1
|
Thacharodi A, Hassan S, Vithlani A, Ahmed T, Kavish S, Geli Blacknell NM, Alqahtani A, Pugazhendhi A. The burden of group A Streptococcus (GAS) infections: The challenge continues in the twenty-first century. iScience 2025; 28:111677. [PMID: 39877071 PMCID: PMC11773489 DOI: 10.1016/j.isci.2024.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Streptococcus pyogenes is a Gram-positive bacterium, also known as Group A Streptococcus (GAS), that has become a significant threat to the healthcare system, infecting more than 18 million people and resulting in more than 500,000 deaths annually worldwide. GAS infection rates decreased gradually during the 20th century in Western countries, largely due to improved living conditions and access to antibiotics. However, post-COVID-19, the situation has led to a steep increase in GAS infection rates in Europe, the United States, Australia, and New Zealand, which triggers a global concern. GAS infections are normally moderate, with symptoms of fever, pharyngitis, and pyoderma; nevertheless, if left untreated or with continued exposure to GAS or with recurring infections it can result in fatal outcomes. GAS produces a variety of virulence factors and exotoxins that can lead to deadly infections such as necrotizing fasciitis, impetigo, cellulitis, pneumonia, empyema, streptococcal toxic shock syndrome, bacteremia, and puerperal sepsis. In addition, post-immune mediated disorders such as post-streptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease contribute to extremely high death rates in developing nations. Despite substantial research on GAS infections, it is still unclear what molecular pathways are responsible for their emergence and how to best manage them. This review thus provides insights into the most recent research on the pathogenesis, virulence, resistance, and host interaction mechanisms of GAS, as well as novel management options to assist scientific communities in combating GAS infections.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi’s Laboratories, Department of Research and Development, Puducherry 605005, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
- Future Leaders Mentoring Fellow, American Society for Microbiology, Washington 20036, USA
| | - Avadh Vithlani
- Senior Resident, Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Tawfeeq Ahmed
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | - Sanjana Kavish
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | | | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
2
|
Choi S, Lee Y, Park S, Jang SY, Park J, Oh DW, Kim SM, Kim TH, Lee GS, Cho C, Kim BS, Lee D, Kim EH, Cheong HK, Moon JH, Song JJ, Hwang J, Kim MH. Dissemination of pathogenic bacteria is reinforced by a MARTX toxin effector duet. Nat Commun 2024; 15:6218. [PMID: 39043696 PMCID: PMC11266601 DOI: 10.1038/s41467-024-50650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Multiple bacterial genera take advantage of the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin to invade host cells. Secretion of the MARTX toxin by Vibrio vulnificus, a deadly opportunistic pathogen that causes primary septicemia, the precursor of sepsis, is a major driver of infection; however, the molecular mechanism via which the toxin contributes to septicemia remains unclear. Here, we report the crystal and cryo-electron microscopy (EM) structures of a toxin effector duet comprising the domain of unknown function in the first position (DUF1)/Rho inactivation domain (RID) complexed with human targets. These structures reveal how the duet is used by bacteria as a potent weapon. The data show that DUF1 acts as a RID-dependent transforming NADase domain (RDTND) that disrupts NAD+ homeostasis by hijacking calmodulin. The cryo-EM structure of the RDTND-RID duet complexed with calmodulin and Rac1, together with immunological analyses in vitro and in mice, provide mechanistic insight into how V. vulnificus uses the duet to suppress ROS generation by depleting NAD(P)+ and modifying Rac1 in a mutually-reinforcing manner that ultimately paralyzes first line immune responses, promotes dissemination of invaders, and induces sepsis. These data may allow development of tools or strategies to combat MARTX toxin-related human diseases.
Collapse
Affiliation(s)
- Sanghyeon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Youngjin Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Shinhye Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Song Yee Jang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
| | - Jongbin Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Do Won Oh
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Su-Man Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biology Education, Chonnam National University, Gwangju, 61186, Korea
| | - Tae-Hwan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28644, Korea
| | - Changyi Cho
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760, Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760, Korea
| | - Donghan Lee
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Eun-Hee Kim
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Hae-Kap Cheong
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Jungwon Hwang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| |
Collapse
|
3
|
Shi YA, Lu SL, Noda T, Chiu CH, Chiang-Ni C. Capsule-deficient group A Streptococcus evades autophagy-mediated killing in macrophages. mBio 2024; 15:e0077124. [PMID: 38819157 PMCID: PMC11253618 DOI: 10.1128/mbio.00771-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024] Open
Abstract
The hyaluronic acid capsule is crucial in protecting group A Streptococcus (GAS) against phagocytic killing. However, there have been reported outbreaks caused by capsule-deficient GAS strains, and the mechanisms underlying their evasion of immune clearance remain unclear. This study demonstrated that the capsule-deficient mutant [Cap(-)] of the emm1 strain increased survival within phagocytic cells compared to the wild-type strain [Cap(+)]. Although both Cap(+) and Cap(-) strains exhibited similar abilities to disrupt the phagosome, only the Cap(+) strain was colocalized with lysosomes and acidified compartments in phagocytic cells, indicating its susceptibility to autophagosome elimination. In contrast, the Cap(-) mutant evaded the recognition of galectin-8 and ubiquitin, impairing selective autophagy-mediated elimination. These findings suggest that a deficiency in the capsule could impair the intracellular elimination of GAS in macrophages, revealing previously unknown aspects of the host's recognition of the GAS capsule in macrophages. IMPORTANCE Group A Streptococcus (GAS) is a Gram-positive bacterium that causes diseases ranging from mild pharyngitis to severe necrotizing fasciitis. Phagocytic cells serve as the primary defense against bacterial infections, exhibiting remarkable efficiency in eliminating intracellular pathogens. The hyaluronic acid capsule is a critical virulence factor that contributes to the resistance of phagocytosis in GAS. Nevertheless, the outbreaks caused by GAS strains that lack the hyaluronic acid capsule have been reported, and the selective advantage of capsule-deficient strains during infection is not fully understood. This study showed that the autophagic adaptor proteins recognize the capsulated GAS strain but not the capsule-deficient mutant, indicating that the hyaluronic acid capsule could be the autophagic target in macrophages. These findings imply that the hyaluronic acid capsule of GAS actually enhances its elimination within phagocytic cells, subverting the understanding of the capsule in GAS pathogenesis.
Collapse
Affiliation(s)
- Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shiou-Ling Lu
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chuan Chiang-Ni
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
4
|
Nishioka ST, Snipper J, Lee J, Schapiro J, Zhang RZ, Abe H, Till A, Okumura CYM. Group A Streptococcus induces lysosomal dysfunction in THP-1 macrophages. Infect Immun 2024; 92:e0014124. [PMID: 38722166 PMCID: PMC11237432 DOI: 10.1128/iai.00141-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024] Open
Abstract
The human-specific bacterial pathogen group A Streptococcus (GAS) is a significant cause of morbidity and mortality. Macrophages are important to control GAS infection, but previous data indicate that GAS can persist in macrophages. In this study, we detail the molecular mechanisms by which GAS survives in THP-1 macrophages. Our fluorescence microscopy studies demonstrate that GAS is readily phagocytosed by macrophages, but persists within phagolysosomes. These phagolysosomes are not acidified, which is in agreement with our findings that GAS cannot survive in low pH environments. We find that the secreted pore-forming toxin Streptolysin O (SLO) perforates the phagolysosomal membrane, allowing leakage of not only protons but also large proteins including the lysosomal protease cathepsin B. Additionally, GAS recruits CD63/LAMP-3, which may contribute to lysosomal permeabilization, especially in the absence of SLO. Thus, although GAS does not inhibit fusion of the lysosome with the phagosome, it has multiple mechanisms to prevent proper phagolysosome function, allowing for persistence of the bacteria within the macrophage. This has important implications for not only the initial response but also the overall functionality of the macrophages, which may lead to the resulting pathologies in GAS infection. Our data suggest that therapies aimed at improving macrophage function may positively impact patient outcomes in GAS infection.
Collapse
Affiliation(s)
- Scott T Nishioka
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Joshua Snipper
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Jimin Lee
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Joshua Schapiro
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Robert Z Zhang
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Hyewon Abe
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Andreas Till
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
- The San Diego Center for Systems Biology, University of California San Diego, La Jolla, California, USA
- University Hospital of Bonn, Bonn, Germany
| | | |
Collapse
|
5
|
Sanford TC, Tweten RK, Abrahamsen HL. Bacterial cholesterol-dependent cytolysins and their interaction with the human immune response. Curr Opin Infect Dis 2024; 37:164-169. [PMID: 38527455 PMCID: PMC11042984 DOI: 10.1097/qco.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW Many cholesterol-dependent cytolysin (CDC)-producing pathogens pose a significant threat to human health. Herein, we review the pore-dependent and -independent properties CDCs possess to assist pathogens in evading the host immune response. RECENT FINDINGS Within the last 5 years, exciting new research suggests CDCs can act to inhibit important immune functions, disrupt critical cell signaling pathways, and have tissue-specific effects. Additionally, recent studies have identified a key region of CDCs that generates robust immunity, providing resources for the development of CDC-based vaccines. SUMMARY This review provides new information on how CDCs alter host immune responses to aid bacteria in pathogenesis. These studies can assist in the design of more efficient vaccines and therapeutics against CDCs that will enhance the immune response to CDC-producing pathogens while mitigating the dampening effects CDCs have on the host immune response.
Collapse
Affiliation(s)
- Tristan C. Sanford
- University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104
| | - Rodney K. Tweten
- University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104
| | - Hunter L. Abrahamsen
- University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104
| |
Collapse
|
6
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Brouwer S, Rivera-Hernandez T, Curren BF, Harbison-Price N, De Oliveira DMP, Jespersen MG, Davies MR, Walker MJ. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat Rev Microbiol 2023; 21:431-447. [PMID: 36894668 PMCID: PMC9998027 DOI: 10.1038/s41579-023-00865-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/11/2023]
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is exquisitely adapted to the human host, resulting in asymptomatic infection, pharyngitis, pyoderma, scarlet fever or invasive diseases, with potential for triggering post-infection immune sequelae. GAS deploys a range of virulence determinants to allow colonization, dissemination within the host and transmission, disrupting both innate and adaptive immune responses to infection. Fluctuating global GAS epidemiology is characterized by the emergence of new GAS clones, often associated with the acquisition of new virulence or antimicrobial determinants that are better adapted to the infection niche or averting host immunity. The recent identification of clinical GAS isolates with reduced penicillin sensitivity and increasing macrolide resistance threatens both frontline and penicillin-adjunctive antibiotic treatment. The World Health Organization (WHO) has developed a GAS research and technology road map and has outlined preferred vaccine characteristics, stimulating renewed interest in the development of safe and effective GAS vaccines.
Collapse
Affiliation(s)
- Stephan Brouwer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Bodie F Curren
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Nichaela Harbison-Price
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
8
|
Merriman JA, Xu W, Caparon MG. Central carbon flux controls growth/damage balance for Streptococcus pyogenes. PLoS Pathog 2023; 19:e1011481. [PMID: 37384800 DOI: 10.1371/journal.ppat.1011481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Microbial pathogens balance growth against tissue damage to achieve maximum fitness. Central carbon metabolism is connected to growth, but how it influences growth/damage balance is largely unknown. Here we examined how carbon flux through the exclusively fermentative metabolism of the pathogenic lactic acid bacterium Streptococcus pyogenes impacts patterns of growth and tissue damage. Using a murine model of soft tissue infection, we systematically examined single and pair-wise mutants that constrained carbon flux through the three major pathways that S. pyogenes employs for reduction of the glycolytic intermediate pyruvate, revealing distinct disease outcomes. Its canonical lactic acid pathway (via lactate dehydrogenase) made a minimal contribution to virulence. In contrast, its two parallel pathways for mixed-acid fermentation played important, but non-overlapping roles. Anaerobic mixed acid fermentation (via pyruvate formate lyase) was required for growth in tissue, while aerobic mixed-acid pathway (via pyruvate dehydrogenase) was not required for growth, but instead regulated levels of tissue damage. Infection of macrophages in vitro revealed that pyruvate dehydrogenase was required to prevent phagolysosomal acidification, which altered expression of the immunosuppressive cytokine IL-10. Infection of IL-10 deficient mice confirmed that the ability of aerobic metabolism to regulate levels of IL-10 plays a key role in the ability of S. pyogenes to modulate levels of tissue damage. Taken together, these results show critical non-overlapping roles for anaerobic and aerobic metabolism in soft tissue infection and provide a mechanism for how oxygen and carbon flux act coordinately to regulate growth/damage balance. Therapies targeting carbon flux could be developed to mitigate tissue damage during severe S. pyogenes infection.
Collapse
Affiliation(s)
- Joseph A Merriman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wei Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
9
|
Dao TH, Iverson A, Neville SL, Johnson MDL, McDevitt CA, Rosch JW. The role of CopA in Streptococcus pyogenes copper homeostasis and virulence. J Inorg Biochem 2023; 240:112122. [PMID: 36639322 PMCID: PMC10161136 DOI: 10.1016/j.jinorgbio.2023.112122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Maintenance of intracellular metal homeostasis during interaction with host niches is critical to the success of bacterial pathogens. To prevent infection, the mammalian innate immune response employs metal-withholding and metal-intoxication mechanisms to limit bacterial propagation. The first-row transition metal ion copper serves critical roles at the host-pathogen interface and has been associated with antimicrobial activity since antiquity. Despite lacking any known copper-utilizing proteins, streptococci have been reported to accumulate significant levels of copper. Here, we report that loss of CopA, a copper-specific exporter, confers increased sensitivity to copper in Streptococcus pyogenes strain HSC5, with prolonged exposure to physiological levels of copper resulting in reduced viability during stationary phase cultivation. This defect in stationary phase survival was rescued by supplementation with exogeneous amino acids, indicating the pathogen had altered nutritional requirements during exposure to copper stress. Furthermore, S. pyogenes HSC5 ΔcopA was substantially attenuated during murine soft-tissue infection, demonstrating the importance of copper efflux at the host-pathogen interface. Collectively, these data indicate that copper can severely reduce the viability of stationary phase S. pyogenes and that active efflux mechanisms are required to survive copper stress in vitro and during infection.
Collapse
Affiliation(s)
- Tina H Dao
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Amy Iverson
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Michael D L Johnson
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Immunobiology, BIO5 Institute, Valley Fever Center for Excellence, and Asthma and Airway Disease Research Center, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jason W Rosch
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
10
|
Tsai WJ, Lai YH, Shi YA, Hammel M, Duff AP, Whitten AE, Wilde KL, Wu CM, Knott R, Jeng US, Kang CY, Hsu CY, Wu JL, Tsai PJ, Chiang-Ni C, Wu JJ, Lin YS, Liu CC, Senda T, Wang S. Structural basis underlying the synergism of NADase and SLO during group A Streptococcus infection. Commun Biol 2023; 6:124. [PMID: 36721030 PMCID: PMC9887584 DOI: 10.1038/s42003-023-04502-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
Group A Streptococcus (GAS) is a strict human pathogen possessing a unique pathogenic trait that utilizes the cooperative activity of NAD+-glycohydrolase (NADase) and Streptolysin O (SLO) to enhance its virulence. How NADase interacts with SLO to synergistically promote GAS cytotoxicity and intracellular survival is a long-standing question. Here, the structure and dynamic nature of the NADase/SLO complex are elucidated by X-ray crystallography and small-angle scattering, illustrating atomic details of the complex interface and functionally relevant conformations. Structure-guided studies reveal a salt-bridge interaction between NADase and SLO is important to cytotoxicity and resistance to phagocytic killing during GAS infection. Furthermore, the biological significance of the NADase/SLO complex in GAS virulence is demonstrated in a murine infection model. Overall, this work delivers the structure-functional relationship of the NADase/SLO complex and pinpoints the key interacting residues that are central to the coordinated actions of NADase and SLO in the pathogenesis of GAS infection.
Collapse
Affiliation(s)
- Wei-Jiun Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsin Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anthony P Duff
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Andrew E Whitten
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Karyn L Wilde
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Chun-Ming Wu
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, Taiwan
| | - Robert Knott
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Yu Kang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yu Hsu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Medical College, Tainan, Taiwan
| | - Jian-Li Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Medical College, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chuan Chiang-Ni
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chuan Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Shuying Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
Banerji R, Saroj SD. Exposure to Acyl Homoserine Lactone Enhances Survival of Streptococcus pyogenes in Murine Macrophages. MICROBIAL ECOLOGY 2022; 84:1256-1263. [PMID: 34782937 DOI: 10.1007/s00248-021-01926-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Streptococcus pyogenes is an opportunistic pathogen causing infections of the skin and upper respiratory tract of the human host. Due to the polymicrobial community present in the human host, S. pyogenes comes across several interspecies signalling molecules. Among these molecules, N-(3-oxododecanoyl)-L-homoserine lactone (Oxo-C12) modulates the morphology, thereby enhancing virulence characteristics of S. pyogenes. After the initial attachment of the bacteria to the host cell, the pathogen needs to invade the host immune system for a successful infection to occur. The host immune system is activated upon infection, where macrophages engulf the pathogen, thereby killing the bacteria. However, S. pyogenes have evolved various strategies to evade the host immune response. In this study, we investigate the role of Oxo-C12 in enhancing the survival of S. pyogenes M3 in murine macrophages. The observed Oxo-C12-mediated increased survival in murine macrophages was through increased lysozyme and acid stress resistance. Moreover, Oxo-C12 increased the survival of S. pyogenes in normal human serum. Thus, understanding the role of interspecies signalling in enhancing the survival strategies of S. pyogenes in the host will further help fill the gap for therapeutics development.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, 412115, Maharashtra, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
12
|
Lee H, Edgar RJ, Lichtenstein IJ, Velarde JJ, Korotkova N, Wessels MR. Streptococcus pyogenes can support or inhibit growth of Haemophilus influenzae by supplying or restricting extracellular NAD+. PLoS One 2022; 17:e0270697. [PMID: 36170255 PMCID: PMC9518897 DOI: 10.1371/journal.pone.0270697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential co-factor for cellular metabolism and serves as a substrate in enzymatic processes. NAD+ is produced by de novo synthesis or salvage pathways in nearly all bacterial species. Haemophilus influenzae lacks the capacity for de novo synthesis, so it is dependent on import of NAD+ from the external environment or salvage biosynthetic pathways for recycling of NAD+ precursors and breakdown products. However, the actual sources of NAD+ utilized by H. influenzae in the respiratory tract are not well defined. In this study, we found that a variety of bacteria, including species found in the upper airway of humans, released NAD+ that was readily detectable in extracellular culture fluid, and which supported growth of H. influenzae in vitro. By contrast, certain strains of Streptococcus pyogenes (group A streptococcus or GAS) inhibited growth of H. influenzae in vitro by secreting NAD+-glycohydrolase (NADase), which degraded extracellular NAD+. Conversely, GAS strains that lacked enzymatically active NADase released extracellular NAD+, which could support H. influenzae growth. Our results suggest that many bacterial species, including normal flora of the upper airway, release NAD+ into the environment. GAS is distinctive in its ability to both release and degrade NAD+. Thus, colonization of the airway with H. influenzae may be promoted or restricted by co-colonization with GAS in a strain-specific manner that depends, respectively, on release of NAD+ or secretion of active NADase. We suggest that, in addition to its role as a cytotoxin for host cells, NADase may serve a separate function by restricting growth of H. influenzae in the human respiratory tract.
Collapse
Affiliation(s)
- Hyunju Lee
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Rebecca J. Edgar
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ian J. Lichtenstein
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jorge J. Velarde
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Natalia Korotkova
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Michael R. Wessels
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
da Silva RAG, Tay WH, Ho FK, Tanoto FR, Chong KKL, Choo PY, Ludwig A, Kline KA. Enterococcus faecalis alters endo-lysosomal trafficking to replicate and persist within mammalian cells. PLoS Pathog 2022; 18:e1010434. [PMID: 35390107 PMCID: PMC9017951 DOI: 10.1371/journal.ppat.1010434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/19/2022] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Enterococcus faecalis is a frequent opportunistic pathogen of wounds, whose infections are associated with biofilm formation, persistence, and recalcitrance toward treatment. We have previously shown that E. faecalis wound infection persists for at least 7 days. Here we report that viable E. faecalis are present within both immune and non-immune cells at the wound site up to 5 days after infection, raising the prospect that intracellular persistence contributes to chronic E. faecalis infection. Using in vitro keratinocyte and macrophage infection models, we show that E. faecalis becomes internalized and a subpopulation of bacteria can survive and replicate intracellularly. E. faecalis are internalized into keratinocytes primarily via macropinocytosis into single membrane-bound compartments and can persist in late endosomes up to 24 h after infection in the absence of colocalization with the lysosomal protease Cathepsin D or apparent fusion with the lysosome, suggesting that E. faecalis blocks endosomal maturation. Indeed, intracellular E. faecalis infection results in heterotypic intracellular trafficking with partial or absent labelling of E. faecalis-containing compartments with Rab5 and Rab7, small GTPases required for the endosome-lysosome trafficking. In addition, E. faecalis infection results in marked reduction of Rab5 and Rab7 protein levels which may also contribute to attenuated Rab incorporation into E. faecalis-containing compartments. Finally, we demonstrate that intracellular E. faecalis derived from infected keratinocytes are significantly more efficient in reinfecting new keratinocytes. Together, these data suggest that intracellular proliferation of E. faecalis may contribute to its persistence in the face of a robust immune response, providing a primed reservoir of bacteria for subsequent reinfection.
Collapse
Affiliation(s)
- Ronni A. G. da Silva
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore
| | - Wei Hong Tay
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Foo Kiong Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Frederick Reinhart Tanoto
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
14
|
Banerji R, Iyer P, Saroj SD. Spermidine enhances the survival of Streptococcus pyogenes M3 under oxidative stress. Mol Oral Microbiol 2022; 37:53-62. [PMID: 34994090 DOI: 10.1111/omi.12360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022]
Abstract
Streptococcus pyogenes, a host-restricted gram-positive pathogen during infection, initially adheres to the epithelia of the nasopharynx and respiratory tract of the human host, followed by disseminating to other organs and evading the host immune system. Upon phagocytosis, S. pyogenes encounters oxidative stress inside the macrophages. The role of polyamines in regulating various physiological functions including stress resistance in bacteria has been reported widely. Since S. pyogenes lacks the machinery for the biosynthesis of polyamines, the study aimed to understand the role of extracellular polyamines in the survival of S. pyogenes under oxidative stress environments. S. pyogenes being a catalase-negative organism, we report that its survival within the macrophages and H2 O2 is enhanced by the presence of spermidine. The increased survival can be attributed to the upregulation of oxidative stress response genes such as sodM, npx, and mtsABC. In addition, spermidine influences the upregulation of virulence factors such as sagA, slo, and hasA. Also, spermidine leads to a decrease in hydrophobicity of the cell membrane and an increase in hyaluronic acid. This study suggests a role for extracellular spermidine in the survival of S. pyogenes under oxidative stress environments. Recognizing the factors that modulate S. pyogenes survival and virulence under stress will assist in understanding its interactions with the host.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Parvati Iyer
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
| |
Collapse
|
15
|
Sontyana B, Shrivastava R, Battu S, Ghosh S, Mukhopadhyay S. Phagosome maturation and modulation of macrophage effector function by intracellular pathogens: target for therapeutics. Future Microbiol 2021; 17:59-76. [PMID: 34877879 DOI: 10.2217/fmb-2021-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macrophages are important cells that regulate various innate functions. Macrophages after engulfment of pathogens proceed for phagosome maturation and finally fuse with lysosomes to kill pathogens. Although pathogen degradation is one of the important functions of phagosomes, various immune-effector functions of macrophages are also dependent on the phagosome maturation process. This review discusses signaling processes regulating phagosome maturation as well as various effector functions of macrophages such as apoptosis, antigen presentation, autophagy and inflammasome that are dependent on the phagosome maturation process. It also discusses strategies adopted by various intracellular pathogens to counteract these functions to evade intracellular destruction mechanisms. These studies may give direction for the development of new therapeutics to control various intracellular infections.
Collapse
Affiliation(s)
- Brahmaji Sontyana
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rohini Shrivastava
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srikanth Battu
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India
| | - Sudip Ghosh
- Molecular Biology Unit, ICMR-National Institute of Nutrition, Jamai Osmania PO, Hyderabad, 500007, Telangana, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India
| |
Collapse
|
16
|
Structure of the Streptococcus pyogenes NADase translocation domain and its essential role in toxin binding to oropharyngeal keratinocytes. J Bacteriol 2021; 204:e0036621. [PMID: 34694903 DOI: 10.1128/jb.00366-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence and continued dominance of a Streptococcus pyogenes (group A Streptococcus, GAS) M1T1 clonal group is temporally correlated with acquisition of genomic sequences that confer high level expression of co-toxins streptolysin O (SLO) and NAD+-glycohydrolase (NADase). Experimental infection models have provided evidence that both toxins are important contributors to GAS virulence. SLO is a cholesterol-dependent pore-forming toxin capable of lysing virtually all types of mammalian cells. NADase, which is composed of an N-terminal translocation domain and C-terminal glycohydrolase domain, acts as an intracellular toxin that depletes host cell energy stores. NADase is dependent on SLO for internalization into epithelial cells, but its mechanism of interaction with the cell surface and details of its translocation mechanism remain unclear. In this study we found that NADase can bind oropharyngeal epithelial cells independently of SLO. This interaction is mediated by both domains of the toxin. We determined by NMR the structure of the translocation domain to be a β-sandwich with a disordered N-terminal region. The folded region of the domain has structural homology to carbohydrate binding modules. We show that excess NADase inhibits SLO-mediated hemolysis and binding to epithelial cells in vitro, suggesting NADase and SLO have shared surface receptors. This effect is abrogated by disruption of a putative carbohydrate binding site on the NADase translocation domain. Our data are consistent with a model whereby interactions of the NADase glycohydrolase domain and translocation domain with SLO and the cell surface increase avidity of NADase binding and facilitate toxin-toxin and toxin-cell surface interactions. Importance NADase and streptolysin O (SLO) are secreted toxins important for pathogenesis of group A Streptococcus, the agent of strep throat and severe invasive infections. The two toxins interact in solution and mutually enhance cytotoxic activity. We now find that NADase is capable of binding to the surface of human cells independently of SLO. Structural analysis of the previously uncharacterized translocation domain of NADase suggests that it contains a carbohydrate binding module. The NADase translocation domain and SLO appear to recognize similar glycan structures on the cell surface, which may be one mechanism through which NADase enhances SLO pore-forming activity during infection. Our findings provide new insight into the NADase toxin and its functional interactions with SLO during streptococcal infection.
Collapse
|
17
|
Wilde S, Johnson AF, LaRock CN. Playing With Fire: Proinflammatory Virulence Mechanisms of Group A Streptococcus. Front Cell Infect Microbiol 2021; 11:704099. [PMID: 34295841 PMCID: PMC8290871 DOI: 10.3389/fcimb.2021.704099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Group A Streptococcus is an obligate human pathogen that is a major cause of infectious morbidity and mortality. It has a natural tropism for the oropharynx and skin, where it causes infections with excessive inflammation due to its expression of proinflammatory toxins and other virulence factors. Inflammation directly contributes to the severity of invasive infections, toxic shock syndrome, and the induction of severe post-infection autoimmune disease caused by autoreactive antibodies. This review discusses what is known about how the virulence factors of Group A Streptococcus induce inflammation and how this inflammation can promote disease. Understanding of streptococcal pathogenesis and the role of hyper-immune activation during infection may provide new therapeutic targets to treat the often-fatal outcome of severe disease.
Collapse
Affiliation(s)
- Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Anders F Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Christopher N LaRock
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, and Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
18
|
Roussin M, Salcedo SP. NAD+-targeting by bacteria: an emerging weapon in pathogenesis. FEMS Microbiol Rev 2021; 45:6315328. [PMID: 34223888 DOI: 10.1093/femsre/fuab037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/01/2021] [Indexed: 11/14/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a major cofactor in redox reactions in all lifeforms. A stable level of NAD+ is vital to ensure cellular homeostasis. Some pathogens can modulate NAD+ metabolism to their advantage and even utilize or cleave NAD+ from the host using specialized effectors known as ADP-ribosyltransferase toxins and NADases, leading to energy store depletion, immune evasion, or even cell death. This review explores recent advances in the field of bacterial NAD+-targeting toxins, highlighting the relevance of NAD+ modulation as an emerging pathogenesis strategy. In addition, we discuss the role of specific NAD+-targeting toxins in niche colonization and bacterial lifestyle as components of Toxin/Antitoxin systems and key players in inter-bacterial competition. Understanding the mechanisms of toxicity, regulation, and secretion of these toxins will provide interesting leads in the search for new antimicrobial treatments in the fight against infectious diseases.
Collapse
Affiliation(s)
- Morgane Roussin
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| | - Suzana P Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| |
Collapse
|
19
|
The Streptococcus pyogenes signaling peptide SpoV regulates streptolysin O and enhances survival in murine blood. J Bacteriol 2021; 203:JB.00586-20. [PMID: 33722844 PMCID: PMC8117530 DOI: 10.1128/jb.00586-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is a human pathogen that causes a wide range of diseases. For successful colonization within a variety of host niches, GAS must sense and respond to environmental changes. Intercellular communication mediated by peptides is one way GAS coordinates gene expression in response to diverse environmental stressors, which enhances bacterial survival and contributes to virulence. Using peptidomics we identified SpoV (Streptococcal peptide controlling virulence) in culture supernatant fluids. SpoV is a secreted peptide encoded near the gene encoding the extracellular cholesterol-dependent cytolysin streptolysin O (slo) The addition of synthetic SpoV peptide derivatives, but not control peptides, increased slo transcript abundance in an M49 isolate but not in an M3 isolate. Deletion of spoV decreased slo transcript abundance, extracellular SLO protein levels, and SLO-specific hemolytic activity. Complementation of the spoV mutant increased slo transcript abundance. Lastly, a spoV mutant was deficient in the ability to survive in murine blood compared to the parental strain. Moreover, pre-incubation of the spoV mutant with synthetic SpoV peptide derivatives increased GAS survival. Our findings show that slo expression is regulated, in part, by the GAS-specific signaling peptide SpoV.IMPORTANCEGAS secretes signaling peptides that can alter gene expression and impact virulence. We used peptidomics to identify a signaling peptide designated SpoV. Further, we showed that SpoV altered the expression of the cholesterol-dependent cytolysin SLO. Peptide signaling plays an important regulatory role during disease progression among several bacterial pathogens, including GAS. The therapeutic potential of manipulating peptide-controlled regulatory networks is an attractive option for the development of novel therapeutic strategies that disrupt virulence gene expression.
Collapse
|
20
|
Abstract
Some bacterial pathogens utilize cell-cell communication systems, such as quorum sensing (QS), to coordinate genetic programs during host colonization and infection. The human-restricted pathosymbiont Streptococcus pyogenes (group A streptococcus [GAS]) uses the Rgg2/Rgg3 QS system to modify the bacterial surface, enabling biofilm formation and lysozyme resistance. Here, we demonstrate that innate immune cell responses to GAS are substantially altered by the QS status of the bacteria. We found that macrophage activation, stimulated by multiple agonists and assessed by cytokine production and NF-κB activity, was substantially suppressed upon interaction with QS-active GAS but not QS-inactive bacteria. Neither macrophage viability nor bacterial adherence, internalization, or survival were altered by the QS activation status, yet tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interferon beta (IFN-β) levels and NF-κB reporter activity were drastically lower following infection with QS-active GAS. Suppression required contact between viable bacteria and macrophages. A QS-regulated biosynthetic gene cluster (BGC) in the GAS genome, encoding several putative enzymes, was also required for macrophage modulation. Our findings suggest a model wherein upon contact with macrophages, QS-active GAS produce a BGC-derived factor capable of suppressing inflammatory responses. The suppressive capability of QS-active GAS is abolished after treatment with a specific QS inhibitor. These observations suggest that interfering with the ability of bacteria to collaborate via QS can serve as a strategy to counteract microbial efforts to manipulate host defenses.
Collapse
|
21
|
Finn MB, Ramsey KM, Tolliver HJ, Dove SL, Wessels MR. Improved transformation efficiency of group A Streptococcus by inactivation of a type I restriction modification system. PLoS One 2021; 16:e0248201. [PMID: 33914767 PMCID: PMC8084154 DOI: 10.1371/journal.pone.0248201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes or group A Streptococcus (GAS) is a leading cause of bacterial pharyngitis, skin and soft tissue infections, life-threatening invasive infections, and the post-infectious autoimmune syndromes of acute rheumatic fever and post-streptococcal glomerulonephritis. Genetic manipulation of this important pathogen is complicated by resistance of the organism to genetic transformation. Very low transformation efficiency is attributed to recognition and degradation of introduced foreign DNA by a type I restriction-modification system encoded by the hsdRSM locus. DNA sequence analysis of this locus in ten GAS strains that had been previously transformed with an unrelated plasmid revealed that six of the ten harbored a spontaneous mutation in hsdR, S, or M. The mutations were all different, and at least five of the six were predicted to result in loss of function of the respective hsd gene product. The unexpected occurrence of such mutations in previously transformed isolates suggested that the process of transformation selects for spontaneous inactivating mutations in the Hsd system. We investigated the possibility of exploiting the increased transformability of hsd mutants by constructing a deletion mutation in hsdM in GAS strain 854, a clinical isolate representative of the globally dominant M1T1 clonal group. Mutant strain 854ΔhsdM exhibited a 5-fold increase in electrotransformation efficiency compared to the wild type parent strain and no obvious change in growth or off-target gene expression. We conclude that genetic transformation of GAS selects for spontaneous mutants in the hsdRSM restriction modification system. We propose that use of a defined hsdM mutant as a parent strain for genetic manipulation of GAS will enhance transformation efficiency and reduce the likelihood of selecting spontaneous hsd mutants with uncharacterized genotypes.
Collapse
Affiliation(s)
- Meredith B. Finn
- Division of Infectious Diseases, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kathryn M. Ramsey
- Departments of Cell and Molecular Biology and Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Hunter J. Tolliver
- Division of Infectious Diseases, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael R. Wessels
- Division of Infectious Diseases, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Banerji R, Karkee A, Kanojiya P, Saroj SD. Pore-forming toxins of foodborne pathogens. Compr Rev Food Sci Food Saf 2021; 20:2265-2285. [PMID: 33773026 DOI: 10.1111/1541-4337.12737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Pore-forming toxins (PFTs) are water-soluble molecules that have been identified as the most crucial virulence factors during bacterial pathogenesis. PFTs disrupt the host cell membrane to internalize or to deliver other bacterial or virulence factors for establishing infections. Disruption of the host cell membrane by PFTs can lead to uncontrollable exchanges between the extracellular and the intracellular matrix, thereby disturbing the cellular homeostasis. Recent studies have provided insights into the molecular mechanism of PFTs during pathogenesis. Evidence also suggests the activation of several signal transduction pathways in the host cell on recognition of PFTs. Additionally, numerous distinctive host defense mechanisms as well as membrane repair mechanisms have been reported; however, studies reveal that PFTs aid in host immune evasion of the bacteria through numerous pathways. PFTs have been primarily associated with foodborne pathogens. Infection and death from diseases by consuming contaminated food are a constant threat to public health worldwide, affecting socioeconomic development. Moreover, the emergence of new foodborne pathogens has led to the rise of bacterial antimicrobial resistance affecting the population. Hence, this review focuses on the role of PFTs secreted by foodborne pathogens. The review highlights the molecular mechanism of foodborne bacterial PFTs, assisting bacterial survival from the host immune responses and understanding the downstream mechanism in the activation of various signaling pathways in the host upon PFT recognition. PFT research is a remarkable and an important field for exploring novel and broad applications of antimicrobial compounds as therapeutics.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Astha Karkee
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
23
|
Intracellular Group A Streptococcus Induces Golgi Fragmentation To Impair Host Defenses through Streptolysin O and NAD-Glycohydrolase. mBio 2021; 12:mBio.01974-20. [PMID: 33563838 PMCID: PMC7885101 DOI: 10.1128/mbio.01974-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Group A Streptococcus (GAS; Streptococcus pyogenes) is a major human pathogen that causes streptococcal pharyngitis, skin and soft tissue infections, and life-threatening conditions such as streptococcal toxic-shock syndrome. During infection, GAS not only invades diverse host cells but also injects effector proteins such as NAD-glycohydrolase (Nga) into the host cells through a streptolysin O (SLO)-dependent mechanism without invading the cells; Nga and SLO are two major virulence factors that are associated with increased bacterial virulence. Here, we have shown that the invading GAS induces fragmentation of the Golgi complex and inhibits anterograde transport in the infected host cells through the secreted toxins SLO and Nga. GAS infection-induced Golgi fragmentation required both bacterial invasion and SLO-mediated Nga translocation into the host cytosol. The cellular Golgi network is critical for the sorting of surface molecules and is thus essential for the integrity of the epithelial barrier and for the immune response of macrophages to pathogens. In epithelial cells, inhibition of anterograde trafficking by invading GAS and Nga resulted in the redistribution of E-cadherin to the cytosol and an increase in bacterial translocation across the epithelial barrier. Moreover, in macrophages, interleukin-8 secretion in response to GAS infection was found to be suppressed by intracellular GAS and Nga. Our findings reveal a previously undescribed bacterial invasion-dependent function of Nga as well as a previously unrecognized GAS-host interaction that is associated with GAS pathogenesis.IMPORTANCE Two prominent virulence factors of group A Streptococcus (GAS), streptolysin O (SLO) and NAD-glycohydrolase (Nga), are linked to enhanced pathogenicity of the prevalent GAS strains. Recent advances show that SLO and Nga are important for intracellular survival of GAS in epithelial cells and macrophages. Here, we found that invading GAS disrupts the Golgi complex in host cells through SLO and Nga. We show that GAS-induced Golgi fragmentation requires bacterial invasion into host cells, SLO pore formation activity, and Nga NADase activity. GAS-induced Golgi fragmentation results in the impairment of the epithelial barrier and chemokine secretion in macrophages. This immune inhibition property of SLO and Nga by intracellular GAS indicates that the invasion of GAS is associated with virulence exerted by SLO and Nga.
Collapse
|
24
|
Siemens N, Snäll J, Svensson M, Norrby-Teglund A. Pathogenic Mechanisms of Streptococcal Necrotizing Soft Tissue Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1294:127-150. [PMID: 33079367 DOI: 10.1007/978-3-030-57616-5_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Necrotizing skin and soft tissue infections (NSTIs) are severe life-threatening and rapidly progressing infections. Beta-hemolytic streptococci, particularly S. pyogenes (group A streptococci (GAS)) but also S. dysgalactiae subsp. equisimilis (SDSE, most group G and C streptococcus), are the main causative agents of monomicrobial NSTIs and certain types, such as emm1 and emm3, are over-represented in NSTI cases. An arsenal of bacterial virulence factors contribute to disease pathogenesis, which is a complex and multifactorial process. In this chapter, we summarize data that have provided mechanistic and immuno-pathologic insight into host-pathogens interactions that contribute to tissue pathology in streptococcal NSTIs. The role of streptococcal surface associated and secreted factors contributing to the hyper-inflammatory state and immune evasion, bacterial load in the tissue and persistence strategies, including intracellular survival and biofilm formation, as well as strategies to mimic NSTIs in vitro are discussed.
Collapse
Affiliation(s)
- Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany.
| | - Johanna Snäll
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Anna Norrby-Teglund
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
25
|
Dooley LM, Ahmad TB, Pandey M, Good MF, Kotiw M. Rheumatic heart disease: A review of the current status of global research activity. Autoimmun Rev 2020; 20:102740. [PMID: 33333234 DOI: 10.1016/j.autrev.2020.102740] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023]
Abstract
Rheumatic heart disease (RHD) is a serious and long-term consequence of acute rheumatic fever (ARF), an autoimmune sequela of a mucosal infection by Streptococcus pyogenes (Group A Streptococcus, Strep A). The pathogenesis of ARF and RHD is complex and not fully understood but involves host and bacterial factors, molecular mimicry, and aberrant host innate and adaptive immune responses that result in loss of self-tolerance and subsequent cross-reactivity with host tissues. RHD is entirely preventable yet claims an estimated 320 000 lives annually. The major burden of disease is carried by developing nations and Indigenous populations within developed nations, including Australia. This review will focus on the epidemiology, pathogenesis and treatment of ARF and RHD in Australia, where: streptococcal pyoderma, rather than streptococcal pharyngitis, and Group C and Group G Streptococcus, have been implicated as antecedents to ARF; the rates of RHD in remote Indigenous communities are persistently among the highest in the world; government register-based programs coordinate disease screening and delivery of prophylaxis with variable success; and researchers are making significant progress in the development of a broad-spectrum vaccine against Strep A.
Collapse
Affiliation(s)
- Leanne M Dooley
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Tarek B Ahmad
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Manisha Pandey
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael F Good
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael Kotiw
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| |
Collapse
|
26
|
Matsumura T, Nishiyama A, Aiko M, Ainai A, Ikebe T, Chiba J, Ato M, Takahashi Y. An anti-perfringolysin O monoclonal antibody cross-reactive with streptolysin O protects against streptococcal toxic shock syndrome. BMC Res Notes 2020; 13:419. [PMID: 32891180 PMCID: PMC7487723 DOI: 10.1186/s13104-020-05264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022] Open
Abstract
Objective Streptococcus pyogenes (Group A Streptococcus; GAS) causes a variety of infections that include life-threatening, severe invasive GAS infections, such as streptococcal toxic shock syndrome (STSS), with > 30% mortality rate, despite effective antibiotics and treatment options. STSS clinical isolates highly express streptolysin O (SLO), a member of a large family of pore-forming toxins called cholesterol-dependent cytolysins (CDCs). SLO is an important toxic factor for GAS and may be an effective therapeutic target for the treatment of STSS. Our aim was to identify a monoclonal antibody (mAb) that reacts with SLO and has therapeutic potential for STSS treatment. Results We focused on mAbs that had originally been established as neutralizing reagents to perfringolysin O (PFO), another member of the CDC family, as some cross-reactivity with SLO had been reported. Here, we confirmed cross-reactivity of an anti-PFO mAb named HS1 with SLO. In vitro analysis revealed that HS1 mAb sufficiently prevented human neutrophils from being killed by STSS clinical isolates. Furthermore, prophylactic and therapeutic injection of HS1 mAb into C57BL/6 mice significantly improved the survival rate following lethal infection with an STSS clinical isolate. These results highlight the therapeutic potential of HS1 mAb for STSS treatment.
Collapse
Affiliation(s)
- Takayuki Matsumura
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Ayae Nishiyama
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Michio Aiko
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tadayoshi Ikebe
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Joe Chiba
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayamashi, Tokyo, 189-0002, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
27
|
Interaction of Macrophages and Cholesterol-Dependent Cytolysins: The Impact on Immune Response and Cellular Survival. Toxins (Basel) 2020; 12:toxins12090531. [PMID: 32825096 PMCID: PMC7551085 DOI: 10.3390/toxins12090531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) are key virulence factors involved in many lethal bacterial infections, including pneumonia, necrotizing soft tissue infections, bacterial meningitis, and miscarriage. Host responses to these diseases involve myeloid cells, especially macrophages. Macrophages use several systems to detect and respond to cholesterol-dependent cytolysins, including membrane repair, mitogen-activated protein (MAP) kinase signaling, phagocytosis, cytokine production, and activation of the adaptive immune system. However, CDCs also promote immune evasion by silencing and/or destroying myeloid cells. While there are many common themes between the various CDCs, each CDC also possesses specific features to optimally benefit the pathogen producing it. This review highlights host responses to CDC pathogenesis with a focus on macrophages. Due to their robust plasticity, macrophages play key roles in the outcome of bacterial infections. Understanding the unique features and differences within the common theme of CDCs bolsters new tools for research and therapy.
Collapse
|
28
|
Levin-Konigsberg R, Mantegazza AR. A guide to measuring phagosomal dynamics. FEBS J 2020; 288:1412-1433. [PMID: 32757358 PMCID: PMC7984381 DOI: 10.1111/febs.15506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Phagocytosis is an essential mechanism for immunity and homeostasis, performed by a subset of cells known as phagocytes. Upon target engulfment, de novo formation of specialized compartments termed phagosomes takes place. Phagosomes then undergo a series of fusion and fission events as they interact with the endolysosomal system and other organelles, in a dynamic process known as phagosome maturation. Because phagocytes play a key role in tissue patrolling and immune surveillance, phagosome maturation is associated with signaling pathways that link phagocytosis to antigen presentation and the development of adaptive immune responses. In addition, and depending on the nature of the cargo, phagosome integrity may be compromised, triggering additional cellular mechanisms including inflammation and autophagy. Upon completion of maturation, phagosomes enter a recently described phase: phagosome resolution, where catabolites from degraded cargo are metabolized, phagosomes are resorbed, and vesicles of phagosomal origin are recycled. Finally, phagocytes return to homeostasis and become ready for a new round of phagocytosis. Altogether, phagosome maturation and resolution encompass a series of dynamic events and organelle crosstalk that can be measured by biochemical, imaging, photoluminescence, cytometric, and immune‐based assays that will be described in this guide.
Collapse
Affiliation(s)
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Dissecting Streptococcus pyogenes interaction with human. Arch Microbiol 2020; 202:2023-2032. [PMID: 32504132 DOI: 10.1007/s00203-020-01932-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
Streptococcus pyogenes is a species of Gram-positive bacteria. It is also known as Group A Streptococcus (GAS) that causes pathogenesis to humans only. The GAS infection has several manifestations including invasive illness. Current research has linked the molecular modes of GAS virulence with substantial sequencing determinations for the isolation of genomes. These advances help to comprehend the molecular evolution resulting in the pandemic strains. Thus, it is indispensable to reconsider the philosophy that involves GAS pathogenesis. The recent investigations involve studying GAS in the nasopharynx and its capability to cause infection or asymptomatically reside in the host. These advances have been discussed in this article with an emphasis on the natural history of GAS and the evolutionary change in the pandemic strains. In addition, this review describes the unique functions for major pathogenicity determinants to comprehend their physiological effects.
Collapse
|
30
|
Hsieh CL, Hsieh SY, Huang HM, Lu SL, Omori H, Zheng PX, Ho YN, Cheng YL, Lin YS, Chiang-Ni C, Tsai PJ, Wang SY, Liu CC, Noda T, Wu JJ. Nicotinamide Increases Intracellular NAD + Content to Enhance Autophagy-Mediated Group A Streptococcal Clearance in Endothelial Cells. Front Microbiol 2020; 11:117. [PMID: 32117141 PMCID: PMC7026195 DOI: 10.3389/fmicb.2020.00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Group A streptococcus (GAS) is a versatile pathogen that causes a wide spectrum of diseases in humans. Invading host cells is a known strategy for GAS to avoid antibiotic killing and immune recognition. However, the underlying mechanisms of GAS resistance to intracellular killing need to be explored. Endothelial HMEC-1 cells were infected with GAS, methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella Typhimurium under nicotinamide (NAM)-supplemented conditions. The intracellular NAD+ level and cell viability were respectively measured by NAD+ quantification kit and protease-based cytotoxicity assay. Moreover, the intracellular bacteria were analyzed by colony-forming assay, transmission electron microscopy, and confocal microscopy. We found that supplementation with exogenous nicotinamide during infection significantly inhibited the growth of intracellular GAS in endothelial cells. Moreover, the NAD+ content and NAD+/NADH ratio of GAS-infected endothelial cells were dramatically increased, whereas the cell cytotoxicity was decreased by exogenous nicotinamide treatment. After knockdown of the autophagy-related ATG9A, the intracellular bacterial load was increased in nicotinamide-treated endothelial cells. The results of Western blot and transmission electron microscopy also revealed that cells treated with nicotinamide can increase autophagy-associated LC3 conversion and double-membrane formation during GAS infection. Confocal microscopy images further showed that more GAS-containing vacuoles were colocalized with lysosome under nicotinamide-supplemented conditions than without nicotinamide treatment. In contrast to GAS, supplementation with exogenous nicotinamide did not effectively inhibit the growth of MRSA or S. Typhimurium in endothelial cells. These results indicate that intracellular NAD+ homeostasis is crucial for controlling intracellular GAS infection in endothelial cells. In addition, nicotinamide may be a potential new therapeutic agent to overcome persistent infections of GAS.
Collapse
Affiliation(s)
- Cheng-Lu Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ying Hsieh
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsuan-Min Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shiou-Ling Lu
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroko Omori
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Po-Xing Zheng
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ning Ho
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yee-Shin Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chuan Chiang-Ni
- Department of Microbiology & Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ying Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chuan Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pediatrics, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Jiunn-Jong Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
31
|
Toh H, Lin CY, Nakajima S, Aikawa C, Nozawa T, Nakagawa I. Group A Streptococcus NAD-Glycohydrolase Inhibits Caveolin 1-Mediated Internalization Into Human Epithelial Cells. Front Cell Infect Microbiol 2019; 9:398. [PMID: 31850237 PMCID: PMC6893971 DOI: 10.3389/fcimb.2019.00398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
Group A Streptococcus (GAS) invades epithelial cells causing persistent infection. GAS has a variety of effector proteins that modulate host systems to affect their survival in host environments. The main effector proteins of GAS are NAD-glycohydrolase (Nga) and streptolysin O (SLO). Although Nga has NADase activity and shows SLO-dependent cytotoxicity, some clinical isolates harbor NADase-inactive subtypes of Nga, and the function of NADase-inactive Nga is still unclear. In this study, we found that deletion of nga enhanced the internalization of GAS into HeLa and Ca9-22 cells. Amino acid substitution of Nga R289K/G330D (NADase-inactive) does not enhance GAS invasion, suggesting that Nga may inhibit the internalization of GAS into host cells in an NADase-independent manner. Moreover, double deletion of slo and nga showed similar invasion percentages compared with wild-type GAS, indicating the important role of SLO in the inhibition of GAS invasion by Nga. Furthermore, enhanced internalization of the nga deletion mutant was not observed in Cav1-knockout HeLa cells. Altogether, these findings demonstrate an unrecognized NADase-independent function of Nga as a negative regulator of CAV1-mediated internalization into epithelial cells.
Collapse
Affiliation(s)
- Hirotaka Toh
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ching-Yu Lin
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Nakajima
- Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Chihiro Aikawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Hancz D, Westerlund E, Valfridsson C, Aemero GM, Bastiat-Sempe B, Orning P, Lien E, Wessels MR, Persson JJ. Streptolysin O Induces the Ubiquitination and Degradation of Pro-IL-1β. J Innate Immun 2019; 11:457-468. [PMID: 30889575 PMCID: PMC6758947 DOI: 10.1159/000496403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 01/11/2023] Open
Abstract
Group A Streptococcus (GAS) is a common and versatile human pathogen causing a variety of diseases. One of the many virulence factors of GAS is the secreted pore-forming cytotoxin streptolysin O (SLO), which has been ascribed multiple properties, including inflammasome activation leading to release of the potent inflammatory cytokine IL-1β from infected macrophages. IL-1β is synthesized as an inactive pro-form, which is activated intracellularly through proteolytic cleavage. Here, we use a macrophage infection model to show that SLO specifically induces ubiquitination and degradation of pro-IL-1β. Ubiquitination was dependent on SLO being released from the infecting bacterium, and pore formation by SLO was required but not sufficient for the induction of ubiquitination. Our data provide evidence for a novel SLO-mediated mechanism of immune regulation, emphasizing the importance of this pore-forming toxin in bacterial virulence and pathogenesis.
Collapse
Affiliation(s)
- Dóra Hancz
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elsa Westerlund
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Christine Valfridsson
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Getachew Melkamu Aemero
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Benedicte Bastiat-Sempe
- Division of Infectious Diseases, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Pontus Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Michael R. Wessels
- Division of Infectious Diseases, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jenny J. Persson
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden,*Prof. Jenny J. Persson, Immunology Section, Department of Experimental Medical Sciences, Lund University, BMC D14, SE–221 84 Lund (Sweden), E-Mail
| |
Collapse
|
33
|
Westerlund E, Valfridsson C, Yi DX, Persson JJ. The Secreted Virulence Factor NADase of Group A Streptococcus Inhibits P2X7 Receptor-Mediated Release of IL-1β. Front Immunol 2019; 10:1385. [PMID: 31275321 PMCID: PMC6591467 DOI: 10.3389/fimmu.2019.01385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
The common human pathogen Group A Streptococcus (GAS) causes superficial as well as invasive, life-threatening diseases. An increase in the occurrence of invasive GAS infection by strains of the M1 and M89 serotypes has been correlated with increased expression of the genetically and functionally linked virulence factors streptolysin O (SLO) and β-NAD+-glycohydrolase (NADase). NADase affects host cells differently depending on its location: its SLO-dependent translocation into the cytosol can lead to cell death through β-NAD+ depletion, while extracellularly located NADase inhibits IL-1β release downstream of Nlrp3 inflammasome activation. In this study, we use a macrophage infection model to investigate the NADase-dependent inhibition of IL-1β release. We show that bacteria expressing a functional NADase evade P2X7 activation, while infection with a NADase-deficient GAS strain leads to a P2X7-mediated increase in IL-1β. Further, our data indicate that in the absence of NADase, IL-1β is released through both P2X7-dependent and -independent pathways, although the precise mechanisms of how this occur are still unclear. This study adds information about the mechanism by which NADase regulates inflammasome-dependent IL-1β release, which may in part explain why increased NADase expression correlates with bacterial virulence.
Collapse
Affiliation(s)
- Elsa Westerlund
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Christine Valfridsson
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Daisy X Yi
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Jenny J Persson
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
34
|
Toh H, Nozawa T, Minowa-Nozawa A, Hikichi M, Nakajima S, Aikawa C, Nakagawa I. Group A Streptococcus modulates RAB1- and PIK3C3 complex-dependent autophagy. Autophagy 2019; 16:334-346. [PMID: 31177902 DOI: 10.1080/15548627.2019.1628539] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Autophagy selectively targets invading bacteria to defend cells, whereas bacterial pathogens counteract autophagy to survive in cells. The initiation of canonical autophagy involves the PIK3C3 complex, but autophagy targeting Group A Streptococcus (GAS) is PIK3C3-independent. We report that GAS infection elicits both PIK3C3-dependent and -independent autophagy, and that the GAS effector NAD-glycohydrolase (Nga) selectively modulates PIK3C3-dependent autophagy. GAS regulates starvation-induced (canonical) PIK3C3-dependent autophagy by secreting streptolysin O and Nga, and Nga also suppresses PIK3C3-dependent GAS-targeting-autophagosome formation during early infection and facilitates intracellular proliferation. This Nga-sensitive autophagosome formation involves the ATG14-containing PIK3C3 complex and RAB1 GTPase, which are both dispensable for Nga-insensitive RAB9A/RAB17-positive autophagosome formation. Furthermore, although MTOR inhibition and subsequent activation of ULK1, BECN1, and ATG14 occur during GAS infection, ATG14 recruitment to GAS is impaired, suggesting that Nga inhibits the recruitment of ATG14-containing PIK3C3 complexes to autophagosome-formation sites. Our findings reveal not only a previously unrecognized GAS-host interaction that modulates canonical autophagy, but also the existence of multiple autophagy pathways, using distinct regulators, targeting bacterial infection.Abbreviations: ATG5: autophagy related 5; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BECN1: beclin 1; CALCOCO2: calcium binding and coiled-coil domain 2; GAS: group A streptococcus; GcAV: GAS-containing autophagosome-like vacuole; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; Nga: NAD-glycohydrolase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; RAB: RAB, member RAS oncogene GTPases; RAB1A: RAB1A, member RAS oncogene family; RAB11A: RAB11A, member RAS oncogene family; RAB17: RAB17, member RAS oncogene family; RAB24: RAB24, member RAS oncogene family; RPS6KB1: ribosomal protein S6 kinase B1; SLO: streptolysin O; SQSTM1: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2.
Collapse
Affiliation(s)
- Hirotaka Toh
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuko Minowa-Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miyako Hikichi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Nakajima
- Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Chihiro Aikawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Feldman C, Normark S, Henriques-Normark B, Anderson R. Pathogenesis and prevention of risk of cardiovascular events in patients with pneumococcal community-acquired pneumonia. J Intern Med 2019; 285:635-652. [PMID: 30584680 DOI: 10.1111/joim.12875] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is now well recognized that cardiovascular events (CVE) occur quite commonly, both in the acute phase and in the long-term, in patients with community-acquired pneumonia (CAP). CVE have been noted in up to 30% of patients hospitalized with all-cause CAP. One systematic review and meta-analysis of hospitalized patients with all-cause CAP noted that the incidence rates for overall cardiac events were 17.7%, for incident heart failure were 14.1%, for acute coronary syndromes were 5.3% and for incident cardiac arrhythmias were 4.7%. In the case of pneumococcal CAP, almost 20% of patients studied had one or more of these cardiac events. Recent research has provided insights into the pathogenesis of the acute cardiac events occurring in pneumococcal infections. With respect to the former, key involvements of the major pneumococcal protein virulence factor, pneumolysin, are now well documented, whilst systemic platelet-driven neutrophil activation may also contribute. However, events involved in the pathogenesis of the long-term cardiovascular sequelae remain largely unexplored. Emerging evidence suggests that persistent antigenaemia may predispose to the development of a systemic pro-inflammatory/prothrombotic phenotype underpinning the risk of future cardiovascular events. The current manuscript briefly reviews the occurrence of cardiovascular events in patients with all-cause CAP, as well as in pneumococcal and influenza infections. It highlights the close interaction between influenza and pneumococcal pneumonia. It also includes a brief discussion of mechanisms of the acute cardiac events in CAP. However, the primary focus is on the prevalence, pathogenesis and prevention of the longer-term cardiac sequelae of severe pneumococcal disease, particularly in the context of persistent antigenaemia and associated inflammation.
Collapse
Affiliation(s)
- C Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - S Normark
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC), Singapore Centre on Environmental Life Sciences Engineering (SCELCE), Nanyang Technical University, Singapore, Singapore
| | - B Henriques-Normark
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC), Singapore Centre on Environmental Life Sciences Engineering (SCELCE), Nanyang Technical University, Singapore, Singapore
| | - R Anderson
- Department of Immunology and Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
36
|
Freydlin IS, Starikova EA, Lebedeva AM. Overcoming the protective functions of macrophages by Streptococcus pyogenes virulence factors. BULLETIN OF SIBERIAN MEDICINE 2019. [DOI: 10.20538/1682-0363-2019-1-109-118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The review is devoted to the analysis of molecular mechanisms of action ofS. pyogenesvirulence factors aimed at overcoming the protective functions of macrophages. The review describes in detail the main protective functions of macrophages and the mechanisms of their implementation in the course of streptococcal infection. The virulence factors ofS. pyogenes,which prevent the recruitment of macrophages to the site of infection, are examined. Particular attention is paid to the analysis of molecular effects that suppress the pathogen by the process of phagocytosis, intracellular bactericidal activity and the production of cytokines by macrophages. The analysis of molecular genetic mechanisms of regulation of the expression ofS. pyogenesvirulence factors that provide adaptation of the pathogen to changing conditions in the site of inflammation is carried out.
Collapse
Affiliation(s)
- I. S. Freydlin
- Institute of Experimental Medicine; Pavlov First Saint Petersburg State Medical University
| | | | | |
Collapse
|
37
|
Zhuge X, Sun Y, Jiang M, Wang J, Tang F, Xue F, Ren J, Zhu W, Dai J. Acetate metabolic requirement of avian pathogenic Escherichia coli promotes its intracellular proliferation within macrophage. Vet Res 2019; 50:31. [PMID: 31046828 PMCID: PMC6498577 DOI: 10.1186/s13567-019-0650-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a facultative intracellular pathogen, and intracellular persistence in macrophages is essential for APEC extraintestinal dissemination. Until now, there is still no systematic interpretation of APEC intracellular proliferation. Intracellular survival factors, especially involved in pathometabolism, need to be further revealed. Acetate plays critical roles in supporting energy homeostasis and acts as a metabolic signal in the inflammatory response of eukaryotes. In this study, we identified that APEC acs-yjcH-actP operon, encoding acetate assimilation system, presented the host-induced transcription during its proliferation in macrophages. Our result showed that this acetate assimilation system acted as a novel intracellular survival factor to promote APEC replication within macrophages. Furthermore, deletion of acs-yjcH-actP operon in APEC decreased its cytotoxic level to macrophages. qRT-PCR results showed that the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-12β, and TNF-α) and iNOS in FY26∆acs-yjcH-actP infected macrophages were obviously down-regulated compared to that in wild-type FY26 infected cells. Deletion of actP/yjcH/acs genes attenuated APEC virulence and colonization capability in avian lungs in vivo for colibacillosis infection models. And acetate assimilation system acted as a virulence factor and conferred a fitness advantage during APEC early colonization. Taken together, our research unravelled the metabolic requirement of APEC intracellular survival/replication within macrophages, and acetate metabolic requirement acted as an important strategy of APEC pathometabolism. The intracellular acetate consumption during facultative intracellular bacteria replication within macrophages promoted immunomodulatory disorders, resulting in excessively pro-inflammatory responses of host macrophages.
Collapse
Affiliation(s)
- Xiangkai Zhuge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.,China Pharmaceutical University, Nanjing, 211198, China.,Center for Post-doctoral Studies of Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Center for Post-doctoral Studies of Animal Husbandry, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juanfang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Center for Post-doctoral Studies of Animal Husbandry, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China. .,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China. .,China Pharmaceutical University, Nanjing, 211198, China. .,Center for Post-doctoral Studies of Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
38
|
An ion for an iron: streptococcal metal homeostasis under oxidative stress. Biochem J 2019; 476:699-703. [PMID: 30819932 DOI: 10.1042/bcj20190017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 11/17/2022]
Abstract
The ability of opportunistic pathogens such as Group A Streptococcus (GAS) to transition between mucosal colonisation and invasive disease requires complex systems for adapting to markedly different host environments. The battle to acquire essential trace metals such as manganese and iron from the host is central to pathogenesis. Using a molecular genetic approach, Turner et al. [Biochem. J. (2019) 476, 595-611] show that it is not just individual metal concentrations that are important, but the ratio of iron to manganese within cells. Increasing this ratio by knocking out pmtA, encoding the Fe(II) exporter PmtA, or by disrupting mtsA, encoding an MtsABC Mn(II)-import system component, led to reductions in superoxide dismutase (SodA) activity and increased sensitivity to oxidative stress. The authors show that SodA is at least 4-fold more active with Mn bound than with Fe and speculate that high intracellular Fe:Mn ratios reduce superoxide dismutase activity through the mismetalation of SodA. Challenging wild-type GAS with 1 mM H2O2 led to a decrease in Fe:Mn ratio and a 3-fold increase in SodA activity, indicating that modulation of the balance between intracellular Fe and Mn may play an important role in adaptation to oxidative stress. This work unravels some of the key mechanisms for maintaining appropriate Mn and Fe concentrations within bacterial cells and underscores the need for future studies that take an holistic view to metal ion homeostasis in bacteria. Strategies aimed at interfering with the balance of intracellular metal ions represent a promising approach for the control of invasive microbial infections.
Collapse
|
39
|
Pancholi V. Group A Streptococcus-Mediated Host Cell Signaling. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0021-2018. [PMID: 30767846 PMCID: PMC11590744 DOI: 10.1128/microbiolspec.gpp3-0021-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
In the past decade, the field of the cellular microbiology of group A Streptococcus (S. pyogenes) infection has made tremendous advances and touched upon several important aspects of pathogenesis, including receptor biology, invasive and evasive phenomena, inflammasome activation, strain-specific autophagic bacterial killing, and virulence factor-mediated programmed cell death. The noteworthy aspect of S. pyogenes-mediated cell signaling is the recognition of the role of M protein in a variety of signaling events, starting with the targeting of specific receptors on the cell surface and on through the induction and evasion of NETosis, inflammasome, and autophagy/xenophagy to pyroptosis and apoptosis. Variations in reports on S. pyogenes-mediated signaling events highlight the complex mechanism of pathogenesis and underscore the importance of the host cell and S. pyogenes strain specificity, as well as in vitro/in vivo experimental parameters. The severity of S. pyogenes infection is, therefore, dependent on the virulence gene expression repertoire in the host environment and on host-specific dynamic signaling events in response to infection. Commonly known as an extracellular pathogen, S. pyogenes finds host macrophages as safe havens wherein it survives and even multiplies. The fact that endothelial cells are inherently deficient in autophagic machinery compared to epithelial cells and macrophages underscores the invasive nature of S. pyogenes and its ability to cause severe systemic diseases. S. pyogenes is still one of the top 10 causes of infectious mortality. Understanding the orchestration of dynamic host signaling networks will provide a better understanding of the increasingly complex mechanism of S. pyogenes diseases and novel ways of therapeutically intervening to thwart severe and often fatal infections.
Collapse
Affiliation(s)
- Vijay Pancholi
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210
| |
Collapse
|
40
|
Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Microbiol Mol Biol Rev 2018; 83:83/1/e00038-18. [PMID: 30567936 DOI: 10.1128/mmbr.00038-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The literature review presented here details recent research involving members of the poly(ADP-ribose) polymerase (PARP) family of proteins. Among the 17 recognized members of the family, the human enzyme PARP1 is the most extensively studied, resulting in a number of known biological and metabolic roles. This review is focused on the roles played by PARP enzymes in host-pathogen interactions and in diseases with an associated inflammatory response. In mammalian cells, several PARPs have specific roles in the antiviral response; this is perhaps best illustrated by PARP13, also termed the zinc finger antiviral protein (ZAP). Plant stress responses and immunity are also regulated by poly(ADP-ribosyl)ation. PARPs promote inflammatory responses by stimulating proinflammatory signal transduction pathways that lead to the expression of cytokines and cell adhesion molecules. Hence, PARP inhibitors show promise in the treatment of inflammatory disorders and conditions with an inflammatory component, such as diabetes, arthritis, and stroke. These functions are correlated with the biophysical characteristics of PARP family enzymes. This work is important in providing a comprehensive understanding of the molecular basis of pathogenesis and host responses, as well as in the identification of inhibitors. This is important because the identification of inhibitors has been shown to be effective in arresting the progression of disease.
Collapse
|
41
|
Kurosawa M, Oda M, Domon H, Isono T, Nakamura Y, Saitoh I, Hayasaki H, Yamaguchi M, Kawabata S, Terao Y. Streptococcus pyogenes CAMP factor promotes calcium ion uptake in RAW264.7 cells. Microbiol Immunol 2018; 62:617-623. [PMID: 30211957 DOI: 10.1111/1348-0421.12647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022]
Abstract
Streptococcus pyogenes is a bacterium that causes systemic diseases such as pharyngitis and toxic shock syndrome. S. pyogenes produces molecules that inhibit the function of the human immune system, thus allowing growth and spread of the pathogen in tissues. It is known that S. pyogenes CAMP factor induces vacuolation in macrophages; however, the mechanism remains unclear. In the current study, the mechanism by which CAMP factor induces vacuolation in macrophages was investigated. CAMP factor was found to induce calcium ion uptake in murine macrophage RAW264.7 cells. In addition, EDTA inhibited calcium ion uptake and vacuolation in the cells. The L-type voltage-dependent calcium ion channel blockers nifedipine and verapamil reduced vacuolation. Furthermore, the phosphoinositide 3-kinase inhibitors LY294002 and wortmannin also inhibited the vacuolation induced by CAMP factor. Fluorescent microscopy revealed that clathrin localized to the vacuoles. These results suggest that the vacuolation is related to calcium ion uptake by RAW264.7 cells via L-type voltage-dependent calcium ion channels. Therefore, it was concluded that the vacuoles induced by S. pyogenes CAMP factor in macrophages are clathrin-dependent endosomes induced by activation of the phosphoinositide 3-kinase signaling pathway through calcium ion uptake.
Collapse
Affiliation(s)
- Mie Kurosawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.,Division of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Masataka Oda
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.,Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, 5 Misasagi, nakauchimachi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Yuki Nakamura
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| |
Collapse
|
42
|
Yi J, Tang R, Yang J, Chen Y, Fei J. Streptolysin O derived from Streptococcus pyogenes inhibits RANKL‑induced osteoclastogenesis through the NF‑κB signaling pathway. Mol Med Rep 2018; 19:414-422. [PMID: 30431141 PMCID: PMC6297742 DOI: 10.3892/mmr.2018.9662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/17/2018] [Indexed: 01/03/2023] Open
Abstract
Streptococcus pyogenes (GAS) is a clinically significant bacterial strain that causes bacterial arthritis, osteomyelitis and implant infections. Infection complications can lead to serious bone destruction. Osteoclasts, the only type of cell with bone resorption function, participate in this process. Streptolysin O (SLO) is produced by almost all clinical Streptococcus pyogenes isolates. However, the role of SLO in bone infection caused by GAS had not been previously examined. The current study was performed to define the effects of SLO on receptor activator of NF-κB ligand-stimulated osteoclast differentiation in vitro. Results demonstrated that SLO decreased the phosphorylation of p65 and NF-κB inhibitor α, suppressed c-FOS and nuclear factor of activated T-cells cytoplasmic 1, and downregulated the expression of osteoclast marker genes. SLO also induced apoptosis of mature osteoclasts. The results suggested that SLO blocked osteoclast activation during GAS infection. These findings may prove useful in the development of novel strategies for treating GAS-associated bone infectious diseases.
Collapse
Affiliation(s)
- Jin Yi
- Centre of Trauma of PLA, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Ruohui Tang
- Centre of Trauma of PLA, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jing Yang
- Centre of Trauma of PLA, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yueqi Chen
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jun Fei
- Centre of Trauma of PLA, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
43
|
Starikova EA, Sokolov AV, Burova LA, Golovin AS, Lebedeva AM, Vasilyev VB, Freidlin IS. THE ROLE OF ARGININE DEIMINASE FROM STREPTOCOCCUS PYOGENES IN INHIBITION MACROPHAGES NITROGEN MONOXIDE (NO) SYNTHESIS. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2018. [DOI: 10.15789/2220-7619-2018-2-211-218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The protective role of macrophages closely related to the production of bactericidal molecules, in which nitrogen monoxide (NO) play an important role. Arginine serves as a substrate for inducible NO synthase (iNOS) in course of NO production. Expression and activity of iNOS are regulated by the availability of the substrate (arginine) in the intercellular space. The bacterial enzyme arginine deiminase also uses arginine as a substrate, causing its deficiency for host cells. The aim of this study was to confirm the possible role of arginine deiminase from S. pyogenes in inhibiting NO synthesis by macrophages. For this purpose, a comparative study was made of the effect on the synthesis of NO by macrophages of the products of destruction of two strains: the initial S. pyogenes M49-16 and the isogenic mutant S. pyogenes M49-16 delArcA with the inactivated arginine deiminase gene (arcA). It has been shown that the ability of S. pyogenes M49-16 to inhibit production of NO by macrophages depends on its arginine deiminase activity because the isogenous mutant of S. pyogenes M49-16 delArcA with the inactivated gene arcA has lost its ability to inhibit NO synthesis. This allows us to consider the effects of S. pyogenes M49-16 as effects of arginine deiminase. An analysis of the inhibitory mechanisms of the enzyme showed that suppression of NO synthesis was not associated with the effect of destruction products of S. pyogenes M49-16 on the viability of macrophages. According to data of flow cytometry, incubation of cells in the presence of S. pyogenes destruction products of the original and mutant strains did not affect the level of iNOS expression, i.e. did not alter synthesis or stability of this enzyme. At the same time, the decrease in NO production under the influence of the original S. pyogenes strain M49-16 correlated with a decrease in the content of arginine in the culture medium. When exogenous arginine to the culture medium was added, the effect of the original strain of the suppression of NO production was declined. This confirms that the depletion of arginine is the main mechanism of the inhibitory effect of arginine deiminase on the production of NO by macrophages. The deficiency of NO production in the course of streptococcal infection can lead to a weakening of bactericidal activity of macrophages and to a decrease in the effectiveness of antimicrobial protection.
Collapse
|
44
|
Hsieh CL, Huang HM, Hsieh SY, Zheng PX, Lin YS, Chiang-Ni C, Tsai PJ, Wang SY, Liu CC, Wu JJ. NAD-Glycohydrolase Depletes Intracellular NAD + and Inhibits Acidification of Autophagosomes to Enhance Multiplication of Group A Streptococcus in Endothelial Cells. Front Microbiol 2018; 9:1733. [PMID: 30123194 PMCID: PMC6085451 DOI: 10.3389/fmicb.2018.01733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022] Open
Abstract
Group A Streptococcus (GAS) is a human pathogen causing a wide spectrum of diseases, from mild pharyngitis to life-threatening necrotizing fasciitis. GAS has been shown to evade host immune killing by invading host cells. However, how GAS resists intracellular killing by endothelial cells is still unclear. In this study, we found that strains NZ131 and A20 have higher activities of NADase and intracellular multiplication than strain SF370 in human endothelial cells (HMEC-1). Moreover, nga mutants of NZ131 (SW957 and SW976) were generated to demonstrate that NADase activity is required for the intracellular growth of GAS in endothelial cells. We also found that intracellular levels of NAD+ and the NAD+/NADH ratio of NZ131-infected HMEC-1 cells were both lower than in cells infected by the nga mutant. Although both NZ131 and its nga mutant were trapped by LC3-positive vacuoles, only nga mutant vacuoles were highly co-localized with acidified lysosomes. On the other hand, intracellular multiplication of the nga mutant was increased by bafilomycin A1 treatment. These results indicate that NADase causes intracellular NAD+ imbalance and impairs acidification of autophagosomes to escape autophagocytic killing and enhance multiplication of GAS in endothelial cells.
Collapse
Affiliation(s)
- Cheng-Lu Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsuan-Min Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ying Hsieh
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Xing Zheng
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chuan Chiang-Ni
- Department of Microbiology & Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chuan Liu
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
45
|
Blocking Neuronal Signaling to Immune Cells Treats Streptococcal Invasive Infection. Cell 2018; 173:1083-1097.e22. [PMID: 29754819 DOI: 10.1016/j.cell.2018.04.006] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/08/2018] [Accepted: 04/03/2018] [Indexed: 11/21/2022]
Abstract
The nervous system, the immune system, and microbial pathogens interact closely at barrier tissues. Here, we find that a bacterial pathogen, Streptococcus pyogenes, hijacks pain and neuronal regulation of the immune response to promote bacterial survival. Necrotizing fasciitis is a life-threatening soft tissue infection in which "pain is out of proportion" to early physical manifestations. We find that S. pyogenes, the leading cause of necrotizing fasciitis, secretes streptolysin S (SLS) to directly activate nociceptor neurons and produce pain during infection. Nociceptors, in turn, release the neuropeptide calcitonin gene-related peptide (CGRP) into infected tissues, which inhibits the recruitment of neutrophils and opsonophagocytic killing of S. pyogenes. Botulinum neurotoxin A and CGRP antagonism block neuron-mediated suppression of host defense, thereby preventing and treating S. pyogenes necrotizing infection. We conclude that targeting the peripheral nervous system and blocking neuro-immune communication is a promising strategy to treat highly invasive bacterial infections. VIDEO ABSTRACT.
Collapse
|
46
|
Cholesterol-dependent cytolysins impair pro-inflammatory macrophage responses. Sci Rep 2018; 8:6458. [PMID: 29691463 PMCID: PMC5915385 DOI: 10.1038/s41598-018-24955-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Necrotizing soft tissue infections are lethal polymicrobial infections. Two key microbes that cause necrotizing soft tissue infections are Streptococcus pyogenes and Clostridium perfringens. These pathogens evade innate immunity using multiple virulence factors, including cholesterol-dependent cytolysins (CDCs). CDCs are resisted by mammalian cells through the sequestration and shedding of pores during intrinsic membrane repair. One hypothesis is that vesicle shedding promotes immune evasion by concomitantly eliminating key signaling proteins present in cholesterol-rich microdomains. To test this hypothesis, murine macrophages were challenged with sublytic CDC doses. CDCs suppressed LPS or IFNγ-stimulated TNFα production and CD69 and CD86 surface expression. This suppression was cell intrinsic. Two membrane repair pathways, patch repair and intrinsic repair, might mediate TNFα suppression. However, patch repair did not correlate with TNFα suppression. Intrinsic repair partially contributed to macrophage dysfunction because TLR4 and the IFNγR were partially shed following CDC challenge. Intrinsic repair was not sufficient for suppression, because pore formation was also required. These findings suggest that even when CDCs fail to kill cells, they may impair innate immune signaling responses dependent on cholesterol-rich microdomains. This is one potential mechanism to explain the lethality of S. pyogenes and C. perfringens during necrotizing soft tissue infections.
Collapse
|
47
|
Zhuge X, Sun Y, Xue F, Tang F, Ren J, Li D, Wang J, Jiang M, Dai J. A Novel PhoP/PhoQ Regulation Pathway Modulates the Survival of Extraintestinal Pathogenic Escherichia coli in Macrophages. Front Immunol 2018; 9:788. [PMID: 29719540 PMCID: PMC5913352 DOI: 10.3389/fimmu.2018.00788] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/29/2018] [Indexed: 12/12/2022] Open
Abstract
The extraintestinal pathogenic Escherichia coli (ExPEC) is a typical facultative intracellular bacterial pathogen. Sensing the environmental stimuli and undertaking adaptive change are crucial for ExPEC to successfully colonize in specific extraintestinal niches. The previous studies show that pathogens exploit two-component systems (TCSs) in response to the host environments during its infection. The PhoP/PhoQ is a typical TCS which is ubiquitous in Gram-negative bacteria. However, there is an incompletely understanding about critical regulatory roles of PhoP/PhoQ in ExPEC pathogenesis. Conjugative ColV-related plasmids are responsible for ExPEC virulence, which is associated with ExPEC zoonotic risk. In this study, the molecular characteristics of HlyF, Mig-14 ortholog (Mig-14p), and OmpT variant (OmpTp) encoded by ColV plasmids were identified. Mig-14p and OmpTp played important roles in conferring ExPEC resistance to cationic antimicrobial peptides (CAMPs) during the infection. Moreover, HlyF and Mig-14p acted as intracellular survival factors to promote ExPEC resistance to macrophages killing. The hlyF and Mig-14p formed an operon in ExPEC ColV plasmid, and PhoP acted as a transcriptional activator of hlyF operon by directly binding to the P hlyF promoter. The acidic pH and CAMPs could additively stimulate ExPEC PhoQ/PhoP activities to upregulate the expression of HlyF and Mig-14p. Our studies revealed that the novel PhoP/PhoQ-HlyF signaling pathway directly upregulates the production of ExPEC outer membrane vesicles. Furthermore, our study first clarified that this PhoP/PhoQ-HlyF pathway was essential for ExPEC intracellular survival in macrophages. It was required to prevent the fusion of ExPEC-containing phagosomes with lysosomes. Moreover, PhoP/PhoQ-HlyF pathway facilitated the inhibition of the phagolysosomal acidification and disruption of the phagolysosomal membranes. In addition, this pathway might promote the formation of ExPEC-containing autophagosome during ExPEC replication in macrophages. Collectively, our studies suggested that PhoP/PhoQ system and CloV plasmids could facilitate ExPEC survival and replication within macrophages.
Collapse
Affiliation(s)
- Xiangkai Zhuge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Center for Post-Doctoral Studies of Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Sun
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dezhi Li
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Juanfang Wang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Min Jiang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
48
|
Thompson KM, Sterkel AK, McBride JA, Corliss RF. The Shock of Strep: Rapid Deaths Due to Group a Streptococcus. Acad Forensic Pathol 2018; 8:136-149. [PMID: 31240031 DOI: 10.23907/2018.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/07/2017] [Accepted: 12/02/2017] [Indexed: 11/12/2022]
Abstract
Streptococcus pyogenes, also known as group A beta-hemolytic strep, is a Gram positive coccus responsible for several million infections every year. The types of infections vary widely from pharyngitis to myositis, but all can advance to severe life threatening invasive disease. Of those infected, approximately 1100 to 1600 people die each year due to invasive disease. Why certain individuals contract severe infections is not known, but many strains of Streptococcus pyogenes are known to produce toxins and superantigens. Invasive Streptococcus pyogenes infections have been shown to cause significant morbidity and rapid mortality. In many cases, patients expire before full antemortem testing can be performed, causing physicians and families to look to forensic pathologists for answers. Understanding the pathogenesis of invasive group A strep infections, relevant gross and microscopic findings, and proper culturing techniques is critical for forensic pathologists to diagnosis this condition and assist in the education and protection of the communities they serve.
Collapse
Affiliation(s)
- Katrina M Thompson
- University of Wisconsin Hospital and Clinics - Department of Pathology and Laboratory Medicine
| | - Alana K Sterkel
- Wisconsin State Laboratory of Hygiene - Department of Communicable Disease
| | - Joseph A McBride
- University of Wisconsin Hospital and Clinics, Department of Medicine and Pediatrics, Division of Infectious Diseases
| | - Robert F Corliss
- University of Wisconsin Hospital and Clinics - Department of Pathology and Laboratory Medicine
| |
Collapse
|
49
|
Mesquita I, Vergnes B, Silvestre R. Alterations on Cellular Redox States upon Infection and Implications for Host Cell Homeostasis. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:197-220. [PMID: 30535600 DOI: 10.1007/978-3-319-74932-7_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The cofactors nicotinamide adenine dinucleotide (NAD+) and its phosphate form, NADP+, are crucial molecules present in all living cells. The delicate balance between the oxidized and reduced forms of these molecules is tightly regulated by intracellular metabolism assuring the maintenance of homeostatic conditions, which are essential for cell survival and proliferation. A recent cluster of data has highlighted the importance of the intracellular NAD+/NADH and NADP+/NADPH ratios during host-pathogen interactions, as fluctuations in the levels of these cofactors and in precursors' bioavailability may condition host response and, therefore, pathogen persistence or elimination. Furthermore, an increasing interest has been given towards how pathogens are capable of hijacking host cell proteins in their own advantage and, consequently, alter cellular redox states and immune function. Here, we review the basic principles behind biosynthesis and subcellular compartmentalization of NAD+ and NADP+, as well as the importance of these cofactors during infection, with a special emphasis on pathogen-driven modulation of host NAD+/NADP+ levels and contribution to the associated immune response.
Collapse
Affiliation(s)
- Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Baptiste Vergnes
- MIVEGEC (IRD 224-CNRS 5290-Université Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
50
|
Abstract
Group A Streptococcus (GAS) is a leading human bacterial pathogen with diverse clinical manifestations. Macrophages constitute a critical first line of host defense against GAS infection, using numerous surface and intracellular receptors such as Toll-like receptors and inflammasomes for pathogen recognition and activation of inflammatory signaling pathways. Depending on the intensity of the GAS infection, activation of these signaling cascades may provide a beneficial early alarm for effective immune clearance, or conversely, may cause hyperinflammation and tissue injury during severe invasive infection. Although traditionally considered an extracellular pathogen, GAS can invade and replicate within macrophages using specific molecular mechanisms to resist phagolysosomal and xenophagic killing. Unraveling GAS-macrophage encounters may reveal new treatment options for this leading agent of infection-associated mortality. [Formula: see text].
Collapse
Affiliation(s)
- J Andrés Valderrama
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|