outcome. We included 64 patients with underlying HIV infection (55%) or other predispositions. Molecular typing by MLST documented 20 individual sequence types among 42 typed isolates. A fatal outcome was documented in 14% of patients in the first two months after diagnosis.
Collapse
Affiliation(s)
- Johanna Kessel
- University Hospital Frankfurt, Infectious Diseases Unit, Theodor Stern Kai 7, Frankfurt 60590, Germany
| | - Anna-Catharina Rossaert
- Robert Koch Institut, Konsiliarlabor für Kryptokokkose und seltene Systemmykosen, Seestrasse 10, Berlin 13353, Germany
| | - Tilman Lingscheid
- Department of Infectious Diseases, Respiratory and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Grothe
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, NRW, Germany
| | - Thomas Harrer
- Infectious Diseases Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsche Gesellschaft für Infektiologie, Sektion HIV-Medizin, Germany
| | | | - Daniela Tominski
- Auguste Viktoria Klinikum, Infectious Diseases Unit, Rubensstr. 125, Berlin 12157, Germany
| | - T Bollinger
- Institut für Laboratoriumsmedizin, Mikrobiologie und Hygiene, Klinikum Bayreuth, Germany
| | - Anna Katharina Kehr
- MVZ wagnerstibbe für Medizinische Mikrobiologie, Infektiologie, Hygiene und Tropenmedizin GmbH, Göttingen, Germany
| | - Sven Kalbitz
- Klinik für Infektiologie und Tropenmedizin, Klinikum St. Georg gGmbH, Leipzig, Germany
| | - Christian Hoffmann
- ICH Study Center, Infektionsmedizinisches Centrum Hamburg, Hamburg, Germany
| | - Oliver Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - Uwe Koppe
- Robert Koch Institut, Fachgruppe 34, Seestrasse 10, Berlin 13353, Germany
| | - Christoph Stephan
- University Hospital Frankfurt, Infectious Diseases Unit, Theodor Stern Kai 7, Frankfurt 60590, Germany; Deutsche Gesellschaft für Infektiologie, Sektion HIV-Medizin, Germany
| | - Volker Rickerts
- Robert Koch Institut, Konsiliarlabor für Kryptokokkose und seltene Systemmykosen, Seestrasse 10, Berlin 13353, Germany.
| |
Collapse
|
4
|
Okurut S, Boulware DR, Okafor E, Rhein J, Kajumbula H, Bagaya BS, Bwanga F, Olobo JO, Manabe YC, Meya DB, Janoff EN. Divergent neuroimmune signatures in the cerebrospinal fluid predict differential gender-specific survival among patients with HIV-associated cryptococcal meningitis. Front Immunol 2023; 14:1275443. [PMID: 38152404 PMCID: PMC10752005 DOI: 10.3389/fimmu.2023.1275443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Survival among people with HIV-associated cryptococcal meningitis (CM) remains low, particularly among women, despite the currently optimal use of antifungal drugs. Cryptococcus dissemination into the central nervous system [brain, spinal cord, and cerebrospinal fluid (CSF)] elicits the local production of cytokines, chemokines, and other biomarkers. However, no consistent diagnostic or prognostic neuroimmune signature is reported to underpin the risk of death or to identify mechanisms to improve treatment and survival. We hypothesized that distinct neuroimmune signatures in the CSF would distinguish survivors from people who died on antifungal treatment and who may benefit from tailored therapy. Methods We considered baseline clinical features, CSF cryptococcal fungal burden, and CSF neuroimmune signatures with survival at 18 weeks among 419 consenting adults by "gender" (168 women and 251 men by biological sex defined at birth). Results Survival at 18 weeks was significantly lower among women than among men {47% vs. 59%, respectively; hazard ratio (HR) = 1.4 [95% confidence interval (CI), 1.0 to 1.9; p = 0.023]}. Unsupervised principal component analysis (PCA) demonstrated divergent neuroimmune signatures by gender, survival, and intragender-specific survival. Overall, women had lower levels of programmed death ligand 1, Interleukin (IL) (IL-11RA/IL-1F30, and IL-15 (IL-15) than men (all p < 0.028). Female survivors compared with those who died expressed significant elevations in levels of CCL11 and CXCL10 chemokines (both p = 0.001), as well as increased T helper 1, regulatory, and T helper 17 cytokines (all p < 0.041). In contrast, male survivors expressed lower levels of IL-15 and IL-8 compared with men who died (p < 0.044). Conclusions Survivors of both genders demonstrated a significant increase in the levels of immune regulatory IL-10. In conclusion, the lower survival among women with CM was accompanied by distinct differential gender-specific neuroimmune signatures. These female and male intragender-specific survival-associated neuroimmune signatures provide potential targets for interventions to advance therapy to improve the low survival among people with HIV-associated CM.
Collapse
Affiliation(s)
- Samuel Okurut
- Translation Sciences Laboratory, Research Department, Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David R. Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Elizabeth Okafor
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Henry Kajumbula
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Freddie Bwanga
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Joseph O. Olobo
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Yukari C. Manabe
- Translation Sciences Laboratory, Research Department, Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Division of Infectious Diseases, Department of Medicine, John Hopkins University School of Medicine, Baltimore, MD, United States
| | - David B. Meya
- Translation Sciences Laboratory, Research Department, Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Edward N. Janoff
- Mucosal and Vaccine Research Program Colorado, Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO, United States
- Department of Medicine and Infectious Disease, Denver Veterans Affairs Medical Center, Denver, CO, United States
| |
Collapse
|
5
|
Sephton-Clark P, Temfack E, Tenor JL, Toffaletti DL, Loyse A, Molloy SF, Perfect JR, Bicanic T, Harrison TS, Lortholary O, Kouanfack C, Cuomo CA. Genetic diversity and microevolution in clinical Cryptococcus isolates from Cameroon. Med Mycol 2023; 61:myad116. [PMID: 37952096 PMCID: PMC10709296 DOI: 10.1093/mmy/myad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Cryptococcal meningitis is the second most common cause of death in people living with HIV/AIDS, yet we have a limited understanding of how cryptococcal isolates change over the course of infection. Cryptococcal infections are environmentally acquired, and the genetic diversity of these infecting isolates can also be geographically linked. Here, we employ whole genome sequences for 372 clinical Cryptococcus isolates from 341 patients with HIV-associated cryptococcal meningitis obtained via a large clinical trial, across both Malawi and Cameroon, to enable population genetic comparisons of isolates between countries. We see that isolates from Cameroon are highly clonal, when compared to those from Malawi, with differential rates of disruptive variants in genes with roles in DNA binding and energy use. For a subset of patients (22) from Cameroon, we leverage longitudinal sampling, with samples taken at days 7 and 14 post-enrollment, to interrogate the genetic changes that arise over the course of infection, and the genetic diversity of isolates within patients. We see disruptive variants arising over the course of infection in several genes, including the phagocytosis-regulating transcription factor GAT204. In addition, in 13% of patients sampled longitudinally, we see evidence for mixed infections. This approach identifies geographically linked genetic variation, signatures of microevolution, and evidence for mixed infections across a clinical cohort of patients affected by cryptococcal meningitis in Central Africa.
Collapse
Affiliation(s)
- Poppy Sephton-Clark
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elvis Temfack
- Internal Medicine Unit, Douala General Hospital, Douala, Cameroon
- Institut Pasteur, Molecular Mycology Unit, CNRS UMR 2000, Paris, France
| | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dena L Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Angela Loyse
- Institute of Infection and Immunity, St George's University of London, London, UK
- Clinical Academic Group in Infection, St George's University Hospital, London, UK
| | - Síle F Molloy
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tihana Bicanic
- Institute of Infection and Immunity, St George's University of London, London, UK
- Clinical Academic Group in Infection, St George's University Hospital, London, UK
| | - Thomas S Harrison
- Institute of Infection and Immunity, St George's University of London, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Olivier Lortholary
- Department of Infectious Diseases and Tropical Medicine, Paris Cité University, Necker-Enfants Malades Hospital, AP-HP, IHU Imagine, Paris, France
- Mycology Department and National Reference Center for Invasive Mycoses and Antifungals, Institut Pasteur, Paris, France
| | - Charles Kouanfack
- Department of Public Health, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
- Day Hospital, Hospital Central Yaoundé, Yaoundé, Cameroon
- Research Center for Emerging and Re-emerging Diseases, Cameroon Baptist Convention Health Services (CBCHS), Yaoundé, Cameroon
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Agustinho DP, Brown HL, Chen G, Gaylord EA, Geddes-McAlister J, Brent MR, Doering TL. Unbiased discovery of natural sequence variants that influence fungal virulence. Cell Host Microbe 2023; 31:1910-1920.e5. [PMID: 37898126 PMCID: PMC10842055 DOI: 10.1016/j.chom.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
Isolates of Cryptococcus neoformans, a fungal pathogen that kills over 112,000 people each year, differ from a 19-Mb reference genome at a few thousand up to almost a million DNA sequence positions. We used bulked segregant analysis and association analysis, genetic methods that require no prior knowledge of sequence function, to address the key question of which naturally occurring sequence variants influence fungal virulence. We identified a region containing such variants, prioritized them, and engineered strains to test our findings in a mouse model of infection. At one locus, we identified a 4-nt variant in the PDE2 gene that occurs in common laboratory strains and severely truncates the encoded phosphodiesterase. The resulting loss of phosphodiesterase activity significantly impacts virulence. Our studies demonstrate a powerful and unbiased strategy for identifying key genomic regions in the absence of prior information and provide significant sequence and strain resources to the community.
Collapse
Affiliation(s)
- Daniel Paiva Agustinho
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Holly Leanne Brown
- Department of Computer Science & Engineering, Washington University, St. Louis, MO 63130, USA
| | - Guohua Chen
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth Anne Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Michael Richard Brent
- Department of Computer Science & Engineering, Washington University, St. Louis, MO 63130, USA; Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Tamara Lea Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Douglas AP, Stewart AG, Halliday CL, Chen SCA. Outbreaks of Fungal Infections in Hospitals: Epidemiology, Detection, and Management. J Fungi (Basel) 2023; 9:1059. [PMID: 37998865 PMCID: PMC10672668 DOI: 10.3390/jof9111059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Nosocomial clusters of fungal infections, whilst uncommon, cannot be predicted and are associated with significant morbidity and mortality. Here, we review reports of nosocomial outbreaks of invasive fungal disease to glean insight into their epidemiology, risks for infection, methods employed in outbreak detection including genomic testing to confirm the outbreak, and approaches to clinical and infection control management. Both yeasts and filamentous fungi cause outbreaks, with each having general and specific risks. The early detection and confirmation of the outbreak are essential for diagnosis, treatment of affected patients, and termination of the outbreak. Environmental sampling, including the air in mould outbreaks, for the pathogen may be indicated. The genetic analysis of epidemiologically linked isolates is strongly recommended through a sufficiently discriminatory approach such as whole genome sequencing or a method that is acceptably discriminatory for that pathogen. An analysis of both linked isolates and epidemiologically unrelated strains is required to enable genetic similarity comparisons. The management of the outbreak encompasses input from a multi-disciplinary team with epidemiological investigation and infection control measures, including screening for additional cases, patient cohorting, and strict hygiene and cleaning procedures. Automated methods for fungal infection surveillance would greatly aid earlier outbreak detection and should be a focus of research.
Collapse
Affiliation(s)
- Abby P. Douglas
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Adam G. Stewart
- Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women’s Hospital Campus, The University of Queensland, Herston, QLD 4006, Australia;
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
8
|
Ristow LC, Jezewski AJ, Chadwick BJ, Stamnes MA, Lin X, Krysan DJ. Cryptococcus neoformans adapts to the host environment through TOR-mediated remodeling of phospholipid asymmetry. Nat Commun 2023; 14:6587. [PMID: 37852972 PMCID: PMC10584969 DOI: 10.1038/s41467-023-42318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Cryptococcus spp. are environmental fungi that first must adapt to the host environment before they can cause life-threatening meningitis in immunocompromised patients. Host CO2 concentrations are 100-fold higher than the external environment and strains unable to grow at host CO2 concentrations are not pathogenic. Using a genetic screening and transcriptional profiling approach, we report that the TOR pathway is critical for C. neoformans adaptation to host CO2 partly through Ypk1-dependent remodeling of phosphatidylserine asymmetry at the plasma membrane. We also describe a C. neoformans ABC/PDR transporter (PDR9) that is highly expressed in CO2-sensitive environmental strains, suppresses CO2-induced phosphatidylserine/phospholipid remodeling, and increases susceptibility to host concentrations of CO2. Interestingly, regulation of plasma membrane lipid asymmetry by the TOR-Ypk1 axis is distinct in C. neoformans compared to S. cerevisiae. Finally, host CO2 concentrations suppress the C. neoformans pathways that respond to host temperature (Mpk1) and pH (Rim101), indicating that host adaptation requires a stringent balance among distinct stress responses.
Collapse
Affiliation(s)
- Laura C Ristow
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew J Jezewski
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Mark A Stamnes
- Department of Molecular Physiology and Biophysics, Caver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Xiaorong Lin
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Damian J Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Molecular Physiology and Biophysics, Caver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
9
|
Hilbert ZA, Bednarek JM, Schwiesow MJW, Chung KY, Moreau CT, Brown JCS, Elde NC. Distinct pathways of adaptive evolution in Cryptococcus neoformans reveal a mutation in adenylyl cyclase with trade-offs for pathogenicity. Curr Biol 2023; 33:4136-4149.e9. [PMID: 37708888 PMCID: PMC10592076 DOI: 10.1016/j.cub.2023.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Pathogenic fungi populate a wide range of environments and infect a diversity of host species. Despite this substantial biological flexibility, the impact of interactions between fungi and their hosts on the evolution of pathogenicity remains unclear. We studied how repeated interactions between the fungus Cryptococcus neoformans and relevant environmental and mammalian host cells-amoeba and mouse macrophages-shape the evolution of this model fungal pathogen. First, using a collection of clinical and environmental isolates of C. neoformans, we characterized a range of survival phenotypes for these strains when exposed to host cells of different species. We then performed serial passages of an environmentally isolated C. neoformans strain through either amoeba or macrophages for ∼75 generations to observe how these interactions select for improved replication within hosts. In one adapted population, we identified a single point mutation in the adenylyl cyclase gene, CAC1, that swept to fixation and confers a strong competitive advantage for growth inside macrophages. Strikingly, this growth advantage in macrophages is inversely correlated with disease severity during mouse infections, suggesting that adaptation to specific host niches can markedly reduce the pathogenicity of these fungi. These results raise intriguing questions about the influence of cyclic AMP (cAMP) signaling on pathogenicity and highlight the role of seemingly small adaptive changes in promoting fundamental shifts in the intracellular behavior and virulence of these important human pathogens.
Collapse
Affiliation(s)
- Zoë A Hilbert
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Joseph M Bednarek
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mara J W Schwiesow
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Krystal Y Chung
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Christian T Moreau
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jessica C S Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
10
|
Sephton-Clark P, Nguyen T, Hoa NT, Ashton P, van Doorn HR, Ly VT, Le T, Cuomo CA. Impact of pathogen genetics on clinical phenotypes in a population of Talaromyces marneffei from Vietnam. Genetics 2023; 224:iyad100. [PMID: 37226893 PMCID: PMC10411598 DOI: 10.1093/genetics/iyad100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Talaromycosis, a severe and invasive fungal infection caused by Talaromyces marneffei, is difficult to treat and impacts those living in endemic regions of Southeast Asia, India, and China. While 30% of infections result in mortality, our understanding of the genetic basis of pathogenesis for this fungus is limited. To address this, we apply population genomics and genome-wide association study approaches to a cohort of 336 T. marneffei isolates collected from patients who enrolled in the Itraconazole vs Amphotericin B for Talaromycosis trial in Vietnam. We find that isolates from northern and southern Vietnam form two distinct geographical clades, with isolates from southern Vietnam associated with increased disease severity. Leveraging longitudinal isolates, we identify multiple instances of disease relapse linked to unrelated strains, highlighting the potential for multistrain infections. In more frequent cases of persistent talaromycosis caused by the same strain, we identify variants arising over the course of patient infections that impact genes predicted to function in the regulation of gene expression and secondary metabolite production. By combining genetic variant data with patient metadata for all 336 isolates, we identify pathogen variants significantly associated with multiple clinical phenotypes. In addition, we identify genes and genomic regions under selection across both clades, highlighting loci undergoing rapid evolution, potentially in response to external pressures. With this combination of approaches, we identify links between pathogen genetics and patient outcomes and identify genomic regions that are altered during T. marneffei infection, providing an initial view of how pathogen genetics affects disease outcomes.
Collapse
Affiliation(s)
- Poppy Sephton-Clark
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thu Nguyen
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit, Oxford University, Ho Chi Minh City 749000, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX37LG, UK
- Microbiology department and Biological Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 740500, Vietnam
| | - Philip Ashton
- Veterinary and Ecological Sciences, Institute of Infection, University of Liverpool, Liverpool CH647TE, UK
| | - H Rogier van Doorn
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX37LG, UK
- Oxford University Clinical Research Unit, Oxford University, Hanoi 113000, Vietnam
| | - Vo Trieu Ly
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX37LG, UK
- Department of Medicine and Pharmacy, Hospital for Tropical Diseases, Ho Chi Minh City 749000, Vietnam
| | - Thuy Le
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC 27710, USA
- Tropical Medicine Research Center for Talaromycosis, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 740500, Vietnam
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
11
|
Kakizaki MIT, Melhem MDESC. CRYPTOCOCCOSIS: A bibliographic narrative review on antifungal resistance. AN ACAD BRAS CIENC 2023; 95:e20220862. [PMID: 37466540 DOI: 10.1590/0001-3765202320220862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/15/2022] [Indexed: 07/20/2023] Open
Abstract
Cryptococcosis is an infectious fungal disease widely studied for its epidemiological importance in the context of public health, given the high morbidity and mortality associated with this invasive fungal infection. Many cases of the disease present clinical resistance and progress to death, even in the presence of antifungal therapy. The prolonged use of triazole drugs to maintain the treatment of cryptococcosis in AIDS patients, can lead to selective pressure from mutant strains, among other resistance mechanisms, justifying the poor clinical evolution of some cases. In this study, a narrative review of the literature on the occurrence of antifungal resistance in cryptococcosis agents was performed. Publications from 2010 to 2022 that address this topic were selected using Google Scholars and Scopus website. Data from the studies were analyzed for the values of minimum inhibitory concentration (MIC) of drugs used in the management of cryptococcosis. The review showed that the highest MIC values occurred for voriconazole, especially against C. neoformans. It is concluded that there is a lack of studies with statistical analysis of the data obtained, in order to provide a better dimensioning of the resistance rates of cryptococcosis agents to different antifungal agents, both in geographical and temporal context.
Collapse
Affiliation(s)
- Maria Ismênia T Kakizaki
- Instituto de Assistência Médica ao Servidor Público Estadual: Iamspe, Setor de Oncologia e Hematologia, Rua Pedro de Toledo, 1800, Vila Clementino, 04039-901 São Paulo, SP, Brazil
| | - Marcia DE S C Melhem
- Departmento de Micologia, Associado de pesquisa sênior, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
- Universidade Federal do Mato Grosso do Sul, Departamento de Medicina, Av. Costa e Silva, s/n, Pioneiros, 79070-900 Campo Grande, MS, Brazil
| |
Collapse
|
12
|
Sephton-Clark P, Nguyen T, Hoa NT, Ashton P, van Doorn HR, Ly VT, Le T, Cuomo CA. Impact of pathogen genetics on clinical phenotypes in a population of Talaromyces marneffei from Vietnam. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534926. [PMID: 37034632 PMCID: PMC10081260 DOI: 10.1101/2023.03.30.534926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Talaromycosis, a severe and invasive fungal infection caused by Talaromyces marneffei , is difficult to treat and impacts those living in endemic regions of southeast Asia, India, and China. While 30% of infections result in mortality, our understanding of the genetic basis of pathogenesis for this fungus is limited. To address this, we apply population genomics and genome wide association study approaches to a cohort of 336 T. marneffei isolates collected from patients who enrolled in the Itraconazole versus Amphotericin B for Talaromycosis (IVAP) trial in Vietnam. We find that isolates from northern and southern Vietnam form two distinct geographical clades, with isolates from southern Vietnam associated with increased disease severity. Leveraging longitudinal isolates, we identify multiple instances of disease relapse linked to unrelated strains, highlighting the potential for multi-strain infections. In more frequent cases of persistent talaromycosis caused by the same strain, we identify variants arising over the course of patient infections that impact genes predicted to function in the regulation of gene expression and secondary metabolite production. By combining genetic variant data with patient metadata for all 336 isolates, we identify pathogen variants significantly associated with multiple clinical phenotypes. In addition, we identify genes and genomic regions under selection across both clades, highlighting loci undergoing rapid evolution, potentially in response to external pressures. With this combination of approaches, we identify links between pathogen genetics and patient outcomes and identify genomic regions that are altered during T. marneffei infection, providing an initial view of how pathogen genetics affects disease outcomes.
Collapse
Affiliation(s)
- Poppy Sephton-Clark
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA 02142
| | - Thu Nguyen
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, North Carolina, USA 27710
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom OX37LG
- Microbiology department and Biological Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Philip Ashton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK CH647TE
| | - H. Rogier van Doorn
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom OX37LG
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Vo Trieu Ly
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom OX37LG
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Thuy Le
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, North Carolina, USA 27710
- Tropical Medicine Research Center for Talaromycosis, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA 02142
| |
Collapse
|
13
|
Jackson KM, Ding M, Nielsen K. Importance of Clinical Isolates in Cryptococcus neoformans Research. J Fungi (Basel) 2023; 9:364. [PMID: 36983532 PMCID: PMC10056780 DOI: 10.3390/jof9030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The human pathogenic fungus Cryptococcus neoformans is a global health concern. Previous research in the field has focused on studies using reference strains to identify virulence factors, generate mutant libraries, define genomic structures, and perform functional studies. In this review, we discuss the benefits and drawbacks of using reference strains to study C. neoformans, describe how the study of clinical isolates has expanded our understanding of pathogenesis, and highlight how studies using clinical isolates can further develop our understanding of the host-pathogen interaction during C. neoformans infection.
Collapse
Affiliation(s)
| | | | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Sephton-Clark P, McConnell SA, Grossman N, Baker RP, Dragotakes Q, Fan Y, Fu MS, Gerbig G, Greengo S, Hardwick JM, Kulkarni M, Levitz SM, Nosanchuk JD, Shoham S, Smith DFQ, Stempinski P, Timp W, Wear MP, Cuomo CA, Casadevall A. Similar evolutionary trajectories in an environmental Cryptococcus neoformans isolate after human and murine infection. Proc Natl Acad Sci U S A 2023; 120:e2217111120. [PMID: 36603033 PMCID: PMC9926274 DOI: 10.1073/pnas.2217111120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
A pet cockatoo was the suspected source of Cryptococcus neoformans recovered from an immunocompromised patient with cryptococcosis based on molecular analyses available in 2000. Here, we report whole genome sequence analysis of the clinical and cockatoo strains. Both are closely related MATα strains belonging to the VNII lineage, confirming that the human infection likely originated from pet bird exposure. The two strains differ by 61 single nucleotide polymorphisms, including eight nonsynonymous changes involving seven genes. To ascertain whether changes in these genes are selected for during mammalian infection, we passaged the cockatoo strain in mice. Remarkably, isolates obtained from mouse tissue possess a frameshift mutation in one of the seven genes altered in the human sample (LQVO5_000317), a gene predicted to encode an SWI-SNF chromatin-remodeling complex protein. In addition, both cockatoo and patient strains as well as mouse-passaged isolates obtained from brain tissue had a premature stop codon in a homologue of ZFC3 (LQVO5_004463), a predicted single-zinc finger containing protein, which is associated with larger capsules when deleted and reverted to a full-length protein in the mouse-passaged isolates obtained from lung tissue. The patient strain and mouse-passaged isolates show variability in virulence factors, with differences in capsule size, melanization, rates of nonlytic expulsion from macrophages, and amoeba predation resistance. Our results establish that environmental strains undergo genomic and phenotypic changes during mammalian passage, suggesting that animal virulence can be a mechanism for genetic change and that the genomes of clinical isolates may provide a readout of mutations acquired during infection.
Collapse
Affiliation(s)
| | - Scott A. McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Nina Grossman
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Rosanna P. Baker
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Yunfan Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Gracen Gerbig
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Seth Greengo
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - J. Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Madhura Kulkarni
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Stuart M. Levitz
- Department of Medicine, UMass Chan Medical School, Worcester, MA01605
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA01605
| | - Joshua D. Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY10461
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Shmuel Shoham
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD21205
| | - Daniel F. Q. Smith
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Piotr Stempinski
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Maggie P. Wear
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | | | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| |
Collapse
|
15
|
Skipper CP, Hullsiek KH, Stadelman A, Williams DA, Ssebambulidde K, Okafor E, Tugume L, Nuwagira E, Akampurira A, Musubire AK, Abassi M, Muzoora C, Rhein J, Boulware DR, Meya DB. Sterile Cerebrospinal Fluid Culture at Cryptococcal Meningitis Diagnosis Is Associated with High Mortality. J Fungi (Basel) 2022; 9:46. [PMID: 36675867 PMCID: PMC9866844 DOI: 10.3390/jof9010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Cryptococcus is the leading cause of AIDS-related meningitis in sub-Saharan Africa. The clinical implications of a sterile cerebrospinal fluid (CSF) culture among individuals diagnosed with cryptococcal meningitis using CSF cryptococcal antigen (CrAg) are unclear. We prospectively enrolled 765 HIV-positive Ugandans with first-episode cryptococcal meningitis from November 2010 to May 2017. All persons were treated with amphotericin-based induction therapy. We grouped participants by tertile of baseline CSF quantitative Cryptococcus culture burden and compared clinical characteristics, CSF immune profiles, and 18-week mortality. We found 55 (7%) CSF CrAg-positive participants with sterile CSF cultures. Compared to the non-sterile groups, participants with sterile CSF cultures had higher CD4 counts, lower CSF opening pressures, and were more frequently receiving ART. By 18 weeks, 47% [26/55] died in the sterile culture group versus 35% [83/235] in the low culture tertile, 46% [107/234] in the middle tertile, and 56% [135/241] in the high tertile (p < 0.001). The sterile group had higher levels of CSF interferon-gamma (IFN-γ), IFN-α, interleukin (IL)-6, IL-17, G-CSF, GM-CSF, and chemokine CXCL2 compared with non-sterile groups. Despite persons with sterile CSF cultures having higher CD4 counts, lower CSF opening pressures, and CSF cytokine profiles associated with better Cryptococcus control (e.g., IFN-γ predominant), mortality was similar to those with higher fungal burdens. This unexpected finding challenges the traditional paradigm that increasing CSF fungal burdens are associated with increased mortality but is consistent with a damage-response framework model.
Collapse
Affiliation(s)
- Caleb P Skipper
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Infectious Diseases Institute, Makerere University, Kampala 7062, Uganda
| | | | - Anna Stadelman
- School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Darlisha A Williams
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Infectious Diseases Institute, Makerere University, Kampala 7062, Uganda
| | | | - Elizabeth Okafor
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lillian Tugume
- Infectious Diseases Institute, Makerere University, Kampala 7062, Uganda
| | - Edwin Nuwagira
- Department of Medicine, Mbarara University of Science and Technology, Mbarara 1410, Uganda
| | - Andrew Akampurira
- Infectious Diseases Institute, Makerere University, Kampala 7062, Uganda
| | - Abdu K Musubire
- Infectious Diseases Institute, Makerere University, Kampala 7062, Uganda
| | - Mahsa Abassi
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Infectious Diseases Institute, Makerere University, Kampala 7062, Uganda
| | - Conrad Muzoora
- Department of Medicine, Mbarara University of Science and Technology, Mbarara 1410, Uganda
| | - Joshua Rhein
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Infectious Diseases Institute, Makerere University, Kampala 7062, Uganda
| | - David R Boulware
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - David B Meya
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Infectious Diseases Institute, Makerere University, Kampala 7062, Uganda
| |
Collapse
|
16
|
Beardsley J, Dao A, Keighley C, Garnham K, Halliday C, Chen SCA, Sorrell TC. What's New in Cryptococcus gattii: From Bench to Bedside and Beyond. J Fungi (Basel) 2022; 9:jof9010041. [PMID: 36675862 PMCID: PMC9865494 DOI: 10.3390/jof9010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Cryptococcus species are a major cause of life-threatening infections in immunocompromised and immunocompetent hosts. While most disease is caused by Cryptococcus neoformans, Cryptococcus gattii, a genotypically and phenotypically distinct species, is responsible for 11-33% of global cases of cryptococcosis. Despite best treatment, C. gattii infections are associated with early mortality rates of 10-25%. The World Health Organization's recently released Fungal Priority Pathogen List classified C. gattii as a medium-priority pathogen due to the lack of effective therapies and robust clinical and epidemiological data. This narrative review summarizes the latest research on the taxonomy, epidemiology, pathogenesis, laboratory testing, and management of C. gattii infections.
Collapse
Affiliation(s)
- Justin Beardsley
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Correspondence:
| | - Aiken Dao
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Caitlin Keighley
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
| | - Katherine Garnham
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Sunshine Coast University Hospital, Sunshine Coast University, Birtinya, QLD 4575, Australia
| | - Catriona Halliday
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Sydney, NSW 2145, Australia
| | - Sharon C.-A. Chen
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Sydney, NSW 2145, Australia
| | - Tania C. Sorrell
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| |
Collapse
|
17
|
Sephton-Clark P, Tenor JL, Toffaletti DL, Meyers N, Giamberardino C, Molloy SF, Palmucci JR, Chan A, Chikaonda T, Heyderman R, Hosseinipour M, Kalata N, Kanyama C, Kukacha C, Lupiya D, Mwandumba HC, Harrison T, Bicanic T, Perfect JR, Cuomo CA. Genomic Variation across a Clinical Cryptococcus Population Linked to Disease Outcome. mBio 2022; 13:e0262622. [PMID: 36354332 PMCID: PMC9765290 DOI: 10.1128/mbio.02626-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022] Open
Abstract
Cryptococcus neoformans is the causative agent of cryptococcosis, a disease with poor patient outcomes that accounts for approximately 180,000 deaths each year. Patient outcomes may be impacted by the underlying genetics of the infecting isolate; however, our current understanding of how genetic diversity contributes to clinical outcomes is limited. Here, we leverage clinical, in vitro growth and genomic data for 284 C. neoformans isolates to identify clinically relevant pathogen variants within a population of clinical isolates from patients with human immunodeficiency virus (HIV)-associated cryptococcosis in Malawi. Through a genome-wide association study (GWAS) approach, we identify variants associated with the fungal burden and the growth rate. We also find both small and large-scale variation, including aneuploidy, associated with alternate growth phenotypes, which may impact the course of infection. Genes impacted by these variants are involved in transcriptional regulation, signal transduction, glycosylation, sugar transport, and glycolysis. We show that growth within the central nervous system (CNS) is reliant upon glycolysis in an animal model and likely impacts patient mortality, as the CNS yeast burden likely modulates patient outcome. Additionally, we find that genes with roles in sugar transport are enriched in regions under selection in specific lineages of this clinical population. Further, we demonstrate that genomic variants in two genes identified by GWAS impact virulence in animal models. Our approach identifies links between the genetic variation in C. neoformans and clinically relevant phenotypes and animal model pathogenesis, thereby shedding light on specific survival mechanisms within the CNS and identifying the pathways involved in yeast persistence. IMPORTANCE Infection outcomes for cryptococcosis, most commonly caused by C. neoformans, are influenced by host immune responses as well as by host and pathogen genetics. Infecting yeast isolates are genetically diverse; however, we lack a deep understanding of how this diversity impacts patient outcomes. To better understand both clinical isolate diversity and how diversity contributes to infection outcomes, we utilize a large collection of clinical C. neoformans samples that were isolated from patients enrolled in a clinical trial across 3 hospitals in Malawi. By combining whole-genome sequence data, clinical data, and in vitro growth data, we utilize genome-wide association approaches to examine the genetic basis of virulence. Genes with significant associations display virulence attributes in both murine and rabbit models, demonstrating that our approach can identify potential links between genetic variants and patho-biologically significant phenotypes.
Collapse
Affiliation(s)
- Poppy Sephton-Clark
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jennifer L. Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dena L. Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nancy Meyers
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Síle F. Molloy
- Centre for Global Health, Institute of Infection and Immunity, St George's University of London, London, United Kingdom
- Clinical Academic Group in Infection, St George's University Hospital, London, United Kingdom
| | - Julia R. Palmucci
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Adrienne Chan
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Tarsizio Chikaonda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Robert Heyderman
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mina Hosseinipour
- UNC Project Malawi, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Newton Kalata
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Cecilia Kanyama
- UNC Project Malawi, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Christopher Kukacha
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Duncan Lupiya
- Tisungane Clinic, Zomba Central Hospital, Zomba, Malawi
| | - Henry C. Mwandumba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Thomas Harrison
- Centre for Global Health, Institute of Infection and Immunity, St George's University of London, London, United Kingdom
- Clinical Academic Group in Infection, St George's University Hospital, London, United Kingdom
| | - Tihana Bicanic
- Centre for Global Health, Institute of Infection and Immunity, St George's University of London, London, United Kingdom
- Clinical Academic Group in Infection, St George's University Hospital, London, United Kingdom
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
18
|
Yang C, Huang Y, Zhou Y, Zang X, Deng H, Liu Y, Shen D, Xue X. Cryptococcus escapes host immunity: What do we know? Front Cell Infect Microbiol 2022; 12:1041036. [PMID: 36310879 PMCID: PMC9606624 DOI: 10.3389/fcimb.2022.1041036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cryptococcus is an invasive fungus that seriously endangers human life and health, with a complex and well-established immune-escaping mechanism that interferes with the function of the host immune system. Cryptococcus can attenuate the host’s correct recognition of the fungal antigen and escape the immune response mediated by host phagocytes, innate lymphoid cells, T lymphocytes, B lymphocytes with antibodies, and peripheral cytokines. In addition, the capsule, melanin, dormancy, Titan cells, biofilm, and other related structures of Cryptococcus are also involved in the process of escaping the host’s immunity, as well as enhancing the ability of Cryptococcus to infect the host.
Collapse
Affiliation(s)
- Chen Yang
- Department of Laboratory Medicine, the First Medical Centre, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yemei Huang
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Yangyu Zhou
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Xuelei Zang
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Hengyu Deng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yitong Liu
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Dingxia Shen
- Department of Laboratory Medicine, the First Medical Centre, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Dingxia Shen, ; Xinying Xue,
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Dingxia Shen, ; Xinying Xue,
| |
Collapse
|
19
|
Jung EH, Park YD, Dragotakes Q, Ramirez LS, Smith DQ, Reis FCG, Dziedzic A, Rodrigues ML, Baker RP, Williamson PR, Jedlicka A, Casadevall A, Coelho C. Cryptococcus neoformans releases proteins during intracellular residence that affect the outcome of the fungal-macrophage interaction. MICROLIFE 2022; 3:uqac015. [PMID: 36247839 PMCID: PMC9552768 DOI: 10.1093/femsml/uqac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 05/26/2023]
Abstract
Cryptococcus neoformans is a facultative intracellular pathogen that can replicate and disseminate in mammalian macrophages. In this study, we analyzed fungal proteins identified in murine macrophage-like cells after infection with C. neoformans. To accomplish this, we developed a protocol to identify proteins released from cryptococcal cells inside macrophage-like cells; we identified 127 proteins of fungal origin in infected macrophage-like cells. Among the proteins identified was urease, a known virulence factor, and others such as transaldolase and phospholipase D, which have catalytic activities that could contribute to virulence. This method provides a straightforward methodology to study host-pathogen interactions. We chose to study further Yeast Oligomycin Resistance (Yor1), a relatively uncharacterized protein belonging to the large family of ATP binding cassette transporter (ABC transporters). These transporters belong to a large and ancient protein family found in all extant phyla. While ABC transporters have an enormous diversity of functions across varied species, in pathogenic fungi they are better studied as drug efflux pumps. Analysis of C. neoformans yor1Δ strains revealed defects in nonlytic exocytosis, capsule size, and dimensions of extracellular vesicles, when compared to wild-type strains. We detected no difference in growth rates and cell body size. Our results indicate that C. neoformans releases a large suite of proteins during macrophage infection, some of which can modulate fungal virulence and are likely to affect the fungal-macrophage interaction.
Collapse
Affiliation(s)
- Eric H Jung
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Yoon-Dong Park
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Memorial Drive, Bethesda, MD 20814, United States
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Lia S Ramirez
- Department of Molecular and Cell Biology, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Daniel Q Smith
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Flavia C G Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Professor Algacyr Munhoz Mader, 3775, Curitiba - PR, 81310-020, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz Av. Brasil 4036. Room 814, Rio de Janeiro - RJ, 21040-361, Brazil
| | - Amanda Dziedzic
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Professor Algacyr Munhoz Mader, 3775, Curitiba - PR, 81310-020, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro Cidade Universitária da Universidade Federal do Rio de Janeiro,, Rio de Janeiro - RJ, 21941-902, Brazil
| | - Rosanna P Baker
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Memorial Drive, Bethesda, MD 20814, United States
| | - Anne Jedlicka
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Arturo Casadevall
- Corresponding author: Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N, Wolfe Street, Room E5132, Baltimore, MD 21205, United States. E-mail:
| | - Carolina Coelho
- Corresponding author: Medical Research Council Centre for Medical Mycology at University of Exeter, College of Health and Medicine, Geoffrey Pope Building, Room 325, University of Exeter, Stocker Road, Exeter EX4 4QD, Devon, United Kingdom. E-mail:
| |
Collapse
|
20
|
Kassaza K, Wasswa F, Nielsen K, Bazira J. Cryptococcus neoformans Genotypic Diversity and Disease Outcome among HIV Patients in Africa. J Fungi (Basel) 2022; 8:734. [PMID: 35887489 PMCID: PMC9325144 DOI: 10.3390/jof8070734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cryptococcal meningoencephalitis, a disease with poor patient outcomes, remains the most prevalent invasive fungal infection worldwide, accounting for approximately 180,000 deaths each year. In several areas of sub-Saharan Africa with the highest HIV prevalence, cryptococcal meningitis is the leading cause of community-acquired meningitis, with a high mortality among HIV-infected individuals. Recent studies show that patient disease outcomes are impacted by the genetics of the infecting isolate. Yet, there is still limited knowledge of how these genotypic variations contribute to clinical disease outcome. Further, it is unclear how the genetic heterogeneity of C. neoformans and the extensive phenotypic variation observed between and within isolates affects infection and disease. In this review, we discuss current knowledge of how various genotypes impact disease progression and patient outcome in HIV-positive populations in sub-Saharan African, a setting with a high burden of cryptococcosis.
Collapse
Affiliation(s)
- Kennedy Kassaza
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| | - Fredrickson Wasswa
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joel Bazira
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| |
Collapse
|
21
|
El-Kamand S, Steiner M, Ramirez C, Halliday C, Chen SCA, Papanicolaou A, Morton CO. Assessing Differences between Clinical Isolates of Aspergillus fumigatus from Cases of Proven Invasive Aspergillosis and Colonizing Isolates with Respect to Phenotype (Virulence in Tenebrio molitor Larvae) and Genotype. Pathogens 2022; 11:pathogens11040428. [PMID: 35456102 PMCID: PMC9029132 DOI: 10.3390/pathogens11040428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The fungus Aspergillus fumigatus, the cause of invasive aspergillosis (IA), is a serious risk to transplant patients and those with respiratory diseases. Host immune suppression is considered the most important factor for the development of IA. Less is known about the importance of fungal virulence in the development of IA including the significance of variation between isolates. In this study, isolates of A. fumigatus from cases diagnosed as having proven IA or colonisation (no evidence of IA) were compared in assays to measure isolate virulence. These assays included the measurement of radial growth and protease production on agar, sensitivity to UV light and oxidative stressors, and virulence in Tenebrio molitor (mealworm) larvae. These assays did not reveal obvious differences in virulence between the two groups of isolates; this provided the impetus to conduct genomic analysis. Whole genome sequencing and analysis did not allow grouping into coloniser or IA isolates. However, focused analysis of single nucleotide polymorphisms revealed variation in three putative genes: AFUA_5G09420 (ccg-8), AFUA_4G00330, and AFUA_4G00350. These are known to be responsive to azole exposure, and ccg-8 deletion leads to azole hypersensitivity in other fungi. A. fumigatus virulence is challenging, but the findings of this study indicate that further research into the response to oxidative stress and azole exposure are required to understand the development of IA.
Collapse
Affiliation(s)
- Sam El-Kamand
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Martina Steiner
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Carl Ramirez
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Catriona Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (C.H.); (S.C.-A.C.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (C.H.); (S.C.-A.C.)
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW 2145, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, NSW 2753, Australia
- Correspondence: (A.P.); (C.O.M.); Tel.: +61-2-4570-1385 (A.P.); +61-2-4620-3446 (C.O.M.)
| | - Charles Oliver Morton
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
- Correspondence: (A.P.); (C.O.M.); Tel.: +61-2-4570-1385 (A.P.); +61-2-4620-3446 (C.O.M.)
| |
Collapse
|
22
|
Vélez N, Vega-Vela N, Muñoz M, Gómez P, Escandón P, Ramírez JD, Zaragoza O, Monteoliva Diaz L, Parra-Giraldo CM. Deciphering the Association among Pathogenicity, Production and Polymorphisms of Capsule/Melanin in Clinical Isolates of Cryptococcus neoformans var. grubii VNI. J Fungi (Basel) 2022; 8:245. [PMID: 35330247 PMCID: PMC8950468 DOI: 10.3390/jof8030245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cryptococcus neoformans is an opportunistic fungal pathogen that can cause meningitis in immunocompromised individuals. The objective of this work was to study the relationship between the phenotypes and genotypes of isolates of clinical origin from different cities in Colombia. METHODS Genome classification of 29 clinical isolates of C. neoformans var. grubii was performed using multilocus sequence typing (MLST), and genomic sequencing was used to genotype protein-coding genes. Pathogenicity was assessed in a larval model, and melanin production and capsule size were evaluated in vitro and in vivo. RESULTS Eleven MLST sequence types (STs) were found, the most frequent being ST69 (n = 9), ST2, ST93, and ST377 (each with n = 4). In the 29 isolates, different levels of pigmentation, capsule size and pathogenicity were observed. Isolates classified as highly pathogenic showed a tendency to exhibit larger increases in capsule size. In the analysis of polymorphisms, 48 non-synonymous variants located in the predicted functional domains of 39 genes were found to be associated with capsule size change, melanin, or pathogenicity. CONCLUSIONS No clear patterns were found in the analysis of the phenotype and genotype of Cryptococcus. However, the data suggest that the increase in capsule size is a key variable for the differentiation of pathogenic isolates, regardless of the method used for its induction.
Collapse
Affiliation(s)
- Nórida Vélez
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Nelson Vega-Vela
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia
| | - Paola Gómez
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Oscar Zaragoza
- Mycology Reference Laboratory National Centre for Microbiology, Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Lucía Monteoliva Diaz
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Claudia-Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
23
|
Recent Advances in Cryptococcus and Cryptococcosis. Microorganisms 2021; 10:microorganisms10010013. [PMID: 35056462 PMCID: PMC8779235 DOI: 10.3390/microorganisms10010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
|
24
|
Onyishi CU, May RC. Human immune polymorphisms associated with the risk of cryptococcal disease. Immunology 2021; 165:143-157. [PMID: 34716931 PMCID: PMC9426616 DOI: 10.1111/imm.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 11/29/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that can cause lethal cryptococcal meningitis in immunocompromised individuals such as those with HIV/AIDS. In addition, cryptococcal infections occasionally arise in immunocompetent individuals or those with previously undiagnosed immunodeficiencies. The course of cryptococcosis is highly variable in both patient groups, and there is rapidly growing evidence that genetic polymorphisms may have a significant impact on the trajectory of disease. Here, we review what is currently known about the nature of these polymorphisms and their impact on host response to C. neoformans infection. Thus far, polymorphisms in Fc gamma receptors, mannose‐binding lectin, Dectin‐2, Toll‐like receptors and macrophage colony‐stimulating factor have been associated with susceptibility to cryptococcal disease. Notably, however, in some cases the impact of these polymorphisms depends on the genetic background of the population; for example, the FCGR3A 158 F/V polymorphism was associated with an increased risk of cryptococcal disease in both HIV‐positive and HIV‐negative white populations, but not in Han Chinese patients. In most cases, the precise mechanism by which the identified polymorphisms influence disease progression remains unclear, although impaired fungal recognition and phagocytosis by innate immune cells appears to play a major role. Finally, we highlight outstanding questions in the field and emphasize the need for future research to include more diverse populations in their genetic association studies.
Collapse
Affiliation(s)
- Chinaemerem U Onyishi
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Robin C May
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Sutar Y, Fulton SR, Paul S, Altamirano S, Mhatre S, Saeed H, Patel P, Mallick S, Bhat R, Patravale VB, Chauhan H, Nielsen K, Date AA. Docusate-Based Ionic Liquids of Anthelmintic Benzimidazoles Show Improved Pharmaceutical Processability, Lipid Solubility, and in Vitro Activity against Cryptococcus neoformans. ACS Infect Dis 2021; 7:2637-2649. [PMID: 34467755 PMCID: PMC8884109 DOI: 10.1021/acsinfecdis.1c00063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the existing therapeutic modalities for the treatment of cryptococcal meningitis (CM) have suboptimal efficacy, repurposing existing drugs for the treatment of CM is of great interest. The FDA-approved anthelmintic benzimidazoles, albendazole, mebendazole, and flubendazole, have demonstrated potent but variable in vitro activity against Cryptococcus neoformans, the predominant fungal species responsible for CM. We performed molecular docking studies to ascertain the interaction of albendazole, mebendazole, and flubendazole with a C. neoformans β-tubulin structure, which revealed differential binding interactions and explained the different in vitro efficacies reported previously and observed in this investigation. Despite their promising in vitro efficacy, the repurposing of anthelmintic benzimidazoles for oral CM therapy is significantly hampered due to their high crystallinity, poor pharmaceutical processability, low and pH-dependent solubility, and drug precipitation upon entering the intestine, all of which result in low and variable oral bioavailability. Here, we demonstrate that the anthelmintic benzimidazoles can be transformed into partially amorphous low-melting ionic liquids (ILs) with a simple metathesis reaction using amphiphilic sodium docusate as a counterion. In vitro efficacy studies on a laboratory reference and a clinical isolate of C. neoformans showed 2- to 4-fold lower IC90 values for docusate-based ILs compared to the pure anthelmintic benzimidazoles. Furthermore, using a C. neoformans strain with green fluorescent protein (GFP)-tagged β-tubulin and albendazole and its docusate IL as model candidates, we showed that the benzimidazoles and their ILs reduce the viability of C. neoformans by interfering with its microtubule assembly. Unlike pure anthelmintic benzimidazoles, the docusate-based ILs showed excellent solubility in organic solvents and >30-fold higher solubility in bioavailability-enhancing lipid vehicles. Finally, the docusate ILs were successfully incorporated into SoluPlus, a self-assembling biodegradable polymer, which upon dilution with water formed polymeric micelles with a size of <100 nm. Thus, the development of docusate-based ILs represents an effective approach to improve the physicochemical properties and potency of anthelmintic benzimidazoles to facilitate their repurposing and preclinical development for CM therapy.
Collapse
Affiliation(s)
- Yogesh Sutar
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Sophie R Fulton
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sagarkumar Paul
- Department of Pharmaceutical Sciences, Creighton University School of Pharmacy and Health Profession, 2200 California Plaza, Omaha, Nebraska 68710, United States
| | - Sophie Altamirano
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Susmit Mhatre
- Department of Pharmaceutical Sciences, Institute of Chemical Technology, N.P Marg, Matunga, Mumbai, Maharashtra 400011, India
| | - Hiwa Saeed
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Pratikkumar Patel
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Sudipta Mallick
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Roopal Bhat
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
- Department of Pharmaceutics, Shree Chanakya Education Society's Indira College of Pharmacy, Tathawade, Pune, Maharashtra 411033, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences, Institute of Chemical Technology, N.P Marg, Matunga, Mumbai, Maharashtra 400011, India
| | - Harsh Chauhan
- Department of Pharmaceutical Sciences, Creighton University School of Pharmacy and Health Profession, 2200 California Plaza, Omaha, Nebraska 68710, United States
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Abhijit A Date
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu, Hawaii 96813, United States
| |
Collapse
|
26
|
de Sousa HR, de Frazão S, de Oliveira Júnior GP, Albuquerque P, Nicola AM. Cryptococcal Virulence in Humans: Learning From Translational Studies With Clinical Isolates. Front Cell Infect Microbiol 2021; 11:657502. [PMID: 33968804 PMCID: PMC8097041 DOI: 10.3389/fcimb.2021.657502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/31/2021] [Indexed: 01/17/2023] Open
Abstract
Cryptococcosis, an invasive mycosis caused by Cryptococcus spp, kills between 20% and 70% of the patients who develop it. There are no vaccines for prevention, and treatment is based on a limited number of antifungals. Studying fungal virulence and how the host responds to infection could lead to new therapies, improving outcomes for patients. The biggest challenge, however, is that experimental cryptococcosis models do not completely recapitulate human disease, while human experiments are limited due to ethical reasons. To overcome this challenge, one of the approaches used by researchers and clinicians is to: 1) collect cryptococcal clinical isolates and associated patient data; 2) study the set of isolates in the laboratory (virulence and host-pathogen interaction variables, molecular markers); 3) correlate the laboratory and patient data to understand the roles fungal attributes play in the human disease. Here we review studies that have shed light on the cryptococcosis pathophysiology using these approaches, with a special focus on human disease. Isolates that more effectively evade macrophage responses, that secrete more laccase, melanize faster and have larger capsules in the cerebrospinal fluid are associated with poorer patient outcomes. Additionally, molecular studies have also shown that cryptococcal clades vary in virulence, with clinical impact. Limitations of those studies include the use of a small number of isolates or retrospectively collected clinical data. The fact that they resulted in very important information is a reflection of the impact this strategy has in understanding cryptococcosis and calls for international collaboration that could boost our knowledge.
Collapse
Affiliation(s)
- Herdson Renney de Sousa
- Microbiology, Immunology and Biotechnology Laboratory, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Stefânia de Frazão
- Laboratory of Molecular Biology of Pathogenic Fungi, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Getúlio Pereira de Oliveira Júnior
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Patrícia Albuquerque
- Microbiology, Immunology and Biotechnology Laboratory, Faculty of Medicine, University of Brasília, Brasília, Brazil
- Laboratory of Molecular Biology of Pathogenic Fungi, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Faculty of Ceilândia, University of Brasília, Brasília, Brazil
| | - André Moraes Nicola
- Microbiology, Immunology and Biotechnology Laboratory, Faculty of Medicine, University of Brasília, Brasília, Brazil
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| |
Collapse
|
27
|
Zhou M, Xiao M, Hou R, Wang D, Yang M, Chen M, Chen L. Bundles of care for prevention of ventilator-associated pneumonia caused by carbapenem-resistant Klebsiella pneumoniae in the ICU. Am J Transl Res 2021; 13:3561-3572. [PMID: 34017537 PMCID: PMC8129229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the treatment efficacy of bundles of care for the prevention of ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Klebsiella pneumoniae in the intensive care unit (ICU). METHODS A total of 102 patients undergoing mechanical ventilation in the ICU of our hospital were randomly assigned into a research group (n=51, bundles of care) and a control group (n=51, routine care). The incidence of VAP, pathogenic bacteria in the sputum, outcome and medication compliance (Morisky medication adherence scale (MMAS) score) of patients as well as the hand hygiene rate of nurses were compared between the two groups. RESULTS The research group showed significantly shorter time of mechanical ventilation and ICU stay, lower incidence of VAP and less ICU hospitalization costs than the control group (all P<0.05). The detection rate of pathogenic bacteria in the research group was significantly lower than that in the control group (P<0.01). Both the MMAS score and the hand hygiene rate of nurses were higher in the research group than in the control group (both P<0.01). The mortality of the research group was significantly lower than that of the control group (P<0.05). CONCLUSION Bundles of care for patients undergoing mechanical ventilation in ICU can greatly shorten the time of mechanical ventilation, reduce nosocomial infection, decrease the incidence of VAP and the mortality, and is conducive to improving the hand hygiene of nurses and the medication compliance of patients.
Collapse
Affiliation(s)
- Mao Zhou
- Department of Intensive Care Unit, Affiliated Hospital of North Sichuan Medical CollegeNanchong, Sichuan Province, China
| | - Min Xiao
- Department of Intensive Care Unit, Affiliated Hospital of North Sichuan Medical CollegeNanchong, Sichuan Province, China
| | - Ruoyu Hou
- Surgery Room, Affiliated Hospital of North Sichuan Medical CollegeNanchong, Sichuan Province, China
| | - Daqing Wang
- Department of Intensive Care Unit, Affiliated Hospital of North Sichuan Medical CollegeNanchong, Sichuan Province, China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical CollegeNanchong, Sichuan Province, China
| | - Min Chen
- Department of Intensive Care Unit, Affiliated Hospital of North Sichuan Medical CollegeNanchong, Sichuan Province, China
| | - Li Chen
- Department of Intensive Care Unit, Affiliated Hospital of North Sichuan Medical CollegeNanchong, Sichuan Province, China
| |
Collapse
|
28
|
The interplay of phenotype and genotype in Cryptococcus neoformans disease. Biosci Rep 2021; 40:226594. [PMID: 33021310 PMCID: PMC7569153 DOI: 10.1042/bsr20190337] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening meningitis primarily in immunocompromised individuals. In order to survive and proliferate during infection, C. neoformans must adapt to a variety of stresses it encounters within the host. Patient outcome depends on the interaction between the pathogen and the host. Understanding the mechanisms that C. neoformans uses to facilitate adaptation to the host and promote pathogenesis is necessary to better predict disease severity and establish proper treatment. Several virulence phenotypes have been characterized in C. neoformans, but the field still lacks a complete understanding of how genotype and phenotype contribute to clinical outcome. Furthermore, while it is known that C. neoformans genotype impacts patient outcome, the mechanisms remain unknown. This lack of understanding may be due to the genetic heterogeneity of C. neoformans and the extensive phenotypic variation observed between and within isolates during infection. In this review, we summarize the current understanding of how the various genotypes and phenotypes observed in C. neoformans correlate with human disease progression in the context of patient outcome and recurrence. We also postulate the mechanisms underlying the genetic and phenotypic changes that occur in vivo to promote rapid adaptation in the host.
Collapse
|
29
|
Associations between Cryptococcus Genotypes, Phenotypes, and Clinical Parameters of Human Disease: A Review. J Fungi (Basel) 2021; 7:jof7040260. [PMID: 33808500 PMCID: PMC8067209 DOI: 10.3390/jof7040260] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
The genus Cryptococcus contains two primary species complexes that are significant opportunistic human fungal pathogens: C. neoformans and C. gattii. In humans, cryptococcosis can manifest in many ways, but most often results in either pulmonary or central nervous system disease. Patients with cryptococcosis can display a variety of symptoms on a spectrum of severity because of the interaction between yeast and host. The bulk of our knowledge regarding Cryptococcus and the mechanisms of disease stem from in vitro experiments and in vivo animal models that make a fair attempt, but do not recapitulate the conditions inside the human host. To better understand the dynamics of initiation and progression in cryptococcal disease, it is important to study the genetic and phenotypic differences in the context of human infection to identify the human and fungal risk factors that contribute to pathogenesis and poor clinical outcomes. In this review, we summarize the current understanding of the different clinical presentations and health outcomes that are associated with pathogenicity and virulence of cryptococcal strains with respect to specific genotypes and phenotypes.
Collapse
|
30
|
Is It Time To Kill the Survival Curve? A Case for Disease Progression Factors in Microbial Pathogenesis and Host Defense Research. mBio 2021; 12:mBio.03483-20. [PMID: 33563835 PMCID: PMC7885121 DOI: 10.1128/mbio.03483-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The molecular mechanisms of microbial virulence and host defense are most often studied using animal models and Koch's molecular postulates. A common rationale for these types of experiments is to identify therapeutic targets based on the assumption that microbial or host factors that confer extreme animal model survival phenotypes represent critical virulence and host defense factors. Yet null mutant strains of microbial (or host) factors often yield extreme survival curve phenotypes because they fail to establish an infection. The lack of infection and disease establishment prevents true assessment of the given factor's role(s) in disease progression. Here, we posit that the emphasis on extreme survival curve phenotypes in fungal infectious disease models is leading to missed opportunities to identify new fungal and host factors critical for disease progression. We simply do not yet have a sufficient understanding of fungal virulence and host defense mechanisms throughout the temporal course of an infection. We propose that there is a need to develop new approaches and to revisit tried and true methods to define infection site biology beyond the analysis of survival curve phenotypes. To stimulate these new approaches, we propose the (new) terms "disease initiation factor" and "disease progression factor" to distinguish functional roles at distinct temporal stages of an infection and give us targets to foster new discoveries.
Collapse
|
31
|
Cryptococcal Immune Reconstitution Inflammatory Syndrome: From Blood and Cerebrospinal Fluid Biomarkers to Treatment Approaches. Life (Basel) 2021; 11:life11020095. [PMID: 33514007 PMCID: PMC7912256 DOI: 10.3390/life11020095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/31/2022] Open
Abstract
Immune reconstitution inflammatory syndrome (IRIS) presents as an exaggerated immune reaction that occurs during dysregulated immune restoration in immunocompromised patients in late-stage human immunodeficiency virus (HIV) infection who have commenced antiretroviral treatments (ART). Virtually any opportunistic pathogen can provoke this type of immune restoration disorder. In this review, we focus on recent developments in the identification of risk factors for Cryptococcal IRIS and on advancements in our understanding of C-IRIS immunopathogenesis. We overview new findings in blood and cerebrospinal fluid which can potentially be useful in the prediction and diagnosis of cryptococcal meningitis IRIS (CM-IRIS). We assess current therapeutic regimens and novel treatment approaches to combat CM-IRIS. We discuss the utility of biomarkers for clinical monitoring and adjusting treatment modalities in acquired immunodeficiency syndrome (AIDS) patients co-infected with Cryptococcus who have initiated ART.
Collapse
|
32
|
“Feast-Fit-Fist-Feat”: Overview of Free-living Amoeba Interactions with Fungi and Virulence as a Foundation for Success in Battle. CURRENT TROPICAL MEDICINE REPORTS 2021. [DOI: 10.1007/s40475-020-00220-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
A Novel Cryptococcal Meningitis Therapy: The Combination of Amphotericin B and Posaconazole Promotes the Distribution of Amphotericin B in the Brain Tissue. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8878158. [PMID: 33313322 PMCID: PMC7719495 DOI: 10.1155/2020/8878158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
The deficient brain tissue distribution of amphotericin B (AMPB) seriously restricts its treatment for the clinical efficacy of cryptococcus neoformans meningitis (CNM). We strive to develop a tactic to increase its concentration in brain tissue. We aimed to investigate whether the combination of AMPB and posaconazole (POS) could be more effective in the treatment of CNM and to elucidate its potential mechanisms. HPLC analysis was used to analyze the concentration of AMPB in mouse serum, brain tissue, and BCECs cells. Schrodinger molecular docking, in vitro plasma balance dialysis, and ultrafiltration analysis were performed to evaluate the combinative effect of AMPB and POS with serum albumin and POS on AMPB plasma protein binding. H&E staining and colonization culture experiment of CN were employed to assess the effect of POS on the efficacy of AMPB. POS + AMPB significantly reduced the concentration of plasma total AMPB and increased its concentration in the brain tissue. However, the P-gp inhibitor zosuquidar, BCRP inhibitor Ko143, and a common inhibitor of both, elacridar, had no significant effect on its concentration. Molecular docking, balance dialysis, and ultrafiltration analysis showed that AMPB and POS had potential binding properties to serum albumin. Meanwhile, 4 and 8 μg/mL POS could significantly increase the concentration of free AMPB in plasma. POS and three inhibitors all had no significant effect on the uptake of AMPB by BCECs, but serum albumin had. The therapeutic effect of CNM in mice was confirmed that AMPB and AMPB+POS could restrain the infiltration of neutrophils and lymphocytes in cortical neurons and improve the bleeding and markedly inhibit the proliferation of CN. Collectively, we propose that POS competitively binds to the plasma protein sites of AMPB, thereby increasing its level in the brain tissue. Meanwhile, POS could enhance the efficacy of AMPB in the treatment of CNM, which may be independent of P-gp and BCRP proteins.
Collapse
|
34
|
Okurut S, Boulware DR, Olobo J, Meya DB. Landmark clinical observations and immunopathogenesis pathways linked to HIV and Cryptococcus fatal central nervous system co-infection. Mycoses 2020; 63:840-853. [PMID: 32472727 PMCID: PMC7416908 DOI: 10.1111/myc.13122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Cryptococcal meningitis remains one of the leading causes of death among HIV-infected adults in the fourth decade of HIV era in sub-Saharan Africa, contributing to 10%-20% of global HIV-related deaths. Despite widespread use and early induction of ART among HIV-infected adults, incidence of cryptococcosis remains significant in those with advanced HIV disease. Cryptococcus species that causes fatal infection follows systemic spread from initial environmental acquired infection in lungs to antigenaemia and fungaemia in circulation prior to establishment of often fatal disease, cryptococcal meningitis in the CNS. Cryptococcus person-to-person transmission is uncommon, and deaths related to blood infection without CNS involvement are rare. Keen to the persistent high mortality associated with HIV-cryptococcal meningitis, seizures are common among a third of the patients, altered mental status is frequent, anaemia is prevalent with ensuing brain hypoxia and at autopsy, brain fibrosis and infarction are evident. In addition, fungal burden is 3-to-4-fold higher in those with seizures. And high immune activation together with exacerbated inflammation and elevated PD-1/PD-L immune checkpoint expression is immunomodulated phenotypes elevated in CSF relative to blood. Lastly, though multiple Cryptococcus species cause disease in this setting, observations are mostly generalised to cryptococcal infection/meningitis or regional dominant species (C neoformans or gattii complex) that may limit our understanding of interspecies differences in infection, progression, treatment or recovery outcome. Together, these factors and underlying mechanisms are hypotheses generating for research to find targets to prevent infection or adequate therapy to prevent persistent high mortality with current optimal therapy.
Collapse
Affiliation(s)
- Samuel Okurut
- Research DepartmentInfectious Diseases InstituteMakerere UniversityKampalaUganda
- Department of MicrobiologySchool of Biomedical SciencesCollege of Health SciencesMakerere UniversityKampalaUganda
| | - David R. Boulware
- Division of Infectious Diseases and International MedicineDepartment of MedicineUniversity of MinnesotaMinneapolisMinnesota
| | - Joseph Olobo
- Department of Immunology and Molecular BiologySchool of Biomedical SciencesCollege of Health SciencesMakerere UniversityKampalaUganda
| | - David B. Meya
- Research DepartmentInfectious Diseases InstituteMakerere UniversityKampalaUganda
- Division of Infectious Diseases and International MedicineDepartment of MedicineUniversity of MinnesotaMinneapolisMinnesota
- Department of MedicineSchool of MedicineCollege of Health SciencesMakerere UniversityKampalaUganda
| |
Collapse
|
35
|
Wongsuk T, Homkaew A, Faksri K, Thongnak C. Multi-locus Sequence Typing and Whole Genome Sequence Analysis of Cryptococcus neoformans Isolated from Clinical Specimens in Vajira Hospital, Bangkok, Thailand. Mycopathologia 2020; 185:503-514. [PMID: 32440853 DOI: 10.1007/s11046-020-00456-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022]
Abstract
The basidiomycete yeast Cryptococcus neoformans causes disease in immunocompromized patients. Whole genome sequencing (WGS) technology provides insights into the molecular epidemiology of C. neoformans. However, the number of such studies is limited. Here we used WGS and multilocus sequence typing (MLST) to determine the genetic diversity of C. neoformans isolates and genetic structures of their populations among patients admitted to a single hospital in Bangkok, Thailand. Seven isolates from six patients collected during 1 year were identified as C. neoformans sensu stricto according to colony morphology, microscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nucleotide sequence analysis of internal transcribed sequences. These isolates were sensitive to the antifungal drugs amphotericin B, fluconazole, 5-flucytosine, voriconazole, itraconazole and posaconazole and were mating type α and molecular type VNI. MLST analysis identified ST4, ST5 and ST6. We further employed WGS to determine the genetic diversity and relationships of C. neoformans isolated here combined with C. neoformans sequences data acquired from a public database (n = 42). We used the data to construct a phylogenetic tree. WGS provided additional genomics data and achieved high discriminatory power for identifying C. neoformans isolates isolated in Thailand. This report further demonstrates the applicability of WGS analysis for conducting molecular epidemiology and provides insight into the genetic diversity of C. neoformans isolates from one hospital in Thailand.
Collapse
Affiliation(s)
- Thanwa Wongsuk
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, 681 Samsen Road, Vajira District, Dusit, Bangkok, 10300, Thailand
| | - Anchalee Homkaew
- Microbiology Laboratory, Department of Central Laboratory and Blood Bank, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Kiatichai Faksri
- Research and Diagnostic Center for Emerging Infectious Diseases, and Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chuphong Thongnak
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, 681 Samsen Road, Vajira District, Dusit, Bangkok, 10300, Thailand.
| |
Collapse
|
36
|
El-Kamand S, Papanicolaou A, Morton CO. The Use of Whole Genome and Next-Generation Sequencing in the Diagnosis of Invasive Fungal Disease. CURRENT FUNGAL INFECTION REPORTS 2019. [DOI: 10.1007/s12281-019-00363-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|