1
|
Alonso-Eiras J, Anton IM. Multifaceted role of the actin-binding protein WIP: Promotor and inhibitor of tumor progression and dissemination. Cytoskeleton (Hoboken) 2024. [PMID: 39329352 DOI: 10.1002/cm.21935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Cancer cells depend on actin cytoskeleton reorganization to achieve hallmark malignant functions including abnormal activation, proliferation, migration and invasiveness. (Neural)-Wiskott-Aldrich Syndrome protein ((N-)WASP) binds actin and forms a complex with the WASP-interacting protein (WIP), which plays a critical role in regulating the actin cytoskeleton, through (N)-WASP-dependent and independent functions. Mutations in the WIP gene (WIPF1) lead to severe early onset immunodeficiency in humans and severe autoimmunity and shortened lifespan in mice. This review covers the available evidence about the physiological role of WIP in different tissues and its contribution to human disease, focusing on cancer. In solid tumors overexpression of WIP has mostly been associated with tumor initiation, progression and dissemination through matrix degradation by invadopodia, while a suppressive function has been shown for WIP in certain hematological cancers. Interestingly, a minority of studies suggest a protective role for WIP in specific tumor contexts. These data support the need for further research to fully understand the mechanisms underlying WIP's diverse functions in health and disease and raise important questions for future work.
Collapse
Affiliation(s)
- Jorge Alonso-Eiras
- Ciencias de la Salud, Escuela de Másteres Oficiales, Universidad Rey Juan Carlos, Madrid, Spain
| | - Ines M Anton
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
2
|
Shao X, Dang Y, Zhang T, Bai N, Huang J, Guo M, Sun L, Li M, Sun X, Zhang X, Han F, Zhang N, Zhuang H, Li Y. LINC00869 Promotes Hepatocellular Carcinoma Metastasis via Protrusion Formation. Mol Cancer Res 2024; 22:282-294. [PMID: 37934195 DOI: 10.1158/1541-7786.mcr-23-0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Coordination of filament assembly and membrane remodeling is required for the directional migration of cancer cells. The Wiskott-Aldrich syndrome protein (WASP) recruits the actin-related protein (ARP) 2/3 complex to assemble branched actin networks. The goal of our study was to assess the potential regulatory role exerted by the novel long noncoding RNA (lncRNA) LINC00869 on hepatocellular carcinoma (HCC) cells. We used HCC cells to overexpress or knockdown LINC00869, analyzed patient data from publicly available databases and Cancer Hospital Affiliated with Zhengzhou University, and used a xenograft mouse model of HCC to study the molecular mechanism associated with LINC00869 expression. We found that high levels of LINC00869 expression were associated with poor prognosis in patients with HCC. Next, we detected an interaction between LINC00869 and both WASP and ARP2 in HCC cells, and observed a modulatory effect of LINC00869 on the phosphorylation of WASP at Y291 and the activity of cell division control protein 42 (CDC42). These modulatory roles were required for WASP/CDC42 activity on F-actin polymerization to enhance membrane protrusion formation and maintain persistent cell polarization. This, in turn, promoted the migration and invasion abilities of HCC cells. Finally, we confirmed the role of LINC00869in vivo, using the tumor xenograft mouse model; and identified a positive correlation between LINC00869 expression levels and the phosphorylation levels of WASP in HCC samples. Overall, our findings suggest a unique mechanism by which LINC00869 orchestrates membrane protrusion during migration and invasion of HCC cells. IMPLICATIONS LncRNA LINC00869 regulates the activity of CDC42-WASP pathway and positively affects protrusion formation in HCC cells, which expands the current understanding of lncRNA functions as well as gives a better understanding of carcinogenesis.
Collapse
Affiliation(s)
- Xiaowen Shao
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yamei Dang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tingting Zhang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Nan Bai
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jianing Huang
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mengya Guo
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Li Sun
- Department of Gynaecology and Obstetrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Minghe Li
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiao Sun
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinran Zhang
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, China
| | - Feng Han
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ning Zhang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yongmei Li
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
R P, Shanmugam G, Rakshit S, Sarkar K. Role of Wiskott Aldrich syndrome protein in haematological malignancies: genetics, molecular mechanisms and therapeutic strategies. Pathol Res Pract 2024; 253:155026. [PMID: 38118219 DOI: 10.1016/j.prp.2023.155026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
As patients continue to suffer from lymphoproliferative and myeloproliferative diseases known as haematopoietic malignancies can affect the bone marrow, blood, lymph nodes, and lymphatic and non-lymphatic organs. Despite advances in the current treatment, there is still a significant challenge for physicians to improve the therapy of HMs. WASp is an important regulator of actin polymerization and the involvement of WASp in transcription is thought to be linked to the DNA damage response and repair. In some studies, severe immunodeficiency and lymphoid malignancy are caused by WASp mutations or the absence of WASp and these mutations in WAS can alter the function and/or expression of the intracellular protein. Loss-of-function and Gain-of-function mutations in WASp have an impact on cancer malignancies' incidence and onset. Recent studies suggest that depending on the clinical or experimental situation, WASPs and WAVEs can operate as a suppressor or enhancers for cancer malignancy. These dual functions of WASPs and WAVEs in cancer likely arose from their multifaceted role in cells that could be targeted for anticancer drug development. The significant role and their association of WASp in Chronic myeloid leukaemia, Juvenile myelomonocytic leukaemia and T-cell lymphoma is discussed. In this review, we described the structure and function of WASp and its family mechanism, analysing major regulatory effectors and summarising the clinical relevance and drugs that specifically target WASp in disease treatment in various hematopoietic malignancies by different approaches.
Collapse
Affiliation(s)
- Pradeep R
- Department of Biotechnology, SRM Institute of Science and Technology, Katangulathur, Tamil Nadu 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Katangulathur, Tamil Nadu 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Katangulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Katangulathur, Tamil Nadu 603203, India.
| |
Collapse
|
4
|
Liang F, Peng C, Luo X, Wang L, Huang Y, Yin L, Yue L, Yang J, Zhao X. A single-cell atlas of immunocytes in the spleen of a mouse model of Wiskott-Aldrich syndrome. Cell Immunol 2023; 393-394:104783. [PMID: 37944382 DOI: 10.1016/j.cellimm.2023.104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Wiskott-Aldrich syndrome (WAS) is a disorder characterized by rare X-linked genetic immune deficiency with mutations in the Was gene, which is specifically expressed in hematopoietic cells. The spleen plays a major role in hematopoiesis and red blood cell clearance. However, to date, comprehensive analyses of the spleen in wild-type (WT) and WASp-deficient (WAS-KO) mice, especially at the transcriptome level, have not been reported. In this study, single-cell RNA sequencing (scRNA-seq) was adopted to identify various types of immune cells and investigate the mechanisms underlying immune deficiency. We identified 30 clusters and 10 major cell subtypes among 11,269 cells; these cell types included B cells, T cells, dendritic cells (DCs), natural killer (NK) cells, monocytes, macrophages, granulocytes, stem cells and erythrocytes. Moreover, we evaluated gene expression differences among cell subtypes, identified differentially expressed genes (DEGs), and performed enrichment analyses to identify the reasons for the dysfunction in these different cell populations in WAS. Furthermore, some key genes were identified based on a comparison of the DEGs in each cell type involved in specific and nonspecific immune responses, and further analysis showed that these key genes were previously undiscovered pathology-related genes in WAS-KO mice. In summary, we present a landscape of immune cells in the spleen of WAS-KO mice based on detailed data obtained at single-cell resolution. These unprecedented data revealed the transcriptional characteristics of specific and nonspecific immune cells, and the key genes were identified, laying a foundation for future studies of WAS, especially studies into novel and underexplored mechanisms that may improve gene therapies for WAS.
Collapse
Affiliation(s)
- Fangfang Liang
- Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Cheng Peng
- Department of Radiology, The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Xianze Luo
- Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Linlin Wang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yanyan Huang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Le Yin
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Luming Yue
- Singleron Biotechnologies, Nanjing, Jiangsu, China
| | - Jun Yang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Xiaodong Zhao
- Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Vieira RC, Pinho LG, Westerberg LS. Understanding immunoactinopathies: A decade of research on WAS gene defects. Pediatr Allergy Immunol 2023; 34:e13951. [PMID: 37102395 DOI: 10.1111/pai.13951] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023]
Abstract
Immunoactinopathies caused by mutations in actin-related proteins are a growing group of inborn errors of immunity (IEI). Immunoactinopathies are caused by a dysregulated actin cytoskeleton and affect hematopoietic cells especially because of their unique capacity to survey the body for invading pathogens and altered self, such as cancer cells. These cell motility and cell-to-cell interaction properties depend on the dynamic nature of the actin cytoskeleton. Wiskott-Aldrich syndrome (WAS) is the archetypical immunoactinopathy and the first described. WAS is caused by loss-of-function and gain-of-function mutations in the actin regulator WASp, uniquely expressed in hematopoietic cells. Mutations in WAS cause a profound disturbance of actin cytoskeleton regulation of hematopoietic cells. Studies during the last 10 years have shed light on the specific effects on different hematopoietic cells, revealing that they are not affected equally by mutations in the WAS gene. Moreover, the mechanistic understanding of how WASp controls nuclear and cytoplasmatic activities may help to find therapeutic alternatives according to the site of the mutation and clinical phenotypes. In this review, we summarize recent findings that have added to the complexity and increased our understanding of WAS-related diseases and immunoactinopathies.
Collapse
Affiliation(s)
- Rhaissa Calixto Vieira
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Lia Goncalves Pinho
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Liu L, Sui R, Li L, Zhang L, Zeng D, Ni X, Sun J. Light Activates Cdc42-Mediated Needle-Shaped Filopodia Formation via the Integration of Small GTPases. Cell Mol Bioeng 2022; 15:599-609. [PMID: 36531863 PMCID: PMC9751244 DOI: 10.1007/s12195-022-00743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Cdc42 has been linked to multiple human cancers and is implicated in the migration of cancer cells. Cdc42 could be activated via biochemical and biophysical factors in tumor microenvironment, the precise control of Cdc42 was essential to determine its role to cell behaviors. Needle-shaped protrusions (filopodia) could sense the extracellular biochemical cues and pave the path for cell movement, which was a key structure involved in the regulation of cancer cell motility. Methods We used the photoactivatable Cdc42 to elucidate the breast cancer cell protrusions, the mutation of Cdc42 was to confirm the optogenetic results. We also inhibit the Cdc42, Rac or Rho respectively by the corresponding inhibitors. Results We identified that the activation of Cdc42 by light could greatly enhance the formation of filopodia, which was positive for the contribution of cell movement. The expression of Cdc42 active form Cdc42-Q61L in cells resulted in the longer and more filopodia while the Cdc42 inactive form Cdc42-T17N were with the shorter and less filopodia. Moreover, the inhibition of Cdc42, Rac or Rho all significantly reduced the filopodia numbers and length in the co-expression of Cdc42-Q61L, which showed that the integration of small GTPases was necessary in the formation of filopodia. Furthermore, photoactivation of Cdc42 failed to enhance the filopodia formation with the inhibition of Rac or Rho. However, with the inhibition of Cdc42, the photoactivation of Cdc42 could partially recover back the filopodia formations, which indicated that the integration of small GTPases was key for the filopodia formations. Conclusions Our work highlights that light activates Cdc42 is sufficient to promote filopodia formation without the destructive structures of small GTPases, it not only points out the novel technique to determine cell structure formations but also provides the experimental basis for the efficient small GTPases-based anti-cancer strategies.
Collapse
Affiliation(s)
- Lingling Liu
- School of Medical Laboratory Science, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Ran Sui
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Lianxin Li
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Lin Zhang
- School of Medical Laboratory Science, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jinghui Sun
- School of Medical Laboratory Science, Chengdu Medical College, Chengdu, 610500 Sichuan China
| |
Collapse
|
7
|
Naseem A, Steinberg Z, Cavazza A. Genome editing for primary immunodeficiencies: A therapeutic perspective on Wiskott-Aldrich syndrome. Front Immunol 2022; 13:966084. [PMID: 36059471 PMCID: PMC9433875 DOI: 10.3389/fimmu.2022.966084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Primary immunodeficiency diseases (PIDs) are a group of rare inherited disorders affecting the immune system that can be conventionally treated with allogeneic hematopoietic stem cell transplantation and with experimental autologous gene therapy. With both approaches still facing important challenges, gene editing has recently emerged as a potential valuable alternative for the treatment of genetic disorders and within a relatively short period from its initial development, has already entered some landmark clinical trials aimed at tackling several life-threatening diseases. In this review, we discuss the progress made towards the development of gene editing-based therapeutic strategies for PIDs with a special focus on Wiskott - Aldrich syndrome and outline their main challenges as well as future directions with respect to already established treatments.
Collapse
|
8
|
Sasahara Y, Wada T, Morio T. Impairment of cytokine production following immunological synapse formation in patients with Wiskott-Aldrich syndrome and leukocyte adhesion deficiency type 1. Clin Immunol 2022; 242:109098. [PMID: 35973636 DOI: 10.1016/j.clim.2022.109098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022]
Abstract
T cells following immunological synapse (IS) formation with antigen-presenting cells produce multiple cytokines through T cell receptor, integrin, and costimulatory signaling. Here, we investigated the cytokine profiles following IS formation in response to staphylococcal superantigen exposure in three adolescent patients with classical Wiskott-Aldrich syndrome (WAS) and in one patient with leukocyte adhesion deficiency (LAD) type 1. All WAS patients showed lower Th1 and Th2-skewed cytokine production; similar results were observed in the flow cytometric analysis of IFNγ- and IL-4-producing T cells. The patient with LAD type 1 with somatic mosaicism in 2% of CD8+ T cells showed lower Th1 and Th2 cytokine production than healthy controls. The patients with WAS were susceptible to infections and atopic manifestations, and the patients with LAD type 1 showed cold abscess on their skin, our findings using patient samples provide clinical insights into the mechanisms underlying immunodeficiency related to the symptoms of each disease.
Collapse
Affiliation(s)
- Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
9
|
Targeting the actin nucleation promoting factor WASp provides a therapeutic approach for hematopoietic malignancies. Nat Commun 2021; 12:5581. [PMID: 34552085 PMCID: PMC8458504 DOI: 10.1038/s41467-021-25842-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/03/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer cells depend on actin cytoskeleton rearrangement to carry out hallmark malignant functions including activation, proliferation, migration and invasiveness. Wiskott–Aldrich Syndrome protein (WASp) is an actin nucleation-promoting factor and is a key regulator of actin polymerization in hematopoietic cells. The involvement of WASp in malignancies is incompletely understood. Since WASp is exclusively expressed in hematopoietic cells, we performed in silico screening to identify small molecule compounds (SMCs) that bind WASp and promote its degradation. We describe here one such identified molecule; this WASp-targeting SMC inhibits key WASp-dependent actin processes in several types of hematopoietic malignancies in vitro and in vivo without affecting naïve healthy cells. This small molecule demonstrates limited toxicity and immunogenic effects, and thus, might serve as an effective strategy to treat specific hematopoietic malignancies in a safe and precisely targeted manner. Cancer cells proliferate and invade via cytoskeletal proteins such as WASp, exclusively expressed in hematopoietic cells. Here the authors show a specific small molecule compound inhibiting cancer cell activity by WASp degradation and demonstrating its therapeutic potential in vitro and in vivo.
Collapse
|
10
|
Schanz O, Cornez I, Yajnanarayana SP, David FS, Peer S, Gruber T, Krawitz P, Brossart P, Heine A, Landsberg J, Baier G, Wolf D. Tumor rejection in Cblb -/- mice depends on IL-9 and Th9 cells. J Immunother Cancer 2021; 9:jitc-2021-002889. [PMID: 34272310 PMCID: PMC8287598 DOI: 10.1136/jitc-2021-002889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Casitas B lymphoma-b (Cbl-b) is a central negative regulator of cytotoxic T and natural killer (NK) cells and functions as an intracellular checkpoint in cancer. In particular, Th9 cells support mast cell activation, promote dendritic cell recruitment, enhance the cytolytic function of cytotoxic T lymphocytes and NK cells, and directly kill tumor cells, thereby contributing to tumor immunity. However, the role of Cbl-b in the differentiation and antitumor function of Th9 cells is not sufficiently resolved. METHODS Using Cblb -/- mice, we investigated the effect of knocking out Cblb on the differentiation process and function of different T helper cell subsets, focusing on regulatory T cell (Treg) and Th9 cells. We applied single-cell RNA (scRNA) sequencing of in vitro differentiated Th9 cells to understand how Cbl-b shapes the transcriptome and regulates the differentiation and function of Th9 cells. We transferred tumor-model antigen-specific Cblb -/- Th9 cells into melanoma-bearing mice and assessed tumor control in vivo. In addition, we blocked interleukin (IL)-9 in melanoma cell-exposed Cblb -/- mice to investigate the role of IL-9 in tumor immunity. RESULTS Here, we provide experimental evidence that Cbl-b acts as a rheostat favoring Tregs at the expense of Th9 cell differentiation. Cblb -/- Th9 cells exert superior antitumor activity leading to improved melanoma control in vivo. Accordingly, blocking IL-9 in melanoma cell-exposed Cblb -/- mice reversed their tumor rejection phenotype. Furthermore, scRNA sequencing of in vitro differentiated Th9 cells from naïve T cells isolated from wildtype and Cblb -/- animals revealed a transcriptomic basis for increased Th9 cell differentiation. CONCLUSION We established IL-9 and Th9 cells as key antitumor executers in Cblb -/- animals. This knowledge may be helpful for the future improvement of adoptive T cell therapies in cancer.
Collapse
Affiliation(s)
- Oliver Schanz
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Isabelle Cornez
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | | | - Friederike Sophie David
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Sebastian Peer
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Gruber
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Peter Brossart
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Annkristin Heine
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | | | - Gottfried Baier
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany .,Department of Internal Medicine V, Hematology and Oncology, and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
12
|
Balagopalan L, Raychaudhuri K, Samelson LE. Microclusters as T Cell Signaling Hubs: Structure, Kinetics, and Regulation. Front Cell Dev Biol 2021; 8:608530. [PMID: 33575254 PMCID: PMC7870797 DOI: 10.3389/fcell.2020.608530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
When T cell receptors (TCRs) engage with stimulatory ligands, one of the first microscopically visible events is the formation of microclusters at the site of T cell activation. Since the discovery of these structures almost 20 years ago, they have been studied extensively in live cells using confocal and total internal reflection fluorescence (TIRF) microscopy. However, due to limits in image resolution and acquisition speed, the spatial relationships of signaling components within microclusters, the kinetics of their assembly and disassembly, and the role of vesicular trafficking in microcluster formation and maintenance were not finely characterized. In this review, we will summarize how new microscopy techniques have revealed novel insights into the assembly of these structures. The sub-diffraction organization of microclusters as well as the finely dissected kinetics of recruitment and disassociation of molecules from microclusters will be discussed. The role of cell surface molecules in microcluster formation and the kinetics of molecular recruitment via intracellular vesicular trafficking to microclusters is described. Finally, the role of post-translational modifications such as ubiquitination in the downregulation of cell surface signaling molecules is also discussed. These results will be related to the role of these structures and processes in T cell activation.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kumarkrishna Raychaudhuri
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Sokolik CG, Qassem N, Chill JH. The Disordered Cellular Multi-Tasker WIP and Its Protein-Protein Interactions: A Structural View. Biomolecules 2020; 10:biom10071084. [PMID: 32708183 PMCID: PMC7407642 DOI: 10.3390/biom10071084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/21/2023] Open
Abstract
WASp-interacting protein (WIP), a regulator of actin cytoskeleton assembly and remodeling, is a cellular multi-tasker and a key member of a network of protein-protein interactions, with significant impact on health and disease. Here, we attempt to complement the well-established understanding of WIP function from cell biology studies, summarized in several reviews, with a structural description of WIP interactions, highlighting works that present a molecular view of WIP's protein-protein interactions. This provides a deeper understanding of the mechanisms by which WIP mediates its biological functions. The fully disordered WIP also serves as an intriguing example of how intrinsically disordered proteins (IDPs) exert their function. WIP consists of consecutive small functional domains and motifs that interact with a host of cellular partners, with a striking preponderance of proline-rich motif capable of interactions with several well-recognized binding partners; indeed, over 30% of the WIP primary structure are proline residues. We focus on the binding motifs and binding interfaces of three important WIP segments, the actin-binding N-terminal domain, the central domain that binds SH3 domains of various interaction partners, and the WASp-binding C-terminal domain. Beyond the obvious importance of a more fundamental understanding of the biology of this central cellular player, this approach carries an immediate and highly beneficial effect on drug-design efforts targeting WIP and its binding partners. These factors make the value of such structural studies, challenging as they are, readily apparent.
Collapse
|
14
|
Kumari S, Mak M, Poh YC, Tohme M, Watson N, Melo M, Janssen E, Dustin M, Geha R, Irvine DJ. Cytoskeletal tension actively sustains the migratory T-cell synaptic contact. EMBO J 2020; 39:e102783. [PMID: 31894880 PMCID: PMC7049817 DOI: 10.15252/embj.2019102783] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023] Open
Abstract
When migratory T cells encounter antigen-presenting cells (APCs), they arrest and form radially symmetric, stable intercellular junctions termed immunological synapses which facilitate exchange of crucial biochemical information and are critical for T-cell immunity. While the cellular processes underlying synapse formation have been well characterized, those that maintain the symmetry, and thereby the stability of the synapse, remain unknown. Here we identify an antigen-triggered mechanism that actively promotes T-cell synapse symmetry by generating cytoskeletal tension in the plane of the synapse through focal nucleation of actin via Wiskott-Aldrich syndrome protein (WASP), and contraction of the resultant actin filaments by myosin II. Following T-cell activation, WASP is degraded, leading to cytoskeletal unraveling and tension decay, which result in synapse breaking. Thus, our study identifies and characterizes a mechanical program within otherwise highly motile T cells that sustains the symmetry and stability of the T cell-APC synaptic contact.
Collapse
Affiliation(s)
- Sudha Kumari
- Koch Institute of Integrative Research, MIT, Cambridge, MA, USA.,Ragon Institute of Harvard, MIT and MGH, Cambridge, MA, USA
| | - Michael Mak
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Yeh-Chuin Poh
- Koch Institute of Integrative Research, MIT, Cambridge, MA, USA.,Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Mira Tohme
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicki Watson
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Mariane Melo
- Koch Institute of Integrative Research, MIT, Cambridge, MA, USA.,Ragon Institute of Harvard, MIT and MGH, Cambridge, MA, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Raif Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darrell J Irvine
- Koch Institute of Integrative Research, MIT, Cambridge, MA, USA.,Ragon Institute of Harvard, MIT and MGH, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
15
|
Ibañez-Vega J, Del Valle Batalla F, Saez JJ, Soza A, Yuseff MI. Proteasome Dependent Actin Remodeling Facilitates Antigen Extraction at the Immune Synapse of B Cells. Front Immunol 2019; 10:225. [PMID: 30873155 PMCID: PMC6401660 DOI: 10.3389/fimmu.2019.00225] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Engagement of the B cell receptor (BCR) with surface-tethered antigens leads to the formation of an immune synapse (IS), where cell signaling and antigen uptake are tightly coordinated. Centrosome re-orientation to the immune synapse has emerged as a critical regulatory step to guide the local recruitment and secretion of lysosomes, which can facilitate the extraction of immobilized antigens. This process is coupled to actin remodeling at the centrosome and at the immune synapse, which is crucial to promote cell polarity. How B cells balance both pools of actin cytoskeleton to achieve a polarized phenotype during the formation of an immune synapse is not fully understood. Here, we reveal that B cells rely on proteasome activity to achieve this task. The proteasome is a multi-catalytic protease that degrades cytosolic and nuclear proteins and its dysfunction is associated with diseases, such as cancer and autoimmunity. Our results show that resting B cells contain an active proteasome pool at the centrosome, which is required for efficient actin clearance at this level. As a result of proteasome inhibition, activated B cells do not deplete actin at the centrosome and are unable to separate the centrosome from the nucleus and thus display impaired polarity. Consequently, lysosome recruitment to the immune synapse, antigen extraction and presentation are severely compromised in B cells with diminished proteasome activity. Additionally, we found that proteasome inhibition leads to impaired actin remodeling at the immune synapse, where B cells display defective spreading responses and distribution of key signaling molecules at the synaptic membrane. Overall, our results reveal a new role for the proteasome in regulating the immune synapse of B cells, where the intracellular compartmentalization of proteasome activity controls cytoskeleton remodeling between the centrosome and synapse, with functional repercussions in antigen extraction and presentation.
Collapse
Affiliation(s)
- Jorge Ibañez-Vega
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Del Valle Batalla
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan José Saez
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria-Isabel Yuseff
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Lewis JB, Scangarello FA, Murphy JM, Eidell KP, Sodipo MO, Ophir MJ, Sargeant R, Seminario MC, Bunnell SC. ADAP is an upstream regulator that precedes SLP-76 at sites of TCR engagement and stabilizes signaling microclusters. J Cell Sci 2018; 131:jcs215517. [PMID: 30305305 PMCID: PMC6240300 DOI: 10.1242/jcs.215517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
Antigen recognition by the T cell receptor (TCR) directs the assembly of essential signaling complexes known as SLP-76 (also known as LCP2) microclusters. Here, we show that the interaction of the adhesion and degranulation-promoting adaptor protein (ADAP; also known as FYB1) with SLP-76 enables the formation of persistent microclusters and the stabilization of T cell contacts, promotes integrin-independent adhesion and enables the upregulation of CD69. By analyzing point mutants and using a novel phospho-specific antibody, we show that Y595 is essential for normal ADAP function, that virtually all tyrosine phosphorylation of ADAP is restricted to a Y595-phosphorylated (pY595) pool, and that multivalent interactions between the SLP-76 SH2 domain and its binding sites in ADAP are required to sustain ADAP phosphorylation. Although pY595 ADAP enters SLP-76 microclusters, non-phosphorylated ADAP is enriched in protrusive actin-rich structures. The pre-positioning of ADAP at the contact sites generated by these structures favors the retention of nascent SLP-76 oligomers and their assembly into persistent microclusters. Although ADAP is frequently depicted as an effector of SLP-76, our findings reveal that ADAP acts upstream of SLP-76 to convert labile, Ca2+-competent microclusters into stable adhesive junctions with enhanced signaling potential.
Collapse
Affiliation(s)
- Juliana B Lewis
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frank A Scangarello
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Medical Scientist Training Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Joanne M Murphy
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Keith P Eidell
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Michelle O Sodipo
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Michael J Ophir
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ryan Sargeant
- Pacific Immunology Corporation, Ramona, CA 92065, USA
| | | | - Stephen C Bunnell
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
17
|
Matalon O, Ben-Shmuel A, Kivelevitz J, Sabag B, Fried S, Joseph N, Noy E, Biber G, Barda-Saad M. Actin retrograde flow controls natural killer cell response by regulating the conformation state of SHP-1. EMBO J 2018; 37:embj.201696264. [PMID: 29449322 DOI: 10.15252/embj.201696264] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 11/22/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are a powerful weapon against viral infections and tumor growth. Although the actin-myosin (actomyosin) cytoskeleton is crucial for a variety of cellular processes, the role of mechanotransduction, the conversion of actomyosin mechanical forces into signaling cascades, was never explored in NK cells. Here, we demonstrate that actomyosin retrograde flow (ARF) controls the immune response of primary human NK cells through a novel interaction between β-actin and the SH2-domain-containing protein tyrosine phosphatase-1 (SHP-1), converting its conformation state, and thereby regulating NK cell cytotoxicity. Our results identify ARF as a master regulator of the NK cell immune response. Since actin dynamics occur in multiple cellular processes, this mechanism might also regulate the activity of SHP-1 in additional cellular systems.
Collapse
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Aviad Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jessica Kivelevitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Batel Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Elad Noy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Guy Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
18
|
Halle-Bikovski A, Fried S, Rozentur-Shkop E, Biber G, Shaked H, Joseph N, Barda-Saad M, Chill JH. New Structural Insights into Formation of the Key Actin Regulating WIP-WASp Complex Determined by NMR and Molecular Imaging. ACS Chem Biol 2018; 13:100-109. [PMID: 29215267 DOI: 10.1021/acschembio.7b00486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wiskott-Aldrich syndrome protein (WASp) is exclusively expressed in hematopoietic cells and responsible for actin-dependent processes, including cellular activation, migration, and invasiveness. The C-terminal domain of WASp-Interacting Protein (WIP) binds to WASp and regulates its activity by shielding it from degradation in a phosphorylation dependent manner as we previously demonstrated. Mutations in the WAS-encoding gene lead to the primary immunodeficiencies Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT). Here, we shed a first structural light upon this function of WIP using nuclear magnetic resonance (NMR) and in vivo molecular imaging. Coexpression of fragments WASp(20-158) and WIP(442-492) allowed the purification and structural characterization of a natively folded complex, determined to form a characteristic pleckstrin homology domain with a mixed α/β-fold and central two-winged β-sheet. The WIP-derived peptide, unstructured in its free form, wraps around and interacts with WASp through short structural elements. Förster resonance energy transfer (FRET) and biochemical experiments demonstrated that, of these elements, WIP residues 454-456 are the major contributor to WASp affinity, and the previously overlooked residues 449-451 were found to have the largest effect upon WASp ubiquitylation and, presumably, degradation. Results obtained from this complementary combination of technologies link WIP-WASp affinity to protection from degradation. Our findings about the nature of WIP·WASp complex formation are relevant for ongoing efforts to understand hematopoietic cell behavior, paving the way for new therapeutic approaches to WAS and XLT.
Collapse
Affiliation(s)
- Adi Halle-Bikovski
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Sophia Fried
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Eva Rozentur-Shkop
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Guy Biber
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Hadassa Shaked
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Noah Joseph
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Mira Barda-Saad
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Jordan H. Chill
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
19
|
Rivers E, Thrasher AJ. Wiskott-Aldrich syndrome protein: Emerging mechanisms in immunity. Eur J Immunol 2017; 47:1857-1866. [DOI: 10.1002/eji.201646715] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/10/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022]
|
20
|
Cardama GA, Gonzalez N, Maggio J, Menna PL, Gomez DE. Rho GTPases as therapeutic targets in cancer (Review). Int J Oncol 2017; 51:1025-1034. [PMID: 28848995 PMCID: PMC5592879 DOI: 10.3892/ijo.2017.4093] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022] Open
Abstract
Rho GTPases are key molecular switches controlling the transduction of external signals to cytoplasmic and nuclear effectors. In the last few years, the development of genetic and pharmacological tools has allowed a more precise definition of the specific roles of Rho GTPases in cancer. The aim of the present review is to describe the cellular functions regulated by these proteins with focus in deregulated signals present in malignant tumors. Finally, we describe the state of the art in search of different experimental therapeutic strategies with Rho GTPases as molecular targets.
Collapse
Affiliation(s)
- G A Cardama
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| | - N Gonzalez
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| | - J Maggio
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| | - P Lorenzano Menna
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| | - D E Gomez
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal B1876BXD, Buenos Aires, Argentina
| |
Collapse
|
21
|
A conformational change within the WAVE2 complex regulates its degradation following cellular activation. Sci Rep 2017; 7:44863. [PMID: 28332566 PMCID: PMC5362955 DOI: 10.1038/srep44863] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 02/08/2017] [Indexed: 11/08/2022] Open
Abstract
WASp family Verprolin-homologous protein-2 (WAVE2), a member of the Wiskott-Aldrich syndrome protein (WASp) family of actin nucleation promoting factors, is a central regulator of actin cytoskeleton polymerization and dynamics. Multiple signaling pathways operate via WAVE2 to promote the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. WAVE2 exists as a part of a pentameric protein complex known as the WAVE regulatory complex (WRC), which is unstable in the absence of its individual proteins. While the involvement of WAVE2 in actin polymerization has been well documented, its negative regulation mechanism is poorly characterized to date. Here, we demonstrate that WAVE2 undergoes ubiquitylation in a T-cell activation dependent manner, followed by proteasomal degradation. The WAVE2 ubiquitylation site was mapped to lysine 45, located at the N-terminus where WAVE2 binds to the WRC. Using Förster resonance energy transfer (FRET), we reveal that the autoinhibitory conformation of the WRC maintains the stability of WAVE2 in resting cells; the release of autoinhibition following T-cell activation facilitates the exposure of WAVE2 to ubiquitylation, leading to its degradation. The dynamic conformational structures of WAVE2 during cellular activation dictate its degradation.
Collapse
|
22
|
Zeng P, Ma J, Yang R, Liu YC. Immune Regulation by Ubiquitin Tagging as Checkpoint Code. Curr Top Microbiol Immunol 2017; 410:215-248. [PMID: 28929193 DOI: 10.1007/82_2017_64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immune system is equipped with effective machinery to mobilize its activation to defend invading microorganisms, and at the same time, to refrain from attacking its own tissues to maintain immune tolerance. The balance of activation and tolerance is tightly controlled by diverse mechanisms, since breakdown of tolerance could result in disastrous consequences such as the development of autoimmune diseases. One of the mechanisms is by the means of protein ubiquitination, which involves the process of tagging a small peptide ubiquitin to protein substrates. E3 ubiquitin ligases are responsible for catalyzing the final step of ubiquitin-substrate conjugation by specifically recognizing substrates to determine their fates of degradation or functional modification. The ubiquitination process is reversible, which is carried out by deubiquitinating enzymes to release the ubiquitin molecule from the conjugated substrates. Protein ubiquitination and deubiquitination serve as checkpoint codes in many key steps of lymphocyte regulation including the development, activation, differentiation, and tolerance induction. In this chapter, we will discuss a few E3 ligases and deubiquitinating enzymes that are important in controlling immune responses, with emphasis on their roles in T cells.
Collapse
Affiliation(s)
- Peng Zeng
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jieyu Ma
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Runqing Yang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yun-Cai Liu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.
| |
Collapse
|
23
|
Matalon O, Barda-Saad M. Cbl ubiquitin ligases mediate the inhibition of natural killer cell activity. Commun Integr Biol 2016; 9:e1216739. [PMID: 28042374 PMCID: PMC5193043 DOI: 10.1080/19420889.2016.1216739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 11/12/2022] Open
Abstract
Natural killer (NK) cells are essential for killing transformed and virally infected cells. To prevent auto-reactivity, NK cell activation is inhibited by inhibitory receptors that activate the tyrosine phosphatase SHP-1, which dephosphorylates signaling molecules crucial for NK cell activation. Initially, only a single SHP-1 substrate was identified in NK cells, the GEF VAV1. We recently demonstrated that under inhibitory conditions, LAT, PLCγ1 and PLCγ2 serve as novel SHP-1 substrates in NK cells. Furthermore, we showed that during NK cell inhibition, LAT is ubiquitylated by c-Cbl and Cbl-b, leading to its proteasomal degradation, abolishing NK cell cytotoxicity. Here, we address the mechanism through which the Cbl proteins are activated following inhibitory receptor engagement. We demonstrate that during NK cell inhibition, the expression level of the Cbl proteins significantly increases. These data suggest that inhibitory KIR receptors regulate the stability of the Cbl proteins, thereby enabling Cbl-mediated inhibition of NK cell cytotoxicity.
Collapse
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan, Israel
| |
Collapse
|
24
|
Matalon O, Fried S, Ben-Shmuel A, Pauker MH, Joseph N, Keizer D, Piterburg M, Barda-Saad M. Dephosphorylation of the adaptor LAT and phospholipase C-γ by SHP-1 inhibits natural killer cell cytotoxicity. Sci Signal 2016; 9:ra54. [PMID: 27221712 DOI: 10.1126/scisignal.aad6182] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells discriminate between healthy cells and virally infected or transformed self-cells by tuning activating and inhibitory signals received through cell surface receptors. Inhibitory receptors inhibit NK cell function by recruiting and activating the tyrosine phosphatase Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-1 (SHP-1) to the plasma membrane. However, to date, the guanine nucleotide exchange factor VAV1 is the only direct SHP-1 substrate identified in NK cells. We reveal that the adaptor protein linker for activation of T cells (LAT) as well as phospholipase C-γ1 (PLC-γ1) and PLC-γ2 are SHP-1 substrates. Dephosphorylation of Tyr(132) in LAT by SHP-1 in NK cells abrogated the recruitment of PLC-γ1 and PLC-γ2 to the immunological synapse between the NK cell and a cancer cell target, which reduced NK cell degranulation and target cell killing. Furthermore, the ubiquitylation of LAT by the E3 ubiquitin ligases c-Cbl and Cbl-b, which was induced by LAT phosphorylation, led to the degradation of LAT in response to the engagement of inhibitory receptors on NK cells, which abrogated NK cell cytotoxicity. Knockdown of the Cbl proteins blocked LAT ubiquitylation, which promoted NK cell function. Expression of a ubiquitylation-resistant mutant LAT blocked inhibitory receptor signaling, enabling cells to become activated. Together, these data identify previously uncharacterized SHP-1 substrates and inhibitory mechanisms that determine the response of NK cells.
Collapse
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Aviad Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Maor H Pauker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Danielle Keizer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Marina Piterburg
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
25
|
Janssen WJM, Geluk HCA, Boes M. F-actin remodeling defects as revealed in primary immunodeficiency disorders. Clin Immunol 2016; 164:34-42. [PMID: 26802313 DOI: 10.1016/j.clim.2016.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Primary immunodeficiencies (PIDs) are a heterogeneous group of immune-related diseases. PIDs develop due to defects in gene-products that have consequences to immune cell function. A number of PID-proteins is involved in the remodeling of filamentous actin (f-actin) to support the generation of a contact zone between the antigen-specific T cell and antigen presenting cell (APC): the immunological synapse (IS). IS formation is the first step towards T-cell activation and essential for clonal expansion and acquisition of effector function. We here evaluated PIDs in which aberrant f-actin-driven IS formation may contribute to the PID disease phenotypes as seen in patients. We review examples of such contributions to PID phenotypes from literature, and highlight cases in which PID-proteins were evaluated for a role in f-actin polymerization and IS formation. We conclude with the proposition that patient groups might benefit from stratifying them in distinct functional groups in regard to their f-actin remodeling phenotypes in lymphocytes.
Collapse
Affiliation(s)
- W J M Janssen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - H C A Geluk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - M Boes
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Molecular difference between WASP and N-WASP critical for chemotaxis of T-cells towards SDF-1α. Sci Rep 2015; 5:15031. [PMID: 26463123 PMCID: PMC4604493 DOI: 10.1038/srep15031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/26/2015] [Indexed: 11/13/2022] Open
Abstract
Wiskott-Aldrich Syndrome protein (WASP) integrates cell signaling pathways to the actin cytoskeleton, which play a critical role in T-cell activation and migration. Hematopoietic cells express both WASP and neural-WASP (N-WASP) which share similar domain structure, yet WASP deficiency causes Wiskott-Aldrich syndrome, suggesting that N-WASP present in the cells is not able to carry out all the functions of WASP. We have identified a unique internal thirty amino acid region (I30) in WASP, which regulates its function in chemotaxis of Jurkat T-cells. Deletion of the I30 region altered the WASP’s closed conformation and impaired its ability to rescue the chemotactic defect of WASP-deficient (JurkatWKD) T-cells. Expression of N-WASP in JurkatWKD T-cells using WASP promoter restored the migration velocity without correcting the chemotactic defect. However, insertion of I30 region in N-WASP (N-WASP-I30) enabled N-WASP to rescue the chemotactic defect of JurkatWKD T-cells. N-WASP-I30-EGFP displayed a punctate localization in contrast to the predominant nuclear localization of N-WASP-EGFP. Thus, our study has demonstrated that the I30 region of WASP is critical for localization and chemotaxis. This suggests that N-WASP’s failure to compensate for WASP in rescuing chemotaxis could be due to the absence of this I30 region.
Collapse
|
27
|
Worth AJJ, Thrasher AJ. Current and emerging treatment options for Wiskott–Aldrich syndrome. Expert Rev Clin Immunol 2015; 11:1015-32. [DOI: 10.1586/1744666x.2015.1062366] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Kumari S, Depoil D, Martinelli R, Judokusumo E, Carmona G, Gertler FB, Kam LC, Carman CV, Burkhardt JK, Irvine DJ, Dustin ML. Actin foci facilitate activation of the phospholipase C-γ in primary T lymphocytes via the WASP pathway. eLife 2015; 4. [PMID: 25758716 PMCID: PMC4355629 DOI: 10.7554/elife.04953] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/09/2015] [Indexed: 12/16/2022] Open
Abstract
Wiscott Aldrich Syndrome protein (WASP) deficiency results in defects in calcium ion signaling, cytoskeletal regulation, gene transcription and overall T cell activation. The activation of WASP constitutes a key pathway for actin filament nucleation. Yet, when WASP function is eliminated there is negligible effect on actin polymerization at the immunological synapse, leading to gaps in our understanding of the events connecting WASP and calcium ion signaling. Here, we identify a fraction of total synaptic F-actin selectively generated by WASP in the form of distinct F-actin ‘foci’. These foci are polymerized de novo as a result of the T cell receptor (TCR) proximal tyrosine kinase cascade, and facilitate distal signaling events including PLCγ1 activation and subsequent cytoplasmic calcium ion elevation. We conclude that WASP generates a dynamic F-actin architecture in the context of the immunological synapse, which then amplifies the downstream signals required for an optimal immune response. DOI:http://dx.doi.org/10.7554/eLife.04953.001 The immune system is made up of several types of cells that protect the body against infection and disease. Immune cells such as T cells survey the body and when receptors on their surface encounter infected cells, the receptors activate the T cell by triggering a signaling pathway. The early stages of T cell receptor signaling lead to the formation of a cell–cell contact zone called the immunological synapse. Filaments of a protein called F-actin—which are continuously assembled and taken apart—make versatile networks and help the immunological synapse to form. F-actin filaments have crucial roles in the later stages of T cell receptor signaling as well, but how they contribute to this is not clear. Whether it is the same F-actin network that participates both in synapse formation and the late stages of T cell receptor signaling, and if so, then by what mechanism, remains unknown. The answers came from examining the function of a protein named Wiscott-Aldrich Syndrome Protein (WASP), which forms an F-actin network at the synapse. Loss of WASP is known to result in the X-linked Wiscott-Aldrich Syndrome immunodeficiency and bleeding disorder in humans. Although T cells missing WASP can construct immunological synapses, and these synapses do have normal levels of F-actin and early T cell receptor signaling, they still fail to respond to infected cells properly. Kumari et al. analyzed the detailed structure and dynamics of actin filament networks at immunological synapses of normal and WASP-deficient T cells. Normally, cells had visible foci of newly polymerized F-actin directly above T cell receptor clusters in the immunological synapses, but these foci were not seen in the cells lacking WASP. Kumari et al. found that the F-actin foci facilitate the later stages of the signaling that activates the T cells; this signaling was lacking in WASP-deficient cells. Altogether, Kumari et al. show that WASP-generated F-actin foci at immunological synapses bridge the early and later stages of T cell receptor signaling, effectively generating an optimal immune response against infected cells. Further work will now be needed to understand whether there are other F-actin substructures that play specialized roles in T cell signaling, and if foci play a related role in other cell types known to be affected in Wiscott-Aldrich Syndrome immunodeficiency. DOI:http://dx.doi.org/10.7554/eLife.04953.002
Collapse
Affiliation(s)
- Sudha Kumari
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | - David Depoil
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | - Roberta Martinelli
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Edward Judokusumo
- Department of Biological Engineering, Columbia University, New York, United States
| | - Guillaume Carmona
- David H. Koch Institute for Integrative Cancer research, Massachusetts Institute of Technology, Cambridge, United States
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer research, Massachusetts Institute of Technology, Cambridge, United States
| | - Lance C Kam
- Department of Biological Engineering, Columbia University, New York, United States
| | - Christopher V Carman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, United States
| | - Darrell J Irvine
- David H. Koch Institute for Integrative Cancer research, Massachusetts Institute of Technology, Cambridge, United States
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| |
Collapse
|
29
|
Wang Y, Zhang Y, Han S, Hu X, Zhou Y, Mu J, Pei R, Wu C, Chen X. Identification of a novel regulatory sequence of actin nucleation promoting factor encoded by Autographa californica multiple nucleopolyhedrovirus. J Biol Chem 2015; 290:9533-41. [PMID: 25691574 DOI: 10.1074/jbc.m114.635441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Indexed: 11/06/2022] Open
Abstract
Actin polymerization induced by nucleation promoting factors (NPFs) is one of the most fundamental biological processes in eukaryotic cells. NPFs contain a conserved output domain (VCA domain) near the C terminus, which interacts with and activates the cellular actin-related protein 2/3 complex (Arp2/3) to induce actin polymerization and a diverse regulatory domain near the N terminus. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) nucleocapsid protein P78/83 is a virus-encoded NPF that contains a C-terminal VCA domain and induces actin polymerization in virus-infected cells. However, there is no similarity between the N terminus of P78/83 and that of other identified NPFs, suggesting that P78/83 may possess a unique regulatory mechanism. In this study, we identified a multifunctional regulatory sequence (MRS) located near the N terminus of P78/83 and determined that one of its functions is to serve as a degron to mediate P78/83 degradation in a proteasome-dependent manner. In AcMNPV-infected cells, the MRS also binds to another nucleocapsid protein, BV/ODV-C42, which stabilizes P78/83 and modulates the P78/83-Arp2/3 interaction to orchestrate actin polymerization. In addition, the MRS is also essential for the incorporation of P78/83 into the nucleocapsid, ensuring virion mobility powered by P78/83-induced actin polymerization. The triple functions of the MRS enable P78/83 to serve as an essential viral protein in the AcMNPV replication cycle, and the possible roles of the MRS in orchestrating the virus-induced actin polymerization and viral genome decapsidation are discussed.
Collapse
Affiliation(s)
- Yun Wang
- From the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China, 430071,
| | - Yongli Zhang
- From the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China, 430071, the University of Chinese Academy of Sciences, Beijing, China, 100049, and
| | - Shili Han
- the Central China Normal University, Wuhan, China, 430000
| | - Xue Hu
- From the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China, 430071
| | - Yuan Zhou
- From the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China, 430071
| | - Jingfang Mu
- From the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China, 430071, the University of Chinese Academy of Sciences, Beijing, China, 100049, and
| | - Rongjuan Pei
- From the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China, 430071
| | - Chunchen Wu
- From the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China, 430071
| | - Xinwen Chen
- From the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China, 430071,
| |
Collapse
|
30
|
Cotta-de-Almeida V, Dupré L, Guipouy D, Vasconcelos Z. Signal Integration during T Lymphocyte Activation and Function: Lessons from the Wiskott-Aldrich Syndrome. Front Immunol 2015; 6:47. [PMID: 25709608 PMCID: PMC4321635 DOI: 10.3389/fimmu.2015.00047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Over the last decades, research dedicated to the molecular and cellular mechanisms underlying primary immunodeficiencies (PID) has helped to understand the etiology of many of these diseases and to develop novel therapeutic approaches. Beyond these aspects, PID are also studied because they offer invaluable natural genetic tools to dissect the human immune system. In this review, we highlight the research that has focused over the last 20 years on T lymphocytes from Wiskott–Aldrich syndrome (WAS) patients. WAS T lymphocytes are defective for the WAS protein (WASP), a regulator of actin cytoskeleton remodeling. Therefore, study of WAS T lymphocytes has helped to grasp that many steps of T lymphocyte activation and function depend on the crosstalk between membrane receptors and the actin cytoskeleton. These steps include motility, immunological synapse assembly, and signaling, as well as the implementation of helper, regulatory, or cytotoxic effector functions. The recent concept that WASP also works as a regulator of transcription within the nucleus is an illustration of the complexity of signal integration in T lymphocytes. Finally, this review will discuss how further study of WAS may contribute to solve novel challenges of T lymphocyte biology.
Collapse
Affiliation(s)
| | - Loïc Dupré
- UMR 1043, Centre de Physiopathologie de Toulouse Purpan, INSERM , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; UMR 5282, CNRS , Toulouse , France
| | - Delphine Guipouy
- UMR 1043, Centre de Physiopathologie de Toulouse Purpan, INSERM , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; UMR 5282, CNRS , Toulouse , France
| | | |
Collapse
|
31
|
Vijayakumar V, Monypenny J, Chen XJ, Machesky LM, Lilla S, Thrasher AJ, Antón IM, Calle Y, Jones GE. Tyrosine phosphorylation of WIP releases bound WASP and impairs podosome assembly in macrophages. J Cell Sci 2015; 128:251-65. [PMID: 25413351 PMCID: PMC4294773 DOI: 10.1242/jcs.154880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/07/2014] [Indexed: 01/18/2023] Open
Abstract
Podosomes are integrin-containing adhesion structures commonly found in migrating leukocytes of the monocytic lineage. The actin cytoskeletal organisation of podosomes is based on a WASP- and Arp2/3-mediated mechanism. WASP also associates with a second protein, WIP (also known as WIPF1), and they co-localise in podosome cores. Here, we report for the first time that WIP can be phosphorylated on tyrosine residues and that tyrosine phosphorylation of WIP is a trigger for release of WASP from the WIP-WASP complex. Using a knockdown approach together with expression of WIP phosphomimics, we show that in the absence of WIP-WASP binding, cellular WASP is rapidly degraded, leading to disruption of podosomes and a failure of cells to degrade an underlying matrix. In the absence of tyrosine phosphorylation, the WIP-WASP complex remains intact and podosome lifetimes are extended. A screen of candidate kinases and inhibitor-based assays identified Bruton's tyrosine kinase (Btk) as a regulator of WIP tyrosine phosphorylation. We conclude that tyrosine phosphorylation of WIP is a crucial regulator of WASP stability and function as an actin-nucleation-promoting factor.
Collapse
Affiliation(s)
- Vineetha Vijayakumar
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - James Monypenny
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Xing Judy Chen
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | - Sergio Lilla
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Adrian J Thrasher
- Section of Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Inés M Antón
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Yolanda Calle
- Department of Haematological & Molecular Medicine, King's College London, London SE5 9NU, UK
| | - Gareth E Jones
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| |
Collapse
|
32
|
Elazari-Shalom H, Shaked H, Esteban-Martin S, Salvatella X, Barda-Saad M, Chill JH. New insights into the role of the disordered WIP N-terminal domain revealed by NMR structural characterization. FEBS J 2015; 282:700-14. [DOI: 10.1111/febs.13174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 02/06/2023]
Affiliation(s)
| | - Hadassa Shaked
- Department of Chemistry; Bar Ilan University; Ramat Gan Israel
| | - Santiago Esteban-Martin
- Joint BSC-CRG-IRB Research Programme in Computational Biology; Barcelona Supercomputing Center; Spain
| | - Xavier Salvatella
- Joint BSC-CRG-IRB Research Programme in Computational Biology; Institute for Research in Biomedicine IRB Barcelona; Spain
- ICREA; Barcelona Spain
| | - Mira Barda-Saad
- Mina and Everard Goodman Faculty of Life Sciences; Bar Ilan University; Ramat Gan Israel
| | - Jordan H. Chill
- Department of Chemistry; Bar Ilan University; Ramat Gan Israel
| |
Collapse
|
33
|
Pauker MH, Reicher B, Joseph N, Wortzel I, Jakubowicz S, Noy E, Perl O, Barda-Saad M. WASp family verprolin-homologous protein-2 (WAVE2) and Wiskott-Aldrich syndrome protein (WASp) engage in distinct downstream signaling interactions at the T cell antigen receptor site. J Biol Chem 2014; 289:34503-19. [PMID: 25342748 DOI: 10.1074/jbc.m114.591685] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
T cell antigen receptor (TCR) engagement has been shown to activate pathways leading to actin cytoskeletal polymerization and reorganization, which are essential for lymphocyte activation and function. Several actin regulatory proteins were implicated in regulating the actin machinery, such as members of the Wiskott-Aldrich syndrome protein (WASp) family. These include WASp and the WASp family verprolin-homologous protein-2 (WAVE2). Although WASp and WAVE2 share several structural features, the precise regulatory mechanisms and potential redundancy between them have not been fully characterized. Specifically, unlike WASp, the dynamic molecular interactions that regulate WAVE2 recruitment to the cell membrane and specifically to the TCR signaling complex are largely unknown. Here, we identify the molecular mechanism that controls the recruitment of WAVE2 in comparison with WASp. Using fluorescence resonance energy transfer (FRET) and novel triple-color FRET (3FRET) technology, we demonstrate how WAVE2 signaling complexes are dynamically regulated during lymphocyte activation in vivo. We show that, similar to WASp, WAVE2 recruitment to the TCR site depends on protein-tyrosine kinase, ZAP-70, and the adaptors LAT, SLP-76, and Nck. However, in contrast to WASp, WAVE2 leaves this signaling complex and migrates peripherally together with vinculin to the membrane leading edge. Our experiments demonstrate that WASp and WAVE2 differ in their dynamics and their associated proteins. Thus, this study reveals the differential mechanisms regulating the function of these cytoskeletal proteins.
Collapse
Affiliation(s)
- Maor H Pauker
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Barak Reicher
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Noah Joseph
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Inbal Wortzel
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomi Jakubowicz
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Elad Noy
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Orly Perl
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
34
|
Joseph N, Reicher B, David A, Matalon O, Barda-Saad M. Ubiquitylation-dependent downregulation of Nck regulates its functional activity. FEBS Lett 2014; 588:3808-15. [PMID: 25218436 DOI: 10.1016/j.febslet.2014.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/19/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022]
Abstract
The Nck adapter protein is involved in key cellular functions, such as actin polymerization and reorganization, serving as a molecular bridge between the surface complex essential for foreign antigen recognition, the T-cell antigen receptor (TCR), and the actin machinery. However, the mechanisms regulating Nck expression and functions are unknown. In this study, we revealed Nck negative regulation and demonstrated that Nck is ubiquitylated following cellular activation. We identified the molecular determinants and mediators involved in this process. Our data suggest that Nck ubiquitylation might serve as a mechanism controlling Nck-mediated effector functions during cellular activation.
Collapse
Affiliation(s)
- Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ahuvit David
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
35
|
Abstract
WIP plays an important role in the remodeling of the actin cytoskeleton, which controls cellular activation, proliferation, and function. WIP regulates actin polymerization by linking the actin machinery to signaling cascades. WIP binding to WASp and to its homolog, N-WASp, which are central activators of the actin-nucleating complex Arp2/3, regulates their cellular distribution, function, and stability. By binding to WASp, WIP protects it from degradation and thus, is crucial for WASp retention. Indeed, most mutations that result in WAS, an X-linked immunodeficiency caused by defective/absent WASp activity, are located in the WIP-binding region of WASp. In addition, by binding directly to actin, WIP promotes the formation and stabilization of actin filaments. WASp-independent activities of WIP constitute a new research frontier and are discussed extensively in this article. Here, we review the current information on WIP in human and mouse systems, focusing on its associated proteins, its molecular-regulatory mechanisms, and its role as a key regulator of actin-based processes in the immune system.
Collapse
Affiliation(s)
- Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Elad Noy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
36
|
Fried S, Reicher B, Pauker MH, Eliyahu S, Matalon O, Noy E, Chill J, Barda-Saad M. Triple-color FRET analysis reveals conformational changes in the WIP-WASp actin-regulating complex. Sci Signal 2014; 7:ra60. [PMID: 24962707 DOI: 10.1126/scisignal.2005198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wiskott-Aldrich syndrome protein (WASp) is a key regulator of the actin cytoskeletal machinery. Binding of WASp-interacting protein (WIP) to WASp modulates WASp activity and protects it from degradation. Formation of the WIP-WASp complex is crucial for the adaptive immune response. We found that WIP and WASp interacted in cells through two distinct molecular interfaces. One interaction occurred between the WASp-homology-1 (WH1) domain of WASp and the carboxyl-terminal domain of WIP that depended on the phosphorylation status of WIP, which is phosphorylated by protein kinase C θ (PKCθ) in response to T cell receptor activation. The other interaction occurred between the verprolin homology, central hydrophobic region, and acidic region (VCA) domain of WASp and the amino-terminal domain of WIP. This latter interaction required actin, because it was inhibited by latrunculin A, which sequesters actin monomers. With triple-color fluorescence resonance energy transfer (3FRET) technology, we demonstrated that the WASp activation mechanism involved dissociation of the first interaction, while leaving the second interaction intact. This conformation exposed the ubiquitylation site on WASp, leading to degradation of WASp. Together, these data suggest that the activation and degradation of WASp are delicately balanced and depend on the phosphorylation state of WIP. Our molecular analysis of the WIP-WASp interaction provides insight into the regulation of actin-dependent processes.
Collapse
Affiliation(s)
- Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Maor H Pauker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shani Eliyahu
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Elad Noy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Jordan Chill
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
37
|
Liu Q, Zhou H, Langdon WY, Zhang J. E3 ubiquitin ligase Cbl-b in innate and adaptive immunity. Cell Cycle 2014; 13:1875-84. [PMID: 24875217 DOI: 10.4161/cc.29213] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING finger E3 ubiquitin-protein ligase, has been demonstrated to play a crucial role in establishing the threshold for T-cell activation and controlling peripheral T-cell tolerance via multiple mechanisms. Accumulating evidence suggests that Cbl-b also regulates innate immune responses and plays an important role in host defense to pathogens. Understanding the signaling pathways regulated by Cbl-b in innate and adaptive immune cells is therefore essential for efficient manipulation of Cbl-b in emerging immunotherapies for human disorders such as autoimmune diseases, allergic inflammation, infections, and cancer. In this article, we review the latest developments in the molecular structural basis of Cbl-b function, the regulation of Cbl-b expression, the signaling mechanisms of Cbl-b in immune cells, as well as the biological function of Cbl-b in physiological and pathological immune responses in animal models and human diseases.
Collapse
Affiliation(s)
- Qingjun Liu
- Laboratory of Immunohematology; Beijing Institute of Transfusion Medicine; Beijing, PR China; Department of Microbial Infection and Immunity; The Ohio State University; Columbus, OH USA
| | - Hong Zhou
- Laboratory of Immunohematology; Beijing Institute of Transfusion Medicine; Beijing, PR China
| | - Wallace Y Langdon
- School of Pathology and Laboratory Medicine; University of Western Australia; Crawley, Western Australia, Australia
| | - Jian Zhang
- Department of Microbial Infection and Immunity; The Ohio State University; Columbus, OH USA
| |
Collapse
|
38
|
Abstract
The importance of the cytoskeleton in mounting a successful immune response is evident from the wide range of defects that occur in actin-related primary immunodeficiencies (PIDs). Studies of these PIDs have revealed a pivotal role for the actin cytoskeleton in almost all stages of immune system function, from hematopoiesis and immune cell development, through to recruitment, migration, intercellular and intracellular signaling, and activation of both innate and adaptive immune responses. The major focus of this review is the immune defects that result from mutations in the Wiskott-Aldrich syndrome gene (WAS), which have a broad impact on many different processes and give rise to clinically heterogeneous immunodeficiencies. We also discuss other related genetic defects and the possibility of identifying new genetic causes of cytoskeletal immunodeficiency.
Collapse
Affiliation(s)
- Dale A Moulding
- Molecular Immunology Unit, Center for Immunodeficiency, Institute of Child Health, University College London, London, UK
| | | | | | | |
Collapse
|
39
|
Babich A, Burkhardt JK. Coordinate control of cytoskeletal remodeling and calcium mobilization during T-cell activation. Immunol Rev 2014; 256:80-94. [PMID: 24117814 DOI: 10.1111/imr.12123] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ca(2+) mobilization and cytoskeletal reorganization are key hallmarks of T-cell activation, and their interdependence has long been recognized. Recent advances in the field have elucidated the molecular pathways that underlie these events and have revealed several points of intersection. Ca(2+) signaling can be divided into two phases: initial events leading to release of Ca(2+) from endoplasmic reticulum stores, and a second phase involving STIM 1 (stromal interaction molecule 1) clustering and CRAC (calcium release activated calcium) channel activation. Cytoskeletal dynamics promote both phases. During the first phase, the actin cytoskeleton promotes mechanotransduction and serves as a dynamic scaffold for microcluster assembly. Proteins that drive actin polymerization such as WASp (Wiskott-Aldrich syndrome protein) and HS1 (hematopoietic lineage cell-specific protein 1) promote signaling through PLCγ1 (phospholipase Cγ1) and release of Ca(2+) from endoplasmic reticulum stores. During the second phase, the WAVE (WASP-family verprolin homologous protein) complex and the microtubule cytoskeleton promote STIM 1 clustering at sites of plasma membrane apposition, opening Orai channels. In addition, gross cell shape changes and organelle movements buffer local Ca(2+) levels, leading to sustained Ca(2+) mobilization. Conversely, elevated intracellular Ca(2+) activates cytoskeletal remodeling. This can occur indirectly, via calpain activity, and directly, via Ca(2+) -dependent cytoskeletal regulatory proteins such as myosin II and L-plastin. While it is true that the cytoskeleton regulates Ca(2+) responses and vice versa, interdependence between Ca(2+) and the cytoskeleton also encompasses signaling events that occur in parallel, downstream of shared intermediates. Inositol cleavage by PLCγ1 simultaneously triggers both endoplasmic reticulum store release and diacylglycerol-dependent microtubule organizing center reorientation, while depleting the pool of phosphatidylinositol-4,5-bisphosphate, an activator of multiple actin-regulatory proteins. The close interdependence of Ca(2+) signaling and cytoskeletal dynamics in T cells provides positive feedback mechanisms for T-cell activation and allows for finely tuned responses to extracellular cues.
Collapse
Affiliation(s)
- Alexander Babich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
40
|
Wiskott-Aldrich Syndrome causing mutation, Pro373Ser restricts conformational changes essential for WASP activity in T-cells. Biochim Biophys Acta Mol Basis Dis 2014; 1842:623-34. [PMID: 24440360 DOI: 10.1016/j.bbadis.2014.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 01/04/2014] [Accepted: 01/08/2014] [Indexed: 11/22/2022]
Abstract
Wiskott-Aldrich Syndrome (WAS) is caused by mutations in Wiskott-Aldrich Syndrome Protein (WASP) and majority of the mutations are found in the WASP Homology 1 (WH1) domain which mediates interaction with WIP (WASP Interacting Protein), a WASP chaperone. Two point mutations together in the proline rich region (PRR) domain of WASP (S339Y/P373S) have been reported to cause WAS however the molecular defect has not been characterized. Expression of these mutants separately (WASPR(S339Y), WASPR(P373S)) or together (WASPR(SP/YS)) did not rescue the chemotaxis defect or membrane projection defect of Jurkat(WKD) T-cells (WASP knockdown). This is not due to the inability of WASP-PRR mutants to form functional WASP-WIP complex in growth rescue experiments in las17Δ yeast strain. Expression of WASPR(S339Y) but not WASPR(P373S) or WASPR(SP/YS) rescued the IL-2 expression defect of Jurkat(WKD) T-cells, suggesting that Pro373Ser mutation alone is sufficient to inhibit WASP functions in T-cell activation. The diffused localization of WASP-PRR mutants in activated Jurkat T-cells suggests that Ser339 and Pro373 are critical for WASP localization. WASP-PRR mutations either together or individually did not abolish interaction of WASP with sixteen WASP binding proteins including Hck, however they caused reduction in Hck mediated tyrosine phosphorylation of WASP which is critical for WASP activity. The auto-inhibitory conformation of WASP(P373S) mutant was not relieved by the binding of Toca-1 or Nck1. Thus, our results suggest that Pro373Ser mutation reduces Tyr291 phosphorylation and prevents conformational changes required for WASP activity in chemotaxis and T-cell activation. Thus Pro3373Ser is probably responsible for all the defects associated with WAS in the patients.
Collapse
|
41
|
Matalon O, Reicher B, Barda-Saad M. Wiskott-Aldrich syndrome protein - dynamic regulation of actin homeostasis: from activation through function and signal termination in T lymphocytes. Immunol Rev 2013; 256:10-29. [DOI: 10.1111/imr.12112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| |
Collapse
|
42
|
Lee H, Tsygankov AY. Cbl-family proteins as regulators of cytoskeleton-dependent phenomena. J Cell Physiol 2013; 228:2285-93. [DOI: 10.1002/jcp.24412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| | - Alexander Y. Tsygankov
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| |
Collapse
|
43
|
T-cell receptor ligation causes Wiskott-Aldrich syndrome protein degradation and F-actin assembly downregulation. J Allergy Clin Immunol 2013; 132:648-655.e1. [PMID: 23684068 DOI: 10.1016/j.jaci.2013.03.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Wiskott-Aldrich syndrome protein (WASP) links T-cell receptor (TCR) signaling to the actin cytoskeleton. WASP is normally protected from degradation by the Ca(++)-dependent protease calpain and by the proteasome because of its interaction with the WASP-interacting protein. OBJECTIVE We investigated whether WASP is degraded after TCR ligation and whether its degradation downregulates F-actin assembly caused by TCR ligation. METHODS Primary T cells, Jurkat T cells, and transfected 293T cells were used in immunoprecipitation experiments. Intracellular F-actin content was measured in splenic T cells from wild-type, WASP-deficient, and c-Casitas B-lineage lymphoma (Cbl)-b-deficient mice by using flow cytometry. Calpeptin and MG-132 were used to inhibit calpain and the proteasome, respectively. RESULTS A fraction of WASP in T cells was degraded by calpain and by the ubiquitin-proteasome pathway after TCR ligation. The Cbl-b and c-Cbl E3 ubiquitin ligases associated with WASP after TCR signaling and caused its ubiquitination. Inhibition of calpain and lack of Cbl-b resulted in a significantly more sustained increase in F-actin content after TCR ligation in wild-type T cells but not in WASP-deficient T cells. CONCLUSION TCR ligation causes WASP to be degraded by calpain and to be ubiquitinated by Cbl family E3 ligases, which targets it for destruction by the proteasome. WASP degradation might provide a mechanism for regulating WASP-dependent TCR-driven assembly of F-actin.
Collapse
|
44
|
T cell antigen receptor activation and actin cytoskeleton remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:546-56. [PMID: 23680625 DOI: 10.1016/j.bbamem.2013.05.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/02/2013] [Indexed: 12/20/2022]
Abstract
T cells constitute a crucial arm of the adaptive immune system and their optimal function is required for a healthy immune response. After the initial step of T cell-receptor (TCR) triggering by antigenic peptide complexes on antigen presenting cell (APC), the T cell exhibits extensive cytoskeletal remodeling. This cytoskeletal remodeling leads to the formation of an "immunological synapse" [1] characterized by regulated clustering, segregation and movement of receptors at the interface. Synapse formation regulates T cell activation and response to antigenic peptides and proceeds via feedback between actin cytoskeleton and TCR signaling. Actin polymerization participates in various events during the synapse formation, maturation, and eventually its disassembly. There is increasing knowledge about the actin effectors that couple TCR activation to actin rearrangements [2,3], and how defects in these effectors translate into impairment of T cell activation. In this review we aim to summarize and integrate parts of what is currently known about this feedback process. In addition, in light of recent advancements in our understanding of TCR triggering and translocation at the synapse, we speculate on the organizational and functional diversity of microfilament architecture in the T cell. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
45
|
Massaad MJ, Ramesh N, Geha RS. Wiskott-Aldrich syndrome: a comprehensive review. Ann N Y Acad Sci 2013; 1285:26-43. [DOI: 10.1111/nyas.12049] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michel J. Massaad
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| | - Narayanaswamy Ramesh
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| | - Raif S. Geha
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| |
Collapse
|
46
|
Oda A, Eto K. WASPs and WAVEs: from molecular function to physiology in hematopoietic cells. Semin Cell Dev Biol 2013; 24:308-13. [PMID: 23499790 DOI: 10.1016/j.semcdb.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 12/29/2022]
Abstract
The actin cytoskeleton is critically involved in a variety of cell functions. The Arp2/3 complex mediates branching of filamentous actin. The members of the Wiskott-Aldrich syndrome protein (WASP) family are major regulators of the complex. As such, the family proteins are also involved in numerous aspects of cell biology. In this short review, we first define the expanding WASP family. Next, we compare the domain structure of the members, and explain the known or proposed functions of each domain or region. Finally, we demonstrate the well-characterized roles of the proteins in specific cellular functions.
Collapse
Affiliation(s)
- Atsushi Oda
- Department of Internal Medicine, Noguchi Hospital, Ashibetsu 075-0002, Japan.
| | | |
Collapse
|
47
|
Burianek LE, Soderling SH. Under lock and key: spatiotemporal regulation of WASP family proteins coordinates separate dynamic cellular processes. Semin Cell Dev Biol 2013; 24:258-66. [PMID: 23291261 DOI: 10.1016/j.semcdb.2012.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/21/2012] [Accepted: 12/14/2012] [Indexed: 02/03/2023]
Abstract
WASP family proteins are nucleation promoting factors that bind to and activate the Arp2/3 complex in order to stimulate nucleation of branched actin filaments. The WASP family consists of WASP, N-WASP, WAVE1-3, WASH, and the novel family members WHAMM and JMY. Each of the family members contains a C-terminus responsible for their nucleation promoting activity and unique N-termini that allow for them to be regulated in a spatiotemporal manner. Upon activation they reorganize the cytoskeleton for different cellular functions depending on their subcellular localization and regulatory protein interactions. Emerging evidence indicates that WASH, WHAMM, and JMY have functions that require the coordination of both actin polymerization and microtubule dynamics. Here, we review the mechanisms of regulation for each family member and their associated in vivo functions including cell migration, vesicle trafficking, and neuronal development.
Collapse
|
48
|
Disease-associated missense mutations in the EVH1 domain disrupt intrinsic WASp function causing dysregulated actin dynamics and impaired dendritic cell migration. Blood 2012; 121:72-84. [PMID: 23160469 DOI: 10.1182/blood-2012-01-403857] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Wiskott Aldrich syndrome (WAS), an X-linked immunodeficiency, results from loss-of-function mutations in the human hematopoietic cytoskeletal regulator gene WAS. Many missense mutations in the Ena Vasp homology1 (EVH1) domain preserve low-level WAS protein (WASp) expression and confer a milder clinical phenotype. Although disrupted binding to WASp-interacting protein (WIP) leads to enhanced WASp degradation in vivo, the intrinsic function of EVH1-mutated WASp is poorly understood. In the present study, we show that, despite mediating enhanced actin polymerization compared with wild-type WASp in vitro, EVH1 missense mutated proteins did not support full biologic function in cells, even when levels were restored by forced overexpression. Podosome assembly was aberrant and associated with dysregulated lamellipodia formation and impaired persistence of migration. At sites of residual podosome-associated actin polymerization, localization of EVH1-mutated proteins was preserved even after deletion of the entire domain, implying that WIP-WASp complex formation is not absolutely required for WASp localization. However, retention of mutant proteins in podosomes was significantly impaired and associated with reduced levels of WASp tyrosine phosphorylation. Our results indicate that the EVH1 domain is important not only for WASp stability, but also for intrinsic biologic activity in vivo.
Collapse
|