1
|
Mokry RL, Purdy JG. Glucose-independent human cytomegalovirus replication is supported by metabolites that feed upper glycolytic branches. Proc Natl Acad Sci U S A 2024; 121:e2412966121. [PMID: 39560652 PMCID: PMC11621781 DOI: 10.1073/pnas.2412966121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024] Open
Abstract
Viruses with broad tissue distribution and cell tropism successfully replicate in various nutrient environments in the body. Several viruses reprogram metabolism for viral replication. However, many studies focus on metabolic reprogramming in nutrient-rich conditions that do not recapitulate physiological environments in the body. Here, we investigated how viruses may replicate when a metabolite thought to be essential for replication is limited. We use human cytomegalovirus infection in glucose-free conditions as a model to determine how glucose supports virus replication and how physiologically relevant nutrients contribute to glucose-independent virus production. We find that glucose supports viral genome synthesis, viral protein production and glycosylation, and infectious virus production. Notably, supplement of glucose-free cultures with uridine, ribose, or UDP-GlcNAc-metabolites that feed upper glycolytic branches like the pentose phosphate pathway-results in partially restored virus replication, including low levels of infectious virus production. Supplementing lower glycolysis in glucose-free cultures using pyruvate fails to restore virus replication. These results indicate that nutrients can compensate for glucose via feeding upper glycolytic branches to sustain low levels of virus production. More broadly, our findings suggest that viruses may successfully replicate in diverse metabolic niches, including those in the body with low glucose levels, through alternative nutrient usage.
Collapse
Affiliation(s)
- Rebekah L. Mokry
- BIO5 Institute, University of Arizona, Tucson, AZ85719
- Department of Immunobiology, University of Arizona, Tucson, AZ85724
| | - John G. Purdy
- BIO5 Institute, University of Arizona, Tucson, AZ85719
- Department of Immunobiology, University of Arizona, Tucson, AZ85724
- Cancer Biology Interdisciplinary Program, University of Arizona, Tucson, AZ85724
| |
Collapse
|
2
|
Ye F, Chen Y, Liu J, Gong Z, Zhang S, Lin Q, Zhou B, Liang Y. A water-soluble mycelium polysaccharide from Monascus pilosus: Extraction, structural characterization, immunomodulatory effect and yield enhanced by overexpression of UGE gene. Int J Biol Macromol 2024; 280:136138. [PMID: 39349085 DOI: 10.1016/j.ijbiomac.2024.136138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Mycelium polysaccharide (MPP) from Monascus pilosus with the compositions of glucose, galactose, mannose, glucosamine hydrochloride, rhamnose and arabinose, was obtained using alkaline extracting, and subsequently three purified components (MPP-0, MPP-0.1 and MPP-0.3) were separated. The purity and extraction volume of the MPP-0.1 fraction surpassed those of the other two groups, thus warranting its selection for subsequent experimental investigations. The sample MPP-0.1, with an average molecular weight of 3.7776 × 104 Da, exhibited exceptional thermal stability up to 170 °C. The main glycosidic linkage pattern of MPP-0.1 was structured as→[4)-α-D-Glcp-(1]6 → 4)-α-D-Glcp-(1 → [2)-α-D-Manp-(1]5 → 2)-α-D-Manp-(1 → 5)-β-D-Galf-(1 → 3)-β-D-Galf (1 → 3)-β-D-Galf-(1 → 3)-β-D-Galf-(1→, and branched Glcp, Manp, Galf fragments were connected with the main chain through →4, 6)-α-D-Glcp-(1→, →2, 6)-α-D-Manp-(1 → and →3, 6)-β-D-Galf-(1→. Besides, the up-regulated levels of Nitric oxide (NO), Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1β (IL-1β) and other pro-inflammatory cytokines along with increased phagocytic activity revealed that MPP-0.1 has significant immunomodulatory effect, and can significantly enhance the proliferation and activation of RAW264.7 cells. Finally, the gene UGE (UDP-glucose 4-epimerase) was overexpressed in M. pilosus to increase the MPP production. Results showed that the biomass of the recombinant strain exhibited a remarkable increase of approximately 62.56 ± 1.50 % compared to that of the parental strain, and the extraction yield of MPP increased significantly by 83.19 ± 4.56 %.
Collapse
Affiliation(s)
- Fanyu Ye
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yajuan Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jun Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Zihan Gong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Song Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Bo Zhou
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ying Liang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
3
|
Naatz A, Yeo CT, Hogg N, Corbett JA. β-Cell-selective regulation of gene expression by nitric oxide. Am J Physiol Regul Integr Comp Physiol 2024; 326:R552-R566. [PMID: 38586887 PMCID: PMC11381020 DOI: 10.1152/ajpregu.00240.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Nitric oxide is produced at low micromolar levels following the induction of inducible nitric oxide synthase (iNOS) and is responsible for mediating the inhibitory actions of cytokines on glucose-stimulated insulin secretion by islets of Langerhans. It is through the inhibition of mitochondrial oxidative metabolism, specifically aconitase and complex 4 of the electron transport chain, that nitric oxide inhibits insulin secretion. Nitric oxide also attenuates protein synthesis, induces DNA damage, activates DNA repair pathways, and stimulates stress responses (unfolded protein and heat shock) in β-cells. In this report, the time- and concentration-dependent effects of nitric oxide on the expression of six genes known to participate in the response of β-cells to this free radical were examined. The genes included Gadd45α (DNA repair), Puma (apoptosis), Hmox1 (antioxidant defense), Hsp70 (heat shock), Chop (UPR), and Ppargc1α (mitochondrial biogenesis). We show that nitric oxide stimulates β-cell gene expression in a narrow concentration range of ∼0.5-1 µM or levels corresponding to iNOS-derived nitric oxide. At concentrations greater than 1 µM, nitric oxide fails to stimulate gene expression in β-cells, and this is associated with the inhibition of mitochondrial oxidative metabolism. This narrow concentration range of responses is β-cell selective, as the actions of nitric oxide in non-β-cells (α-cells, mouse embryonic fibroblasts, and macrophages) are concentration dependent. Our findings suggest that β-cells respond to a narrow concentration range of nitric oxide that is consistent with the levels produced following iNOS induction, and that these concentration-dependent actions are selective for insulin-containing cells.
Collapse
Affiliation(s)
- Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Chay Teng Yeo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
4
|
Mokry RL, Purdy JG. Metabolites that feed upper glycolytic branches support glucose independent human cytomegalovirus replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579992. [PMID: 38405935 PMCID: PMC10888764 DOI: 10.1101/2024.02.12.579992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The broad tissue distribution and cell tropism of human cytomegalovirus indicates that the virus successfully replicates in tissues with various nutrient environments. HCMV requires and reprograms central carbon metabolism for viral replication. However, many studies focus on reprogramming of metabolism in high nutrient conditions that do not recapitulate physiological nutrient environments in the body. In this study, we investigate how HCMV successfully replicates when nutrients are suboptimal. We limited glucose following HCMV infection to determine how glucose supports virus replication and how nutrients potentially present in the physiological environment contribute to successful glucose independent HCMV replication. Glucose is required for HCMV viral genome synthesis, viral protein production and glycosylation, and virus production. However, supplement of glucose-free cultures with uridine, ribose, or UDP-GlcNAc-metabolites that support upper glycolytic branches-resulted in partially restored viral genome synthesis and subsequent partial restoration of viral protein levels. Low levels of virus production were also restored. Supplementing lower glycolysis in glucose-free cultures using pyruvate had no effect on virus replication. These results indicate nutrients that support upper glycolytic branches like the pentose phosphate pathway and hexosamine pathway can compensate for glucose during HCMV replication to support low levels of virus production. More broadly, our findings suggest that HCMV could successfully replicate in diverse metabolic niches, including those in the body with low levels of glucose, through alternative nutrient usage.
Collapse
Affiliation(s)
- Rebekah L. Mokry
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - John G. Purdy
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- Cancer Biology Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Adelman JW, Rosas-Rogers S, Schumacher ML, Mokry RL, Terhune SS, Ebert AD. Human cytomegalovirus induces significant structural and functional changes in terminally differentiated human cortical neurons. mBio 2023; 14:e0225123. [PMID: 37966250 PMCID: PMC10746155 DOI: 10.1128/mbio.02251-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Human cytomegalovirus (HCMV) is a highly prevalent viral pathogen that can cause serious neurological deficits in infants experiencing an in utero infection. Also, as a life-long infection, HCMV has been associated with several diseases in the adult brain. HCMV is known to infect early neural progenitor cells, but whether it also infects terminally differentiated neurons is still debated. Here, we differentiated human-induced pluripotent stem cells into neurons for 84-120 days to test the ability of HCMV to infect terminally differentiated neurons and assess the downstream functional consequences. We discovered that mature human neurons are highly permissive to HCMV infection, exhibited late replication hallmarks, and produced infectious virus. Moreover, infection in terminally differentiated neurons essentially eliminated neuron function. These results demonstrate that terminally differentiated human neurons are permissive to HCMV infection, which can significantly alter both structural and functional features of this mature neuron population.
Collapse
Affiliation(s)
- Jacob W. Adelman
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Suzette Rosas-Rogers
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rebekah L. Mokry
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Marquette University and Medical College of Wisconsin Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
Ranjbar T, Oza PP, Kashfi K. The Renin-Angiotensin-Aldosterone System, Nitric Oxide, and Hydrogen Sulfide at the Crossroads of Hypertension and COVID-19: Racial Disparities and Outcomes. Int J Mol Sci 2022; 23:ijms232213895. [PMID: 36430371 PMCID: PMC9699619 DOI: 10.3390/ijms232213895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 is caused by SARS-CoV-2 and is more severe in the elderly, racial minorities, and those with comorbidities such as hypertension and diabetes. These pathologies are often controlled with medications involving the renin-angiotensin-aldosterone system (RAAS). RAAS is an endocrine system involved in maintaining blood pressure and blood volume through components of the system. SARS-CoV-2 enters the cells through ACE2, a membrane-bound protein related to RAAS. Therefore, the use of RAAS inhibitors could worsen the severity of COVID-19's symptoms, especially amongst those with pre-existing comorbidities. Although a vaccine is currently available to prevent and reduce the symptom severity of COVID-19, other options, such as nitric oxide and hydrogen sulfide, may also have utility to prevent and treat this virus.
Collapse
Affiliation(s)
- Tara Ranjbar
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Palak P. Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
7
|
Oza PP, Kashfi K. Utility of NO and H 2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022; 128:72-102. [PMID: 36029975 PMCID: PMC9398942 DOI: 10.1016/j.niox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
8
|
Monti CE, Mokry RL, Schumacher ML, Dash RK, Terhune SS. Computational modeling of protracted HCMV replication using genome substrates and protein temporal profiles. Proc Natl Acad Sci U S A 2022; 119:e2201787119. [PMID: 35994667 PMCID: PMC9437303 DOI: 10.1073/pnas.2201787119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a major cause of illness in immunocompromised individuals. The HCMV lytic cycle contributes to the clinical manifestations of infection. The lytic cycle occurs over ∼96 h in diverse cell types and consists of viral DNA (vDNA) genome replication and temporally distinct expression of hundreds of viral proteins. Given its complexity, understanding this elaborate system can be facilitated by the introduction of mechanistic computational modeling of temporal relationships. Therefore, we developed a multiplicity of infection (MOI)-dependent mechanistic computational model that simulates vDNA kinetics and late lytic replication based on in-house experimental data. The predictive capabilities were established by comparison to post hoc experimental data. Computational analysis of combinatorial regulatory mechanisms suggests increasing rates of protein degradation in association with increasing vDNA levels. The model framework also allows expansion to account for additional mechanisms regulating the processes. Simulating vDNA kinetics and the late lytic cycle for a wide range of MOIs yielded several unique observations. These include the presence of saturation behavior at high MOIs, inefficient replication at low MOIs, and a precise range of MOIs in which virus is maximized within a cell type, being 0.382 IU to 0.688 IU per fibroblast. The predicted saturation kinetics at high MOIs are likely related to the physical limitations of cellular machinery, while inefficient replication at low MOIs may indicate a minimum input material required to facilitate infection. In summary, we have developed and demonstrated the utility of a data-driven and expandable computational model simulating lytic HCMV infection.
Collapse
Affiliation(s)
- Christopher E. Monti
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
- Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Rebekah L. Mokry
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Ranjan K. Dash
- Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
- Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
9
|
Nitric Oxide Attenuates Human Cytomegalovirus Infection yet Disrupts Neural Cell Differentiation and Tissue Organization. J Virol 2022; 96:e0012622. [PMID: 35862705 PMCID: PMC9327702 DOI: 10.1128/jvi.00126-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a prevalent betaherpesvirus that is asymptomatic in healthy individuals but can cause serious disease in immunocompromised patients. HCMV is also the leading cause of virus-mediated birth defects. Many of these defects manifest within the central nervous system and include microcephaly, sensorineural hearing loss, and cognitive developmental delays. Nitric oxide is a critical effector molecule produced as a component of the innate immune response during infection. Congenitally infected fetal brains show regions of brain damage, including necrotic foci with infiltrating macrophages and microglia, cell types that produce nitric oxide during infection. Using a 3-dimensional cortical organoid model, we demonstrate that nitric oxide inhibits HCMV spread and simultaneously disrupts neural rosette structures, resulting in tissue disorganization. Nitric oxide also attenuates HCMV replication in 2-dimensional cultures of neural progenitor cells (NPCs), a prominent cell type in cortical organoids that differentiate into neurons and glial cells. The multipotency factor SOX2 was decreased during nitric oxide exposure, suggesting that early neural differentiation is affected. Nitric oxide also reduced maximal mitochondrial respiration in both uninfected and infected NPCs. We determined that this reduction likely influences neural differentiation, as neurons (Tuj1+ GFAP- Nestin-) and glial populations (Tuj1- GFAP+ Nestin-) were reduced following differentiation. Our studies indicate a prominent, immunopathogenic role of nitric oxide in promoting developmental defects within the brain despite its antiviral activity during congenital HCMV infection. IMPORTANCE Human cytomegalovirus (HCMV) is the leading cause of virus-mediated congenital birth defects. Congenitally infected infants can have a variety of symptoms manifesting within the central nervous system. The use of 3-dimensional (3-D) cortical organoids to model infection of the fetal brain has advanced the current understanding of development and allowed broader investigation of the mechanisms behind disease. However, the impact of the innate immune molecule nitric oxide during HCMV infection has not been explored in neural cells or cortical 3-D models. Here, we investigated the effect of nitric oxide on cortical development during HCMV infection. We demonstrate that nitric oxide plays an antiviral role during infection yet results in disorganized cortical tissue. Nitric oxide contributes to differentiation defects of neuron and glial cells from neural progenitor cells despite inhibiting viral replication. Our results indicate that immunopathogenic consequences of nitric oxide during congenital infection promote developmental defects that undermine its antiviral activity.
Collapse
|
10
|
Tang Y, Zhang P, Liu Q, Cao L, Xu J. Pyroptotic Patterns in Blood Leukocytes Predict Disease Severity and Outcome in COVID-19 Patients. Front Immunol 2022; 13:888661. [PMID: 35928821 PMCID: PMC9343985 DOI: 10.3389/fimmu.2022.888661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has lasted for over 2 years now and has already caused millions of deaths. In COVID-19, leukocyte pyroptosis has been previously associated with both beneficial and detrimental effects, so its role in the development of this disease remains controversial. Using transcriptomic data (GSE157103) of blood leukocytes from 126 acute respiratory distress syndrome patients (ARDS) with or without COVID-19, we found that COVID-19 patients present with enhanced leukocyte pyroptosis. Based on unsupervised clustering, we divided 100 COVID-19 patients into two clusters (PYRcluster1 and PYRcluster2) according to the expression of 35 pyroptosis-related genes. The results revealed distinct pyroptotic patterns associated with different leukocytes in these PYRclusters. PYRcluster1 patients were in a hyperinflammatory state and had a worse prognosis than PYRcluster2 patients. The hyperinflammation of PYRcluster1 was validated by the results of gene set enrichment analysis (GSEA) of proteomic data (MSV000085703). These differences in pyroptosis between the two PYRclusters were confirmed by the PYRscore. To improve the clinical treatment of COVID-19 patients, we used least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model based on differentially expressed genes between PYRclusters (PYRsafescore), which can be applied as an effective prognosis tool. Lastly, we explored the upstream transcription factors of different pyroptotic patterns, thereby identifying 112 compounds with potential therapeutic value in public databases.
Collapse
Affiliation(s)
- Yingkui Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Peidong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuyu Liu
- Department of Critical Care Medicine, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Luyang Cao
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
- *Correspondence: Jingsong Xu, ; Luyang Cao,
| | - Jingsong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
- *Correspondence: Jingsong Xu, ; Luyang Cao,
| |
Collapse
|
11
|
Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses 2022; 14:602. [PMID: 35337009 PMCID: PMC8955778 DOI: 10.3390/v14030602] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer and has proven to be critical in viral infections. Metabolic reprogramming provides the cell with energy and biomass for large-scale biosynthesis. Based on studies of the cellular changes that contribute to metabolic reprogramming, seven main hallmarks can be identified: (1) increased glycolysis and lactic acid, (2) increased glutaminolysis, (3) increased pentose phosphate pathway, (4) mitochondrial changes, (5) increased lipid metabolism, (6) changes in amino acid metabolism, and (7) changes in other biosynthetic and bioenergetic pathways. Viruses depend on metabolic reprogramming to increase biomass to fuel viral genome replication and production of new virions. Viruses take advantage of the non-metabolic effects of metabolic reprogramming, creating an anti-apoptotic environment and evading the immune system. Other non-metabolic effects can negatively affect cellular function. Understanding the role metabolic reprogramming plays in viral pathogenesis may provide better therapeutic targets for antivirals.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
- Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
12
|
Namdari H, Hosseini M, Yazdanifar M, Farajifard H, Parvizpour F, Karamigolbaghi M, Hamidieh AA, Rezaei F. Protective and pathological roles of regulatory immune cells in human cytomegalovirus infection following hematopoietic stem cell transplantation. Rev Med Virol 2021; 32:e2319. [PMID: 34914147 DOI: 10.1002/rmv.2319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022]
Abstract
Human cytomegalovirus (HCMV) is ubiquitously prevalent. Immune system in healthy individuals is capable of controlling HCMV infection; however, HCMV can be life-threatening for immunocompromised individuals, such as transplant recipients. Both innate and adaptive immune systems are critically involved in the HCMV infection. Recent studies have indicated that regulatory immune cells which play essential roles in maintaining a healthy immune environment are closely related to immune response in HCMV infection. However, the exact role of regulatory immune cells in immune regulation and homoeostasis during the battle between HCMV and host still requires further research. In this review, we highlight the protective and pathological roles of regulatory immune cells in HCMV infection following hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Haideh Namdari
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Department of Pediatrics, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Hamid Farajifard
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Karamigolbaghi
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Chen XJ, Wang B, Thompson IP, Huang WE. Rational Design and Characterization of Nitric Oxide Biosensors in E. coli Nissle 1917 and Mini SimCells. ACS Synth Biol 2021; 10:2566-2578. [PMID: 34551261 DOI: 10.1021/acssynbio.1c00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is an important disease biomarker found in many chronic inflammatory diseases and cancers. A well-characterized nitric sensing system is useful to aid the rapid development of bacteria therapy and synthetic biology. In this work, we engineered a set of NO-responsive biosensors based on the PnorV promoter and its NorR regulator in the norRVW operon; the circuits were characterized and optimized in probiotic Escherichia coli Nissle 1917 and mini SimCells (minicells containing designed gene circuits for specific tasks). Interestingly, the expression level of NorR displayed an inverse correlation to the PnorV promoter activation, as a strong expression of the NorR regulator resulted in a low amplitude of NO-inducible gene expression. This could be explained by a competitive binding mechanism where the activated and inactivated NorR competitively bind to the same site on the PnorV promoter. To overcome such issues, the NO induction performance was further improved by making a positive feedback loop that fine-tuned the level of NorR. In addition, by examining two integration host factor (IHF) binding sites of the PnorV promoter, we demonstrated that the deletion of the second IHF site increased the maximum signal output by 25% (500 μM DETA/NO) with no notable increase in the basal expression level. The optimized NO-sensing gene circuit in anucleate mini SimCells exhibited increased robustness against external fluctuation in medium composition. The NO detection limit of the optimized gene circuit pPnorVβ was also improved from 25.6 to 1.3 nM in mini SimCells. Moreover, lyophilized mini SimCells can maintain function for over 2 months. Hence, SimCell-based NO biosensors could be used as safe sensor chassis for synthetic biology.
Collapse
Affiliation(s)
- Xiaoyu J. Chen
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Baojun Wang
- Hangzhou Innovation Center and College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 311200, China
- School of Biological Sciences, University of Edinburgh, G20 Roger Land Building, The Kingʼs Buildings, Edinburgh EH9 3FF, United Kingdom
- ZJU-UoE Joint Research Centre for Engineering Biology, Zhejiang University, Haining 314400, China
| | - Ian P. Thompson
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| |
Collapse
|
14
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
15
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/18/2023] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M. Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M. Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L. Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J. Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|