1
|
McClave SA, Omer E, Eisa M, Klosterbauer A, Lowen CC, Martindale RG. The importance of providing dietary fiber in medical and surgical critical care. Nutr Clin Pract 2024; 39:546-556. [PMID: 37947011 DOI: 10.1002/ncp.11092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
The early provision of soluble/insoluble fiber to the patient who is critically ill has been controversial in the past. Especially in the setting of hemodynamic instability, dysmotility, or impaired gastrointestinal transit, fear of inspissation of formula with precipitation of nonocclusive mesenteric ischemia (NOMI)/nonocclusive bowel necrosis (NOBN) limited its utilization by medical and surgical intensivists. The incidence of NOMI/NOBN has been estimated at 0.2%-0.3% for all intensive care unit (ICU) patients receiving enteral nutrition (EN), and the occurrence of inspissated formula is even less. The science supporting a benefit from providing fiber has recently increased exponentially. The fermentation of soluble fibers leading to the production of short chain fatty acids supports gut barrier function, modulates immune responses, and promotes refaunation of commensal organisms. The "butyrate effect" refers to local (gastrointestinal tract) and systemic anti-inflammatory responses mediated by the M2 polarization of macrophages, inhibition of histone deacetylase, and stimulation of ubiquitous G protein receptors. Both soluble and insoluble fiber have been shown to promote intestinal motility, reduce feeding intolerance, and shorten hospital length of stay. The benefit of providing dietary fiber early upon admission to the ICU outweighs its minimal associated risk. The point at which the intensivist determines that is safe to initiate EN, both soluble and insoluble fiber should be included in the enteral formulation.
Collapse
Affiliation(s)
- Stephen A McClave
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Endashaw Omer
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Mohamed Eisa
- Department of Medicine, Allegheny Center for Digestive Health, Allegheny Health Network Medicine Institute, Pittsburg, Pennsylvania, USA
| | | | - Cynthia C Lowen
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert G Martindale
- Department of Surgery, Oregon Health Sciences University, Portland, Oregon, USA
| |
Collapse
|
2
|
Zhang DW, Lu JL, Dong BY, Fang MY, Xiong X, Qin XJ, Fan XM. Gut microbiota and its metabolic products in acute respiratory distress syndrome. Front Immunol 2024; 15:1330021. [PMID: 38433840 PMCID: PMC10904571 DOI: 10.3389/fimmu.2024.1330021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
The prevalence rate of acute respiratory distress syndrome (ARDS) is estimated at approximately 10% in critically ill patients worldwide, with the mortality rate ranging from 17% to 39%. Currently, ARDS mortality is usually higher in patients with COVID-19, giving another challenge for ARDS treatment. However, the treatment efficacy for ARDS is far from satisfactory. The relationship between the gut microbiota and ARDS has been substantiated by relevant scientific studies. ARDS not only changes the distribution of gut microbiota, but also influences intestinal mucosal barrier through the alteration of gut microbiota. The modulation of gut microbiota can impact the onset and progression of ARDS by triggering dysfunctions in inflammatory response and immune cells, oxidative stress, cell apoptosis, autophagy, pyroptosis, and ferroptosis mechanisms. Meanwhile, ARDS may also influence the distribution of metabolic products of gut microbiota. In this review, we focus on the impact of ARDS on gut microbiota and how the alteration of gut microbiota further influences the immune function, cellular functions and related signaling pathways during ARDS. The roles of gut microbiota-derived metabolites in the development and occurrence of ARDS are also discussed.
Collapse
Affiliation(s)
- Dong-Wei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Jia-Li Lu
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Bi-Ying Dong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Meng-Ying Fang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xue-Jun Qin
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Xian-Ming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Han M, Huang Y, Gui H, Xiao Y, He M, Liu J, Cao X, Zheng M, Lu M, Jia W, Li H, Wang X, Zhang N, Kong SA, Liu X, Wu Y, Wu F, Huang S. Dynamic changes in host immune system and gut microbiota are associated with the production of SARS-CoV-2 antibodies. Gut 2023; 72:1996-1999. [PMID: 36207022 PMCID: PMC10511961 DOI: 10.1136/gutjnl-2022-327561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/23/2022] [Indexed: 12/08/2022]
Affiliation(s)
- Maozhen Han
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yixuan Huang
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Hongya Gui
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yixuan Xiao
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Maozhang He
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jiling Liu
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xiujing Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Min Lu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weihua Jia
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Hui Li
- Hefei City Maternal and Child Health & Family Planning Service Center, Hefei, Anhui, China
| | - Xiaoyan Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Na Zhang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Shu-An Kong
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohui Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Shenghai Huang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Backer S, Khanna D. The Lasting Effects of COVID-19 on the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Cureus 2023; 15:e45231. [PMID: 37842470 PMCID: PMC10576539 DOI: 10.7759/cureus.45231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
It is estimated that around 30% of the population living in Western countries has metabolic dysfunction-associated steatotic liver disease (MASLD), a spectrum of pathology (not attributed to alcohol/substance intake) initiated by steatosis and progression toward inflammation and irreversible fibrosis metabolic dysfunction-associated steatohepatitis (MASH). With inflammation being a key component of the transition to MASH, it raises the question of whether the ongoing COVID-19 pandemic, which has notoriously induced hyperinflammatory states, may influence the progression of MASLD. Specifically, it remains unclear if the potential chronic sequelae of COVID-19 in patients who recovered from it may increase the predisposition for MASH. Since MASH maintains a high risk for hepatocellular carcinoma, liver failure, and the need for a liver transplant, the potential additive effects of COVID-19 could prove critical to study. Thus, the objective of this study was to conduct a literature review to examine if COVID-19 could have chronic sequelae that affect the progression of MASLD pathogenesis. It was hypothesized that severe cases of COVID-19 could induce systemic inflammation, metabolic changes, and lasting gut microbiome alterations that lead to inflammatory and fibrotic changes in the liver, similar to those seen in MASH. A scoping review of the literature was conducted utilizing the PubMed database. Studies that examined hepatobiliary pathology, gut microbiome, systemic inflammation, metabolic changes, drug-induced liver injury (DILI), and hypoxia seen in COVID-19 were included. Human studies of adult cohorts, animal models, and in vitro experiments were included. Genetic components of MASLD were not examined. Exclusion criteria also encompassed any studies not referencing the hepatobiliary, gastrointestinal tract, portal system, or systemic circulation. Findings indicated a frequent trend of elevated liver enzymes, mild steatosis, Kupffer cell hyperplasia, and hepatobiliary congestion. It was found that direct cytopathic effects on hepatocytes were unlikely, but the direct viral insult of cholangiocytes was a potential complication. High serum levels of IL-1, TNF-a, and MCP-1, in COVID-19 were found as potential risk factors for MASH development. Hypoxia, altered lipid metabolism, and iatrogenic DILI were also proposed as potential precipitators of MASH development. Notably, lasting changes in gut microbiome were also frequently observed and correlated closely with those seen in MASH.
Collapse
Affiliation(s)
- Sean Backer
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Deepesh Khanna
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| |
Collapse
|
5
|
López-Hernández Y, Monárrez-Espino J, López DAG, Zheng J, Borrego JC, Torres-Calzada C, Elizalde-Díaz JP, Mandal R, Berjanskii M, Martínez-Martínez E, López JA, Wishart DS. The plasma metabolome of long COVID patients two years after infection. Sci Rep 2023; 13:12420. [PMID: 37528111 PMCID: PMC10394026 DOI: 10.1038/s41598-023-39049-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
One of the major challenges currently faced by global health systems is the prolonged COVID-19 syndrome (also known as "long COVID") which has emerged as a consequence of the SARS-CoV-2 epidemic. It is estimated that at least 30% of patients who have had COVID-19 will develop long COVID. In this study, our goal was to assess the plasma metabolome in a total of 100 samples collected from healthy controls, COVID-19 patients, and long COVID patients recruited in Mexico between 2020 and 2022. A targeted metabolomics approach using a combination of LC-MS/MS and FIA MS/MS was performed to quantify 108 metabolites. IL-17 and leptin were measured in long COVID patients by immunoenzymatic assay. The comparison of paired COVID-19/long COVID-19 samples revealed 53 metabolites that were statistically different. Compared to controls, 27 metabolites remained dysregulated even after two years. Post-COVID-19 patients displayed a heterogeneous metabolic profile. Lactic acid, lactate/pyruvate ratio, ornithine/citrulline ratio, and arginine were identified as the most relevant metabolites for distinguishing patients with more complicated long COVID evolution. Additionally, IL-17 levels were significantly increased in these patients. Mitochondrial dysfunction, redox state imbalance, impaired energy metabolism, and chronic immune dysregulation are likely to be the main hallmarks of long COVID even two years after acute COVID-19 infection.
Collapse
Affiliation(s)
- Yamilé López-Hernández
- CONAHCyT-Metabolomics and Proteomics Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, 98000, Zacatecas, Mexico.
| | - Joel Monárrez-Espino
- Department of Health Research, Christus Muguerza del Parque Hospital - University of Monterrey, 31125, Chihuahua, Mexico
| | | | - Jiamin Zheng
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Juan Carlos Borrego
- Departamento de Epidemiología, Hospital General de Zona #1 "Emilio Varela Luján", Instituto Mexicano del Seguro Social, Zacatecas, 98000, México
| | | | - José Pedro Elizalde-Díaz
- Laboratory of Cell Communication & Extracellular Vesicles, Division of Basic Science, Instituto Nacional de Medicina Genómica, 14610, Ciudad de México, Mexico
| | - Rupasri Mandal
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Mark Berjanskii
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication & Extracellular Vesicles, Division of Basic Science, Instituto Nacional de Medicina Genómica, 14610, Ciudad de México, Mexico
| | - Jesús Adrián López
- MicroRNAs and Cancer Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, 98000, Zacatecas, Mexico
| | - David S Wishart
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB, T6G 1C9, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 1C9, Canada.
| |
Collapse
|
6
|
Martín Giménez VM, Modrego J, Gómez-Garre D, Manucha W, de las Heras N. Gut Microbiota Dysbiosis in COVID-19: Modulation and Approaches for Prevention and Therapy. Int J Mol Sci 2023; 24:12249. [PMID: 37569625 PMCID: PMC10419057 DOI: 10.3390/ijms241512249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammation and oxidative stress are critical underlying mechanisms associated with COVID-19 that contribute to the complications and clinical deterioration of patients. Additionally, COVID-19 has the potential to alter the composition of patients' gut microbiota, characterized by a decreased abundance of bacteria with probiotic effects. Interestingly, certain strains of these bacteria produce metabolites that can target the S protein of other coronaviruses, thereby preventing their transmission and harmful effects. At the same time, the presence of gut dysbiosis can exacerbate inflammation and oxidative stress, creating a vicious cycle that perpetuates the disease. Furthermore, it is widely recognized that the gut microbiota can metabolize various foods and drugs, producing by-products that may have either beneficial or detrimental effects. In this regard, a decrease in short-chain fatty acid (SCFA), such as acetate, propionate, and butyrate, can influence the overall inflammatory and oxidative state, affecting the prevention, treatment, or worsening of COVID-19. This review aims to explore the current evidence regarding gut dysbiosis in patients with COVID-19, its association with inflammation and oxidative stress, the molecular mechanisms involved, and the potential of gut microbiota modulation in preventing and treating SARS-CoV-2 infection. Given that gut microbiota has demonstrated high adaptability, exploring ways and strategies to maintain good intestinal health, as well as an appropriate diversity and composition of the gut microbiome, becomes crucial in the battle against COVID-19.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan 5400, Argentina;
| | - Javier Modrego
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina;
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza 5500, Argentina
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
7
|
Zheng H, Zhao Q, Chen J, Lu J, Li Y, Gao H. Gastrointestinal microbiome of ARDS patients induces neuroinflammation and cognitive impairment in mice. J Neuroinflammation 2023; 20:166. [PMID: 37454113 DOI: 10.1186/s12974-023-02825-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a respiratory failure syndrome that can cause many complications, impacting patients' quality of life. Behavioral and cognitive disorders have attracted increasing attention in patients with ARDS, but its potential mechanisms are still elusive. METHODS Herein we transferred the faecal microbiota from patients with ARDS caused by community-acquired pneumonia (CAP) to antibiotics-treated recipient male mice to explore the microbiota-gut-brain mechanisms. Behavioral functions of mice were evaluated by the open field test, Morris water maze and Y-maze test. The structure and composition of the gut microbiota were analyzed by using 16S rRNA sequencing analysis. Microglia, astrocyte and neuron in the cortex and hippocampus were examined via immunofluorescent staining. RESULTS We found that the major characteristic of the intestinal flora in ARDS/CAP patients was higher abundances of Gram-negative bacteria than normal controls. The gut microbiota derived from ARDS/CAP patients promoted neuroinflammation and behavioral dysfunctions in mice. Mice who underwent fecal transplant from ARDS/CAP patients had increased systemic lipopolysaccharide (LPS), systemic inflammation, and increased colonic barrier permeability. This may adversely impact blood barrier permeability and facilitate microglia activation, astrocyte proliferation, and loss of neurons. CONCLUSIONS Our study proposes the role of the microbiota-gut-brain crosstalk on ARDS/CAP-associated behavioral impairments and suggests the gut microbiota as a potential target for the protection of brain health in ARDS patients in clinical practice.
Collapse
Affiliation(s)
- Hong Zheng
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qihui Zhao
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jianuo Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Jiahui Lu
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China.
| | - Hongchang Gao
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
8
|
Boucher E, Plazy C, Le Gouellec A, Toussaint B, Hannani D. Inulin Prebiotic Protects against Lethal Pseudomonas aeruginosa Acute Infection via γδ T Cell Activation. Nutrients 2023; 15:3037. [PMID: 37447363 DOI: 10.3390/nu15133037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) causes harmful lung infections, especially in immunocompromised patients. The immune system and Interleukin (IL)-17-producing γδ T cells (γδ T) are critical in controlling these infections in mice. The gut microbiota modulates host immunity in both cancer and infection contexts. Nutritional intervention is a powerful means of modulating both microbiota composition and functions, and subsequently the host's immune status. We have recently shown that inulin prebiotic supplementation triggers systemic γδ T activation in a cancer context. We hypothesized that prophylactic supplementation with inulin might protect mice from lethal P. aeruginosa acute lung infection in a γδ T-dependent manner. C57Bl/6 mice were supplemented with inulin for 15 days before the lethal P. aeruginosa lung infection, administered intranasally. We demonstrate that prophylactic inulin supplementation triggers a higher proportion of γδ T in the blood, accompanied by a higher infiltration of IL-17-producing γδ T within the lungs, and protects 33% of infected mice from death. This observation relies on γδ T, as in vivo γδ TcR blocking using a monoclonal antibody completely abrogates inulin-mediated protection. Overall, our data indicate that inulin supplementation triggers systemic γδ T activation, and could help resolve lung P. aeruginosa infections. Moreover, our data suggest that nutritional intervention might be a powerful way to prevent/reduce infection-related mortality, by reinforcing the microbiota-dependent immune system.
Collapse
Affiliation(s)
- Emilie Boucher
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Caroline Plazy
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Audrey Le Gouellec
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Bertrand Toussaint
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Dalil Hannani
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
9
|
Enichen E, Harvey C, Demmig-Adams B. COVID-19 Spotlights Connections between Disease and Multiple Lifestyle Factors. Am J Lifestyle Med 2023; 17:231-257. [PMID: 36883129 PMCID: PMC9445631 DOI: 10.1177/15598276221123005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2), and the disease it causes (COVID-19), have had a profound impact on global human society and threaten to continue to have such an impact with newly emerging variants. Because of the widespread effects of SARS-CoV-2, understanding how lifestyle choices impact the severity of disease is imperative. This review summarizes evidence for an involvement of chronic, non-resolving inflammation, gut microbiome disruption (dysbiosis with loss of beneficial microorganisms), and impaired viral defenses, all of which are associated with an imbalanced lifestyle, in severe disease manifestations and post-acute sequelae of SARS-CoV-2 (PASC). Humans' physiological propensity for uncontrolled inflammation and severe COVID-19 are briefly contrasted with bats' low propensity for inflammation and their resistance to viral disease. This insight is used to identify positive lifestyle factors with the potential to act in synergy for restoring balance to the immune response and gut microbiome, and thereby protect individuals against severe COVID-19 and PASC. It is proposed that clinicians should consider recommending lifestyle factors, such as stress management, balanced nutrition and physical activity, as preventative measures against severe viral disease and PASC.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Caitlyn Harvey
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| |
Collapse
|
10
|
Mezhibovsky E, Hoang SH, Szeto S, Roopchand DE. In silico analysis of dietary polyphenols and their gut microbial metabolites suggest inhibition of SARS-CoV-2 infection, replication, and host inflammatory mediators. J Biomol Struct Dyn 2023; 41:14339-14357. [PMID: 36803516 PMCID: PMC10439978 DOI: 10.1080/07391102.2023.2180669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
The outcome of SARS-CoV-2 infection ranges from asymptomatic to severe COVID-19 and death resulting from an exaggerated immune response termed cytokine storm. Epidemiological data have associated consumption of a high-quality plant-based diet with decreased incidence and severity of COVID-19. Dietary polyphenols and their microbial metabolites (MMs) have anti-viral and anti-inflammatory activities. Autodock Vina and Yasara were used in molecular docking and dynamics studies to investigate potential interactions of 7 parent polyphenols (PPs) and 11 MMs with the α- and Omicron variants of the SARS-CoV-2 spike glycoprotein (SGP), papain-like pro-tease (PLpro) and 3 chymotrypsin-like protease (3CLpro), as well as host inflammatory mediators including complement component 5a (C5a), C5a receptor (C5aR), and C-C chemokine receptor type 5 (CCR5). PPs and MMs interacted to varying degrees with residues on target viral and host inflammatory proteins showing potential as competitive inhibitors. Based on these in silico findings, PPs and MMs may inhibit SARS-CoV-2 infection, replication, and/or modulate host immunity in the gut or periphery. Such inhibition may explain why people that consume a high-quality plant-based diet have less incidence and severity of COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Esther Mezhibovsky
- Department of Food Science, Rutgers University, NJ Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), 61 Dudley Rd., New Brunswick, NJ 08901 USA
- Department of Nutritional Sciences Graduate Program, Rutgers University
| | - Skyler H. Hoang
- Department of Food Science, Rutgers University, NJ Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), 61 Dudley Rd., New Brunswick, NJ 08901 USA
| | - Samantha Szeto
- Department of Food Science, Rutgers University, NJ Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), 61 Dudley Rd., New Brunswick, NJ 08901 USA
| | - Diana E. Roopchand
- Department of Food Science, Rutgers University, NJ Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), 61 Dudley Rd., New Brunswick, NJ 08901 USA
| |
Collapse
|
11
|
Gong X, Khan A, Wani MY, Ahmad A, Duse A. COVID-19: A state of art on immunological responses, mutations, and treatment modalities in riposte. J Infect Public Health 2023; 16:233-249. [PMID: 36603376 PMCID: PMC9798670 DOI: 10.1016/j.jiph.2022.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Over the last few years, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) unleashed a global public health catastrophe that had a substantial influence on human physical and mental health, the global economy, and socio-political dynamics. SARS-CoV-2 is a respiratory pathogen and the cause of ongoing COVID-19 pandemic, which testified how unprepared humans are for pandemics. Scientists and policymakers continue to face challenges in developing ideal therapeutic agents and vaccines, while at the same time deciphering the pathology and immunology of SARS-CoV-2. Challenges in the early part of the pandemic included the rapid development of diagnostic assays, vaccines, and therapeutic agents. The ongoing transmission of COVID-19 is coupled with the emergence of viral variants that differ in their transmission efficiency, virulence, and vaccine susceptibility, thus complicating the spread of the pandemic. Our understanding of how the human immune system responds to these viruses as well as the patient groups (such as the elderly and immunocompromised individuals) who are often more susceptible to serious illness have both been aided by this epidemic. COVID-19 causes different symptoms to occur at different stages of infection, making it difficult to determine distinct treatment regimens employed for the various clinical phases of the disease. Unsurprisingly, determining the efficacy of currently available medications and developing novel therapeutic strategies have been a process of trial and error. The global scientific community collaborated to research and develop vaccines at a neck-breaking speed. This review summarises the overall picture of the COVID-19 pandemic, different mutations in SARS-CoV-2, immune response, and the treatment modalities against SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaolong Gong
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amber Khan
- Department of Clinical Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Kingdom of Saudi Arabia
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Division of Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa,Corresponding author at: Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adriano Duse
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Division of Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
12
|
Khare S, Niharika, Singh A, Hussain I, Singh NB, Singh S. SARS-CoV-2 Vaccines: Types, Working Principle, and Its Impact on Thrombosis and Gastrointestinal Disorders. Appl Biochem Biotechnol 2023; 195:1541-1573. [PMID: 36222988 PMCID: PMC9554396 DOI: 10.1007/s12010-022-04181-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
In the current scenario of the coronavirus pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), considerable efforts have been made to control the pandemic by the development of a strong immune system through massive vaccination. Just after the discovery of the genetic sequences of SARS-CoV-2, the development of vaccines became the prime focus of scientists around the globe. About 200 SARS-CoV-2 candidate vaccines have already been entered into preclinical and clinical trials. Various traditional and novel approaches are being utilized as a broad range of platforms. Viral vector (replicating and non-replicating), nucleic acid (DNA and RNA), recombinant protein, virus-like particle, peptide, live attenuated virus, an inactivated virus approaches are the prominent attributes of the vaccine development. This review article includes the current knowledge about the platforms used for the development of different vaccines, their working principles, their efficacy, and the impacts of COVID-19 vaccines on thrombosis. We provide a detailed description of the vaccines that are already approved by administrative authorities. Moreover, various strategies utilized in the development of emerging vaccines that are in the trial phases along with their mode of delivery have been discussed along with their effect on thrombosis and gastrointestinal disorders.
Collapse
Affiliation(s)
- Shubhra Khare
- grid.411343.00000 0001 0213 924XPlant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 U.P. India
| | - Niharika
- grid.411343.00000 0001 0213 924XPlant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 U.P. India
| | - Ajey Singh
- grid.411488.00000 0001 2302 6594Department of Botany, University of Lucknow, Lucknow, 226007 U.P. India
| | - Imtiyaz Hussain
- grid.412997.00000 0001 2294 5433Government Degree College, University of Ladakh, Dras, Ladakh India
| | - Narsingh Bahadur Singh
- grid.411343.00000 0001 0213 924XPlant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 U.P. India
| | - Subhash Singh
- grid.16416.340000 0004 1936 9174The Institute of Optics, University of Rochester, Rochester, NY-14627 USA
| |
Collapse
|
13
|
dos Santos AAC, Rodrigues LE, Alecrim-Zeza AL, de Araújo Ferreira L, Trettel CDS, Gimenes GM, da Silva AF, Sousa-Filho CPB, Serdan TDA, Levada-Pires AC, Hatanaka E, Borges FT, de Barros MP, Cury-Boaventura MF, Bertolini GL, Cassolla P, Marzuca-Nassr GN, Vitzel KF, Pithon-Curi TC, Masi LN, Curi R, Gorjao R, Hirabara SM. Molecular and cellular mechanisms involved in tissue-specific metabolic modulation by SARS-CoV-2. Front Microbiol 2022; 13:1037467. [PMID: 36439786 PMCID: PMC9684198 DOI: 10.3389/fmicb.2022.1037467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 09/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is triggered by the SARS-CoV-2, which is able to infect and cause dysfunction not only in lungs, but also in multiple organs, including central nervous system, skeletal muscle, kidneys, heart, liver, and intestine. Several metabolic disturbances are associated with cell damage or tissue injury, but the mechanisms involved are not yet fully elucidated. Some potential mechanisms involved in the COVID-19-induced tissue dysfunction are proposed, such as: (a) High expression and levels of proinflammatory cytokines, including TNF-α IL-6, IL-1β, INF-α and INF-β, increasing the systemic and tissue inflammatory state; (b) Induction of oxidative stress due to redox imbalance, resulting in cell injury or death induced by elevated production of reactive oxygen species; and (c) Deregulation of the renin-angiotensin-aldosterone system, exacerbating the inflammatory and oxidative stress responses. In this review, we discuss the main metabolic disturbances observed in different target tissues of SARS-CoV-2 and the potential mechanisms involved in these changes associated with the tissue dysfunction.
Collapse
Affiliation(s)
| | - Luiz Eduardo Rodrigues
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Amanda Lins Alecrim-Zeza
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Liliane de Araújo Ferreira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Caio dos Santos Trettel
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Gabriela Mandú Gimenes
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Adelson Fernandes da Silva
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | | | - Tamires Duarte Afonso Serdan
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Department of Molecular Pathobiology, University of New York, New York, NY, United States
| | - Adriana Cristina Levada-Pires
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Elaine Hatanaka
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Fernanda Teixeira Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Divisão de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Paes de Barros
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Maria Fernanda Cury-Boaventura
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Gisele Lopes Bertolini
- Department of Physiological Sciences, Biological Science Center, State University of Londrina, Londrina, PR, Brazil
| | - Priscila Cassolla
- Department of Physiological Sciences, Biological Science Center, State University of Londrina, Londrina, PR, Brazil
| | | | - Kaio Fernando Vitzel
- School of Health Sciences, College of Health, Massey University, Auckland, New Zealand
| | - Tania Cristina Pithon-Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Laureane Nunes Masi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Rui Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, Brazil
| | - Renata Gorjao
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Forsyth CB, Voigt RM, Swanson GR, Bishehsari F, Shaikh M, Zhang L, Engen P, Keshavarzian A. Alcohol use disorder as a potential risk factor for COVID-19 severity: A narrative review. Alcohol Clin Exp Res 2022; 46:1930-1943. [PMID: 36394508 PMCID: PMC9722573 DOI: 10.1111/acer.14936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022]
Abstract
In Dec. 2019-January 2020, a pneumonia illness originating in Wuhan, China, designated as coronavirus disease 2019 (COVID-19) was shown to be caused by a novel RNA coronavirus designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). People with advanced age, male sex, and/or underlying health conditions (obesity, type 2 diabetes, cardiovascular disease, hypertension, chronic kidney disease, and chronic lung disease) are especially vulnerable to severe COVID-19 symptoms and death. These risk factors impact the immune system and are also associated with poor health, chronic illness, and shortened longevity. However, a large percent of patients without these known risk factors also develops severe COVID-19 disease that can result in death. Thus, there must exist risk factors that promote exaggerated inflammatory and immune response to the SARS-CoV-2 virus leading to death. One such risk factor may be alcohol misuse and alcohol use disorder because these can exacerbate viral lung infections like SARS, influenza, and pneumonia. Thus, it is highly plausible that alcohol misuse is a risk factor for either increased infection rate when individuals are exposed to SARS-CoV-2 virus and/or more severe COVID-19 in infected patients. Alcohol use is a well-known risk factor for lung diseases and ARDS in SARS patients. We propose that alcohol has three key pathogenic elements in common with other COVID-19 severity risk factors: namely, inflammatory microbiota dysbiosis, leaky gut, and systemic activation of the NLRP3 inflammasome. We also propose that these three elements represent targets for therapy for severe COVID-19.
Collapse
Affiliation(s)
- Christopher B. Forsyth
- Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, IL 60612
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612
- Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612
| | - Robin M. Voigt
- Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, IL 60612
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612
- Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612
| | - Garth R. Swanson
- Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, IL 60612
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612
- Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612
| | - Faraz Bishehsari
- Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, IL 60612
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612
- Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
| | - Lijuan Zhang
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
| | - Phillip Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
| | - Ali Keshavarzian
- Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, IL 60612
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612
- Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
15
|
Bahmani A, Mollashahi Z, Shahkarami N, Delavar E, Esfahani H. Medical and chemical efficacy of respiratory physiotherapy and Remdesivir in patients with COVID-19 pneumonia: A systematic review and meta-analysis. ROMANIAN JOURNAL OF MILITARY MEDICINE 2022. [DOI: 10.55453/rjmm.2022.125.4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
"Evaluated efficacy of Respiratory Physiotherapy and Remdesivir on patients with COVID-19 pneumonia. In current systematic review and meta-analysis study, articles published January 2019 to December 1, 2021 were reviewed in the databases of PubMed, Scopus, Web of Science, and EBSCO. Risk ratio and mean differences with 95% confidence interval (CI), fixed effect model and Mantel–Haenszel or Inverse-variance formula were calculated. The Meta analysis have been evaluated with the statistical software Stata/MP v.16 (The fastest version of Stata). Mean differences of PaO2/FiO2 ratio at 6h after chest Respiratory Physiotherapy was (MD, 66 mmHg 95 % CI 64.71 mmHg, 67.28 mmHg; p=0.0007). Risk ratio of recovery rate between experimental and control group was 0.20 (RR, 0.20 95 % CI 0.15, 0.25) with high heterogeneity (I2 =78.84%; p=0.00). Risk ratio of mortality rate between experimental and control group was -0.34 (RR, -0.34 95 % CI -0.65, - 0.03) with low heterogeneity (I2<0%; p=0.51). Based on the findings of meta-analysis, Respiratory Physiotherapy can play an effective role in respiratory therapy and rehabilitation of patients admitted to the ICU with COVID-19. A meta-analysis showed that treatment with Remdesivir could increase the recovery rate, especially in the early days of COVID-19; also reduces the mortality rate."
Collapse
|
16
|
Clerbaux LA, Fillipovska J, Muñoz A, Petrillo M, Coecke S, Amorim MJ, Grenga L. Mechanisms Leading to Gut Dysbiosis in COVID-19: Current Evidence and Uncertainties Based on Adverse Outcome Pathways. J Clin Med 2022; 11:5400. [PMID: 36143044 PMCID: PMC9505288 DOI: 10.3390/jcm11185400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Alteration in gut microbiota has been associated with COVID-19. However, the underlying mechanisms remain poorly understood. Here, we outlined three potential interconnected mechanistic pathways leading to gut dysbiosis as an adverse outcome following SARS-CoV-2 presence in the gastrointestinal tract. Evidence from the literature and current uncertainties are reported for each step of the different pathways. One pathway investigates evidence that intestinal infection by SARS-CoV-2 inducing intestinal inflammation alters the gut microbiota. Another pathway links the binding of viral S protein to angiotensin-converting enzyme 2 (ACE2) to the dysregulation of this receptor, essential in intestinal homeostasis-notably for amino acid metabolism-leading to gut dysbiosis. Additionally, SARS-CoV-2 could induce gut dysbiosis by infecting intestinal bacteria. Assessing current evidence within the Adverse Outcome Pathway framework justifies confidence in the proposed mechanisms to support disease management and permits the identification of inconsistencies and knowledge gaps to orient further research.
Collapse
Affiliation(s)
| | | | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium
| | | | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Maria-Joao Amorim
- Instituto Gulbenkian de Ciência, 2780-156 Oerias, Portugal
- Católica Medical School, Católica Biomedical Research Centre, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé, Commissariat à l’Énergie Atomique et Aux Énergies Alternatives (CEA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Paris-Saclay, 30200 Bagnols-sur-Cèze, France
| |
Collapse
|
17
|
He Q, Shi Y, Tang Q, Xing H, Zhang H, Wang M, Chen X. Herbal medicine in the treatment of COVID-19 based on the gut-lung axis. ACUPUNCTURE AND HERBAL MEDICINE 2022; 2:172-183. [PMID: 37808350 PMCID: PMC9746256 DOI: 10.1097/hm9.0000000000000038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/12/2022] [Indexed: 08/18/2023]
Abstract
Respiratory symptoms are most commonly experienced by patients in the early stages of novel coronavirus disease 2019 (COVID-19). However, with a better understanding of COVID-19, gastrointestinal symptoms such as diarrhea, nausea, and vomiting have attracted increasing attention. The gastrointestinal tract may be a target organ of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The intestinal microecological balance is a crucial factor for homeostasis, including immunity and inflammation, which are closely related to COVID-19. Herbal medicine can restore intestinal function and regulate the gut flora structure. Herbal medicine has a long history of treating lung diseases from the perspective of the intestine, which is called the gut-lung axis. The physiological activities of guts and lungs influence each other through intestinal flora, microflora metabolites, and mucosal immunity. Microecological modulators are included in the diagnosis and treatment protocols for COVID-19. In this review, we demonstrate the relationship between COVID-19 and the gut, gut-lung axis, and the role of herbal medicine in treating respiratory diseases originating from the intestinal tract. It is expected that the significance of herbal medicine in treating respiratory diseases from the perspective of the intestinal tract could lead to new ideas and methods for treatment. Graphical abstract http://links.lww.com/AHM/A33.
Collapse
Affiliation(s)
- Qiaoyu He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yumeng Shi
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Tang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mei Wang
- LU-European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University/SU Biomedicine, Leiden, Netherlands
| | - Xiaopeng Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
18
|
Wais T, Hasan M, Rai V, Agrawal DK. Gut-brain communication in COVID-19: molecular mechanisms, mediators, biomarkers, and therapeutics. Expert Rev Clin Immunol 2022; 18:947-960. [PMID: 35868344 PMCID: PMC9388545 DOI: 10.1080/1744666x.2022.2105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Infection with COVID-19 results in acute respiratory symptoms followed by long COVID multi-organ effects presenting with neurological, cardiovascular, musculoskeletal, and gastrointestinal (GI) manifestations. Temporal relationship between gastrointestinal and neurological symptoms is unclear but warranted for exploring better clinical care for COVID-19 patients. AREAS COVERED We critically reviewed the temporal relationship between gut-brain axis after SARS-CoV-2 infection and the molecular mechanisms involved in neuroinvasion following GI infection. Mediators are identified that could serve as biomarkers and therapeutic targets in SARS-CoV-2. We discussed the potential therapeutic approaches to mitigate the effects of GI infection with SARS-CoV-2. EXPERT OPINION Altered gut microbiota cause increased expression of various mediators, including zonulin causing disruption of tight junction. This stimulates enteric nervous system and signals to CNS precipitating neurological sequalae. Published reports suggest potential role of cytokines, immune cells, B(0)AT1 (SLC6A19), ACE2, TMRSS2, TMPRSS4, IFN-γ, IL-17A, zonulin, and altered gut microbiome in gut-brain axis and associated neurological sequalae. Targeting these mediators and gut microbiome to improve immunity will be of therapeutic significance. In-depth research and well-designed large-scale population-based clinical trials with multidisciplinary and collaborative approaches are warranted. Investigating the temporal relationship between organs involved in long-term sequalae is critical due to evolving variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Tameena Wais
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| | - Mehde Hasan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| |
Collapse
|
19
|
Lymberopoulos E, Gentili GI, Budhdeo S, Sharma N. COVID-19 severity is associated with population-level gut microbiome variations. Front Cell Infect Microbiol 2022; 12:963338. [PMID: 36081770 PMCID: PMC9445151 DOI: 10.3389/fcimb.2022.963338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
The human gut microbiome interacts with many diseases, with recent small studies suggesting a link with COVID-19 severity. Exploring this association at the population-level may provide novel insights and help to explain differences in COVID-19 severity between countries. We explore whether there is an association between the gut microbiome of people within different countries and the severity of COVID-19, measured as hospitalisation rate. We use data from the large (n = 3,055) open-access gut microbiome repository curatedMetagenomicData, as well as demographic and country-level metadata. Twelve countries were placed into two groups (high/low) according to COVID-19 hospitalisation rate before December 2020 (ourworldindata.com). We use an unsupervised machine learning method, Topological Data Analysis (TDA). This method analyses both the local geometry and global topology of a high-dimensional dataset, making it particularly suitable for population-level microbiome data. We report an association of distinct baseline population-level gut microbiome signatures with COVID-19 severity. This was found both with a PERMANOVA, as well as with TDA. Specifically, it suggests an association of anti-inflammatory bacteria, including Bifidobacteria species and Eubacterium rectale, with lower severity, and pro-inflammatory bacteria such as Prevotella copri with higher severity. This study also reports a significant impact of country-level confounders, specifically of the proportion of over 70-year-olds in the population, GDP, and human development index. Further interventional studies should examine whether these relationships are causal, as well as considering the contribution of other variables such as genetics, lifestyle, policy, and healthcare system. The results of this study support the value of a population-level association design in microbiome research in general and for the microbiome-COVID-19 relationship, in particular. Finally, this research underscores the potential of TDA for microbiome studies, and in identifying novel associations.
Collapse
Affiliation(s)
- Eva Lymberopoulos
- The Sharma Lab, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, England
- Centre for Doctoral Training in AI-London enabled Healthcare Systems, Institute of Health Informatics, University College London, London, England
| | - Giorgia Isabella Gentili
- The Sharma Lab, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, England
| | - Sanjay Budhdeo
- The Sharma Lab, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, England
- National Hospital for Neurology and Neurosurgery, Queen Square, London, England
- School of Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, England
| | - Nikhil Sharma
- The Sharma Lab, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, England
| |
Collapse
|
20
|
Li S, Zhou Y, Yan D, Wan Y. An Update on the Mutual Impact between SARS-CoV-2 Infection and Gut Microbiota. Viruses 2022; 14:1774. [PMID: 36016396 PMCID: PMC9415881 DOI: 10.3390/v14081774] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota is essential for good health. It has also been demonstrated that the gut microbiota can regulate immune responses against respiratory tract infections. Since the outbreak of the COVID-19 pandemic, accumulating evidence suggests that there is a link between the severity of COVID-19 and the alteration of one's gut microbiota. The composition of gut microbiota can be profoundly affected by COVID-19 and vice versa. Here, we summarize the observations of the mutual impact between SARS-CoV-2 infection and gut microbiota composition. We discuss the consequences and mechanisms of the bi-directional interaction. Moreover, we also discuss the immune cross-reactivity between SARS-CoV-2 and commensal bacteria, which represents a previously overlooked connection between COVID-19 and commensal gut bacteria. Finally, we summarize the progress in managing COVID-19 by utilizing microbial interventions.
Collapse
Affiliation(s)
- Shaoshuai Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Public Health Clinical Center, Department of Laboratory Medicine, Shanghai 201508, China
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Yang Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Dongmei Yan
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Public Health Clinical Center, Department of Radiology, Shanghai 201508, China
| |
Collapse
|
21
|
Sencio V, Benech N, Robil C, Deruyter L, Heumel S, Machelart A, Sulpice T, Lamazière A, Grangette C, Briand F, Sokol H, Trottein F. Alteration of the gut microbiota's composition and metabolic output correlates with COVID-19-like severity in obese NASH hamsters. Gut Microbes 2022; 14:2100200. [PMID: 35830432 PMCID: PMC9291689 DOI: 10.1080/19490976.2022.2100200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obese patientss with nonalcoholic steatohepatitis (NASH) are particularly prone to developing severe forms of coronavirus disease 19 (COVID-19). The gut-to-lung axis is critical during viral infections of the respiratory tract, and a change in the gut microbiota's composition might have a critical role in disease severity. Here, we investigated the consequences of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the gut microbiota in the context of obesity and NASH. To this end, we set up a nutritional model of obesity with dyslipidemia and NASH in the golden hamster, a relevant preclinical model of COVID-19. Relative to lean non-NASH controls, obese NASH hamsters develop severe inflammation of the lungs and liver. 16S rRNA gene profiling showed that depending on the diet, SARS-CoV-2 infection induced various changes in the gut microbiota's composition. Changes were more prominent and transient at day 4 post-infection in lean animals, alterations still persisted at day 10 in obese NASH animals. A targeted, quantitative metabolomic analysis revealed changes in the gut microbiota's metabolic output, some of which were diet-specific and regulated over time. Our results showed that specifically diet-associated taxa are correlated with disease parameters. Correlations between infection variables and diet-associated taxa highlighted a number of potentially protective or harmful bacteria in SARS-CoV-2-infected hamsters. In particular, some taxa in obese NASH hamsters (e.g. Blautia and Peptococcus) were associated with pro-inflammatory parameters in both the lungs and the liver. These taxon profiles and their association with specific disease markers suggest that microbial patterns might influence COVID-19 outcomes.
Collapse
Affiliation(s)
- Valentin Sencio
- CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Univ. Lille, CNRS, Inserm, Lille, France,UMR 9017, Centre National de la Recherche Scientifique (CNRS), Lille, France,Institut National de la Santé et de la Recherche Médicale (Inserm) U1019, Lille, France,Centre Hospitalier Universitaire de Lille, Lille, France,Institut Pasteur de Lille, Lille, France
| | - Nicolas Benech
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1019, Lille, France,Institut Pasteur de Lille, Lille, France
| | - Cyril Robil
- CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Univ. Lille, CNRS, Inserm, Lille, France,UMR 9017, Centre National de la Recherche Scientifique (CNRS), Lille, France,Institut National de la Santé et de la Recherche Médicale (Inserm) U1019, Lille, France,Centre Hospitalier Universitaire de Lille, Lille, France,Institut Pasteur de Lille, Lille, France
| | - Lucie Deruyter
- CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Univ. Lille, CNRS, Inserm, Lille, France,UMR 9017, Centre National de la Recherche Scientifique (CNRS), Lille, France,Institut National de la Santé et de la Recherche Médicale (Inserm) U1019, Lille, France,Centre Hospitalier Universitaire de Lille, Lille, France,Institut Pasteur de Lille, Lille, France
| | - Séverine Heumel
- CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Univ. Lille, CNRS, Inserm, Lille, France,UMR 9017, Centre National de la Recherche Scientifique (CNRS), Lille, France,Institut National de la Santé et de la Recherche Médicale (Inserm) U1019, Lille, France,Centre Hospitalier Universitaire de Lille, Lille, France,Institut Pasteur de Lille, Lille, France
| | - Arnaud Machelart
- CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Univ. Lille, CNRS, Inserm, Lille, France,UMR 9017, Centre National de la Recherche Scientifique (CNRS), Lille, France,Institut National de la Santé et de la Recherche Médicale (Inserm) U1019, Lille, France,Centre Hospitalier Universitaire de Lille, Lille, France,Institut Pasteur de Lille, Lille, France
| | | | - Antonin Lamazière
- Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, Sorbonne Université, Paris, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Corinne Grangette
- CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Univ. Lille, CNRS, Inserm, Lille, France,UMR 9017, Centre National de la Recherche Scientifique (CNRS), Lille, France,Institut National de la Santé et de la Recherche Médicale (Inserm) U1019, Lille, France,Centre Hospitalier Universitaire de Lille, Lille, France,Institut Pasteur de Lille, Lille, France
| | | | - Harry Sokol
- Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, Sorbonne Université, Paris, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France,UMR1319 Micalis & AgroParisTech, Institut National de la Recherche Agronomique (INRAE), Jouy en Josas, France
| | - François Trottein
- CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Univ. Lille, CNRS, Inserm, Lille, France,UMR 9017, Centre National de la Recherche Scientifique (CNRS), Lille, France,Institut National de la Santé et de la Recherche Médicale (Inserm) U1019, Lille, France,Centre Hospitalier Universitaire de Lille, Lille, France,Institut Pasteur de Lille, Lille, France,CONTACT François Trottein Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Univ. Lille, CNRS, LilleF-59000France
| |
Collapse
|
22
|
Rota S, Boura I, Wan YM, Lazcano-Ocampo C, Rodriguez-Violante M, Antonini A, Chaudhuri KR. Spotlight on non-motor symptoms and Covid-19. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:103-133. [PMID: 36208897 PMCID: PMC9270874 DOI: 10.1016/bs.irn.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Coronavirus Disease 2019 (Covid-19) pandemic has profoundly affected the quality of life (QoL) and health of the general population globally over the past 2 years, with a clear impact on people with Parkinson's Disease (PwP, PD). Non-motor symptoms have been widely acknowledged to hold a vital part in the clinical spectrum of PD, and, although often underrecognized, they significantly contribute to patients' and their caregivers' QoL. Up to now, there have been numerous reports of newly emerging or acutely deteriorating non-motor symptoms in PwP who had been infected by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), while some of these symptoms, like fatigue, pain, depression, anxiety and cognitive impairment, have also been identified as part of the long-COVID syndrome due to their persistent nature. The subjacent mechanisms, mediating the appearance or progression of non-motor symptoms in the context of Covid-19, although probably multifactorial in origin, remain largely unknown. Such mechanisms might be, at least partly, related solely to the viral infection per se or the lifestyle changes imposed during the pandemic, as many of the non-motor symptoms seem to be prevalent even among Covid-19 patients without PD. Here, we summarize the available evidence and implications of Covid-19 in non-motor PD symptoms in the acute and chronic, if applicable, phase of the infection, with a special reference on studies of PwP.
Collapse
Affiliation(s)
- Silvia Rota
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Iro Boura
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom; Medical School, University of Crete, Heraklion, Crete, Greece
| | - Yi-Min Wan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom; Department of Psychiatry, Ng Teng Fong General Hospital, Singapore, Singapore
| | - Claudia Lazcano-Ocampo
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom; Department of Neurology, Movement Disorders Unit, Hospital Sotero del Rio, Santiago, Chile; Department of Neurology, Clínica INDISA, Santiago, Chile
| | | | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - Kallol Ray Chaudhuri
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
23
|
Chakraborty C, Sharma AR, Bhattacharya M, Dhama K, Lee SS. Altered gut microbiota patterns in COVID-19: Markers for inflammation and disease severity. World J Gastroenterol 2022; 28:2802-2822. [PMID: 35978881 PMCID: PMC9280735 DOI: 10.3748/wjg.v28.i25.2802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/19/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to a severe respiratory illness and alters the gut microbiota, which dynamically interacts with the human immune system. Microbiota alterations include decreased levels of beneficial bacteria and augmentation of opportunistic pathogens. Here, we describe critical factors affecting the microbiota in coronavirus disease 2019 (COVID-19) patients. These include, such as gut microbiota imbalance and gastrointestinal symptoms, the pattern of altered gut microbiota composition in COVID-19 patients, and crosstalk between the microbiome and the gut-lung axis/gut-brain-lung axis. Moreover, we have illustrated the hypoxia state in COVID-19 associated gut microbiota alteration. The role of ACE2 in the digestive system, and control of its expression using the gut microbiota is discussed, highlighting the interactions between the lungs, the gut, and the brain during COVID-19 infection. Similarly, we address the gut microbiota in elderly or co-morbid patients as well as gut microbiota dysbiosis of in severe COVID-19. Several clinical trials to understand the role of probiotics in COVID-19 patients are listed in this review. Augmented inflammation is one of the major driving forces for COVID-19 symptoms and gut microbiome disruption and is associated with disease severity. However, understanding the role of the gut microbiota in immune modulation during SARS-CoV-2 infection may help improve therapeutic strategies for COVID-19 treatment.
Collapse
Affiliation(s)
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University, Chuncheon-si 24252, South Korea
| | | | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Bareilly 243122, Uttar Pradesh, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University, Chuncheon-si 24252, South Korea
| |
Collapse
|
24
|
Park SJ, Kim YI, Casel MA, Kim EH, Kim SM, Yu KM, Rollon R, Jang SG, Jeong HW, Choi YK. Infection Route Impacts the Pathogenesis of Severe Fever with Thrombocytopenia Syndrome Virus in Ferrets. Viruses 2022; 14:1184. [PMID: 35746656 PMCID: PMC9227493 DOI: 10.3390/v14061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
The threat of severe fever with thrombocytopenia syndrome (SFTS) to public health has been increasing due to the rapid spread of the ticks that carry the causative viral agent. The SFTS virus (SFTSV) was first identified in China and subsequently detected in neighboring countries, including South Korea, Japan, and Vietnam. In addition to the tick-mediated infection, human-to-human transmission has been recently reported with a high mortality rate; however, differential study of the pathogen has been limited by the route of infection. In this study, we investigated the pathogenic potential of SFTSV based on the infection route in aged ferrets, which show clinical signs similar to that of human infections. Ferrets inoculated with SFTSV via the intramuscular and subcutaneous routes show clinical signs comparable to those of severe human infections, with a mortality rate of 100%. Contrastingly, intravascularly infected ferrets exhibit a comparatively lower mortality rate of 25%, although their early clinical signs are similar to those observed following infection via the other routes. These results indicate that the infection route could influence the onset of SFTS symptoms and the pathogenicity of SFTSV. Thus, infection route should be considered in future studies on the pathogenesis of SFTSV infection.
Collapse
Affiliation(s)
- Su-Jin Park
- Division of Life Science and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Young-Il Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea; (Y.-I.K.); (M.A.C.); (S.-M.K.); (R.R.); (S.-G.J.)
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (E.-H.K.); (K.-M.Y.); (H.W.J.)
| | - Mark Anthony Casel
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea; (Y.-I.K.); (M.A.C.); (S.-M.K.); (R.R.); (S.-G.J.)
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (E.-H.K.); (K.-M.Y.); (H.W.J.)
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju 28644, Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (E.-H.K.); (K.-M.Y.); (H.W.J.)
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju 28644, Korea
| | - Se-Mi Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea; (Y.-I.K.); (M.A.C.); (S.-M.K.); (R.R.); (S.-G.J.)
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (E.-H.K.); (K.-M.Y.); (H.W.J.)
| | - Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (E.-H.K.); (K.-M.Y.); (H.W.J.)
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju 28644, Korea
| | - Rare Rollon
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea; (Y.-I.K.); (M.A.C.); (S.-M.K.); (R.R.); (S.-G.J.)
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (E.-H.K.); (K.-M.Y.); (H.W.J.)
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju 28644, Korea
| | - Seung-Gyu Jang
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea; (Y.-I.K.); (M.A.C.); (S.-M.K.); (R.R.); (S.-G.J.)
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (E.-H.K.); (K.-M.Y.); (H.W.J.)
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju 28644, Korea
| | - Hye Won Jeong
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (E.-H.K.); (K.-M.Y.); (H.W.J.)
| | - Young Ki Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea; (Y.-I.K.); (M.A.C.); (S.-M.K.); (R.R.); (S.-G.J.)
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (E.-H.K.); (K.-M.Y.); (H.W.J.)
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
25
|
The Concept of Intrauterine Programming and the Development of the Neonatal Microbiome in the Prevention of SARS-CoV-2 Infection. Nutrients 2022; 14:nu14091702. [PMID: 35565670 PMCID: PMC9104449 DOI: 10.3390/nu14091702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
The process of intrauterine programming is related to the quality of the microbiome formed in the fetus and the newborn. The implementation of probiotics, prebiotics, and psychobiotics shows immunomodulatory potential towards the organism, especially the microbiome of the pregnant woman and her child. Nutrigenomics, based on the observation of pregnant women and the developing fetus, makes it possible to estimate the biological effects of active dietary components on gene expression or silencing. Nutritional intervention for pregnant women should consider the nutritional status of the patient, biological markers, and the potential impact of dietary intervention on fetal physiology. The use of a holistic model of nutrition allows for appropriately targeted and effective dietary prophylaxis that can impact the physical and mental health of both the mother and the newborn. This model targets the regulation of the immune response of the pregnant woman and the newborn, considering the clinical state of the microbiota and the pathomechanism of the nervous system. Current scientific reports indicate the protective properties of immunobiotics (probiotics) about the reduction of the frequency of infections and the severity of the course of COVID-19 disease. The aim of this study was to test the hypothesis that intrauterine programming influences the development of the microbiome for the prevention of SARS-CoV-2 infection based on a review of research studies.
Collapse
|
26
|
Arancibia-Hernández YL, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza-Chaverri J. Antioxidant/anti-inflammatory effect of Mg 2+ in coronavirus disease 2019 (COVID-19). Rev Med Virol 2022; 32:e2348. [PMID: 35357063 PMCID: PMC9111052 DOI: 10.1002/rmv.2348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 12/26/2022]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), characterised by high levels of inflammation and oxidative stress (OS). Oxidative stress induces oxidative damage to lipids, proteins, and DNA, causing tissue damage. Both inflammation and OS contribute to multi-organ failure in severe cases. Magnesium (Mg2+ ) regulates many processes, including antioxidant and anti-inflammatory responses, as well as the proper functioning of other micronutrients such as vitamin D. In addition, Mg2+ participates as a second signalling messenger in the activation of T cells. Therefore, Mg2+ deficiency can cause immunodeficiency, exaggerated acute inflammatory response, decreased antioxidant response, and OS. Supplementation with Mg2+ has an anti-inflammatory response by reducing the levels of nuclear factor kappa B (NF-κB), interleukin (IL) -6, and tumor necrosis factor alpha. Furthermore, Mg2+ supplementation improves mitochondrial function and increases the antioxidant glutathione (GSH) content, reducing OS. Therefore, Mg2+ supplementation is a potential way to reduce inflammation and OS, strengthening the immune system to manage COVID-19. This narrative review will address Mg2+ deficiency associated with a worse disease prognosis, Mg2+ supplementation as a potent antioxidant and anti-inflammatory therapy during and after COVID-19 disease, and suggest that randomised controlled trials are indicated.
Collapse
Affiliation(s)
| | - Ana Karina Aranda-Rivera
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Cruz-Gregorio
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
27
|
The Relationship between Physical Activity, Physical Exercise, and Human Gut Microbiota in Healthy and Unhealthy Subjects: A Systematic Review. BIOLOGY 2022; 11:biology11030479. [PMID: 35336852 PMCID: PMC8945171 DOI: 10.3390/biology11030479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary To date, the influence that physical activity (PA)/physical exercise (PE) can exert on the human gut microbiota (GM) is still poorly understood. Several issues arise in structuring research in this area, starting from the association between PA/PE and diet. Indeed, the diet of an individual is a key factor for the composition of the GM and those who regularly practice PA/PE, generally, have dietary patterns favorable to the creation of an ideal environment for the proliferation of a GM capable of contributing to the host’s health. It is therefore difficult to establish with certainty whether the effects generated on the GM are due to a PA protocol, the type of diet followed, or to both. In addition, most of the available studies use animal models to investigate a possible correlation between PA/PE and changes in the GM, which may be not necessarily applied to humans. Evidence suggests that aerobic PA/PE seems capable of producing significant changes in GM; training parameters, likewise, can differentially influence the GM in young or elderly people and these changes appear to be transient and reversible. Abstract Several studies have been conducted to find at least an association between physical activity (PA)/ physical exercise (PE) and the possibility to modulate the gut microbiome (GM). However, the specific effects produced on the human GM by different types of PA/PE, different training modalities, and their age-related effects are not yet fully understood. Therefore, this systematic review aims to evaluate and summarize the current scientific evidence investigating the bi-directional relationship between PA/PE and the human GM, with a specific focus on the different types/variables of PA/PE and age-related effects, in healthy and unhealthy people. A systematic search was conducted across four databases (Web of Science, Medline (PubMed), Google Scholar, and Cochrane Library). Information was extracted using the populations, exposure, intervention, comparison, outcomes (PICOS) format. The Oxford Quality Scoring System Scale, the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) tool, and the JBI Critical Appraisal Checklist for Analytical Cross-Sectional Studies were used as a qualitative measure of the review. The protocol was registered in PROSPERO (code: CRD42022302725). The following data items were extracted: author, year of publication, study design, number and age of participants, type of PA/PE carried out, protocol/workload and diet assessment, duration of intervention, measurement tools used, and main outcomes. Two team authors reviewed 694 abstracts for inclusion and at the end of the screening process, only 76 full texts were analyzed. Lastly, only 25 research articles met the eligibility criteria. The synthesis of these findings suggests that GM diversity is associated with aerobic exercise contrary to resistance training; abundance of Prevotella genus seems to be correlated with training duration; no significant change in GM richness and diversity are detected when exercising according to the minimum dose recommended by the World Health Organizations; intense and prolonged PE can induce a higher abundance of pro-inflammatory bacteria; PA does not lead to significant GM α/β-diversity in elderly people (60+ years). The heterogeneity of the training parameters used in the studies, diet control, and different sequencing methods are the main confounders. Thus, this systematic review can provide an in-depth overview of the relationship between PA/PE and the human intestinal microbiota and, at the same time, provide indications from the athletic and health perspective.
Collapse
|
28
|
Influence of antibiotic therapy on indicators of endotoxinemia and systemic inflammation in acute SARS-CoV-2 lung damage. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. Prescribing antibacterial drugs for the treatment of a new coronavirus infection at the outpatient stage is often unreasonable and can also lead to an aggravation of the patient’s condition due to the effect of this group of drugs on the intestinal microflora and lead to other undesirable effects.The aim: to assess the level of lipopolysaccharide-binding protein and indicators of systemic inflammation in patients with moderate viral SARS-CoV-2 lung disease on the background of antibiotic therapy.Materials and methods. 60 patients hospitalized in the infectious diseases department with a positive PCR result for SARS-CoV-2 in the age group 44–70 years old were examined. The patients were divided into 2 groups: group 1 (n = 26) – patients who did not receive antibacterial drugs at the outpatient stage, group 2 (n = 34) – patients who received antibiotic therapy. The control group was also selected (n = 20). Patients underwent a study of the level of lipopolysaccharide-binding protein (LBP), ferritin and C-reactive protein in the peripheral blood.Results. In the group of patients with new coronavirus infection who were admitted to the inpatient stage of treatment and received antibacterial therapy at the outpatient stage, a significantly higher levels of LBP – 37.3 [13.8; 50.4] µg/ml (p˂0.05) and ferritin – 276.00 [184.00; 463.00] µg/ml (p˂0.05) were revealed, compared with group 1 and the control group.Conclusions. In the group of patients who received antibiotic therapy at the outpatient stage, a significantly higher level of LBP was revealed compared to the group in which this group of drugs was not used. These results indicate the possible impact of uncontrolled and early intake of antibacterial drugs on the gut microbiome and intestinal permeability, and also prove the need for a more responsible approach to the choice of starting therapy for new coronavirus infection.
Collapse
|
29
|
Venema K. Foreword – Into the third year with COVID-19. Will gut microbiota be shown to play a role? Benef Microbes 2022; 13:1-2. [DOI: 10.3920/bm2022.x001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Salazar-Robles E, Kalantar-Zadeh K, Badillo H, Calderón-Juárez M, García-Bárcenas CA, Ledesma-Pérez PD, Lerma A, Lerma C. Association between severity of COVID-19 symptoms and habitual food intake in adult outpatients. BMJ Nutr Prev Health 2022; 4:469-478. [PMID: 35024547 PMCID: PMC8594975 DOI: 10.1136/bmjnph-2021-000348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Objective To evaluate the association between habitual frequency of food intake of certain food groups during the COVID-19 pandemic and manifestations of COVID-19 symptoms in adult outpatients with suspected SARS-CoV-2 infection. Design We included 236 patients who attended an outpatient clinic for suspected COVID-19 evaluation. Severity of symptoms, habitual food intake frequency, demographics and Bristol chart scores were obtained before diagnostic confirmation with real-time reverse transcriptase PCR using nasopharyngeal swab. Results The results of the COVID-19 diagnostic tests were positive for 103 patients (44%) and negative for 133 patients (56%). In the SARS-CoV-2-positive group, symptom severity scores had significant negative correlations with habitual intake frequency of specific food groups. Multivariate binary logistic regression analysis adjusted for age, sex and occupation confirmed that SARS-CoV-2-positive patients showed a significant negative association between having higher symptom severity and the habitual intake frequency of ‘legumes’ and ‘grains, bread and cereals’. Conclusions Increase in habitual frequency of intake of ‘legumes’, and ‘grains, bread and cereals’ food groups decreased overall symptom severity in patients with COVID-19. This study provides a framework for designing a protective diet during the COVID-19 pandemic and also establishes a hypothesis of using a diet-based intervention in the management of SARS-CoV-2 infection, which may be explored in future studies.
Collapse
Affiliation(s)
- Elihud Salazar-Robles
- Centro Universitario de la Costa, Department of Medical Sciences, Universidad de Guadalajara, Puerto Vallarta, Mexico
| | - Kourosh Kalantar-Zadeh
- Chemical Engineering (Food Science and Technology), University of New South Wales, Sydney, New South Wales, Australia
| | - Humberto Badillo
- Centro de Salud Jalalpa el Grande, Secretaría de Salud de la Ciudad de México, Mexico City, Mexico
| | - Martín Calderón-Juárez
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cesar Alberto García-Bárcenas
- Centro Universitario de la Costa, Department of Medical Sciences, Universidad de Guadalajara, Puerto Vallarta, Mexico
| | | | - Abel Lerma
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | - Claudia Lerma
- Department of Electromechanical Instrumentation, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
31
|
Treatment paradigms in Parkinson's Disease and Covid-19. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:135-171. [PMID: 36208898 PMCID: PMC9148185 DOI: 10.1016/bs.irn.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
People with Parkinson's Disease (PwP) may be at higher risk for complications from the Coronavirus Disease 2019 (Covid-19) due to older age and to the multi-faceted nature of Parkinson's Disease (PD) per se, presenting with a variety of motor and non-motor symptoms. Those on advanced therapies may be particularly vulnerable. Taking the above into consideration, along with the potential multi-systemic impact of Covid-19 on affected patients and the complications of hospitalization, we are providing an evidence-based guidance to ensure a high standard of care for PwP affected by Covid-19 with varying severity of the condition. Adherence to the dopaminergic medication of PwP, without abrupt modifications in dosage and frequency, is of utmost importance, while potential interactions with newly introduced drugs should always be considered. Treating physicians should be cautious to acknowledge and timely address any potential complications, while consultation by a neurologist, preferably with special knowledge on movement disorders, is advised for patients admitted in non-neurological wards. Non-pharmacological approaches, including the patient's mobilization, falls prevention, good sleep hygiene, emotional support, and adequate nutritional and fluid intake, are essential and the role of telemedicine services should be strengthened and encouraged.
Collapse
|
32
|
Sarkar A, Harty S, Moeller AH, Klein SL, Erdman SE, Friston KJ, Carmody RN. The gut microbiome as a biomarker of differential susceptibility to SARS-CoV-2. Trends Mol Med 2021; 27:1115-1134. [PMID: 34756546 PMCID: PMC8492747 DOI: 10.1016/j.molmed.2021.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues to exact a devastating global toll. Ascertaining the factors underlying differential susceptibility and prognosis following viral exposure is critical to improving public health responses. We propose that gut microbes may contribute to variation in COVID-19 outcomes. We synthesise evidence for gut microbial contributions to immunity and inflammation, and associations with demographic factors affecting disease severity. We suggest mechanisms potentially underlying microbially mediated differential susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These include gut microbiome-mediated priming of host inflammatory responses and regulation of endocrine signalling, with consequences for the cellular features exploited by SARS-CoV-2 virions. We argue that considering gut microbiome-mediated mechanisms may offer a lens for appreciating differential susceptibility to SARS-CoV-2, potentially contributing to clinical and epidemiological approaches to understanding and managing COVID-19.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Siobhán Harty
- Tandy Court, Spitalfields, Dublin 8, D08 RP20, Ireland
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
33
|
Trapani V, Rosanoff A, Baniasadi S, Barbagallo M, Castiglioni S, Guerrero-Romero F, Iotti S, Mazur A, Micke O, Pourdowlat G, Scarpati G, Wolf FI, Maier JA. The relevance of magnesium homeostasis in COVID-19. Eur J Nutr 2021; 61:625-636. [PMID: 34687321 PMCID: PMC8540865 DOI: 10.1007/s00394-021-02704-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Purpose In less than one and a half year, the COVID-19 pandemic has nearly brought to a collapse our health care and economic systems. The scientific research community has concentrated all possible efforts to understand the pathogenesis of this complex disease, and several groups have recently emphasized recommendations for nutritional support in COVID-19 patients. In this scoping review, we aim at encouraging a deeper appreciation of magnesium in clinical nutrition, in view of the vital role of magnesium and the numerous links between the pathophysiology of SARS-CoV-2 infection and magnesium-dependent functions. Methods By searching PubMed and Google Scholar from 1990 to date, we review existing evidence from experimental and clinical studies on the role of magnesium in chronic non-communicable diseases and infectious diseases, and we focus on recent reports of alterations of magnesium homeostasis in COVID-19 patients and their association with disease outcomes. Importantly, we conduct a census on ongoing clinical trials specifically dedicated to disclosing the role of magnesium in COVID-19. Results Despite many methodological limitations, existing data seem to corroborate an association between deranged magnesium homeostasis and COVID-19, and call for further and better studies to explore the prophylactic or therapeutic potential of magnesium supplementation. Conclusion We propose to reconsider the relevance of magnesium, frequently overlooked in clinical practice. Therefore, magnesemia should be monitored and, in case of imbalanced magnesium homeostasis, an appropriate nutritional regimen or supplementation might contribute to protect against SARS-CoV-2 infection, reduce severity of COVID-19 symptoms and facilitate the recovery after the acute phase.
Collapse
Affiliation(s)
- Valentina Trapani
- Sezione di Patologia Generale, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy.,Alleanza Contro Il Cancro, Rome, Italy
| | - Andrea Rosanoff
- CMER Center for Magnesium Education and Research, Pahoa, Hawaii, USA
| | - Shadi Baniasadi
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, Palermo, Italy
| | - Sara Castiglioni
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Via G.B. Grassi 74, 20157, Milan, Italy
| | | | - Stefano Iotti
- Department of Pharmacy and Biotechnology (FaBit) National Institute of Biostructures and Biosystems, Università di Bologna, Bologna, Italy
| | - André Mazur
- Unité de Nutrition Humaine, INRAE, UNH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Oliver Micke
- Department of Radiotherapy and Radiation Oncology, Franziskus Hospital, Bielefeld, Germany
| | - Guitti Pourdowlat
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Giuliana Scarpati
- Anestesiologia e Rianimazione, Dipartimento di Medicina e Chirurgia, Università Degli Studi di Salerno, Fisciano, Italy
| | - Federica I Wolf
- Sezione di Patologia Generale, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy.
| | - Jeanette A Maier
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Via G.B. Grassi 74, 20157, Milan, Italy.
| |
Collapse
|
34
|
Al Kassaa I, El Omari S, Abbas N, Papon N, Drider D, Kassem II, Osman M. High association of COVID-19 severity with poor gut health score in Lebanese patients. PLoS One 2021; 16:e0258913. [PMID: 34673813 PMCID: PMC8530309 DOI: 10.1371/journal.pone.0258913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) has affected millions of lives globally. However, the disease has presented more extreme challenges for developing countries that are experiencing economic crises. Studies on COVID-19 symptoms and gut health are scarce and have not fully analyzed possible associations between gut health and disease pathophysiology. Therefore, this study aimed to demonstrate a potential association between gut health and COVID-19 severity in the Lebanese community, which has been experiencing a severe economic crisis. Methods This cross-sectional study investigated SARS-CoV-2 PCR-positive Lebanese patients. Participants were interviewed and gut health, COVID-19 symptoms, and different metrics were analyzed using simple and multiple logistic regression models. Results Analysis of the data showed that 25% of participants were asymptomatic, while an equal proportion experienced severe symptoms, including dyspnea (22.7%), oxygen need (7.5%), and hospitalization (3.1%). The mean age of the participants was 38.3 ±0.8 years, and the majority were males (63.9%), married (68.2%), and currently employed (66.7%). A negative correlation was found between gut health score and COVID-19 symptoms (Kendall’s tau-b = -0.153, P = 0.004); indicating that low gut health was associated with more severe COVID-19 cases. Additionally, participants who reported unhealthy food intake were more likely to experience severe symptoms (Kendall’s tau-b = 0.118, P = 0.049). When all items were taken into consideration, multiple ordinal logistic regression models showed a significant association between COVID-19 symptoms and each of the following variables: working status, flu-like illness episodes, and gut health score. COVID-19 severe symptoms were more common among patients having poor gut health scores (OR:1.31, 95%CI:1.07–1.61; P = 0.008), experiencing more than one episode of flu-like illness per year (OR:2.85, 95%CI:1.58–5.15; P = 0.001), and owning a job (OR:2.00, 95%CI:1.1–3.65; P = 0.023). Conclusions To our knowledge, this is the first study that showed the impact of gut health and exposure to respiratory viruses on COVID-19 severity in Lebanon. These findings can facilitate combating the pandemic in Lebanon.
Collapse
Affiliation(s)
- Imad Al Kassaa
- Faculty of Public Health, Lebanese University, Beirut, Lebanon
- Doctoral School of Science and Technology, Lebanese University, Beirut, Lebanon
- * E-mail: (IAK); , (MO)
| | - Sarah El Omari
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Nada Abbas
- Department of Health Management and Policy, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, Lille, France
| | - Issmat I. Kassem
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, GA, United States of America
| | - Marwan Osman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
- * E-mail: (IAK); , (MO)
| |
Collapse
|
35
|
Rahban M, Stanek A, Hooshmand A, Khamineh Y, Ahi S, Kazim SN, Ahmad F, Muronetz V, Samy Abousenna M, Zolghadri S, Saboury AA. Infection of Human Cells by SARS-CoV-2 and Molecular Overview of Gastrointestinal, Neurological, and Hepatic Problems in COVID-19 Patients. J Clin Med 2021; 10:4802. [PMID: 34768321 PMCID: PMC8584649 DOI: 10.3390/jcm10214802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract is the body's largest interface between the host and the external environment. People infected with SARS-CoV-2 are at higher risk of microbiome alterations and severe diseases. Recent evidence has suggested that the pathophysiological and molecular mechanisms associated with gastrointestinal complicity in SARS-CoV-2 infection could be explained by the role of angiotensin-converting enzyme-2 (ACE2) cell receptors. These receptors are overexpressed in the gut lining, leading to a high intestinal permeability to foreign pathogens. It is believed that SARS-CoV-2 has a lesser likelihood of causing liver infection because of the diminished expression of ACE2 in liver cells. Interestingly, an interconnection between the lungs, brain, and gastrointestinal tract during severe COVID-19 has been mentioned. We hope that this review on the molecular mechanisms related to the gastrointestinal disorders as well as neurological and hepatic manifestations experienced by COVID-19 patients will help scientists to find a convenient solution for this and other pandemic events.
Collapse
Affiliation(s)
- Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland;
| | - Amirreza Hooshmand
- Young Researchers and Elite Club, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran; (A.H.); (Y.K.)
| | - Yasaman Khamineh
- Young Researchers and Elite Club, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran; (A.H.); (Y.K.)
| | - Salma Ahi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran;
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (S.N.K.); (F.A.)
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (S.N.K.); (F.A.)
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Mohamed Samy Abousenna
- Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center, Cairo 11517, Egypt;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran
| | - Ali A. Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| |
Collapse
|
36
|
Hawryłkowicz V, Lietz-Kijak D, Kaźmierczak-Siedlecka K, Sołek-Pastuszka J, Stachowska L, Folwarski M, Parczewski M, Stachowska E. Patient Nutrition and Probiotic Therapy in COVID-19: What Do We Know in 2021? Nutrients 2021; 13:3385. [PMID: 34684384 PMCID: PMC8538178 DOI: 10.3390/nu13103385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The main nutritional consequences of COVID-19 include reduced food intake, hypercatabolism, and rapid muscle wasting. Some studies showed that malnutrition is a significant problem among patients hospitalized due to COVID-19 infection, and the outcome of patients with SARS-CoV-2 is strongly associated with their nutritional status. The purpose of this study was to collect useful information about the possible elements of nutritional and probiotic therapy in patients infected with the SARS-CoV-2 virus. METHODS A narrative review of the literature, including studies published up to 13 September 2021. RESULTS Probiotics may support patients by inhibiting the ACE2 receptor, i.e., the passage of the virus into the cell, and may also be effective in suppressing the immune response caused by the proinflammatory cytokine cascade. In patients' diet, it is crucial to ensure an adequate intake of micronutrients, such as omega-3 fatty acids (at 2-4 g/d), selenium (300-450 μg/d) and zinc (30-50 mg/d), and vitamins A (900-700 µg/d), E (135 mg/d), D (20,000-50,000 IU), C (1-2 g/d), B6, and B12. Moreover, the daily calorie intake should amount to ≥1500-2000 with 75-100 g of protein. CONCLUSION In conclusion, the treatment of gut dysbiosis involving an adequate intake of prebiotic dietary fiber and probiotics could turn out to be an immensely helpful instrument for immunomodulation, both in COVID-19 patients and prophylactically in individuals with no history of infection.
Collapse
Affiliation(s)
- Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| | - Danuta Lietz-Kijak
- Department of Propedeutics, Physiodiagnostics and Dental Physiotherapy, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | | | - Joanna Sołek-Pastuszka
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University, 71-242 Szczecin, Poland;
| | - Laura Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| | - Marcin Folwarski
- Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Miłosz Parczewski
- Department of Infectious, Tropical and Acquired Immunological Diseases, Pomeranian Medical University, 71-455 Szczecin, Poland;
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| |
Collapse
|
37
|
Health-Promoting Constituents and Selected Quality Parameters of Different Types of Kimchi: Fermented Plant Products. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:9925344. [PMID: 34336996 PMCID: PMC8321756 DOI: 10.1155/2021/9925344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022]
Abstract
The aim of this study was to evaluate the quality and health-promoting constituents of several variants of kimchi obtained from Chinese cabbage, kohlrabi, white radish, and cucumbers. The level of dry matter, total soluble solids, ash, total acidity, pH, dietary fiber, and vitamins C, B1, and B2, as well as total polyphenols (TP) and antioxidant activity AA (ABTS, DPPH) in kimchi, were determined. In addition, color parameters were determined (L∗, a∗, b∗, C∗, and ho). Kimchi with the highest proportion of Chinese cabbage (63%) had the highest levels of dry matter (11.01 g), ash (2.57 g), and vitamins: C, B1, and B2 (51 mg, 52 μg, and 242 μg, respectively), expressed per 100 g of fresh weight. In addition, this product showed the highest total AA of 132.3 μmol Tx/g (ABTS) and 49.7 μmol Tx/g (DPPH) due to its high level of TP (194 mg/100 g). Cucumber-derived kimchi (85%) also had a high content of TP (147 mg/100 g) and high AA of 88.7 μmol Tx/g (ABTS) and 36.3 μmol Tx/g (DPPH). Additionally, stuffed kimchi from kohlrabi (88%) had the highest amounts of total dietary fiber, 3.65 g/100 g fresh weight. In all products, red (a∗) and yellow (b∗) were the dominant colors, with values of L∗ ranging between 32.63 and 53.16. In general, our studies have shown that depending on the raw materials used, kimchi is a good source of dietary fiber but also vitamins and polyphenols.
Collapse
|
38
|
Hensley-McBain T, Manuzak JA. Zonulin as a biomarker and potential therapeutic target in multisystem inflammatory syndrome in children. J Clin Invest 2021; 131:151467. [PMID: 34160366 PMCID: PMC8279574 DOI: 10.1172/jci151467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) occurs during or recently following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and is characterized by persistent fever, inflammation, and severe illness requiring hospitalization. The majority of patients with MIS-C also present with gastrointestinal (GI) symptoms, including abdominal pain, vomiting, and diarrhea. In this issue of the JCI, Yonker, Gilboa, and colleagues identified zonulin as a biomarker of GI permeability in children with MIS-C and present the results of an intriguing proof-of-concept study indicating that zonulin may represent a potential therapeutic target for MIS-C treatment and prevention. Their findings suggest that intestinal mucosal dysfunction and epithelial barrier breakdown may represent a biological mechanism underlying the development of MIS-C in SARS-CoV-2-infected children.
Collapse
Affiliation(s)
| | - Jennifer A. Manuzak
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| |
Collapse
|
39
|
Oliva A, Miele MC, Di Timoteo F, De Angelis M, Mauro V, Aronica R, Al Ismail D, Ceccarelli G, Pinacchio C, d'Ettorre G, Mascellino MT, Mastroianni CM. Persistent Systemic Microbial Translocation and Intestinal Damage During Coronavirus Disease-19. Front Immunol 2021; 12:708149. [PMID: 34335624 PMCID: PMC8316921 DOI: 10.3389/fimmu.2021.708149] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Microbial translocation (MT) and intestinal damage (ID) are poorly explored in COVID-19. Aims were to assess whether alteration of gut permeability and cell integrity characterize COVID-19 patients, whether it is more pronounced in severe infections and whether it influences the development of subsequent bloodstream infection (BSI). Furthermore, we looked at the potential predictive role of TM and ID markers on Intensive Care Unit (ICU) admission and in-hospital mortality. Over March–July 2020, 45 COVID-19 patients were enrolled. Markers of MT [LPB (Lipopolysacharide Binding Protein) and EndoCab IgM] and ID [I-FABP (Intestinal Fatty Acid Binding Protein)] were evaluated at COVID-19 diagnosis and after 7 days. As a control group, age- and gender-matched healthy donors (HDs) enrolled during the same study period were included. Median age was 66 (56-71) years. Twenty-one (46.6%) were admitted to ICU and mortality was 22% (10/45). Compared to HD, a high degree of MT and ID was observed. ICU patients had higher levels of MT, but not of ID, than non-ICU ones. Likewise, patients with BSI had lower EndoCab IgM than non-BSI. Interestingly, patients with high degree of MT and low ID were likely to be admitted to ICU (AUC 0.822). Patients with COVID-19 exhibited high level of MT, especially subjects admitted to ICU. COVID-19 is associated with gut permeability.
Collapse
Affiliation(s)
- Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Claudia Miele
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Federica Di Timoteo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Massimiliano De Angelis
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Vera Mauro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Raissa Aronica
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Dania Al Ismail
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Claudia Pinacchio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Mascellino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Claudio M Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
40
|
Hong BS, Kim MR. Interplays between human microbiota and microRNAs in COVID-19 pathogenesis: a literature review. Phys Act Nutr 2021; 25:1-7. [PMID: 34315200 PMCID: PMC8342185 DOI: 10.20463/pan.2021.0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
[Purpose] Recent studies have shown that COVID-19 is often associated with altered gut microbiota composition and reflects disease severity. Furthermore, various reports suggest that the interaction between COVID-19 and host-microbiota homeostasis is mediated through the modulation of microRNAs (miRNAs). Thus, in this review, we aim to summarize the association between human microbiota and miRNAs in COVID-19 pathogenesis. [Methods] We searched for the existing literature using the keywords such “COVID-19 or microbiota,” “microbiota or microRNA,” and “COVID-19 or probiotics” in PubMed until March 31, 2021. Subsequently, we thoroughly reviewed the articles related to microbiota and miRNAs in COVID-19 to generate a comprehensive picture depicting the association between human microbiota and microRNAs in the pathogenesis of COVID-19. [Results] There exists strong experimental evidence suggesting that the composition and diversity of human microbiota are altered in COVID-19 patients, implicating a bidirectional association between the respiratory and gastrointestinal tracts. In addition, SARS-CoV-2 encoded miRNAs and host cellular microRNAs modulated by human microbiota can interfere with viral replication and regulate host gene expression involved in the initiation and progression of COVID-19. These findings suggest that the manipulation of human microbiota with probiotics may play a significant role against SARS-CoV-2 infection by enhancing the host immune system and lowering the inflammatory status. [Conclusion] The human microbiota-miRNA axis can be used as a therapeutic approach for COVID-19. Hence, further studies are needed to investigate the exact molecular mechanisms underlying the regulation of miRNA expression in human microbiota and how these miRNA profiles mediate viral infection through host-microbe interactions.
Collapse
Affiliation(s)
- Bok Sil Hong
- Life Science Research Center, Cheju Halla University, Jeju, Republic of Korea.,Department of Nursing, Cheju Halla University, Jeju, Republic of Korea
| | - Myoung-Ryu Kim
- Department of Nursing, Cheju Halla University, Jeju, Republic of Korea
| |
Collapse
|
41
|
Gasmi A, Tippairote T, Mujawdiya PK, Peana M, Menzel A, Dadar M, Benahmed AG, Bjørklund G. The microbiota-mediated dietary and nutritional interventions for COVID-19. Clin Immunol 2021; 226:108725. [PMID: 33845194 PMCID: PMC8032598 DOI: 10.1016/j.clim.2021.108725] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Worldwide, scientists are looking for specific treatment for COVID-19. Apart from the antiviral approach, the interventions to support healthy immune responses to the virus are feasible through diet, nutrition, and lifestyle approaches. This narrative review explores the recent studies on dietary, nutritional, and lifestyle interventions that influence the microbiota-mediated immunomodulatory effects against viral infections. Cumulative studies reported that the airway microbiota and SARS-CoV-2 leverage each other and determine the pathogen-microbiota-host responses. Cigarette smoking can disrupt microbiota abundance. The composition and diversification of intestinal microbiota influence the airway microbiota and the innate and adaptive immunity, which require supports from the balance of macro- and micronutrients from the diet. Colorful vegetables supplied fermentable prebiotics and anti-inflammatory, antioxidant phytonutrients. Fermented foods and beverages support intestinal microbiota. In sensitive individuals, the avoidance of the high immunoreactive food antigens contributes to antiviral immunity. This review suggests associations between airway and intestinal microbiota, antiviral host immunity, and the influences of dietary, nutritional, and lifestyle interventions to prevent the clinical course toward severe COVID-19.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand; Thailand Institute for Functional Medicine, Bangkok, Thailand
| | | | | | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| |
Collapse
|
42
|
Vignesh R, Velu V, Sureban SM. Could Nutraceutical Approaches Possibly Attenuate the Cytokine Storm in COVID-19 Patients? Front Cell Infect Microbiol 2021; 11:667733. [PMID: 33968808 PMCID: PMC8102864 DOI: 10.3389/fcimb.2021.667733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ramachandran Vignesh
- Preclinical Department, Royal College of Medicine Perak (UniKL RCMP), Universiti Kuala Lumpur, Ipoh, Malaysia
- Infectious Diseases Laboratory, YR Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Vijayakumar Velu
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Division of Microbiology & Immunology, Yerkes National Primate Center, Atlanta, GA, United States
| | - Sripathi M. Sureban
- Digestive Diseases and Nutrition Section, Department of Internal Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
43
|
Chattopadhyay I, Shankar EM. SARS-CoV-2-Indigenous Microbiota Nexus: Does Gut Microbiota Contribute to Inflammation and Disease Severity in COVID-19? Front Cell Infect Microbiol 2021; 11:590874. [PMID: 33791231 PMCID: PMC8006403 DOI: 10.3389/fcimb.2021.590874] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/28/2021] [Indexed: 01/07/2023] Open
Abstract
Gut microbiome alterations may play a paramount role in determining the clinical outcome of clinical COVID-19 with underlying comorbid conditions like T2D, cardiovascular disorders, obesity, etc. Research is warranted to manipulate the profile of gut microbiota in COVID-19 by employing combinatorial approaches such as the use of prebiotics, probiotics and symbiotics. Prediction of gut microbiome alterations in SARS-CoV-2 infection may likely permit the development of effective therapeutic strategies. Novel and targeted interventions by manipulating gut microbiota indeed represent a promising therapeutic approach against COVID-19 immunopathogenesis and associated co-morbidities. The impact of SARS-CoV-2 on host innate immune responses associated with gut microbiome profiling is likely to contribute to the development of key strategies for application and has seldom been attempted, especially in the context of symptomatic as well as asymptomatic COVID-19 disease.
Collapse
|
44
|
Abstract
At the start of 2020 we were thrilled to have reached 10 years of Beneficial Microbes! Little did we know that soon after Europe and the rest of the world (with Asia already earlier) would be in lock-down due to COVID-19. It has been a strange year. And now, at the start of 2021, the excitement of having a vaccine is tempered by the fact that everywhere mutants of the virus pop up. Although this was likely to occur, as also the influenza virus keeps mutating, it means that at the moment it is unclear as to whether the current situation of lock-downs and social distancing will remain for a longer period than we had anticipated and hoped for at the end of 2020 when it became clear that several vaccines were efficacious. Some studies have shown a role of the gut microbiota composition in disease severity, together with vitamin D, cholesterol and other factors. It was a hype to write a 'review' on gut microbiota and the effect on COVID-19, and also the board of Beneficial Microbes has received several submissions of so-called reviews on the topic. However, all of them were rejected, as they were mere speculations about how the gut microbiota might affect virus infection and disease severity, without any data whatsoever. However, there are some good studies out there that have shown that a proper gut microbiota may indeed influence disease severity, such as recently reviewed by Kim (2021). All in all, this may not be too surprising for the knowledgeable reader, as they would know that the microbiota plays a role in everything that can be wrong with us!
Collapse
|
45
|
Antibiotics in treatment of COVID-19 complications: a review of frequency, indications, and efficacy. J Infect Public Health 2021; 14:570-576. [PMID: 33848886 PMCID: PMC7870433 DOI: 10.1016/j.jiph.2021.02.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 01/08/2023] Open
Abstract
Objectives To report available information in the literature regarding frequency, indications, types of antibiotic usage, duration, and their efficacy in Covid-19 infected patients. Methods The search was conducted on April 30 and May 7, 2020, using Ovid database and Google search. Patients’ characteristics, clinical outcomes, as well as selected characteristics regarding antibiotic use (indication, class used, rates and types of bacterial secondary and co-infection, and duration of treatment) were analyzed. Results Nineteen clinical studies reporting data from 2834 patients were included. Mean rate of antibiotic use was 74.0 % of cases. Half the studies reported occurrence of a bacterial co-infection or complication (10 studies). Amongst the latter, at least 17.6 % of patients who received antibiotics had secondary infections. Pooled data of 4 studies show that half of patients receiving antibiotics were not severe nor critical. Detailed data on antibiotic use lack in most articles. Conclusions The present review found a major use of antibiotics amongst Covid-19 hospitalized patients, mainly in an empirical setting. There is no proven efficacy of this practice. Further research to determine relevant indications for antibiotic use in Covid-19 patients is critical in view of the significant mortality associated with secondary infections in these patients, and the rising antimicrobial resistance.
Collapse
|