1
|
Li Y, Han S, Gao H. Heme homeostasis and its regulation by hemoproteins in bacteria. MLIFE 2024; 3:327-342. [PMID: 39359680 PMCID: PMC11442138 DOI: 10.1002/mlf2.12120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 10/04/2024]
Abstract
Heme is an important cofactor and a regulatory molecule involved in various physiological processes in virtually all living cellular organisms, and it can also serve as the primary iron source for many bacteria, particularly pathogens. However, excess heme is cytotoxic to cells. In order to meet physiological needs while preventing deleterious effects, bacteria have evolved sophisticated cellular mechanisms to maintain heme homeostasis. Recent advances in technologies have shaped our understanding of the molecular mechanisms that govern the biological processes crucial to heme homeostasis, including synthesis, acquisition, utilization, degradation, trafficking, and efflux, as well as their regulation. Central to these mechanisms is the regulation of the heme, by the heme, and for the heme. In this review, we present state-of-the-art findings covering the biochemical, physiological, and structural characterization of important, newly identified hemoproteins/systems involved in heme homeostasis.
Collapse
Affiliation(s)
- Yingxi Li
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Sirui Han
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Haichun Gao
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
2
|
Adapa SR, Sami A, Meshram P, Ferreira GC, Jiang RHY. Uncovering Porphyrin Accumulation in the Tumor Microenvironment. Genes (Basel) 2024; 15:961. [PMID: 39062740 PMCID: PMC11275590 DOI: 10.3390/genes15070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Heme, an iron-containing tetrapyrrole, is essential in almost all organisms. Heme biosynthesis needs to be precisely regulated particularly given the potential cytotoxicity of protoporphyrin IX, the intermediate preceding heme formation. Here, we report on the porphyrin intermediate accumulation within the tumor microenvironment (TME), which we propose to result from dysregulation of heme biosynthesis concomitant with an enhanced cancer survival dependence on mid-step genes, a process we recently termed "Porphyrin Overdrive". Specifically, porphyrins build up in both lung cancer cells and stromal cells in the TME. Within the TME's stromal cells, evidence supports cancer-associated fibroblasts (CAFs) actively producing porphyrins through an imbalanced pathway. Conversely, normal tissues exhibit no porphyrin accumulation, and CAFs deprived of tumor cease porphyrin overproduction, indicating that both cancer and tumor-stromal porphyrin overproduction is confined to the cancer-specific tissue niche. The clinical relevance of our findings is implied by establishing a correlation between imbalanced porphyrin production and overall poorer survival in more aggressive cancers. These findings illuminate the anomalous porphyrin dynamics specifically within the tumor microenvironment, suggesting a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Swamy R. Adapa
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Abdus Sami
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (G.C.F.)
| | - Pravin Meshram
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (G.C.F.)
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Rays H. Y. Jiang
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
3
|
Marson NA, Gallio AE, Mandal SK, Laskowski RA, Raven EL. In silico prediction of heme binding in proteins. J Biol Chem 2024; 300:107250. [PMID: 38569935 PMCID: PMC11101860 DOI: 10.1016/j.jbc.2024.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The process of heme binding to a protein is prevalent in almost all forms of life to control many important biological properties, such as O2-binding, electron transfer, gas sensing or to build catalytic power. In these cases, heme typically binds tightly (irreversibly) to a protein in a discrete heme binding pocket, with one or two heme ligands provided most commonly to the heme iron by His, Cys or Tyr residues. Heme binding can also be used as a regulatory mechanism, for example in transcriptional regulation or ion channel control. When used as a regulator, heme binds more weakly, with different heme ligations and without the need for a discrete heme pocket. This makes the characterization of heme regulatory proteins difficult, and new approaches are needed to predict and understand the heme-protein interactions. We apply a modified version of the ProFunc bioinformatics tool to identify heme-binding sites in a test set of heme-dependent regulatory proteins taken from the Protein Data Bank and AlphaFold models. The potential heme binding sites identified can be easily visualized in PyMol and, if necessary, optimized with RosettaDOCK. We demonstrate that the methodology can be used to identify heme-binding sites in proteins, including in cases where there is no crystal structure available, but the methodology is more accurate when the quality of the structural information is high. The ProFunc tool, with the modification used in this work, is publicly available at https://www.ebi.ac.uk/thornton-srv/databases/profunc and can be readily adopted for the examination of new heme binding targets.
Collapse
Affiliation(s)
- Noa A Marson
- School of Chemistry, University of Bristol, Bristol, UK
| | | | | | - Roman A Laskowski
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Cambridge, UK
| | - Emma L Raven
- School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
4
|
Bilska B, Damulewicz M, Abaquita TAL, Pyza E. Changes in heme oxygenase level during development affect the adult life of Drosophila melanogaster. Front Cell Neurosci 2023; 17:1239101. [PMID: 37876913 PMCID: PMC10591093 DOI: 10.3389/fncel.2023.1239101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Heme oxygenase (HO) has been shown to control various cellular processes in both mammals and Drosophila melanogaster. Here, we investigated how changes in HO levels in neurons and glial cells during development affect adult flies, by using the TARGET Drosophila system to manipulate the expression of the ho gene. The obtained data showed differences in adult survival, maximum lifespan, climbing, locomotor activity, and sleep, which depended on the level of HO (after ho up-regulation or downregulation), the timing of expression (chronic or at specific developmental stages), cell types (neurons or glia), sex (males or females), and age of flies. In addition to ho, the effects of changing the mRNA level of the Drosophila CNC factor gene (NRF2 homolog in mammals and master regulator of HO), were also examined to compare with those observed after changing ho expression. We showed that HO levels in neurons and glia must be maintained at an appropriate physiological level during development to ensure the well-being of adults. We also found that the downregulation of ho in either neurons or glia in the brain is compensated by ho expressed in the retina.
Collapse
Affiliation(s)
| | | | | | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| |
Collapse
|
5
|
Rathod DC, Vaidya SM, Hopp MT, Kühl T, Imhof D. Shapes and Patterns of Heme-Binding Motifs in Mammalian Heme-Binding Proteins. Biomolecules 2023; 13:1031. [PMID: 37509066 PMCID: PMC10377097 DOI: 10.3390/biom13071031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Heme is a double-edged sword. On the one hand, it has a pivotal role as a prosthetic group of hemoproteins in many biological processes ranging from oxygen transport and storage to miRNA processing. On the other hand, heme can transiently associate with proteins, thereby regulating biochemical pathways. During hemolysis, excess heme, which is released into the plasma, can bind to proteins and regulate their activity and function. The role of heme in these processes is under-investigated, with one problem being the lack of knowledge concerning recognition mechanisms for the initial association of heme with the target protein and the formation of the resulting complex. A specific heme-binding sequence motif is a prerequisite for such complex formation. Although numerous short signature sequences indicating a particular protein function are known, a comprehensive analysis of the heme-binding motifs (HBMs) which have been identified in proteins, concerning specific patterns and structural peculiarities, is missing. In this report, we focus on the evaluation of known mammalian heme-regulated proteins concerning specific recognition and structural patterns in their HBMs. The Cys-Pro dipeptide motifs are particularly emphasized because of their more frequent occurrence. This analysis presents a comparative insight into the sequence and structural anomalies observed during transient heme binding, and consequently, in the regulation of the relevant protein.
Collapse
Affiliation(s)
- Dhruv C Rathod
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Sonali M Vaidya
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Marie-T Hopp
- Department of Chemistry, Institute for Integrated Natural Sciences, University of Koblenz, D-56070 Koblenz, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| |
Collapse
|
6
|
Rojas-Pirela M, Delgado A, Rondón-Guerrero YDC, Cáceres AJ, Michels PAM, Concepción JL, Quiñones W. A Trypanosoma cruzi phosphoglycerate kinase isoform with a Per-Arnt-Sim domain acts as a possible sensor for intracellular conditions. Exp Parasitol 2023:108574. [PMID: 37353138 DOI: 10.1016/j.exppara.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Per-ARNT-Sim (PAS) domains constitute a family of domains present in a wide variety of prokaryotic and eukaryotic organisms. They form part of the structure of various proteins involved in diverse cellular processes. Regulation of enzymatic activity and adaptation to environmental conditions, by binding small ligands, are the main functions attributed to PAS-containing proteins. Recently, genes for a diverse set of proteins with a PAS domain were identified in the genomes of several protists belonging to the group of kinetoplastids, however, until now few of these proteins have been characterized. In this work, we characterize a phosphoglycerate kinase containing a PAS domain present in Trypanosoma cruzi (TcPAS-PGK). This PGK isoform is an active enzyme of 58 kDa with a PAS domain located at its N-terminal end. We identified the protein's localization within glycosomes of the epimastigote form of the parasite by differential centrifugation and selective permeabilization of its membranes with digitonin, as well as in an enriched mitochondrial fraction. Heterologous expression systems were developed for the protein with the N-terminal PAS domain (PAS-PGKc) and without it (PAS-PGKt), and the substrate affinities of both forms of the protein were determined. The enzyme does not exhibit standard Michaelis-Menten kinetics. When evaluating the dependence of the specific activity of the recombinant PAS-PGK on the concentration of its substrates 3-phosphoglycerate (3PGA) and ATP, two peaks of maximal activity were found for the complete enzyme with the PAS domain and a single peak for the enzyme without the domain. Km values measured for 3PGA were 219 ± 26 and 8.8 ± 1.3 μM, and for ATP 291 ± 15 and 38 ± 2.2 μM, for the first peak of PAS-PGKc and for PAS-PGKt, respectively, whereas for the second PAS-PGKc peak values of approximately 1.1-1.2 mM were estimated for both substrates. Both recombinant proteins show inhibition by high concentrations of their substrates, ATP and 3PGA. The presence of hemin and FAD exerts a stimulatory effect on PAS-PGKc, increasing the specific activity by up to 55%. This stimulation is not observed in the absence of the PAS domain. It strongly suggests that the PAS domain has an important function in vivo in T. cruzi in the modulation of the catalytic activity of this PGK isoform. In addition, the PAS-PGK through its PAS and PGK domains could act as a sensor for intracellular conditions in the parasite to adjust its intermediary metabolism.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Andrea Delgado
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Yossmayer D C Rondón-Guerrero
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Paul A M Michels
- School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FL, Scotland, United Kingdom
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| |
Collapse
|
7
|
Savino M, Guida CC, Nardella M, Murgo E, Augello B, Merla G, De Cosmo S, Savino AF, Tarquini R, Cei F, Aucella F, Mazzoccoli G. Circadian Genes Expression Patterns in Disorders Due to Enzyme Deficiencies in the Heme Biosynthetic Pathway. Biomedicines 2022; 10:biomedicines10123198. [PMID: 36551954 PMCID: PMC9775071 DOI: 10.3390/biomedicines10123198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Heme is a member of the porphyrins family of cyclic tetrapyrroles and influences various cell processes and signalling pathways. Enzyme deficiencies in the heme biosynthetic pathway provoke rare human inherited metabolic diseases called porphyrias. Protein levels and activity of enzymes involved in the heme biosynthetic pathway and especially 5'-Aminolevulinate Synthase 1 are featured by 24-h rhythmic oscillations driven by the biological clock. Heme biosynthesis and circadian pathways intermingle with mutual modulatory roles. Notably, heme is a ligand of important cogs of the molecular clockwork, which upon heme binding recruit co-repressors and inhibit the transcription of numerous genes enriching metabolic pathways and encoding functional proteins bringing on crucial cell processes. Herein, we assessed mRNA levels of circadian genes in patients suffering from porphyrias and found several modifications of core clock genes and clock-controlled genes expression, associated with metabolic and electrolytic changes. Overall, our results show an altered expression of circadian genes accompanying heme biosynthesis disorders and confirm the need to deepen the knowledge of the mechanisms through which the alteration of the circadian clock circuitry could take part in determining signs and symptoms of porphyria patients and then again could represent a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Maria Savino
- Interregional Reference Center for Porphyria, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
- Laboratory of Clinical Chemistry, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Claudio Carmine Guida
- Interregional Reference Center for Porphyria, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
- Department of Medical Sciences, Division of Nephrology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Maria Nardella
- Interregional Reference Center for Porphyria, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
- Department of Medical Sciences, Division of Nephrology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Bartolomeo Augello
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Giuseppe Merla
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80121 Naples, Italy
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Salvatore De Cosmo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Antonio Fernando Savino
- Laboratory of Clinical Chemistry, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Roberto Tarquini
- Division of Internal Medicine I, Regional Reference Center for Porphyria, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Francesco Cei
- Division of Internal Medicine I, Regional Reference Center for Porphyria, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Filippo Aucella
- Department of Medical Sciences, Division of Nephrology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
- Correspondence: ; Tel./Fax: +39-08-8241-0255
| |
Collapse
|
8
|
Vinod M, Berthier A, Maréchal X, Gheeraert C, Boutry R, Delhaye S, Annicotte JS, Duez H, Hovasse A, Cianférani S, Montaigne D, Eeckhoute J, Staels B, Lefebvre P. Timed use of digoxin prevents heart ischemia-reperfusion injury through a REV-ERBα-UPS signaling pathway. NATURE CARDIOVASCULAR RESEARCH 2022; 1:990-1005. [PMID: 38229609 PMCID: PMC7615528 DOI: 10.1038/s44161-022-00148-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/16/2022] [Indexed: 01/18/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) induces life-threatening damages to the cardiac tissue and pharmacological means to achieve cardioprotection are sorely needed. MIRI severity varies along the day-night cycle and is molecularly linked to components of the cellular clock including the nuclear receptor REV-ERBα, a transcriptional repressor. Here we show that digoxin administration in mice is cardioprotective when timed to trigger REV-ERBα protein degradation. In cardiomyocytes, digoxin increases REV-ERBα ubiquitinylation and proteasomal degradation, which depend on REV-ERBα ability to bind its natural ligand, heme. Inhibition of the membrane-bound Src tyrosine-kinase partially alleviated digoxin-induced REV-ERBα degradation. In untreated cardiomyocytes, REV-ERBα proteolysis is controlled by known (HUWE1, FBXW7, SIAH2) or novel (CBL, UBE4B) E3 ubiquitin ligases and the proteasome subunit PSMB5. Only SIAH2 and PSMB5 contributed to digoxin-induced degradation of REV-ERBα. Thus, controlling REV-ERBα proteostasis through the ubiquitin-proteasome system is an appealing cardioprotective strategy. Our data support the timed use of clinically-approved cardiotonic steroids in prophylactic cardioprotection.
Collapse
Affiliation(s)
- Manjula Vinod
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Xavier Maréchal
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Raphaёl Boutry
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Stéphane Delhaye
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Jean-Sébastien Annicotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Hélène Duez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Agnès Hovasse
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS, UMR7178, 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS, UMR7178, 25 Rue Becquerel, F-67087 Strasbourg, France
| | - David Montaigne
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| |
Collapse
|
9
|
Hunter GA, Ferreira GC. An Extended C-Terminus, the Possible Culprit for Differential Regulation of 5-Aminolevulinate Synthase Isoforms. Front Mol Biosci 2022; 9:920668. [PMID: 35911972 PMCID: PMC9329541 DOI: 10.3389/fmolb.2022.920668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 12/05/2022] Open
Abstract
5-Aminolevulinate synthase (ALAS; E.C. 2.3.1.37) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes the key regulatory step of porphyrin biosynthesis in metazoa, fungi, and α-proteobacteria. ALAS is evolutionarily related to transaminases and is therefore classified as a fold type I PLP-dependent enzyme. As an enzyme controlling the key committed and rate-determining step of a crucial biochemical pathway ALAS is ideally positioned to be subject to allosteric feedback inhibition. Extensive kinetic and mutational studies demonstrated that the overall enzyme reaction is limited by subtle conformational changes of a hairpin loop gating the active site. These findings, coupled with structural information, facilitated early prediction of allosteric regulation of activity via an extended C-terminal tail unique to eukaryotic forms of the enzyme. This prediction was subsequently supported by the discoveries that mutations in the extended C-terminus of the erythroid ALAS isoform (ALAS2) cause a metabolic disorder known as X-linked protoporphyria not by diminishing activity, but by enhancing it. Furthermore, kinetic, structural, and molecular modeling studies demonstrated that the extended C-terminal tail controls the catalytic rate by modulating conformational flexibility of the active site loop. However, the precise identity of any such molecule remains to be defined. Here we discuss the most plausible allosteric regulators of ALAS activity based on divergences in AlphaFold-predicted ALAS structures and suggest how the mystery of the mechanism whereby the extended C-terminus of mammalian ALASs allosterically controls the rate of porphyrin biosynthesis might be unraveled.
Collapse
Affiliation(s)
- Gregory A. Hunter
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Gregory A. Hunter, ; Gloria C. Ferreira,
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL, United States
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, United States
- *Correspondence: Gregory A. Hunter, ; Gloria C. Ferreira,
| |
Collapse
|
10
|
Hunter GA, Ferreira GC. Metal ion coordination sites in ferrochelatase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Fleischhacker AS, Sarkar A, Liu L, Ragsdale SW. Regulation of protein function and degradation by heme, heme responsive motifs, and CO. Crit Rev Biochem Mol Biol 2022; 57:16-47. [PMID: 34517731 PMCID: PMC8966953 DOI: 10.1080/10409238.2021.1961674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heme is an essential biomolecule and cofactor involved in a myriad of biological processes. In this review, we focus on how heme binding to heme regulatory motifs (HRMs), catalytic sites, and gas signaling molecules as well as how changes in the heme redox state regulate protein structure, function, and degradation. We also relate these heme-dependent changes to the affected metabolic processes. We center our discussion on two HRM-containing proteins: human heme oxygenase-2, a protein that binds and degrades heme (releasing Fe2+ and CO) in its catalytic core and binds Fe3+-heme at HRMs located within an unstructured region of the enzyme, and the transcriptional regulator Rev-erbβ, a protein that binds Fe3+-heme at an HRM and is involved in CO sensing. We will discuss these and other proteins as they relate to cellular heme composition, homeostasis, and trafficking. In addition, we will discuss the HRM-containing family of proteins and how the stability and activity of these proteins are regulated in a dependent manner through the HRMs. Then, after reviewing CO-mediated protein regulation of heme proteins, we turn our attention to the involvement of heme, HRMs, and CO in circadian rhythms. In sum, we stress the importance of understanding the various roles of heme and the distribution of the different heme pools as they relate to the heme redox state, CO, and heme binding affinities.
Collapse
Affiliation(s)
- Angela S. Fleischhacker
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anindita Sarkar
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Ricci A, Di Pierro E, Marcacci M, Ventura P. Mechanisms of Neuronal Damage in Acute Hepatic Porphyrias. Diagnostics (Basel) 2021; 11:diagnostics11122205. [PMID: 34943446 PMCID: PMC8700611 DOI: 10.3390/diagnostics11122205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/12/2023] Open
Abstract
Porphyrias are a group of congenital and acquired diseases caused by an enzymatic impairment in the biosynthesis of heme. Depending on the specific enzyme involved, different types of porphyrias (i.e., chronic vs. acute, cutaneous vs. neurovisceral, hepatic vs. erythropoietic) are described, with different clinical presentations. Acute hepatic porphyrias (AHPs) are characterized by life-threatening acute neuro-visceral crises (acute porphyric attacks, APAs), featuring a wide range of neuropathic (central, peripheral, autonomic) manifestations. APAs are usually unleashed by external "porphyrinogenic" triggers, which are thought to cause an increased metabolic demand for heme. During APAs, the heme precursors δ-aminolevulinic acid (ALA) and porphobilinogen (PBG) accumulate in the bloodstream and urine. Even though several hypotheses have been developed to explain the protean clinical picture of APAs, the exact mechanism of neuronal damage in AHPs is still a matter of debate. In recent decades, a role has been proposed for oxidative damage caused by ALA, mitochondrial and synaptic ALA toxicity, dysfunction induced by relative heme deficiency on cytochromes and other hemeproteins (i.e., nitric oxide synthases), pyridoxal phosphate functional deficiency, derangements in the metabolic pathways of tryptophan, and other factors. Since the pathway leading to the biosynthesis of heme is inscribed into a complex network of interactions, which also includes some fundamental processes of basal metabolism, a disruption in any of the steps of this pathway is likely to have multiple pathogenic effects. Here, we aim to provide a comprehensive review of the current evidence regarding the mechanisms of neuronal damage in AHPs.
Collapse
Affiliation(s)
- Andrea Ricci
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.)
| | - Elena Di Pierro
- Dipartimento di Medicina Interna, Fondazione IRCSS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Matteo Marcacci
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.)
| | - Paolo Ventura
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.)
- Correspondence: ; Tel.: +39-059-4225-542
| |
Collapse
|
13
|
Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Cancers (Basel) 2021; 13:4142. [PMID: 34439295 PMCID: PMC8393563 DOI: 10.3390/cancers13164142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-β-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (T.W.); (A.A.); (P.M.); (A.R.D.); (M.D.C.C.C.); (P.S.A.)
| |
Collapse
|
14
|
Niu B, Zhang Z, Zhang J, Zhou Y, Chen C. The rice LEC1-like transcription factor OsNF-YB9 interacts with SPK, an endosperm-specific sucrose synthase protein kinase, and functions in seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1233-1246. [PMID: 33721364 DOI: 10.1111/tpj.15230] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/23/2021] [Accepted: 03/10/2021] [Indexed: 05/06/2023]
Abstract
LEAFY COTYLEDON1 (LEC1), a NUCLEAR FACTOR-Y (NF-Y) family member, plays a critical role in embryogenesis and seed development in Arabidopsis. Previous studies have shown that rice OsNF-YB9 and OsNF-YB7 are homologous to Arabidopsis LEC1. However, the functions of LEC1-like genes in rice remain unclear. Here we report that OsNF-YB9 and OsNF-YB7 display sub-functionalization in rice. We demonstrate that OsNF-YB7 is expressed mainly in the embryo, whereas OsNF-YB9 is preferentially expressed in the developing endosperm. Heterologous expression of either OsNF-YB9 or OsNF-YB7 in Arabidopsis lec1-1 was able to complement the lec1-1 defects. We failed to generate osnf-yb7 homozygous mutants due to lethality caused by OsNF-YB7 defects. Loss of OsNF-YB9 function caused abnormal seed development: seeds were longer, narrower and thinner and exhibited a higher chalkiness ratio. Furthermore, the expression of genes related to starch synthesis was deregulated in osnf-yb9. OsNF-YB9 could interact with SPK, a sucrose synthase protein kinase that is predominantly expressed in rice endosperm. Knockout of SPK resulted in chalky seeds similar to those observed in the osnf-yb9 mutants. Ectopic expression of OsNF-YB9 in both rice and Arabidopsis resulted in unhealthy plants with small seeds. Taken together, these results suggest a critical role for OsNF-YB9 in rice seed development.
Collapse
Affiliation(s)
- Baixiao Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Zhenyu Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Juan Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Shimizu T, Hayashi Y, Arai M, McGlynn SE, Masuda T, Masuda S. Repressor Activity of SqrR, a Master Regulator of Persulfide-Responsive Genes, Is Regulated by Heme Coordination. PLANT & CELL PHYSIOLOGY 2021; 62:100-110. [PMID: 33169162 DOI: 10.1093/pcp/pcaa144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Reactive sulfur species (RSS) are involved in bioactive regulation via persulfidation of proteins. However, how cells regulate RSS-based signaling and RSS metabolism is poorly understood, despite the importance of universal regulation systems in biology. We previously showed that the persulfide-responsive transcriptional factor SqrR acts as a master regulator of sulfide-dependent photosynthesis in proteobacteria. Here, we demonstrated that SqrR also binds heme at a near one-to-one ratio with a binding constant similar to other heme-binding proteins. Heme does not change the DNA-binding pattern of SqrR to the target gene promoter region; however, DNA-binding affinity of SqrR is reduced by the binding of heme, altering its regulatory activity. Circular dichroism spectroscopy clearly showed secondary structural changes in SqrR by the heme binding. Incremental change in the intracellular heme concentration is associated with small, but significant reduction in the transcriptional repression by SqrR. Overall, these results indicate that SqrR has an ability to bind heme to modulate its DNA-binding activity, which may be important for the precise regulation of RSS metabolism in vivo.
Collapse
Affiliation(s)
- Takayuki Shimizu
- Department of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuuki Hayashi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Munehito Arai
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Physics, The University of Tokyo, Tokyo, Japan
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
16
|
Normant V, Brault A, Avino M, Mourer T, Vahsen T, Beaudoin J, Labbé S. Hemeprotein Tpx1 interacts with cell-surface heme transporter Str3 in Schizosaccharomyces pombe. Mol Microbiol 2020; 115:699-722. [PMID: 33140466 DOI: 10.1111/mmi.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/30/2022]
Abstract
Str3 is a transmembrane protein that mediates low-affinity heme uptake in Schizosaccharomyces pombe. Under iron-limiting conditions, Str3 remains at the cell surface in the presence of increasing hemin concentrations. Using a proximity-dependent biotinylation approach coupled to mass spectrometry and coimmunoprecipitation assays, we report that the peroxiredoxin Tpx1 is a binding partner of Str3. Under microaerobic conditions, cells deficient in heme biosynthesis and lacking the heme receptor Shu1 exhibit poor hemin-dependent growth in the absence of Tpx1. Analysis of membrane protein preparations from iron-starved hem1Δ shu1Δ str3Δ tpx1Δ cells coexpressing Str3-GFP and TAP-Tpx1 showed that TAP-Tpx1 is enriched in membrane protein fractions in response to hemin. Bimolecular fluorescence complementation assays brought additional evidence that an interaction between Tpx1 and Str3 occurs at the plasma membrane. Results showed that Tpx1 exhibits an equilibrium constant value of 0.26 μM for hemin. The association of Tpx1 with hemin protects hemin from degradation by H2 O2 . The peroxidase activity of hemin is lowered when it is bound to Tpx1. Taken together, these results revealed that Tpx1 is a novel interacting partner of Str3. Our data are the first example of an interaction between a cytoplasmic heme-binding protein and a cell-surface heme transporter.
Collapse
Affiliation(s)
- Vincent Normant
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mariano Avino
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Thierry Mourer
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tobias Vahsen
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jude Beaudoin
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
17
|
Nam D, Matsumoto Y, Uchida T, O'Brian MR, Ishimori K. Mechanistic insights into heme-mediated transcriptional regulation via a bacterial manganese-binding iron regulator, iron response regulator (Irr). J Biol Chem 2020; 295:11316-11325. [PMID: 32554810 DOI: 10.1074/jbc.ra119.011855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/15/2020] [Indexed: 11/06/2022] Open
Abstract
The transcription factor iron response regulator (Irr) is a key regulator of iron homeostasis in the nitrogen-fixating bacterium Bradyrhizobium japonicum Irr acts by binding to target genes, including the iron control element (ICE), and is degraded in response to heme binding. Here, we examined this binding activity using fluorescence anisotropy with a 6-carboxyfluorescein-labeled ICE-like oligomer (FAM-ICE). In the presence of Mn2+, Irr addition increased the fluorescence anisotropy, corresponding to formation of the Irr-ICE complex. The addition of EDTA to the Irr-ICE complex reduced fluorescence anisotropy, but fluorescence was recovered after Mn2+ addition, indicating that Mn2+ binding is a prerequisite for complex formation. Binding activity toward ICE was lost upon introduction of substitutions in a His-cluster region of Irr, revealing that Mn2+ binds to this region. We observed that the His-cluster region is also the heme binding site; results from fluorescence anisotropy and electrophoretic mobility shift analyses disclosed that the addition of a half-equivalent of heme dissociates Irr from ICE, likely because of Mn2+ release due to heme binding. We hypothesized that heme binding to another heme binding site, Cys-29, would also inhibit the formation of the Irr-ICE complex because it is proximal to the ICE binding site, which was supported by the loss of ICE binding activity in a Cys-29-mutated Irr. These results indicate that Irr requires Mn2+ binding to form the Irr-ICE complex and that the addition of heme dissociates Irr from ICE by replacing Mn2+ with heme or by heme binding to Cys-29.
Collapse
Affiliation(s)
- Dayeon Nam
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Yuki Matsumoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Mark R O'Brian
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan .,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Fleischhacker AS, Gunawan AL, Kochert BA, Liu L, Wales TE, Borowy MC, Engen JR, Ragsdale SW. The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation. J Biol Chem 2020; 295:5177-5191. [PMID: 32152224 PMCID: PMC7170523 DOI: 10.1074/jbc.ra120.012803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/03/2020] [Indexed: 11/06/2022] Open
Abstract
Heme-regulatory motifs (HRMs) are present in many proteins that are involved in diverse biological functions. The C-terminal tail region of human heme oxygenase-2 (HO2) contains two HRMs whose cysteine residues form a disulfide bond; when reduced, these cysteines are available to bind Fe3+-heme. Heme binding to the HRMs occurs independently of the HO2 catalytic active site in the core of the protein, where heme binds with high affinity and is degraded to biliverdin. Here, we describe the reversible, protein-mediated transfer of heme between the HRMs and the HO2 core. Using hydrogen-deuterium exchange (HDX)-MS to monitor the dynamics of HO2 with and without Fe3+-heme bound to the HRMs and to the core, we detected conformational changes in the catalytic core only in one state of the catalytic cycle-when Fe3+-heme is bound to the HRMs and the core is in the apo state. These conformational changes were consistent with transfer of heme between binding sites. Indeed, we observed that HRM-bound Fe3+-heme is transferred to the apo-core either upon independent expression of the core and of a construct spanning the HRM-containing tail or after a single turnover of heme at the core. Moreover, we observed transfer of heme from the core to the HRMs and equilibration of heme between the core and HRMs. We therefore propose an Fe3+-heme transfer model in which HRM-bound heme is readily transferred to the catalytic site for degradation to facilitate turnover but can also equilibrate between the sites to maintain heme homeostasis.
Collapse
Affiliation(s)
- Angela S Fleischhacker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Amanda L Gunawan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Brent A Kochert
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Maelyn C Borowy
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606.
| |
Collapse
|
19
|
Syllwasschy BF, Beck MS, Družeta I, Hopp MT, Ramoji A, Neugebauer U, Nozinovic S, Menche D, Willbold D, Ohlenschläger O, Kühl T, Imhof D. High-affinity binding and catalytic activity of His/Tyr-based sequences: Extending heme-regulatory motifs beyond CP. Biochim Biophys Acta Gen Subj 2020; 1864:129603. [PMID: 32234408 DOI: 10.1016/j.bbagen.2020.129603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/22/2020] [Accepted: 03/19/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND & MOTIVATION Peptides and proteins can interact with heme through His, Tyr, or Cys in heme-regulatory motifs (HRMs). The Cys-Pro dipeptide is a well investigated HRM, but for His and Tyr such a distinct motif is currently unknown. In addition, many heme-peptide complexes, such as heme-amyloid β, can display a peroxidase-like activity, albeit there is little understanding of how the local primary and secondary coordination environment influences catalytic activity. We thus systematically evaluated a series of His- and Tyr-based peptides to identify sequence features for high-affinity heme binding and their impact on the catalytic activity of heme. METHODS We employed solid-phase peptide synthesis to produce 58 nonapeptides, which were investigated by UV/vis, resonance Raman, and 2D NMR spectroscopy. A chromogenic assay was used to determine the catalytic activity of the heme-peptide complexes. RESULTS Heme-binding affinity and binding mode were found to be dependent on the coordinating amino acid and spacer length between multiple potential coordination sites in a motif. In particular, HXH and HXXXH motifs showed strong heme binding. Analysis of the peroxidase-like activity revealed that some of these peptides and also HXXXY motifs enhance the catalytic activity of heme significantly. CONCLUSIONS We identify HXH, HXXXH, and HXXXY as potential new HRMs with functional properties. Several peptides displayed a strikingly high peroxidase-like activity. GENERAL SIGNIFICANCE The identification of HRMs allows to discover yet unknown heme-regulated proteins, and consequently, enhances our current understanding of pathologies involving labile heme.
Collapse
Affiliation(s)
- Benjamin Franz Syllwasschy
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Maximilian Steve Beck
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Ivona Družeta
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Marie-Thérèse Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Anuradha Ramoji
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Senada Nozinovic
- Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Dirk Menche
- Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Dieter Willbold
- Jülich Research Centre, Institute of Complex Systems - Structural Biochemistry (ICS-6), 52425 Jülich, Germany; Institute of Physical Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany.
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
20
|
Suresh R, Shankar R, Vijayakumar S. Ab initio studies of adsorption of Haloarenes on Heme group. J Mol Model 2019; 26:6. [DOI: 10.1007/s00894-019-4205-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
|
21
|
The molecular basis of transient heme-protein interactions: analysis, concept and implementation. Biosci Rep 2019; 39:BSR20181940. [PMID: 30622148 PMCID: PMC6356037 DOI: 10.1042/bsr20181940] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 11/17/2022] Open
Abstract
Deviant levels of available heme and related molecules can result from pathological situations such as impaired heme biosynthesis or increased hemolysis as a consequence of vascular trauma or bacterial infections. Heme-related biological processes are affected by these situations, and it is essential to fully understand the underlying mechanisms. While heme has long been known as an important prosthetic group of various proteins, its function as a regulatory and signaling molecule is poorly understood. Diseases such as porphyria are caused by impaired heme metabolism, and heme itself might be used as a drug in order to downregulate its own biosynthesis. In addition, heme-driven side effects and symptoms emerging from heme-related pathological conditions are not fully comprehended and thus impede adequate medical treatment. Several heme-regulated proteins have been identified in the past decades, however, the molecular basis of transient heme-protein interactions remains to be explored. Herein, we summarize the results of an in-depth analysis of heme binding to proteins, which revealed specific binding modes and affinities depending on the amino acid sequence. Evaluating the binding behavior of a plethora of heme-peptide complexes resulted in the implementation of a prediction tool (SeqD-HBM) for heme-binding motifs, which eventually led and will perspectively lead to the identification and verification of so far unknown heme-regulated proteins. This systematic approach resulted in a broader picture of the alternative functions of heme as a regulator of proteins. However, knowledge on heme regulation of proteins is still a bottomless barrel that leaves much scope for future research and development.
Collapse
|
22
|
Shimizu T, Lengalova A, Martínek V, Martínková M. Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem Soc Rev 2019; 48:5624-5657. [DOI: 10.1039/c9cs00268e] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular mechanisms of unprecedented functions of exchangeable/labile heme and heme proteins including transcription, DNA binding, protein kinase activity, K+ channel functions, cis–trans isomerization, N–N bond formation, and other functions are described.
Collapse
Affiliation(s)
- Toru Shimizu
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Alzbeta Lengalova
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Václav Martínek
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Markéta Martínková
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| |
Collapse
|
23
|
Fleischhacker AS, Carter EL, Ragsdale SW. Redox Regulation of Heme Oxygenase-2 and the Transcription Factor, Rev-Erb, Through Heme Regulatory Motifs. Antioxid Redox Signal 2018; 29:1841-1857. [PMID: 28990415 PMCID: PMC6217750 DOI: 10.1089/ars.2017.7368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SIGNIFICANCE Heme binds to and serves as a cofactor for a myriad of proteins that are involved in diverse biological processes. Hemoproteins also exhibit varying modes of heme binding, suggesting that the protein environment contributes to the functional versatility of this prosthetic group. The subject of this review is a subset of hemoproteins that contain at least one heme regulatory motif (HRM), which is a short sequence containing a Cys-Pro core that, in many cases, binds heme with the Cys acting as an axial ligand. Recent Advances: As more details about HRM-containing proteins are uncovered, some underlying commonalities are emerging, including a role in regulating protein stability. Further, the cysteines of some HRMs have been shown to form disulfide bonds. Because the cysteines must be in the reduced, dithiol form to act as a heme axial ligand, heme binds at these sites in a redox-regulated manner, as demonstrated for heme oxygenase-2 (HO2) and Rev-erbβ. CRITICAL ISSUES HRM-containing proteins have wide variations in heme affinity, utilize different axial ligand schemes, and exhibit differences in the ability to act as a redox sensor-all while having a wide variety of biological functions. Here, we highlight HO2 and Rev-erbβ to illustrate the similarities and differences between two hemoproteins that contain HRMs acting as redox sensors. FUTURE DIRECTIONS HRMs acting as redox sensors may be applicable to other HRM-containing proteins as many contain multiple HRMs and/or other cysteine residues, which may become more evident as the functional significance of HRMs is probed in additional proteins.
Collapse
Affiliation(s)
| | - Eric L Carter
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
24
|
Liu J, Zou X, Gotoh T, Brown AM, Jiang L, Wisdom EL, Kim JK, Finkielstein CV. Distinct control of PERIOD2 degradation and circadian rhythms by the oncoprotein and ubiquitin ligase MDM2. Sci Signal 2018; 11:11/556/eaau0715. [PMID: 30425162 DOI: 10.1126/scisignal.aau0715] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The circadian clock relies on posttranslational modifications to set the timing for degradation of core regulatory components, which drives clock progression. Ubiquitin-modifying enzymes that target clock components for degradation mainly recognize phosphorylated substrates. Degradation of the circadian clock component PERIOD 2 (PER2) is mediated by its phospho-specific recognition by β-transducin repeat-containing proteins (β-TrCPs), which are F-box-containing proteins that function as substrate recognition subunits of the SCFβ-TRCP ubiquitin ligase complex. However, this mode of regulating PER2 stability falls short of explaining the persistent oscillatory phenotypes reported in biological systems lacking functional elements of the phospho-dependent PER2 degradation machinery. We identified PER2 as a previously uncharacterized substrate for the ubiquitin ligase mouse double minute 2 homolog (MDM2) and found that MDM2 targeted PER2 for degradation in a manner independent of PER2 phosphorylation. Deregulation of MDM2 plays a major role in oncogenesis by contributing to the accumulation of genomic and epigenomic alterations that favor tumor development. MDM2-mediated PER2 turnover was important for defining the circadian period length in mammalian cells, a finding that emphasizes the connection between the circadian clock and cancer. Our results not only broaden the range of specific substrates of MDM2 beyond the cell cycle to include circadian components but also identify a previously unknown regulator of the clock as a druggable node that is often found to be deregulated during tumorigenesis.
Collapse
Affiliation(s)
- JingJing Liu
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Xianlin Zou
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Anne M Brown
- Research and Informatics, University Libraries, Virginia Tech, Blacksburg, VA, USA
| | - Liang Jiang
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Esther L Wisdom
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
25
|
Comer JM, Zhang L. Experimental Methods for Studying Cellular Heme Signaling. Cells 2018; 7:cells7060047. [PMID: 29795036 PMCID: PMC6025097 DOI: 10.3390/cells7060047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/10/2023] Open
Abstract
The study of heme is important to our understanding of cellular bioenergetics, especially in cancer cells. The function of heme as a prosthetic group in proteins such as cytochromes is now well-documented. Less is known, however, about its role as a regulator of metabolic and energetic pathways. This is due in part to some inherent difficulties in studying heme. Due to its slightly amphiphilic nature, heme is a "sticky" molecule which can easily bind non-specifically to proteins. In addition, heme tends to dimerize, oxidize, and aggregate in purely aqueous solutions; therefore, there are constraints on buffer composition and concentrations. Despite these difficulties, our knowledge of heme's regulatory role continues to grow. This review sums up the latest methods used to study reversible heme binding. Heme-regulated proteins will also be reviewed, as well as a system for imaging the cellular localization of heme.
Collapse
Affiliation(s)
- Jonathan M Comer
- Department of Biological Sciences, School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Li Zhang
- Department of Biological Sciences, School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
26
|
Abstract
Mounting evidence in recent years supports the extensive interaction between the circadian and redox systems. The existence of such a relationship is not surprising because most organisms, be they diurnal or nocturnal, display daily oscillations in energy intake, locomotor activity, and exposure to exogenous and internally generated oxidants. The transcriptional clock controls the levels of many antioxidant proteins and redox-active cofactors, and, conversely, the cellular redox poise has been shown to feed back to the transcriptional oscillator via redox-sensitive transcription factors and enzymes. However, the circadian cycles in the S-sulfinylation of the peroxiredoxin (PRDX) proteins constituted the first example of an autonomous circadian redox oscillation, which occurred independently of the transcriptional clock. Importantly, the high phylogenetic conservation of these rhythms suggests that they might predate the evolution of the transcriptional oscillator, and therefore could be a part of a primordial circadian redox/metabolic oscillator. This discovery forced the reappraisal of the dogmatic transcription-centered view of the clockwork and opened a new avenue of research. Indeed, the investigation into the links between the circadian and redox systems is still in its infancy, and many important questions remain to be addressed.
Collapse
|
27
|
Uchida T, Funamizu T, Chen M, Tanaka Y, Ishimori K. Heme Binding to Porphobilinogen Deaminase from Vibrio cholerae Decelerates the Formation of 1-Hydroxymethylbilane. ACS Chem Biol 2018; 13:750-760. [PMID: 29360345 DOI: 10.1021/acschembio.7b00934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Porphobilinogen deaminase (PBGD) is an enzyme that catalyzes the formation of hydroxymethylbilane, a tetrapyrrole intermediate, during heme biosynthesis through the stepwise polymerization of four molecules of porphobilinogen. PBGD from Vibrio cholerae was expressed in Escherichia coli and characterized in this study. Unexpectedly, spectroscopic measurements revealed that PBGD bound one equivalent of heme with a dissociation constant of 0.33 ± 0.01 μM. The absorption and resonance Raman spectra suggested that heme is a mixture of the 5-coordinate and 6-coordinate hemes. Mutational studies indicated that the 5-coordinate heme possessed Cys105 as a heme axial ligand, and His227 was coordinated to form the 6-coordinate heme. Upon heme binding, the deamination activity decreased by approximately 15%. The crystal structure of PBGD revealed that His227 was located near Cys105, but the side chain of His227 did not point toward Cys105. The addition of the cyanide ion to heme-PBGD abolished the effect of heme binding on the enzymatic activity. Therefore, coordination of His227 to heme appeared to induce reorientation of the domains containing Cys105, leading to a decrease in the enzymatic activity. This is the first report indicating that the PBGD activity is controlled by heme, the final product of heme biosynthesis. This finding improves our understanding of the mechanism by which heme biosynthesis is regulated.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takumi Funamizu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Minghao Chen
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoshikazu Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- PRESTO, Japan Science and Technology Agency, Sapporo 060-0810, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
28
|
Mourer T, Normant V, Labbé S. Heme Assimilation in Schizosaccharomyces pombe Requires Cell-surface-anchored Protein Shu1 and Vacuolar Transporter Abc3. J Biol Chem 2017; 292:4898-4912. [PMID: 28193844 DOI: 10.1074/jbc.m117.776807] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/08/2017] [Indexed: 12/12/2022] Open
Abstract
The Schizosaccharomyces pombe shu1+ gene encodes a cell-surface protein required for assimilation of exogenous heme. In this study, shaving experiments showed that Shu1 is released from membrane preparations when spheroplast lysates are incubated with phosphoinositide-specific phospholipase C (PI-PLC). Shu1 cleavability by PI-PLC and its predicted hydropathy profile strongly suggested that Shu1 is a glycosylphosphatidylinositol-anchored protein. When heme biosynthesis is selectively blocked in hem1Δ mutant cells, the heme analog zinc mesoporphyrin IX (ZnMP) first accumulates into vacuoles and then subsequently, within the cytoplasm in a rapid and Shu1-dependent manner. An HA4-tagged shu1+ allele that retained wild-type function localizes to the cell surface in response to low hemin concentrations, but under high hemin concentrations, Shu1-HA4 re-localizes to the vacuolar membrane. Inactivation of abc3+, encoding a vacuolar membrane transporter, results in hem1Δ abc3Δ mutant cells being unable to grow in the presence of hemin as the sole iron source. In hem1Δ abc3Δ cells, ZnMP accumulates primarily in vacuoles and does not sequentially accumulate in the cytosol. Consistent with a role for Abc3 as vacuolar hemin exporter, results with hemin-agarose pulldown assays showed that Abc3 binds to hemin. In contrast, an Abc3 mutant in which an inverted Cys-Pro motif had been replaced with Ala residues fails to bind hemin with high affinity. Taken together, these results show that Shu1 undergoes rapid hemin-induced internalization from the cell surface to the vacuolar membrane and that the transporter Abc3 participates in the mobilization of stored heme from the vacuole to the cytosol.
Collapse
Affiliation(s)
- Thierry Mourer
- From the Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Vincent Normant
- From the Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Simon Labbé
- From the Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| |
Collapse
|
29
|
Brewitz HH, Hagelueken G, Imhof D. Structural and functional diversity of transient heme binding to bacterial proteins. Biochim Biophys Acta Gen Subj 2017; 1861:683-697. [DOI: 10.1016/j.bbagen.2016.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 11/27/2022]
|
30
|
Wißbrock A, Kühl T, Silbermann K, Becker AJ, Ohlenschläger O, Imhof D. Synthesis and Evaluation of Amyloid β Derived and Amyloid β Independent Enhancers of the Peroxidase-like Activity of Heme. J Med Chem 2016; 60:373-385. [DOI: 10.1021/acs.jmedchem.6b01432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Amelie Wißbrock
- Pharmaceutical
Chemistry I, Pharmaceutical Institute, University of Bonn, Brühler Strasse 7, 53119 Bonn, Germany
| | - Toni Kühl
- Pharmaceutical
Chemistry I, Pharmaceutical Institute, University of Bonn, Brühler Strasse 7, 53119 Bonn, Germany
| | - Katja Silbermann
- Pharmaceutical
Chemistry I, Pharmaceutical Institute, University of Bonn, Brühler Strasse 7, 53119 Bonn, Germany
| | - Albert J. Becker
- Institute
of Neuropathology, University Hospital Bonn, Sigmund Freud Strasse 25, 53105 Bonn, Germany
| | - Oliver Ohlenschläger
- Leibniz Institute on Aging−Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Diana Imhof
- Pharmaceutical
Chemistry I, Pharmaceutical Institute, University of Bonn, Brühler Strasse 7, 53119 Bonn, Germany
| |
Collapse
|
31
|
Nagy Z, Marta A, Butz H, Liko I, Racz K, Patocs A. Modulation of the circadian clock by glucocorticoid receptor isoforms in the H295R cell line. Steroids 2016; 116:20-27. [PMID: 27725099 DOI: 10.1016/j.steroids.2016.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022]
Abstract
Peripheral clocks are set by different nervous, hormonal and metabolic stimuli, and regulate the circadian expression of several genes. We investigated whether a peripheral clock could be induced in the human adrenocortical cell line H295R and whether glucocorticoid receptor isoforms (GRα and GRß) are involved in this clock system. After synchronization of cells with serum shock, the rhythmic oscillation of clock genes PER1, PER2, REV-ERBα, and ARNTL was confirmed. In addition, H295R cells even without serum shock showed rhythmic expression of PER1, PER2, CRY1 and ARNTL. Glucocorticoid treatment induced a rapid response of PER1, PER2 and CRY1 in a GRα-dependent manner. Continuous glucocorticoid stimulation after 6h caused suppression of REV-ERBα. Administration of a GR antagonist, RU486, disrupted the circadian oscillation of clock genes and prevented the acute changes in PER1, PER2 and CRY1 levels. Overexpression of the GRß isoform alone did not alter the expression of the examined clock genes, but did prevent the GRα-related suppression of REV-ERBα. These alterations occurred independently from ACTH and CRH. Our data demonstrate that a peripheral clock system is present in a human adrenocortical cell line and that periodic oscillations of clock genes are influenced by glucocorticoids, mainly through GRα.
Collapse
Affiliation(s)
- Zsolt Nagy
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Hungarian Academy of Sciences-Semmelweis University "Lendulet" Hereditary Endocrine Tumors Research Group, Budapest, Hungary
| | - Alexa Marta
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Henriett Butz
- Hungarian Academy of Sciences-Semmelweis University Molecular Medicine Research Group, Budapest, Hungary
| | - Istvan Liko
- Hungarian Academy of Sciences-Semmelweis University "Lendulet" Hereditary Endocrine Tumors Research Group, Budapest, Hungary
| | - Karoly Racz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Hungarian Academy of Sciences-Semmelweis University Molecular Medicine Research Group, Budapest, Hungary
| | - Attila Patocs
- Hungarian Academy of Sciences-Semmelweis University "Lendulet" Hereditary Endocrine Tumors Research Group, Budapest, Hungary; Department of Laboratory Medicine Institute, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
32
|
Interactions Between the Circadian Clock and Heme Oxygenase in the Retina of Drosophila melanogaster. Mol Neurobiol 2016; 54:4953-4962. [PMID: 27520276 PMCID: PMC5533861 DOI: 10.1007/s12035-016-0026-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/01/2016] [Indexed: 01/14/2023]
Abstract
The Drosophila retina has an autonomous peripheral circadian clock in which the expression of the gene encoding heme oxygenase (HO) is under circadian control with the ho mRNA peaking at the beginning of the day and in the middle of the night. The function of HO in the retina is unknown, but we observed that it regulates the circadian clock and protects photoreceptors against DNA damage. The decline in HO level increases and decreases the expression of the canonical clock genes period (per) and Clock (Clk), respectively. The opposite result was observed after increasing HO expression. Among three products of HO activity—carbon monoxide (CO), ferrous ions, and biliverdin—the latter has no effect on per and Clk expressions, but CO exerts the same effect as the increase of ho expression. This suggests that HO action on the clock is mediated by CO, which may affect Clk expression during the day and the level of per expression. While ho expression is not stimulated by nitric oxide (NO), NO has the same effect on the clock as HO, increasing Clk expression and decreasing the expression of per.
Collapse
|
33
|
Soares MP, Hamza I. Macrophages and Iron Metabolism. Immunity 2016; 44:492-504. [PMID: 26982356 PMCID: PMC4794998 DOI: 10.1016/j.immuni.2016.02.016] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 12/14/2022]
Abstract
Iron is a transition metal that due to its inherent ability to exchange electrons with a variety of molecules is essential to support life. In mammals, iron exists mostly in the form of heme, enclosed within an organic protoporphyrin ring and functioning primarily as a prosthetic group in proteins. Paradoxically, free iron also has the potential to become cytotoxic when electron exchange with oxygen is unrestricted and catalyzes the production of reactive oxygen species. These biological properties demand that iron metabolism is tightly regulated such that iron is available for core biological functions while preventing its cytotoxic effects. Macrophages play a central role in establishing this delicate balance. Here, we review the impact of macrophages on heme-iron metabolism and, reciprocally, how heme-iron modulates macrophage function.
Collapse
Affiliation(s)
- Miguel P Soares
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Iqbal Hamza
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
34
|
Carter EL, Gupta N, Ragsdale SW. High Affinity Heme Binding to a Heme Regulatory Motif on the Nuclear Receptor Rev-erbβ Leads to Its Degradation and Indirectly Regulates Its Interaction with Nuclear Receptor Corepressor. J Biol Chem 2015; 291:2196-222. [PMID: 26670607 DOI: 10.1074/jbc.m115.670281] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 01/11/2023] Open
Abstract
Rev-erbα and Rev-erbβ are heme-binding nuclear receptors (NR) that repress the transcription of genes involved in regulating metabolism, inflammation, and the circadian clock. Previous gene expression and co-immunoprecipitation studies led to a model in which heme binding to Rev-erbα recruits nuclear receptor corepressor 1 (NCoR1) into an active repressor complex. However, in contradiction, biochemical and crystallographic studies have shown that heme decreases the affinity of the ligand-binding domain of Rev-erb NRs for NCoR1 peptides. One explanation for this discrepancy is that the ligand-binding domain and NCoR1 peptides used for in vitro studies cannot replicate the key features of the full-length proteins used in cellular studies. However, the combined in vitro and cellular results described here demonstrate that heme does not directly promote interactions between full-length Rev-erbβ (FLRev-erbβ) and an NCoR1 construct encompassing all three NR interaction domains. NCoR1 tightly binds both apo- and heme-replete FLRev-erbβ·DNA complexes; furthermore, heme, at high concentrations, destabilizes the FLRev-erbβ·NCoR1 complex. The interaction between FLRev-erbβ and NCoR1 as well as Rev-erbβ repression at the Bmal1 promoter appear to be modulated by another cellular factor(s), at least one of which is related to the ubiquitin-proteasome pathway. Our studies suggest that heme is involved in regulating the degradation of Rev-erbβ in a manner consistent with its role in circadian rhythm maintenance. Finally, the very slow rate constant (10(-6) s(-1)) of heme dissociation from Rev-erbβ rules out a prior proposal that Rev-erbβ acts as an intracellular heme sensor.
Collapse
Affiliation(s)
- Eric L Carter
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Nirupama Gupta
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Stephen W Ragsdale
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
35
|
Brewitz HH, Kühl T, Goradia N, Galler K, Popp J, Neugebauer U, Ohlenschläger O, Imhof D. Role of the Chemical Environment beyond the Coordination Site: Structural Insight into Fe(III) Protoporphyrin Binding to Cysteine-Based Heme-Regulatory Protein Motifs. Chembiochem 2015; 16:2216-24. [PMID: 26260099 DOI: 10.1002/cbic.201500331] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/17/2022]
Abstract
The importance of heme as a transient regulatory molecule has become a major focus in biochemical research. However, detailed information about the molecular basis of transient heme-protein interactions is still missing. We report an in-depth structural analysis of Fe(III) heme-peptide complexes by a combination of UV/Vis, resonance Raman, and 2D-NMR spectroscopic methods. The experiments reveal insights both into the coordination to the central iron ion and into the spatial arrangement of the amino acid sequences interacting with protoporphyrin IX. Cysteine-based peptides display different heme-binding behavior as a result of the existence of ordered, partially ordered, and disordered conformations in the heme-unbound state. Thus, the heme-binding mode is clearly the consequence of the nature and flexibility of the residues surrounding the iron ion coordinating cysteine. Our analysis reveals scenarios for transient binding of heme to heme-regulatory motifs in proteins and demonstrates that a thorough structural analysis is required to unravel how heme alters the structure and function of a particular protein.
Collapse
Affiliation(s)
- Hans Henning Brewitz
- Department of Pharmaceutical Chemistry I, Pharmaceutical Institute, University of Bonn, Brühler Strasse 7, 53119, Bonn, Germany
| | - Toni Kühl
- Centre National de la Recherche Scientifique (CNRS), Laboratoire BIP-UMR 7281, 31, chemin Joseph Aiguier, Batiment IM, 13009, Marseille, France
| | - Nishit Goradia
- Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Kerstin Galler
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany.,Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Jürgen Popp
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany.,Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany.,Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Oliver Ohlenschläger
- Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Diana Imhof
- Department of Pharmaceutical Chemistry I, Pharmaceutical Institute, University of Bonn, Brühler Strasse 7, 53119, Bonn, Germany.
| |
Collapse
|
36
|
Rey G, Reddy AB. Interplay between cellular redox oscillations and circadian clocks. Diabetes Obes Metab 2015; 17 Suppl 1:55-64. [PMID: 26332969 DOI: 10.1111/dom.12519] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022]
Abstract
The circadian clock is a cellular timekeeping mechanism that helps organisms from bacteria to humans to organize their behaviour and physiology around the solar cycle. Current models for circadian timekeeping incorporate transcriptional/translational feedback loop mechanisms in the predominant model systems. However, recent evidence suggests that non-transcriptional oscillations such as metabolic and redox cycles may play a fundamental role in circadian timekeeping. Peroxiredoxins, an antioxidant protein family, undergo rhythmic oxidation on the circadian time scale in a variety of species, including bacteria, insects and mammals, but also in red blood cells, a naturally occurring, non-transcriptional system. The profound interconnectivity between circadian and redox pathways strongly suggests that a conserved timekeeping mechanism based on redox cycles could be integral to generating circadian rhythms.
Collapse
Affiliation(s)
- G Rey
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, NIHR Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - A B Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, NIHR Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Milev NB, Reddy AB. Circadian redox oscillations and metabolism. Trends Endocrinol Metab 2015; 26:430-7. [PMID: 26113283 PMCID: PMC5122445 DOI: 10.1016/j.tem.2015.05.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/12/2022]
Abstract
Circadian rhythms are 24h oscillations in physiology and behavior which allow organisms to anticipate and adapt to daily demands associated with the day/night cycle. The currently accepted model of the molecular clockwork is described as a transcriptional process composed of negative regulatory feedback loops. However, ample evidence underlines the important contribution of non-transcriptional and metabolic oscillations to cellular timekeeping. We summarize recent evidence pointing to the relationship between the transcriptional oscillator and metabolic redox state, with particular emphasis on the potential nodes of interaction. We highlight the intrinsic difficulty in segregating these two tightly coupled and interdependent processes, in living systems, and how disruption of their synchronicity impacts upon (patho)physiological processes as diverse as cardiovascular and metabolic disorders, aging, and cancer.
Collapse
Affiliation(s)
- Nikolay B Milev
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institute for Health Research (NIHR) Biomedical Research Centre, Wellcome Trust-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Akhilesh B Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institute for Health Research (NIHR) Biomedical Research Centre, Wellcome Trust-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
38
|
Abstract
Iron is an essential nutrient, but it can also be toxic. Therefore, iron homeostasis must be strictly regulated. Transcriptional control of iron-dependent gene expression in the rhizobia and other taxa of the Alphaproteobacteria is fundamentally different from the Fur paradigm in Escherichia coli and other model systems. Rather than sense iron directly, the rhizobia employ the iron response regulator (Irr) to monitor and respond to the status of an iron-dependent process, namely, heme biosynthesis. This novel control mechanism allows iron homeostasis to be integrated with other cellular processes, and it permits differential control of iron regulon genes in a manner not readily achieved by Fur. Moreover, studies of Irr have defined a role for heme in conditional protein stability that has been subsequently described in eukaryotes. Finally, Irr-mediated control of iron metabolism may reflect a cellular strategy that accommodates a greater reliance on manganese.
Collapse
Affiliation(s)
- Mark R O'Brian
- Department of Biochemistry, State University of New York at Buffalo, New York 14214;
| |
Collapse
|
39
|
Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtíková V, Martínková M. Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev 2015; 115:6491-533. [PMID: 26021768 DOI: 10.1021/acs.chemrev.5b00018] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Toru Shimizu
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
- §Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 983-8551, Japan
| | - Dongyang Huang
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fang Yan
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Martin Stranava
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Martina Bartosova
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Veronika Fojtíková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Markéta Martínková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| |
Collapse
|
40
|
Schubert E, Florin N, Duthie F, Henning Brewitz H, Kühl T, Imhof D, Hagelueken G, Schiemann O. Spectroscopic studies on peptides and proteins with cysteine-containing heme regulatory motifs (HRM). J Inorg Biochem 2015; 148:49-56. [DOI: 10.1016/j.jinorgbio.2015.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/15/2015] [Accepted: 05/15/2015] [Indexed: 11/16/2022]
|
41
|
How is the inner circadian clock controlled by interactive clock proteins?: Structural analysis of clock proteins elucidates their physiological role. FEBS Lett 2015; 589:1516-29. [PMID: 25999309 DOI: 10.1016/j.febslet.2015.05.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022]
Abstract
Most internationally travelled researchers will have encountered jetlag. If not, working odd hours makes most of us feel somehow dysfunctional. How can all this be linked to circadian rhythms and circadian clocks? In this review, we define circadian clocks, their composition and underlying molecular mechanisms. We describe and discuss recent crystal structures of Drosophila and mammalian core clock components and the enormous impact they had on the understanding of circadian clock mechanisms. Finally, we highlight the importance of circadian clocks for the daily regulation of human/mammalian physiology and show connections to overall fitness, health and disease.
Collapse
|
42
|
Crane BR, Young MW. Interactive features of proteins composing eukaryotic circadian clocks. Annu Rev Biochem 2015; 83:191-219. [PMID: 24905781 DOI: 10.1146/annurev-biochem-060713-035644] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Research into the molecular mechanisms of eukaryotic circadian clocks has proceeded at an electrifying pace. In this review, we discuss advances in our understanding of the structures of central molecular players in the timing oscillators of fungi, insects, and mammals. A series of clock protein structures demonstrate that the PAS (Per/Arnt/Sim) domain has been used with great variation to formulate the transcriptional activators and repressors of the clock. We discuss how posttranslational modifications and external cues, such as light, affect the conformation and function of core clock components. Recent breakthroughs have also revealed novel interactions among clock proteins and new partners that couple the clock to metabolic and developmental pathways. Overall, a picture of clock function has emerged wherein conserved motifs and structural platforms have been elaborated into a highly dynamic collection of interacting molecules that undergo orchestrated changes in chemical structure, conformational state, and partners.
Collapse
Affiliation(s)
- Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853;
| | | |
Collapse
|
43
|
Gotoh T, Vila-Caballer M, Liu J, Schiffhauer S, Finkielstein CV. Association of the circadian factor Period 2 to p53 influences p53's function in DNA-damage signaling. Mol Biol Cell 2014; 26:359-72. [PMID: 25411341 PMCID: PMC4294682 DOI: 10.1091/mbc.e14-05-0994] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Association of the circadian Per2 factor to p53 results in cytosol–nuclear shuttling of the complex and further association to Mdm2. The trimeric complex remains in the nucleus until a genotoxic signal frees p53, allowing for a transcriptional checkpoint response. Circadian period proteins influence cell division and death by associating with checkpoint components, although their mode of regulation has not been firmly established. hPer2 forms a trimeric complex with hp53 and its negative regulator Mdm2. In unstressed cells, this association leads to increased hp53 stability by blocking Mdm2-dependent ubiquitination and transcription of hp53 target genes. Because of the relevance of hp53 in checkpoint signaling, we hypothesize that hPer2 association with hp53 acts as a regulatory module that influences hp53's downstream response to genotoxic stress. Unlike the trimeric complex, whose distribution was confined to the nuclear compartment, hPer2/hp53 was identified in both cytosol and nucleus. At the transcriptional level, a reporter containing the hp21WAF1/CIP1 promoter, a target of hp53, remained inactive in cells expressing a stable form of the hPer2/hp53 complex even when treated with γ-radiation. Finally, we established that hPer2 directly acts on the hp53 node, as checkpoint components upstream of hp53 remained active in response to DNA damage. Quantitative transcriptional analyses of hp53 target genes demonstrated that unbound hp53 was absolutely required for activation of the DNA-damage response. Our results provide evidence of the mode by which the circadian tumor suppressor hPer2 modulates hp53 signaling in response to genotoxic stress.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Marian Vila-Caballer
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Jingjing Liu
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Samuel Schiffhauer
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| |
Collapse
|
44
|
Ishimori K, Watanabe Y. Unique Heme Environmental Structures in Heme-regulated Proteins Using Heme as the Signaling Molecule. CHEM LETT 2014. [DOI: 10.1246/cl.140787] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Yuta Watanabe
- Department of Chemistry, Faculty of Science, Hokkaido University
| |
Collapse
|
45
|
Kühl T, Imhof D. Regulatory Fe(II/III) heme: the reconstruction of a molecule's biography. Chembiochem 2014; 15:2024-35. [PMID: 25196849 DOI: 10.1002/cbic.201402218] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Indexed: 11/10/2022]
Abstract
More than 20 years of research on heme as a temporary effector molecule of proteins have revealed its widespread impact on virtually all primary functions in the human organism. As our understanding of this influence is still growing, a comprehensive overview of compiled data will give fresh impetus for creativity and developing new strategies in heme-related research. From known data concerning heme-regulated proteins and their involvement in the development of diseases, we provide concise information of Fe(II/III) heme as a regulator and the availability of "regulatory heme". The latter is dependent on the balance between free and bound Fe(II/III) heme, here termed "hemeostasis". Imbalance of this system can lead to the development of diseases that were not always attributed to this small molecule. Diseases such as cancer or Alzheimer's disease highlight the reawakened interest in heme, whose function was previously believed to be completely understood.
Collapse
Affiliation(s)
- Toni Kühl
- Pharmaceutical Chemistry I, Pharmaceutical Institute, University of Bonn, Brühler Strasse 7, 53119 Bonn (Germany).
| | | |
Collapse
|
46
|
Gotoh T, Vila-Caballer M, Santos CS, Liu J, Yang J, Finkielstein CV. The circadian factor Period 2 modulates p53 stability and transcriptional activity in unstressed cells. Mol Biol Cell 2014; 25:3081-93. [PMID: 25103245 PMCID: PMC4230596 DOI: 10.1091/mbc.e14-05-0993] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Period 2 forms a trimeric complex with p53 and Mdm2. As a result, p53’s transcriptional activity and stability are modulated in unstressed cells, ensuring that basal levels are present if a p53-mediated response is needed. These data provide evidence of cross-talk between circadian and checkpoint components, adding a level of regulation to the checkpoint. Human Period 2 (hPer2) is a transcriptional regulator at the core of the circadian clock mechanism that is responsible for generating the negative feedback loop that sustains the clock. Its relevance to human disease is underlined by alterations in its function that affect numerous biochemical and physiological processes. When absent, it results in the development of various cancers and an increase in the cell's susceptibility to genotoxic stress. Thus we sought to define a yet-uncharacterized checkpoint node in which circadian components integrate environmental stress signals to the DNA-damage response. We found that hPer2 binds the C-terminal half of human p53 (hp53) and forms a stable trimeric complex with hp53’s negative regulator, Mdm2. We determined that hPer2 binding to hp53 prevents Mdm2 from being ubiquitinated and targeting hp53 by the proteasome. Down-regulation of hPer2 expression directly affects hp53 levels, whereas its overexpression influences both hp53 protein stability and transcription of targeted genes. Overall our findings place hPer2 directly at the heart of the hp53-mediated response by ensuring that basal levels of hp53 are available to precondition the cell when a rapid, hp53-mediated, transcriptional response is needed.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Marian Vila-Caballer
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Carlo S Santos
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Jingjing Liu
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Jianhua Yang
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| |
Collapse
|
47
|
Zhang C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell 2014; 5:750-60. [PMID: 25000876 PMCID: PMC4180463 DOI: 10.1007/s13238-014-0083-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/04/2014] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells contain numerous iron-requiring proteins such as iron-sulfur (Fe-S) cluster proteins, hemoproteins and ribonucleotide reductases (RNRs). These proteins utilize iron as a cofactor and perform key roles in DNA replication, DNA repair, metabolic catalysis, iron regulation and cell cycle progression. Disruption of iron homeostasis always impairs the functions of these iron-requiring proteins and is genetically associated with diseases characterized by DNA repair defects in mammals. Organisms have evolved multi-layered mechanisms to regulate iron balance to ensure genome stability and cell development. This review briefly provides current perspectives on iron homeostasis in yeast and mammals, and mainly summarizes the most recent understandings on iron-requiring protein functions involved in DNA stability maintenance and cell cycle control.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA,
| |
Collapse
|
48
|
Gillette MU, Wang TA. Brain circadian oscillators and redox regulation in mammals. Antioxid Redox Signal 2014; 20:2955-65. [PMID: 24111727 PMCID: PMC4038987 DOI: 10.1089/ars.2013.5598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/10/2013] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Functional states of organisms vary rhythmically with a period of about a day (i.e., circadian). This endogenous dynamic is shaped by day-night alternations in light and energy. Mammalian circadian rhythms are orchestrated by the hypothalamic suprachiasmatic nucleus (SCN), a brain region specialized for timekeeping. These autonomous ~24-h oscillations are cell-based, requiring transcription-translation-based regulation. SCN circadian oscillations include the maintenance of intrinsic rhythms, sensitivities to input signals, and generation of output signals. These change predictably as time proceeds from dawn to day, dusk, and through the night. SCN neuronal excitability, a highly energy-demanding process, also oscillates over ~24 h. The nature of the relationship of cellular metabolism and excitability had been unknown. RECENT ADVANCES Global SCN redox state was found to undergo an autonomous circadian rhythm. Redox state is relatively reduced in daytime, when neuronal activity is high, and oxidized during nighttime, when neurons are relatively inactive. Redox modulates neuronal excitability via tight coupling: imposed reducing or oxidizing shifts immediately alter membrane excitability. Whereas an intact transcription-translation oscillator is necessary for the redox oscillation, metabolic modulation of excitability is too rapid to be under clockwork control. CRITICAL ISSUES Our observations lead to the hypothesis that redox state and neuronal activity are coupled nontranscriptional circadian oscillators in SCN neurons. Critical issues include discovering molecular and cellular substrates and functional consequences of this redox oscillator. FUTURE DIRECTIONS Understanding interdependencies between cellular energy metabolism, neuronal activity, and circadian rhythms is critical to developing therapeutic strategies for treating neurodegenerative diseases and brain metabolic syndromes.
Collapse
Affiliation(s)
- Martha U. Gillette
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Tongfei A. Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
49
|
Tzou WS, Chu Y, Lin TY, Hu CH, Pai TW, Liu HF, Lin HJ, Cases I, Rojas A, Sanchez M, You ZY, Hsu MW. Molecular evolution of multiple-level control of heme biosynthesis pathway in animal kingdom. PLoS One 2014; 9:e86718. [PMID: 24489775 PMCID: PMC3904948 DOI: 10.1371/journal.pone.0086718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/12/2013] [Indexed: 01/23/2023] Open
Abstract
Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5′ untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway.
Collapse
Affiliation(s)
- Wen-Shyong Tzou
- Department of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail:
| | - Ying Chu
- Department of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Tzung-Yi Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chin-Hwa Hu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsin-Fu Liu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Han-Jia Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ildeofonso Cases
- Computational Cell Biology Group, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Barcelona, Spain
| | - Ana Rojas
- Computational Cell Biology Group, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Barcelona, Spain
| | - Mayka Sanchez
- Cancer and Iron Group, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Barcelona, Spain
| | - Zong-Ye You
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ming-Wei Hsu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
50
|
Abstract
Circadian clocks are cellular timekeeping mechanisms that coordinate behavior and physiology around the 24-h day in most living organisms. Misalignment of an organism's clock with its environment is associated with long-term adverse fitness consequences, as exemplified by the link between circadian disruption and various age-related diseases in humans. Current eukaryotic models of the circadian oscillator rely on transcription/translation feedback loop mechanisms, supplemented with accessory cytosolic loops that connect them to cellular physiology. However, mounting evidence is questioning the absolute necessity of transcription-based oscillators for circadian rhythmicity, supported by the recent discovery of oxidation-reduction cycles of peroxiredoxin proteins, which persist even in the absence of transcription. A more fundamental mechanism based on metabolic cycles could thus underlie circadian transcriptional and cytosolic rhythms, thereby promoting circadian oscillations to integral properties of cellular metabolism.
Collapse
Affiliation(s)
- Akhilesh B. Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Center, and Wellcome Trust–Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Guillaume Rey
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Center, and Wellcome Trust–Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|