1
|
Lu W, Wen J. Metabolic reprogramming and astrocytes polarization following ischemic stroke. Free Radic Biol Med 2025:S0891-5849(25)00002-4. [PMID: 39756488 DOI: 10.1016/j.freeradbiomed.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Astrocytes are critical for maintaining neuronal activity. Activation of astrocytes, occurs within minutes from ischemic stroke onset due to ischemic causes and subsequent inflammatory damage. Activated astrocytes, also known as reactive astrocytes, are divided into two different phenotypes: A1 (pro-inflammatory) and A2 (anti-inflammatory) astrocytes. A2 astrocytes support neuronal survival and promote tissue healing, while A1 astrocytes have neurotoxic effects. Thus, polarization of reactive astrocyte into A1 or A2 genotype is closely correlated with the development of cerebral ischemia/reperfusion (I/R) injury. Metabolic reprogramming is a process that various metabolic pathways upregulate in cells to balance energy, alter their phenotype, and produce building-block requirements. A1 and A2 astrocytes display different metabolic reprogramming, such as glycolysis, glutamate uptake, and glycogenolysis. Accumulating evidence suggested that manipulation of energy metabolism homeostasis can induce astrocytes to switch from A1 to A2 phenotype. This review disucss the potential factors in affecting astrocytic polarization, emphasizes metabolic reprogramming in reactive astrocytes within the pathophysiological context of cerebral I/R, and explores the relationship between metabolic reprogramming and astrocytic polarization. Importantly, we reveal that regulating metabolic reprogramming in reactive astrocytes may be a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Choi J, Smith DM, Scafidi S, Riddle RC, Wolfgang MJ. Carnitine palmitoyltransferase 1 facilitates fatty acid oxidation in a non-cell-autonomous manner. Cell Rep 2024; 43:115006. [PMID: 39671290 DOI: 10.1016/j.celrep.2024.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024] Open
Abstract
Mitochondrial fatty acid oxidation is facilitated by the combined activities of carnitine palmitoyltransferase 1 (Cpt1) and Cpt2, which generate and utilize acylcarnitines, respectively. We compare the response of mice with liver-specific deficiencies in the liver-enriched Cpt1a or the ubiquitously expressed Cpt2 and discover that they display unique metabolic, physiological, and molecular phenotypes. The loss of Cpt1a or Cpt2 results in the induction of the muscle-enriched isoenzyme Cpt1b in hepatocytes in a Pparα-dependent manner. However, hepatic Cpt1b does not contribute substantively to hepatic fatty acid oxidation when Cpt1a is absent. Liver-specific double knockout of Cpt1a and Cpt1b or Cpt2 eliminates the mitochondrial oxidation of non-esterified fatty acids. However, Cpt1a/Cpt1b double knockout mice retain fatty acid oxidation by utilizing extracellular long-chain acylcarnitines that are dependent on Cpt2. These data demonstrate the non-cell-autonomous intercellular metabolism of fatty acids in hepatocytes.
Collapse
Affiliation(s)
- Joseph Choi
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danielle M Smith
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan C Riddle
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA; Research and Development Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Michael J Wolfgang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Smith DM, Choi J, Wolfgang MJ. Tissue specific roles of fatty acid oxidation. Adv Biol Regul 2024:101070. [PMID: 39672726 DOI: 10.1016/j.jbior.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Mitochondrial long chain fatty acid β-oxidation is a critical central carbon catabolic process. The importance of fatty acid oxidation is made evident by the life-threatening disease associated with diverse inborn errors in the pathway. While inborn errors show multisystemic requirements for fatty acid oxidation, it is not clear from the clinical presentation of these enzyme deficiencies what the tissue specific roles of the pathway are compared to secondary systemic effects. To understand the cell or tissue specific contributions of fatty acid oxidation to systemic physiology, conditional knockouts in mice have been employed to determine the requirements of fatty acid oxidation in disparate cell types. This has produced a host of surprising results that sometimes run counter to the canonical view of this metabolic pathway. The rigor of conditional knockouts has also provided clarity over previous research utilizing cell lines in vitro or small molecule inhibitors with dubious specificity. Here we will summarize current research using mouse models of Carnitine Palmitoyltransferases to determine the tissue specific roles and requirements of long chain mitochondrial fatty acid β-oxidation.
Collapse
Affiliation(s)
- Danielle M Smith
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph Choi
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J Wolfgang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Barros LF, Schirmeier S, Weber B. The Astrocyte: Metabolic Hub of the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041355. [PMID: 38438188 PMCID: PMC11368191 DOI: 10.1101/cshperspect.a041355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos, Valdivia 5110465, Chile
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia 5110693, Chile
| | - Stefanie Schirmeier
- Technische Universität Dresden, Department of Biology, 01217 Dresden, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
White CJ, Gausepohl AM, Wilkins HN, Eberhard CD, Orsburn BC, Williams DW. Spatial Heterogeneity of Brain Lipids in SIV-Infected Macaques Treated with Antiretroviral Therapy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:185-196. [PMID: 38288997 DOI: 10.1021/jasms.3c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Human immunodeficiency virus (HIV) infection continues to promote neurocognitive impairment, mood disorders, and brain atrophy, even in the modern era of viral suppression. Brain lipids are vulnerable to HIV-associated energetic strain and may contribute to HIV-associated neurologic dysfunction due to alterations in lipid breakdown and structural lipid composition. HIV neuropathology is region dependent, yet there has not been comprehensive characterization of the spatial heterogeneity of brain lipids during infection that possibly impacts neurologic function. To address this gap, we evaluated the spatial lipid distribution using matrix laser desorption/ionization imaging mass spectrometry (MALDI-IMS) across four brain regions (parietal cortex, midbrain, thalamus, and temporal cortex), as well as the kidney for a peripheral tissue control, in a simian immunodeficiency virus (SIV)-infected rhesus macaque treated with a course of antiretroviral therapies (ARTs). We assessed lipids indicative of fat breakdown [acylcarnitines (CARs)] and critical structural lipids [phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs)] across fatty acid chain lengths and degrees of unsaturation. CARs with very long-chain, polyunsaturated fatty acids (PUFAs) were more abundant across all brain regions than shorter chain, saturated, or monounsaturated species. We observed distinct brain lipid distribution patterns for the CARs and PCs. However, no clear expression patterns emerged for PEs. Surprisingly, the kidney was nearly devoid of ions corresponding to PUFAs common in brain. PEs and PCs with PUFAs had little intensity and less density than other species, and only one CAR species was observed in kidney at high intensity. Overall, our study demonstrates the stark variation in structural phospholipids and lipid-energetic intermediates present in the virally suppressed SIV-macaque brain. These findings may be useful for identifying regional vulnerabilities to damage due to brain lipid changes in people with HIV.
Collapse
Affiliation(s)
- Cory J White
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Andrew M Gausepohl
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hannah N Wilkins
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Molecular Microbiology & Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, United States
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Pausova Z, Sliz E. Large-Scale Population-Based Studies of Blood Metabolome and Brain Health. Curr Top Behav Neurosci 2024; 68:177-219. [PMID: 38509405 DOI: 10.1007/7854_2024_463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Metabolomics technologies enable the quantification of multiple metabolomic measures simultaneously, which provides novel insights into molecular aspects of human health and disease. In large-scale, population-based studies, blood is often the preferred biospecimen. Circulating metabolome may relate to brain health either by affecting or reflecting brain metabolism. Peripheral metabolites may act at or cross the blood-brain barrier and, subsequently, influence brain metabolism, or they may reflect brain metabolism if similar pathways are engaged. Peripheral metabolites may also include those penetrating the circulation from the brain, indicating, for example, brain damage. Most brain health-related metabolomics studies have been conducted in the context of neurodegenerative disorders and cognition, but some studies have also focused on neuroimaging markers of these disorders. Moreover, several metabolomics studies of neurodevelopmental disorders have been performed. Here, we provide a brief background on the types of blood metabolites commonly assessed, and we review the literature describing the relationships between human blood metabolome (n > 50 metabolites) and brain health reported in large-scale studies (n > 500 individuals).
Collapse
Affiliation(s)
- Zdenka Pausova
- Centre hospitalier universitaire Sainte-Justine and Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Eeva Sliz
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
7
|
Ait Tayeb AEK, Colle R, Chappell K, El-Asmar K, Acquaviva-Bourdain C, David DJ, Trabado S, Chanson P, Feve B, Becquemont L, Verstuyft C, Corruble E. Metabolomic profiles of 38 acylcarnitines in major depressive episodes before and after treatment. Psychol Med 2024; 54:289-298. [PMID: 37226550 DOI: 10.1017/s003329172300140x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Major depression is associated with changes in plasma L-carnitine and acetyl-L-carnitine. But its association with acylcarnitines remains unclear. The aim of this study was to assess metabolomic profiles of 38 acylcarnitines in patients with major depression before and after treatment compared to healthy controls (HCs). METHODS Metabolomic profiles of 38 plasma short-, medium-, and long-chain acylcarnitines were performed by liquid chromatography-mass spectrometry in 893 HCs from the VARIETE cohort and 460 depressed patients from the METADAP cohort before and after 6 months of antidepressant treatment. RESULTS As compared to HCs, depressed patients had lower levels of medium- and long-chain acylcarnitines. After 6 months of treatment, increased levels of medium- and long-chain acyl-carnitines were observed that no longer differed from those of controls. Accordingly, several medium- and long-chain acylcarnitines were negatively correlated with depression severity. CONCLUSIONS These medium- and long-chain acylcarnitine dysregulations argue for mitochondrial dysfunction through fatty acid β-oxidation impairment during major depression.
Collapse
Affiliation(s)
- Abd El Kader Ait Tayeb
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Romain Colle
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Kenneth Chappell
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Khalil El-Asmar
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Cécile Acquaviva-Bourdain
- Service de Biochimie et Biologie Moléculaire; Unité Médicale Pathologies Héréditaires du Métabolisme et du Globule Rouge; Centre de Biologie et Pathologie Est; CHU de Lyon; F-69500 Bron, France
| | - Denis J David
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Séverine Trabado
- INSERM UMR-S U1185, Physiologie et Physiopathologie Endocriniennes, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Philippe Chanson
- INSERM UMR-S U1185, Physiologie et Physiopathologie Endocriniennes, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Bruno Feve
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire ICAN, Service d'Endocrinologie, CRMR PRISIS, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, F-75012, France
| | - Laurent Becquemont
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Centre de recherche clinique, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Céline Verstuyft
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| |
Collapse
|
8
|
Gong L, Liang J, Xie L, Zhang Z, Mei Z, Zhang W. Metabolic Reprogramming in Gliocyte Post-cerebral Ischemia/ Reperfusion: From Pathophysiology to Therapeutic Potential. Curr Neuropharmacol 2024; 22:1672-1696. [PMID: 38362904 PMCID: PMC11284719 DOI: 10.2174/1570159x22666240131121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/17/2024] Open
Abstract
Ischemic stroke is a leading cause of disability and death worldwide. However, the clinical efficacy of recanalization therapy as a preferred option is significantly hindered by reperfusion injury. The transformation between different phenotypes of gliocytes is closely associated with cerebral ischemia/ reperfusion injury (CI/RI). Moreover, gliocyte polarization induces metabolic reprogramming, which refers to the shift in gliocyte phenotype and the overall transformation of the metabolic network to compensate for energy demand and building block requirements during CI/RI caused by hypoxia, energy deficiency, and oxidative stress. Within microglia, the pro-inflammatory phenotype exhibits upregulated glycolysis, pentose phosphate pathway, fatty acid synthesis, and glutamine synthesis, whereas the anti-inflammatory phenotype demonstrates enhanced mitochondrial oxidative phosphorylation and fatty acid oxidation. Reactive astrocytes display increased glycolysis but impaired glycogenolysis and reduced glutamate uptake after CI/RI. There is mounting evidence suggesting that manipulation of energy metabolism homeostasis can induce microglial cells and astrocytes to switch from neurotoxic to neuroprotective phenotypes. A comprehensive understanding of underlying mechanisms and manipulation strategies targeting metabolic pathways could potentially enable gliocytes to be reprogrammed toward beneficial functions while opening new therapeutic avenues for CI/RI treatment. This review provides an overview of current insights into metabolic reprogramming mechanisms in microglia and astrocytes within the pathophysiological context of CI/RI, along with potential pharmacological targets. Herein, we emphasize the potential of metabolic reprogramming of gliocytes as a therapeutic target for CI/RI and aim to offer a novel perspective in the treatment of CI/RI.
Collapse
Affiliation(s)
- Lipeng Gong
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Junjie Liang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhanwei Zhang
- Department of Neurosurgery, First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410007, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
9
|
McMullen E, Hertenstein H, Strassburger K, Deharde L, Brankatschk M, Schirmeier S. Glycolytically impaired Drosophila glial cells fuel neural metabolism via β-oxidation. Nat Commun 2023; 14:2996. [PMID: 37225684 DOI: 10.1038/s41467-023-38813-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Neuronal function is highly energy demanding and thus requires efficient and constant metabolite delivery by glia. Drosophila glia are highly glycolytic and provide lactate to fuel neuronal metabolism. Flies are able to survive for several weeks in the absence of glial glycolysis. Here, we study how Drosophila glial cells maintain sufficient nutrient supply to neurons under conditions of impaired glycolysis. We show that glycolytically impaired glia rely on mitochondrial fatty acid breakdown and ketone body production to nourish neurons, suggesting that ketone bodies serve as an alternate neuronal fuel to prevent neurodegeneration. We show that in times of long-term starvation, glial degradation of absorbed fatty acids is essential to ensure survival of the fly. Further, we show that Drosophila glial cells act as a metabolic sensor and can induce mobilization of peripheral lipid stores to preserve brain metabolic homeostasis. Our study gives evidence of the importance of glial fatty acid degradation for brain function, and survival, under adverse conditions in Drosophila.
Collapse
Affiliation(s)
- Ellen McMullen
- Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
| | - Helen Hertenstein
- Zoology and Animal Physiology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Katrin Strassburger
- Zoology and Animal Physiology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Leon Deharde
- Zoology and Animal Physiology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Marko Brankatschk
- Biotechnologisches Zentrum, Technische Universität Dresden, Dresden, Germany.
| | - Stefanie Schirmeier
- Zoology and Animal Physiology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
10
|
White CJ, Goodkin K. Bioenergetics and neuroimaging research: a neuropathophysiological linkage in the setting of cocaine use amongst persons with HIV. AIDS 2023; 37:1001-1003. [PMID: 37017022 PMCID: PMC10101129 DOI: 10.1097/qad.0000000000003535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 04/06/2023]
Affiliation(s)
- Cory J. White
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Karl Goodkin
- Department of Psychiatry
- Institute of Neuroscience, The University of Texas at Rio Grande Valley, Harlingen, TX, USA
| |
Collapse
|
11
|
Midha AD, Zhou Y, Queliconi BB, Barrios AM, Haribowo AG, Chew BTL, Fong COY, Blecha JE, VanBrocklin H, Seo Y, Jain IH. Organ-specific fuel rewiring in acute and chronic hypoxia redistributes glucose and fatty acid metabolism. Cell Metab 2023; 35:504-516.e5. [PMID: 36889284 PMCID: PMC10077660 DOI: 10.1016/j.cmet.2023.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023]
Abstract
Oxygen deprivation can be detrimental. However, chronic hypoxia is also associated with decreased incidence of metabolic syndrome and cardiovascular disease in high-altitude populations. Previously, hypoxic fuel rewiring has primarily been studied in immortalized cells. Here, we describe how systemic hypoxia rewires fuel metabolism to optimize whole-body adaptation. Acclimatization to hypoxia coincided with dramatically lower blood glucose and adiposity. Using in vivo fuel uptake and flux measurements, we found that organs partitioned fuels differently during hypoxia adaption. Acutely, most organs increased glucose uptake and suppressed aerobic glucose oxidation, consistent with previous in vitro investigations. In contrast, brown adipose tissue and skeletal muscle became "glucose savers," suppressing glucose uptake by 3-5-fold. Interestingly, chronic hypoxia produced distinct patterns: the heart relied increasingly on glucose oxidation, and unexpectedly, the brain, kidney, and liver increased fatty acid uptake and oxidation. Hypoxia-induced metabolic plasticity carries therapeutic implications for chronic metabolic diseases and acute hypoxic injuries.
Collapse
Affiliation(s)
- Ayush D Midha
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuyin Zhou
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bruno B Queliconi
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alec M Barrios
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Augustinus G Haribowo
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brandon T L Chew
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cyril O Y Fong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Henry VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Isha H Jain
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
12
|
Olive- and Coconut-Oil-Enriched Diets Decreased Secondary Bile Acids and Regulated Metabolic and Transcriptomic Markers of Brain Injury in the Frontal Cortexes of NAFLD Pigs. Brain Sci 2022; 12:brainsci12091193. [PMID: 36138929 PMCID: PMC9497137 DOI: 10.3390/brainsci12091193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
The objective of this study was to investigate the effect of dietary fatty acid (FA) saturation and carbon chain length on brain bile acid (BA) metabolism and neuronal number in a pig model of pediatric NAFLD. Thirty 20-day-old Iberian pigs, pair-housed in pens, were randomly assigned to receive one of three hypercaloric diets for 10 weeks: (1) lard-enriched (LAR; n = 5 pens), (2) olive-oil-enriched (OLI, n = 5), and (3) coconut-oil-enriched (COC; n = 5). Pig behavior and activity were analyzed throughout the study. All animals were euthanized on week 10 and frontal cortex (FC) samples were collected for immunohistochemistry, metabolomic, and transcriptomic analyses. Data were analyzed by multivariate and univariate statistics. No differences were observed in relative brain weight, neuronal number, or cognitive functioning between diets. Pig activity and FC levels of neuroprotective secondary BAs and betaine decreased in the COC and OLI groups compared with LAR, and paralleled the severity of NAFLD. In addition, OLI-fed pigs showed downregulation of genes involved in neurotransmission, synaptic transmission, and nervous tissue development. Similarly, COC-fed pigs showed upregulation of neurogenesis and myelin repair genes, which caused the accumulation of medium-chain acylcarnitines in brain tissue. In conclusion, our results indicate that secondary BA levels in the FCs of NAFLD pigs are affected by dietary FA composition and are associated with metabolic and transcriptomic markers of brain injury. Dietary interventions that aim to replace saturated FAs by medium-chain or monounsaturated FAs in high-fat hypercaloric diets may have a negative effect on brain health in NAFLD patients.
Collapse
|
13
|
Abstract
The energy cost of information processing is thought to be chiefly neuronal, with a minor fraction attributed to glial cells. However, there is compelling evidence that astrocytes capture synaptic K+ using their Na+/K+ ATPase, and not solely through Kir4.1 channels as was once thought. When this active buffering is taken into account, the cost of astrocytes rises by >200%. Gram-per-gram, astrocytes turn out to be as expensive as neurons. This conclusion is supported by 3D reconstruction of the neuropil showing similar mitochondrial densities in neurons and astrocytes, by cell-specific transcriptomics and proteomics, and by the rates of the tricarboxylic acid cycle. Possible consequences for reactive astrogliosis and brain disease are discussed.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos - CECs, Valdivia, Chile
| |
Collapse
|
14
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
15
|
Soares NL, Vieira HLA. Microglia at the Centre of Brain Research: Accomplishments and Challenges for the Future. Neurochem Res 2021; 47:218-233. [PMID: 34586585 DOI: 10.1007/s11064-021-03456-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Microglia are the immune guardians of the central nervous system (CNS), with critical functions in development, maintenance of homeostatic tissue balance, injury and repair. For a long time considered a forgotten 'third element' with basic phagocytic functions, a recent surge in interest, accompanied by technological progress, has demonstrated that these distinct myeloid cells have a wide-ranging importance for brain function. This review reports microglial origins, development, and function in the healthy brain. Moreover, it also targets microglia dysfunction and how it contributes to the progression of several neurological disorders, focusing on particular molecular mechanisms and whether these may present themselves as opportunities for novel, microglia-targeted therapeutic approaches, an ever-enticing prospect. Finally, as it has been recently celebrated 100 years of microglia research, the review highlights key landmarks from the past century and looked into the future. Many challenging problems have arisen, thus it points out some of the most pressing questions and experimental challenges for the ensuing century.
Collapse
Affiliation(s)
- Nuno L Soares
- Chronic Diseases Research Center (CEDOC) - Faculdade de Ciências Médicas/NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| | - Helena L A Vieira
- Chronic Diseases Research Center (CEDOC) - Faculdade de Ciências Médicas/NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.,Department of Chemistry, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, Universidade Nova de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Lisboa, Portugal
| |
Collapse
|
16
|
White CJ, Ellis JM, Wolfgang MJ. The role of ethanolamine phosphate phospholyase in regulation of astrocyte lipid homeostasis. J Biol Chem 2021; 297:100830. [PMID: 34048714 PMCID: PMC8233209 DOI: 10.1016/j.jbc.2021.100830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Dietary lipid composition has been shown to impact brain morphology, brain development, and neurologic function. However, how diet uniquely regulates brain lipid homeostasis compared with lipid homeostasis in peripheral tissues remains largely uncharacterized. To evaluate the lipid response to dietary changes in the brain, we assessed actively translating mRNAs in astrocytes and neurons across multiple diets. From this data, ethanolamine phosphate phospholyase (Etnppl) was identified as an astrocyte-specific fasting-induced gene. Etnppl catabolizes phosphoethanolamine (PEtN), a prominent headgroup precursor in phosphatidylethanolamine (PE) also found in other classes of neurologically relevant lipid species. Altered Etnppl expression has also previously been associated with humans with mood disorders. We evaluated the relevance of Etnppl in maintaining brain lipid homeostasis by characterizing Etnppl across development and in coregulation with PEtN-relevant genes, as well as determining the impact to the brain lipidome after Etnppl loss. We found that Etnppl expression dramatically increased during a critical window of early brain development in mice and was also induced by glucocorticoids. Using a constitutive knockout of Etnppl (EtnpplKO), we did not observe robust changes in expression of PEtN-related genes. However, loss of Etnppl altered the phospholipid profile in the brain, resulting in increased total abundance of PE and in polyunsaturated fatty acids within PE and phosphatidylcholine species in the brain. Together, these data suggest that brain phospholipids are regulated by the phospholyase action of the enzyme Etnppl, which is induced by dietary fasting in astrocytes.
Collapse
Affiliation(s)
- Cory J White
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica M Ellis
- Department of Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
17
|
Shi AC, Rohlwink U, Scafidi S, Kannan S. Microglial Metabolism After Pediatric Traumatic Brain Injury - Overlooked Bystanders or Active Participants? Front Neurol 2021; 11:626999. [PMID: 33569038 PMCID: PMC7868439 DOI: 10.3389/fneur.2020.626999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Microglia play an integral role in brain development but are also crucial for repair and recovery after traumatic brain injury (TBI). TBI induces an intense innate immune response in the immature, developing brain that is associated with acute and chronic changes in microglial function. These changes contribute to long-lasting consequences on development, neurologic function, and behavior. Although alterations in glucose metabolism are well-described after TBI, the bulk of the data is focused on metabolic alterations in astrocytes and neurons. To date, the interplay between alterations in intracellular metabolic pathways in microglia and the innate immune response in the brain following an injury is not well-studied. In this review, we broadly discuss the microglial responses after TBI. In addition, we highlight reported metabolic alterations in microglia and macrophages, and provide perspective on how changes in glucose, fatty acid, and amino acid metabolism can influence and modulate the microglial phenotype and response to injury.
Collapse
Affiliation(s)
- Aria C Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ursula Rohlwink
- Neuroscience Institute and Division of Neurosurgery, University of Cape Town, Cape Town, South Africa.,The Francis Crick Institute, London, United Kingdom
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Pham L, Wright DK, O'Brien WT, Bain J, Huang C, Sun M, Casillas-Espinosa PM, Shah AD, Schittenhelm RB, Sobey CG, Brady RD, O'Brien TJ, Mychasiuk R, Shultz SR, McDonald SJ. Behavioral, axonal, and proteomic alterations following repeated mild traumatic brain injury: Novel insights using a clinically relevant rat model. Neurobiol Dis 2020; 148:105151. [PMID: 33127468 DOI: 10.1016/j.nbd.2020.105151] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
A history of mild traumatic brain injury (mTBI) is linked to a number of chronic neurological conditions, however there is still much unknown about the underlying mechanisms. To provide new insights, this study used a clinically relevant model of repeated mTBI in rats to characterize the acute and chronic neuropathological and neurobehavioral consequences of these injuries. Rats were given four sham-injuries or four mTBIs and allocated to 7-day or 3.5-months post-injury recovery groups. Behavioral analysis assessed sensorimotor function, locomotion, anxiety, and spatial memory. Neuropathological analysis included serum quantification of neurofilament light (NfL), mass spectrometry of the hippocampal proteome, and ex vivo magnetic resonance imaging (MRI). Repeated mTBI rats had evidence of acute cognitive deficits and prolonged sensorimotor impairments. Serum NfL was elevated at 7 days post injury, with levels correlating with sensorimotor deficits; however, no NfL differences were observed at 3.5 months. Several hippocampal proteins were altered by repeated mTBI, including those associated with energy metabolism, neuroinflammation, and impaired neurogenic capacity. Diffusion MRI analysis at 3.5 months found widespread reductions in white matter integrity. Taken together, these findings provide novel insights into the nature and progression of repeated mTBI neuropathology that may underlie lingering or chronic neurobehavioral deficits.
Collapse
Affiliation(s)
- Louise Pham
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - William T O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jesse Bain
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Anup D Shah
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; Monash Bioinformatics Platform, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, VIC 3004, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, VIC 3004, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
19
|
Fernandez RF, Ellis JM. Acyl-CoA synthetases as regulators of brain phospholipid acyl-chain diversity. Prostaglandins Leukot Essent Fatty Acids 2020; 161:102175. [PMID: 33031993 PMCID: PMC8693597 DOI: 10.1016/j.plefa.2020.102175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/22/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
Each individual cell-type is defined by its distinct morphology, phenotype, molecular and lipidomic profile. The importance of maintaining cell-specific lipidomic profiles is exemplified by the numerous diseases, disorders, and dysfunctional outcomes that occur as a direct result of altered lipidome. Therefore, the mechanisms regulating cellular lipidome diversity play a role in maintaining essential biological functions. The brain is an organ particularly rich in phospholipids, the main constituents of cellular membranes. The phospholipid acyl-chain profile of membranes in the brain is rather diverse due in part to the high degree of cellular heterogeneity. These membranes and the acyl-chain composition of their phospholipids are highly regulated, but the mechanisms that confer this tight regulation are incompletely understood. A family of enzymes called acyl-CoA synthetases (ACSs) stands at a pinnacle step allowing influence over cellular acyl-chain selection and subsequent metabolic flux. ACSs perform the initial reaction for cellular fatty acid metabolism by ligating a Coenzyme A to a fatty acid which both traps a fatty acid within a cell and activates it for metabolism. The ACS family of enzymes is large and diverse consisting of 25-26 family members that are nonredundant, each with unique distribution across and within cell types, and differential fatty acid substrate preferences. Thus, ACSs confer a critical intracellular fatty acid selecting step in a cell-type dependent manner providing acyl-CoA moieties that serve as essential precursors for phospholipid synthesis and remodeling, and therefore serve as a key regulator of cellular membrane acyl-chain compositional diversity. Here we will discuss how the contribution of individual ACSs towards brain lipid metabolism has only just begun to be elucidated and discuss the possibilities for how ACSs may differentially regulate brain lipidomic diversity.
Collapse
Affiliation(s)
- Regina F Fernandez
- Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, NC, United States
| | - Jessica M Ellis
- Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, NC, United States.
| |
Collapse
|
20
|
Menacho C, Prigione A. Tackling mitochondrial diversity in brain function: from animal models to human brain organoids. Int J Biochem Cell Biol 2020; 123:105760. [PMID: 32339638 DOI: 10.1016/j.biocel.2020.105760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria exhibit high degree of heterogeneity within various tissues, including differences in terms of morphology, quantity, or function. Mitochondria can even vary among distinct sub-compartments of the same cell. Emerging evidence suggest that the molecular diversity of mitochondria can influence the identity and functionality of a given cell type. Human pathologies affecting mitochondria typically cause tissue and cell-type-specific impairment. Mitochondrial diversity could thus play a contributing role not only in physiological cell fate specification but also during pathological disease development. In this review, we discuss the role of mitochondrial diversity in brain function during health and disease. Recent advances in induced pluripotent stem cells (iPSCs) research and the derivation of cerebral organoids could provide novel opportunities to unveil the role of mitochondrial heterogeneity for the function of the human brain. Mitochondrial diversity might be at the bases of the cell-type-specific vulnerability of mitochondrial disorders and may represent an underappreciated target of disease intervention.
Collapse
Affiliation(s)
- Carmen Menacho
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany; Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
| |
Collapse
|