1
|
Tong H, Zhang J, Jiang L, Qu R, Lu T, Hu J. Antiviral activity of HuaganJiedu decoction (HGJDD) against hepatitis B virus (HBV) through FOXO4/ERK/HNF4α signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119238. [PMID: 39701219 DOI: 10.1016/j.jep.2024.119238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic hepatitis B virus (HBV) infection is still a widespread global health issue. HuaganJiedu Decoction (HGJDD) is a common prescription for treating HBV in China, which has the effect of enhancing antiviral efficacy and improving clinical efficacy. However, its precise mechanism of action remains unclear, warranting further investigation to elucidate its therapeutic potential and integration into standard medical practices. AIM OF THE STUDY This study aims to explore the therapeutic mechanism of HuaganJiedu Decoction (HGJDD) in HBV. MATERIALS AND METHODS We investigated the therapeutic potential of HGJDD, and LC-MS analysis characterized the chemical profile of HGJDD. In vitro, we utilized HepG2.2.15 cell line to assess cytotoxicity and treatment efficacy of HGJDD compared to Entecavir controls. In vivo, assessments included monitoring HBV-related biomarkers and viral load. Network pharmacology and RNA-seq analyses identified molecular pathways and targets influenced by HGJDD treatment. Immunofluorescence and Western blotting provided further insights into the therapeutic mechanisms underlying HGJDD for HBV. RESULTS HGJDD showed no toxicity on HepG2.2.15 cells at 10%, 20%, 40%, and 80% serum concentrations. In vitro, HGJDD reduced HBsAg, HBeAg, and HBV DNA levels by dose-dependently and time-dependently. HGJDD can decrease the levels of HBsAg, HBeAg, and HBV DNA in serum and liver levels, meanwhile the therapeutic effect of high-dose HGJDD approach to EVT's in HBV Tg mice. According to intersection of network pharmacology and transcriptome, FOXO signal pathway was highlighted as potential targets and Immunofluorescence find that FOXO4D protein expression lever was increased in three HGJDD group, especially in high-dose HGJDD group. Western blotting confirmed increased level of FOXO4, ERK, and p-ERK and decreased levels of HNF4α, which reflected that the therapeutic effect was closely to FOXO4/ERK/HNF4α signal pathway. CONCLUSIONS Traditional Chinese medicine (TCM) offers diverse herbal treatments for HBV, with HGJDD showing efficacy in reducing HBsAg, HBeAg, and HBV DNA levels at cellular and animal levels. This study identified that FOXO4/ERK/HNF4α signal pathway played an important role in HGJDD's therapeutic effects. These findings support HGJDD's potential in HBV treatment, providing a scientific basis for clinical use.
Collapse
Affiliation(s)
- Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lijie Jiang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Rendong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Tao Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Jingqing Hu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Ehle C, Iyer-Bierhoff A, Wu Y, Xing S, Kiehntopf M, Mosig AS, Godmann M, Heinzel T. Downregulation of HNF4A enables transcriptomic reprogramming during the hepatic acute-phase response. Commun Biol 2024; 7:589. [PMID: 38755249 PMCID: PMC11099168 DOI: 10.1038/s42003-024-06288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
The hepatic acute-phase response is characterized by a massive upregulation of serum proteins, such as haptoglobin and serum amyloid A, at the expense of liver homeostatic functions. Although the transcription factor hepatocyte nuclear factor 4 alpha (HNF4A) has a well-established role in safeguarding liver function and its cistrome spans around 50% of liver-specific genes, its role in the acute-phase response has received little attention so far. We demonstrate that HNF4A binds to and represses acute-phase genes under basal conditions. The reprogramming of hepatic transcription during inflammation necessitates loss of HNF4A function to allow expression of acute-phase genes while liver homeostatic genes are repressed. In a pre-clinical liver organoid model overexpression of HNF4A maintained liver functionality in spite of inflammation-induced cell damage. Conversely, HNF4A overexpression potently impaired the acute-phase response by retaining chromatin at regulatory regions of acute-phase genes inaccessible to transcription. Taken together, our data extend the understanding of dual HNF4A action as transcriptional activator and repressor, establishing HNF4A as gatekeeper for the hepatic acute-phase response.
Collapse
Affiliation(s)
- Charlotte Ehle
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Aishwarya Iyer-Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Yunchen Wu
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, 07745, Jena, Germany
- Marshall Laboratory of Biomedical Engineering, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shaojun Xing
- Marshall Laboratory of Biomedical Engineering, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Michael Kiehntopf
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, 07747, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Maren Godmann
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Thorsten Heinzel
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, 07745, Jena, Germany.
| |
Collapse
|
3
|
Wu Z, Zhao X, Li R, Wen X, Xiu Y, Long M, Li J, Huang X, Wen J, Dong X, Xu Y, Bai Z, Zhan X, Xiao X. The combination of Schisandrin C and Luteolin synergistically attenuates hepatitis B virus infection via repressing HBV replication and promoting cGAS-STING pathway activation in macrophages. Chin Med 2024; 19:48. [PMID: 38500179 PMCID: PMC10946137 DOI: 10.1186/s13020-024-00888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/16/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND HBV infection can result in severe liver diseases and is one of the primary causes of liver cell carcinoma-related mortality. Liuwei Wuling tablet (LWWL) is a traditional Chinese medicine formula, with a protecting liver and decreasing enzyme activity, usually used to treat chronic hepatitis B with NAs in clinic. However, its main active ingredients and mechanism of action have not been fully investigated. Hence, we aimed to screen the active ingredient and effective ingredient combinations from Liuwei Wuling tablet to explore the anti-herpatitis B virus activity and mechanism. METHODS Analysis and screening of effective antiviral components in LWWL by network pharmacology, luteolin (Lut) may be a compound with significant antiviral activity. The mechanism of antiviral action of Lut was also found by real-time PCR detection and western blotting. Meanwhile, we established a co-culture model to investigate the antiviral mechanism of Schisandrin C (SC), one of the main active components of Schisandra chinensis fructus (the sovereign drug of LWWL). Next, HBV-infected mice were established by tail vein injection of pAAV-HBV1.2 plasmid and administered continuously for 20 days. And their antiviral capacity was evaluated by checking serum levels of HBsAg, HBeAg, levels of HBV DNA, and liver levels of HBcAg. RESULTS In this study, we conducted network pharmacology analysis on LWWL, and through in vitro experimental validation and data analysis, we found that luteolin (Lut) possessed obviously anti-HBV activity, inhibiting HBV replication by downregulating hepatocyte nuclear factor 4α (HNF4α) via the ERK pathway. Additionally, we established a co-culture system and proved that SC promoted activation of cGAS-STINIG pathway and IFN-β production in THP-1 cells to inhibit HBV replication in HepG2.2.15 cells. Moreover, we found the combination of SC and Lut shows a greater effect in inhibiting HBV compared to SC or Lut alone in HBV-infected mice. CONCLUSION Taken together, our study suggests that combination of SC and Lut may be potential candidate drug for the prevention and treatment of chronic hepatitis B.
Collapse
Affiliation(s)
- Zhixin Wu
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaomei Zhao
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ruisheng Li
- Research Institute of Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xinru Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ye Xiu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Minjuan Long
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Junjie Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiuqin Huang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jincai Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xu Dong
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yingjie Xu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Beijing, China.
| | - Xiaoyan Zhan
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Beijing, China.
| | - Xiaohe Xiao
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China.
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Beijing, China.
| |
Collapse
|
4
|
Murray J, Martin DE, Sancilio FD, Tripp RA. Antiviral Activity of Probenecid and Oseltamivir on Influenza Virus Replication. Viruses 2023; 15:2366. [PMID: 38140606 PMCID: PMC10748304 DOI: 10.3390/v15122366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza can cause respiratory infections, leading to significant morbidity and mortality in humans. While current influenza vaccines offer varying levels of protection, there remains a pressing need for effective antiviral drugs to supplement vaccine efforts. Currently, the FDA-approved antiviral drugs for influenza include oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These antivirals primarily target the virus, making them vulnerable to drug resistance. In this study, we evaluated the efficacy of the neuraminidase inhibitor, oseltamivir, against probenecid, which targets the host cells and is less likely to engender resistance. Our results show that probenecid has superior antiviral efficacy compared to oseltamivir in both in vitro replication assays and in vivo mouse models of influenza infection.
Collapse
Affiliation(s)
- Jackelyn Murray
- Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - David E. Martin
- TrippBio, Inc., Jacksonville, FL 32256, USA; (D.E.M.); (F.D.S.)
| | | | - Ralph A. Tripp
- Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
- TrippBio, Inc., Jacksonville, FL 32256, USA; (D.E.M.); (F.D.S.)
| |
Collapse
|
5
|
Lou B, Ma G, Yu X, Lv F, Xu F, Sun C, Chen Y. Deubiquitinase OTUD5 promotes hepatitis B virus replication by removing K48-linked ubiquitination of HBV core/precore and upregulates HNF4ɑ expressions by inhibiting the ERK1/2/mitogen-activated protein kinase pathway. Cell Mol Life Sci 2023; 80:336. [PMID: 37897511 PMCID: PMC10613150 DOI: 10.1007/s00018-023-04995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023]
Abstract
Hepatitis B virus (HBV) infection is a major public health problem worldwide, causing nearly one million deaths annually. OTUD5 is a deubiquitinase associated with cancer development and innate immunity response. However, the regulatory mechanisms of OTUD5 underlying HBV replication need to be deeply elucidated. In the present investigation, we found that HBV induced significant up-regulation of OTUD5 protein in HBV-infected cells. Further study showed that OTUD5 interacted with HBV core/precore, removing their K48-linked ubiquitination chains and protecting their stability. Meanwhile, overexpression of OTUD5 could inhibit the MAPK pathway and then increase the expression of HNF4ɑ, and ERK1/2 signaling was required for OTUD5-mediated activation of HNF4α, promoting HBV replication. Together, these data indicate that OTUD5 could deubiquitinate HBV core protein degradation by its deubiquitinase function and promote HBV activity by up-regulating HNF4α expression via inhibition of the ERK1/2 pathway. These results might present a novel therapeutic strategy against HBV infection.
Collapse
Affiliation(s)
- Bin Lou
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Guanghua Ma
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China
| | - Feifei Lv
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China
| | - Fanjie Xu
- The Shengzhou Hospital of Traditional Chinese Medicine, Shaoxing, 312432, Zhejiang, China
| | - Chengdi Sun
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China
| | - Yu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China.
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China.
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
6
|
Radi SH, Vemuri K, Martinez-Lomeli J, Sladek FM. HNF4α isoforms: the fraternal twin master regulators of liver function. Front Endocrinol (Lausanne) 2023; 14:1226173. [PMID: 37600688 PMCID: PMC10438950 DOI: 10.3389/fendo.2023.1226173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
In the more than 30 years since the purification and cloning of Hepatocyte Nuclear Factor 4 (HNF4α), considerable insight into its role in liver function has been gleaned from its target genes and mouse experiments. HNF4α plays a key role in lipid and glucose metabolism and intersects with not just diabetes and circadian rhythms but also with liver cancer, although much remains to be elucidated about those interactions. Similarly, while we are beginning to elucidate the role of the isoforms expressed from its two promoters, we know little about the alternatively spliced variants in other portions of the protein and their impact on the 1000-plus HNF4α target genes. This review will address how HNF4α came to be called the master regulator of liver-specific gene expression with a focus on its role in basic metabolism, the contributions of the various isoforms and the intriguing intersection with the circadian clock.
Collapse
Affiliation(s)
- Sarah H. Radi
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Jose Martinez-Lomeli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
7
|
Joushomme A, Orlacchio R, Patrignoni L, Canovi A, Chappe YL, Poulletier De Gannes F, Hurtier A, Garenne A, Lagroye I, Moisan F, Cario M, Lévêque P, Arnaud-Cormos D, Percherancier Y. Effects of 5G-modulated 3.5 GHz radiofrequency field exposures on HSF1, RAS, ERK, and PML activation in live fibroblasts and keratinocytes cells. Sci Rep 2023; 13:8305. [PMID: 37221363 DOI: 10.1038/s41598-023-35397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/17/2023] [Indexed: 05/25/2023] Open
Abstract
The potential health risks of exposure to radiofrequency electromagnetic fields from mobile communications technologies have raised societal concerns. Guidelines have been set to protect the population (e.g. non-specific heating above 1 °C under exposure to radiofrequency fields), but questions remain regarding the potential biological effects of non-thermal exposures. With the advent of the fifth generation (5G) of mobile communication, assessing whether exposure to this new signal induces a cellular stress response is one of the mandatory steps on the roadmap for a safe deployment and health risk evaluation. Using the BRET (Bioluminescence Resonance Energy-Transfer) technique, we assessed whether continuous or intermittent (5 min ON/ 10 min OFF) exposure of live human keratinocytes and fibroblasts cells to 5G 3.5 GHz signals at specific absorption rate (SAR) up to 4 W/kg for 24 h impact basal or chemically-induced activity of Heat Shock Factor (HSF), RAt Sarcoma virus (RAS) and Extracellular signal-Regulated Kinases (ERK) kinases, and Promyelocytic Leukemia Protein (PML), that are all molecular pathways involved in environmental cell-stress responses. The main results are (i), a decrease of the HSF1 basal BRET signal when fibroblasts cells were exposed at the lower SARs tested (0.25 and 1 W/kg), but not at the highest one (4 W/kg), and (ii) a slight decrease of As2O3 maximal efficacy to trigger PML SUMOylation when fibroblasts cells, but not keratinocytes, were continuously exposed to the 5G RF-EMF signal. Nevertheless, given the inconsistency of these effects in terms of impacted cell type, effective SAR, exposure mode, and molecular cell stress response, we concluded that our study show no conclusive evidence that molecular effects can arise when skin cells are exposed to the 5G RF-EMF alone or with a chemical stressor.
Collapse
Affiliation(s)
- Alexandre Joushomme
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Rosa Orlacchio
- Limoges University, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
| | - Lorenza Patrignoni
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Anne Canovi
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Yann Loïck Chappe
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | | | - Annabelle Hurtier
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - André Garenne
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Isabelle Lagroye
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
- Paris Sciences et Lettres Research University, F-75006, Paris, France
| | - François Moisan
- Bordeaux University, INSERM, BMGIC Laboratory, UMR1035, F-33000, Bordeaux, France
| | - Muriel Cario
- Bordeaux University, INSERM, BMGIC Laboratory, UMR1035, F-33000, Bordeaux, France
| | - Philippe Lévêque
- Limoges University, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
| | - Delia Arnaud-Cormos
- Limoges University, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Yann Percherancier
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France.
| |
Collapse
|
8
|
Kaplow IM, Lawler AJ, Schäffer DE, Srinivasan C, Sestili HH, Wirthlin ME, Phan BN, Prasad K, Brown AR, Zhang X, Foley K, Genereux DP, Karlsson EK, Lindblad-Toh K, Meyer WK, Pfenning AR. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning. Science 2023; 380:eabm7993. [PMID: 37104615 PMCID: PMC10322212 DOI: 10.1126/science.abm7993] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2023] [Indexed: 04/29/2023]
Abstract
Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes.
Collapse
Affiliation(s)
- Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Heather H. Sestili
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kavya Prasad
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathleen Foley
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Diane P. Genereux
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Elinor K. Karlsson
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Berasain C, Arechederra M, Argemí J, Fernández-Barrena MG, Avila MA. Loss of liver function in chronic liver disease: An identity crisis. J Hepatol 2023; 78:401-414. [PMID: 36115636 DOI: 10.1016/j.jhep.2022.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 01/24/2023]
Abstract
Adult hepatocyte identity is constructed throughout embryonic development and fine-tuned after birth. A multinodular network of transcription factors, along with pre-mRNA splicing regulators, define the transcriptome, which encodes the proteins needed to perform the complex metabolic and secretory functions of the mature liver. Transient hepatocellular dedifferentiation can occur as part of the regenerative mechanisms triggered in response to acute liver injury. However, persistent downregulation of key identity genes is now accepted as a strong determinant of organ dysfunction in chronic liver disease, a major global health burden. Therefore, the identification of core transcription factors and splicing regulators that preserve hepatocellular phenotype, and a thorough understanding of how these networks become disrupted in diseased hepatocytes, is of high clinical relevance. In this context, we review the key players in liver differentiation and discuss in detail critical factors, such as HNF4α, whose impairment mediates the breakdown of liver function. Moreover, we present compelling experimental evidence demonstrating that restoration of core transcription factor expression in a chronically injured liver can reset hepatocellular identity, improve function and ameliorate structural abnormalities. The possibility of correcting the phenotype of severely damaged and malfunctional livers may reveal new therapeutic opportunities for individuals with cirrhosis and advanced liver disease.
Collapse
Affiliation(s)
- Carmen Berasain
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| | - Maria Arechederra
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Josepmaria Argemí
- Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain; Liver Unit, Clinica Universidad de Navarra, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Matías A Avila
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| |
Collapse
|
10
|
Lee HW, Choi Y, Lee AR, Yoon CH, Kim KH, Choi BS, Park YK. Hepatocyte Growth Factor-Dependent Antiviral Activity of Activated cdc42-Associated Kinase 1 Against Hepatitis B Virus. Front Microbiol 2022; 12:800935. [PMID: 35003030 PMCID: PMC8733702 DOI: 10.3389/fmicb.2021.800935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
Activated cdc42-associated kinase 1 (ACK1) is a well-known non-receptor tyrosine kinase that regulates cell proliferation and growth through activation of cellular signaling pathways, including mitogen-activated protein kinase (MAPK). However, the anti-HBV activity of ACK1 has not been elucidated. This study aimed to investigate the role of ACK1 in the HBV life cycle and the mechanism underlying the anti-HBV activity of ACK1. To examine the antiviral activity of ACK1, we established HepG2-ACK1 cells stably overexpressing ACK1. The HBV life cycle, including HBeAg/HBsAg secretion, HBV DNA/transcription, and enhancer activity, was analyzed in HepG2 and HepG2-ACK1 cells with HBV replication-competent HBV 1.2mer (HBV 1.2). Finally, the anti-HBV activity of ACK1 was examined in an HBV infection system. ACK1 suppressed HBV gene expression and transcription in HepG2 and HepG2-ACK1 cells. Furthermore, ACK1 inhibited HBV replication by decreasing viral enhancer activity. ACK1 exhibited its anti-HBV activity via activation of Erk1/2, which consequently downregulated the expression of HNF4α binding to HBV enhancers. Furthermore, hepatocyte growth factor (HGF) induced ACK1 expression at an early stage. Finally, ACK1 mediated the antiviral effect of HGF in the HBV infection system. These results indicated that ACK1 induced by HGF inhibited HBV replication at the transcriptional level by activating the MAPK-HNF signaling pathway. Our findings suggest that ACK1 is a potentially novel upstream molecule of MAPK-mediated anti-HBV activity.
Collapse
Affiliation(s)
- Hye Won Lee
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, National Institute of Infectious Disease, National Institute of Health, Cheongju, South Korea
| | - Yongwook Choi
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, National Institute of Infectious Disease, National Institute of Health, Cheongju, South Korea
| | - Ah Ram Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, South Korea
| | - Cheol-Hee Yoon
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, National Institute of Infectious Disease, National Institute of Health, Cheongju, South Korea
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, South Korea
| | - Byeong-Sun Choi
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, National Institute of Infectious Disease, National Institute of Health, Cheongju, South Korea
| | - Yong Kwang Park
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, National Institute of Infectious Disease, National Institute of Health, Cheongju, South Korea
| |
Collapse
|
11
|
Xie M, Guo H, Lou G, Yao J, Liu Y, Sun Y, Yang Z, Zheng M. Neddylation inhibitor MLN4924 has anti-HBV activity via modulating the ERK-HNF1α-C/EBPα-HNF4α axis. J Cell Mol Med 2020; 25:840-854. [PMID: 33263949 PMCID: PMC7812279 DOI: 10.1111/jcmm.16137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major public health problem. The high levels of HBV DNA and HBsAg are positively associated with the development of secondary liver diseases, including hepatocellular carcinoma (HCC). Current treatment with nucleos(t)ide analogues mainly reduces viral DNA, but has minimal, if any, inhibitory effect on the viral antigen. Although IFN reduces both HBV DNA and HBsAg, the serious associated side effects limit its use in clinic. Thus, there is an urgent demanding for novel anti‐HBV therapy. In our study, viral parameters were determined in the supernatant of HepG2.2.15 cells, HBV‐expressing Huh7 and HepG2 cells which transfected with HBV plasmids and in the serum of HBV mouse models with hydrodynamic injection of pAAV‐HBV1.2 plasmid. RT‐qPCR and Southern blot were performed to detect 35kb mRNA and cccDNA. RT‐qPCR, Luciferase assay and Western blot were used to determine anti‐HBV effects of MLN4924 and the underlying mechanisms. We found that treatment with MLN4924, the first‐in‐class neddylation inhibitor currently in several phase II clinical trials for anti‐cancer application, effectively suppressed production of HBV DNA, HBsAg, 3.5kb HBV RNA as well as cccDNA. Mechanistically, MLN4924 blocks cullin neddylation and activates ERK to suppress the expression of several transcription factors required for HBV replication, including HNF1α, C/EBPα and HNF4α, leading to an effective blockage in the production of cccDNA and HBV antigen. Our study revealed that neddylation inhibitor MLN4924 has impressive anti‐HBV activity by inhibiting HBV replication, thus providing sound rationale for future MLN4924 clinical trial as a novel anti‐HBV therapy.
Collapse
Affiliation(s)
- Mingjie Xie
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huiting Guo
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Guohua Lou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jiping Yao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yanning Liu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Zhenggang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
12
|
Control of Cell Identity by the Nuclear Receptor HNF4 in Organ Pathophysiology. Cells 2020; 9:cells9102185. [PMID: 32998360 PMCID: PMC7600215 DOI: 10.3390/cells9102185] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor family whose expression and activities are restricted to a limited number of organs including the liver and gastrointestinal tract. In this review, we present robust evidence pointing to HNF4 as a master regulator of cellular differentiation during development and a safekeeper of acquired cell identity in adult organs. Importantly, we discuss that transient loss of HNF4 may represent a protective mechanism upon acute organ injury, while prolonged impairment of HNF4 activities could contribute to organ dysfunction. In this context, we describe in detail mechanisms involved in the pathophysiological control of cell identity by HNF4, including how HNF4 works as part of cell-specific TF networks and how its expression/activities are disrupted in injured organs.
Collapse
|
13
|
Poque E, Arnaud-Cormos D, Patrignoni L, Ruigrok HJ, Poulletier De Gannes F, Hurtier A, Renom R, Garenne A, Lagroye I, Lévêque P, Percherancier Y. Effects of radiofrequency fields on RAS and ERK kinases activity in live cells using the bioluminescence resonance energy transfer technique. Int J Radiat Biol 2020; 96:836-843. [PMID: 32052678 DOI: 10.1080/09553002.2020.1730016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Purpose: The present study was conducted to re-evaluate the effect of low-level 1800 MHz RF signals on RAS/MAPK activation in live cells.Material and methods: Using Bioluminescence Resonance Energy Transfer technique (BRET), we assessed the effect of Continuous wave (CW) and Global System for Mobile (GSM)-modulated 1800 MHz signals (up to 2 W/kg) on ERK and RAS kinases' activity in live HuH7 cells.Results: We found that radiofrequency field (RF) exposure for 24 h altered neither basal level of RAS and ERK activation nor the potency of phorbol-12-myristate-13-acetate (PMA) to activate RAS and ERK kinases. However, we found that exposure to GSM-modulated 1800 MHz signals at 2 W/kg decreased the PMA maximal efficacy to activate both RAS and ERK kinases' activity. Exposure with CW 1800 MHz signal at 2 W/kg only decreased maximal efficacy of PMA to activate ERK but not RAS. No effects of RF exposure at 0.5 W/kg was observed on maximal efficacy of PMA to activate either RAS or ERK whatever the signal used.Conclusions: Our results indicate that RF exposure decreases the efficiency of the cascade of events, which, from the binding of PMA to its receptor(s), leads to the activation of RAS and ERK kinases.
Collapse
Affiliation(s)
- Emmanuelle Poque
- IMS Laboratory, CNRS, UMR 5218, Université de Bordeaux, Talence, France
| | | | | | | | | | - Annabelle Hurtier
- IMS Laboratory, CNRS, UMR 5218, Université de Bordeaux, Talence, France
| | - Rémy Renom
- IMS Laboratory, CNRS, UMR 5218, Université de Bordeaux, Talence, France
| | - André Garenne
- Bordeaux University, CNRS, Institute of Neurodegenerative Diseases, UMR 5293, Talence, France
| | - Isabelle Lagroye
- IMS Laboratory, CNRS, UMR 5218, Université de Bordeaux, Talence, France.,Paris Sciences et Lettres Research University, EPHE, Paris, France
| | | | | |
Collapse
|
14
|
Wang ZY, Li YQ, Guo ZW, Zhou XH, Lu MD, Xue TC, Gao B. ERK1/2-HNF4α axis is involved in epigallocatechin-3-gallate inhibition of HBV replication. Acta Pharmacol Sin 2020; 41:278-285. [PMID: 31554961 PMCID: PMC7468327 DOI: 10.1038/s41401-019-0302-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
Epigallocatechin gallate (EGCG), a major polyphenol in green tea, exhibits diverse biological activities. Previous studies show that EGCG could effectively suppress HBV gene expression and replication, but the role of EGCG in HBV replication and its underlying mechanisms, especially the signaling pathways involved, remain unclear. In this study we investigated the mechanisms underlying EGCG inhibition on HBV replication with a focus on the signaling pathways. We showed that EGCG (12.5-50 μM) dose-dependently inhibited HBV gene expression and replication in HepG2.2.15 cells. Similar results were observed in HBV mice receiving EGCG (25 mg· kg-1· d-1, ip) for 5 days. In HepG2.2.15 cells, we showed that EGCG (12.5-50 μM) significantly activate ERK1/2 MAPK signaling, slightly activate p38 MAPK and JAK2/STAT3 signaling, while had no significant effect on the activation of JNK MAPK, PI3K/AKT/mTOR and NF-κB signaling. By using specific inhibitors of these signaling pathways, we demonstrated that ERK1/2 signaling pathway, but not other signaling pathways, was involved in EGCG-mediated inhibition of HBV transcription and replication. Furthermore, we showed that EGCG treatment dose-dependently decreased the expression of hepatocyte nuclear factor 4α (HNF4α) both at the mRNA and protein levels, which could be reversed by pretreatment with the ERK1/2 inhibitor PD98059 (20 μM). Moreover, we revealed that EGCG treatment dose-dependently inhibited the activity of HBV core promoter and the following HBV replication. In summary, our results demonstrate that EGCG inhibits HBV gene expression and replication, which involves ERK1/2-mediated downregulation of HNF4α.These data reveal a novel mechanism for EGCG to inhibit HBV gene expression and replication.
Collapse
Affiliation(s)
- Zi-Yu Wang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu-Qi Li
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Wei Guo
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xing-Hao Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Mu-Dan Lu
- Genetic laboratory, the Affiliated Wuxi Maternity and Child Health Care Hospital, Nanjing Medical University, Wuxi, 214002, China
| | - Tong-Chun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China.
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Li L, Li Y, Xiong Z, Shu W, Yang Y, Guo Z, Gao B. FoxO4 inhibits HBV core promoter activity through ERK-mediated downregulation of HNF4α. Antiviral Res 2019; 170:104568. [DOI: 10.1016/j.antiviral.2019.104568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 01/12/2023]
|
16
|
Jiang W, Wu DB, Fu SY, Chen EQ, Tang H, Zhou TY. Insight into the role of TRAIL in liver diseases. Biomed Pharmacother 2018; 110:641-645. [PMID: 30544063 DOI: 10.1016/j.biopha.2018.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/19/2018] [Accepted: 12/02/2018] [Indexed: 02/05/2023] Open
Abstract
TNF-related apoptosis inducing ligand (TRAIL) is a potential antitumor protein known for its ability to selectively eliminate various types of tumor cells without exerting toxic effects in normal cells and tissues. TRAIL has recently been suggested as a potential therapeutic target in hepatocellular carcinoma (HCC) because it promotes apoptosis in cancer cells. Furthermore, studies on the role of TRAIL in liver injury have reported that TRAIL plays an essential role in viral hepatitis, fatty liver diseases, etc. However, several contradictory and confounding effects of TRAIL in these liver diseases have not been fully elucidated or placed into perspective. Hence, this review summarizes recent progress in studies on TRAIL, including its role in apoptotic signaling, potential therapeutic applications of TRAIL in HCC, hepatitis virus infection, and liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - Si-Yu Fu
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - Tao-You Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China.
| |
Collapse
|
17
|
Demarez C, Gérard C, Cordi S, Poncy A, Achouri Y, Dauguet N, Rosa DA, Gunning PT, Manfroid I, Lemaigre FP. MicroRNA-337-3p controls hepatobiliary gene expression and transcriptional dynamics during hepatic cell differentiation. Hepatology 2018; 67:313-327. [PMID: 28833283 DOI: 10.1002/hep.29475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/23/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Transcriptional networks control the differentiation of the hepatocyte and cholangiocyte lineages from embryonic liver progenitor cells and their subsequent maturation to the adult phenotype. However, how relative levels of hepatocyte and cholangiocyte gene expression are determined during differentiation remains poorly understood. Here, we identify microRNA (miR)-337-3p as a regulator of liver development. miR-337-3p stimulates expression of cholangiocyte genes and represses hepatocyte genes in undifferentiated progenitor cells in vitro and in embryonic mouse livers. Beyond the stage of lineage segregation, miR-337-3p controls the transcriptional network dynamics of developing hepatocytes and balances both cholangiocyte populations that constitute the ductal plate. miR-337-3p requires Notch and transforming growth factor-β signaling and exerts a biphasic control on the hepatocyte transcription factor hepatocyte nuclear factor 4α by modulating its activation and repression. With the help of an experimentally validated mathematical model, we show that this biphasic control results from an incoherent feedforward loop between miR-337-3p and hepatocyte nuclear factor 4α. CONCLUSION Our results identify miR-337-3p as a regulator of liver development and highlight how tight quantitative control of hepatic cell differentiation is exerted through specific gene regulatory network motifs. (Hepatology 2018;67:313-327).
Collapse
Affiliation(s)
- Céline Demarez
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Claude Gérard
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Sabine Cordi
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Alexis Poncy
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Younes Achouri
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium.,Université catholique de Louvain, Transgenic Core Facility, Brussels, Belgium
| | - Nicolas Dauguet
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - David A Rosa
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | | |
Collapse
|
18
|
Alvarez-Sola G, Uriarte I, Latasa MU, Jimenez M, Barcena-Varela M, Santamaría E, Urtasun R, Rodriguez-Ortigosa C, Prieto J, Corrales FJ, Baulies A, García-Ruiz C, Fernandez-Checa JC, Berraondo P, Fernandez-Barrena MG, Berasain C, Avila MA. Engineered fibroblast growth factor 19 protects from acetaminophen-induced liver injury and stimulates aged liver regeneration in mice. Cell Death Dis 2017; 8:e3083. [PMID: 28981086 PMCID: PMC5682649 DOI: 10.1038/cddis.2017.480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
Abstract
The liver displays a remarkable regenerative capacity triggered upon tissue injury or resection. However, liver regeneration can be overwhelmed by excessive parenchymal destruction or diminished by pre-existing conditions hampering repair. Fibroblast growth factor 19 (FGF19, rodent FGF15) is an enterokine that regulates liver bile acid and lipid metabolism, and stimulates hepatocellular protein synthesis and proliferation. FGF19/15 is also important for liver regeneration after partial hepatectomy (PH). Therefore recombinant FGF19 would be an ideal molecule to stimulate liver regeneration, but its applicability may be curtailed by its short half-life. We developed a chimaeric molecule termed Fibapo in which FGF19 is covalently coupled to apolipoprotein A-I. Fibapo retains FGF19 biological activities but has significantly increased half-life and hepatotropism. Here we evaluated the pro-regenerative activity of Fibapo in two clinically relevant models where liver regeneration may be impaired: acetaminophen (APAP) poisoning, and PH in aged mice. The only approved therapy for APAP intoxication is N-acetylcysteine (NAC) and no drugs are available to stimulate liver regeneration. We demonstrate that Fibapo reduced liver injury and boosted regeneration in APAP-intoxicated mice. Fibapo improved survival of APAP-poisoned mice when given at later time points, when NAC is ineffective. Mechanistically, Fibapo accelerated recovery of hepatic glutathione levels, potentiated cell growth-related pathways and increased functional liver mass. When Fibapo was administered to old mice prior to PH, liver regeneration was markedly increased. The exacerbated injury developing in these mice upon PH was attenuated, and the hepatic biosynthetic capacity was enhanced. Fibapo reversed metabolic and molecular alterations that impede regeneration in aged livers. It reduced liver steatosis and downregulated p21 and hepatocyte nuclear factor 4 α (Hnf4α) levels, whereas it stimulated Foxm1b gene expression. Together our findings indicate that FGF19 variants retaining the metabolic and growth-promoting effects of this enterokine may be valuable for the stimulation of liver regeneration.
Collapse
Affiliation(s)
- Gloria Alvarez-Sola
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain
| | - Iker Uriarte
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain
| | - Maria U Latasa
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Maddalen Jimenez
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Marina Barcena-Varela
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Eva Santamaría
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain
| | - Raquel Urtasun
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Carlos Rodriguez-Ortigosa
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain.,Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Jesús Prieto
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain.,Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Fernando J Corrales
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain
| | - Anna Baulies
- CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain.,Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC and Liver Unit-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles 90033, CA, USA
| | - Carmen García-Ruiz
- CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain.,Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC and Liver Unit-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles 90033, CA, USA
| | - Jose C Fernandez-Checa
- CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain.,Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC and Liver Unit-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles 90033, CA, USA
| | - Pedro Berraondo
- Immunology and Immunotherapy Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Maite G Fernandez-Barrena
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain.,Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Carmen Berasain
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain.,Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Matías A Avila
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain.,Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| |
Collapse
|
19
|
Dai XQ, Cai WT, Wu X, Chen Y, Han FM. Protocatechuic acid inhibits hepatitis B virus replication by activating ERK1/2 pathway and down-regulating HNF4α and HNF1α in vitro. Life Sci 2017; 180:68-74. [DOI: 10.1016/j.lfs.2017.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 01/02/2023]
|
20
|
The transcriptional activity of hepatocyte nuclear factor 4 alpha is inhibited via phosphorylation by ERK1/2. PLoS One 2017; 12:e0172020. [PMID: 28196117 PMCID: PMC5308853 DOI: 10.1371/journal.pone.0172020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4α) nuclear receptor is a master regulator of hepatocyte development, nutrient transport and metabolism. HNF4α is regulated both at the transcriptional and post-transcriptional levels by different mechanisms. Several kinases (PKA, PKC, AMPK) were shown to phosphorylate and decrease the activity of HNF4α. Activation of the ERK1/2 signalling pathway, inducing proliferation and survival, inhibits the expression of HNF4α. However, based on our previous results we hypothesized that HNF4α is also regulated at the post-transcriptional level by ERK1/2. Here we show that ERK1/2 is capable of directly phosphorylating HNF4α in vitro at several phosphorylation sites including residues previously shown to be targeted by other kinases, as well. Furthermore, we also demonstrate that phosphorylation of HNF4α leads to a reduced trans-activational capacity of the nuclear receptor in luciferase reporter gene assay. We confirm the functional relevance of these findings by demonstrating with ChIP-qPCR experiments that 30-minute activation of ERK1/2 leads to reduced chromatin binding of HNF4α. Accordingly, we have observed decreasing but not disappearing binding of HNF4α to the target genes. In addition, 24-hour activation of the pathway further decreased HNF4α chromatin binding to specific loci in ChIP-qPCR experiments, which confirms the previous reports on the decreased expression of the HNF4a gene due to ERK1/2 activation. Our data suggest that the ERK1/2 pathway plays an important role in the regulation of HNF4α-dependent hepatic gene expression.
Collapse
|
21
|
Elkouris M, Kontaki H, Stavropoulos A, Antonoglou A, Nikolaou KC, Samiotaki M, Szantai E, Saviolaki D, Brown PJ, Sideras P, Panayotou G, Talianidis I. SET9-Mediated Regulation of TGF-β Signaling Links Protein Methylation to Pulmonary Fibrosis. Cell Rep 2016; 15:2733-44. [PMID: 27292644 PMCID: PMC4920893 DOI: 10.1016/j.celrep.2016.05.051] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/14/2016] [Accepted: 05/12/2016] [Indexed: 12/15/2022] Open
Abstract
TGF-β signaling regulates a variety of cellular processes, including proliferation, apoptosis, differentiation, immune responses, and fibrogenesis. Here, we describe a lysine methylation-mediated mechanism that controls the pro-fibrogenic activity of TGF-β. We find that the methyltransferase Set9 potentiates TGF-β signaling by targeting Smad7, an inhibitory downstream effector. Smad7 methylation promotes interaction with the E3 ligase Arkadia and, thus, ubiquitination-dependent degradation. Depletion or pharmacological inhibition of Set9 results in elevated Smad7 protein levels and inhibits TGF-β-dependent expression of genes encoding extracellular matrix components. The inhibitory effect of Set9 on TGF-β-mediated extracellular matrix production is further demonstrated in mouse models of pulmonary fibrosis. Lung fibrosis induced by bleomycin or Ad-TGF-β treatment was highly compromised in Set9-deficient mice. These results uncover a complex regulatory interplay among multiple Smad7 modifications and highlight the possibility that protein methyltransferases may represent promising therapeutic targets for treating lung fibrosis. Set9 (Setd7) methylates Smad7 at lysine-70 Methylated Smad7 interacts with Arkadia and is rapidly degraded Set9 function is required for TGF-β-mediated activation of ECM genes Set9 function is required for bleomycin- or Ad-TGF-β-induced pulmonary fibrosis
Collapse
Affiliation(s)
| | - Haroula Kontaki
- Biomedical Sciences Research Center Alexander Fleming, Vari 16672, Greece
| | | | | | - Kostas C Nikolaou
- Biomedical Sciences Research Center Alexander Fleming, Vari 16672, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center Alexander Fleming, Vari 16672, Greece
| | - Eszter Szantai
- Biomedical Sciences Research Center Alexander Fleming, Vari 16672, Greece
| | - Dimitra Saviolaki
- Biomedical Sciences Research Center Alexander Fleming, Vari 16672, Greece
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Paschalis Sideras
- Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - George Panayotou
- Biomedical Sciences Research Center Alexander Fleming, Vari 16672, Greece
| | - Iannis Talianidis
- Biomedical Sciences Research Center Alexander Fleming, Vari 16672, Greece.
| |
Collapse
|
22
|
Anti-HBV activity and mechanism of marine-derived polyguluronate sulfate (PGS) in vitro. Carbohydr Polym 2016; 143:139-48. [DOI: 10.1016/j.carbpol.2016.01.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
|
23
|
Bai L, Nong Y, Shi Y, Liu M, Yan L, Shang J, Huang F, Lin Y, Tang H. Luteolin Inhibits Hepatitis B Virus Replication through Extracellular Signal-Regulated Kinase-Mediated Down-Regulation of Hepatocyte Nuclear Factor 4α Expression. Mol Pharm 2015; 13:568-77. [PMID: 26656210 DOI: 10.1021/acs.molpharmaceut.5b00789] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Whether luteolin inhibits HBV replication has not been validated and the underlying mechanism of which has never been elucidated. In this study, we show that luteolin reduces HBV DNA replication in HepG2.2.15 cells. Luteolin effectively inhibited the expression of hepatocyte nuclear factor 4α (HNF4α) and its binding to the HBV promoters in HepG2.2.15 cells. While the extracellular signal-regulated kinase (ERK) was activated by luteolin, inhibition of ERK abolished luteolin-induced HNF4α suppression. Consistently, blocking ERK attenuated the anti-HBV activity of luteolin. In a HBV replication mouse model, luteolin decreased the levels of HBsAg, HBeAg, HBV DNA replication intermediates, and the HBsAg and HBcAg expression. Taken together, our results validated the anti-HBV activity of luteolin in both in vitro and in vivo studies and established a signaling cascade consisting of ERK and HNF4α for inhibition of HBV replication by luteolin, which may be exploited for clinical application of luteolin for anti-HBV therapy.
Collapse
Affiliation(s)
- Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University , Chengdu 610041, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, China
| | - Yunhong Nong
- Center of Infectious Diseases, West China Hospital, Sichuan University , Chengdu 610041, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, China
| | - Ying Shi
- Center of Infectious Diseases, West China Hospital, Sichuan University , Chengdu 610041, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, China
| | - Miao Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University , Chengdu 610041, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital, Sichuan University , Chengdu 610041, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, China
| | - Jin Shang
- Center of Infectious Diseases, West China Hospital, Sichuan University , Chengdu 610041, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, China
| | - Feijun Huang
- Department of Forensic Pathology, Medical School of Basic and Forensic Sciences, Sichuan University , Chengdu 610041, China
| | - Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute , 2425 Ridgecrest Dr. SE, Albuquerque, New Mexico 87108, United States
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University , Chengdu 610041, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu 610041, China
| |
Collapse
|
24
|
Berasain C, Avila MA. Regulation of hepatocyte identity and quiescence. Cell Mol Life Sci 2015; 72:3831-51. [PMID: 26089250 PMCID: PMC11114060 DOI: 10.1007/s00018-015-1970-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/23/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
Abstract
The liver is a highly differentiated organ with a central role in metabolism, detoxification and systemic homeostasis. To perform its multiple tasks, liver parenchymal cells, the hepatocytes, express a large complement of enabling genes defining their complex phenotype. This phenotype is progressively acquired during fetal development and needs to be maintained in adulthood to guarantee the individual's survival. Upon injury or loss of functional mass, the liver displays an extraordinary regenerative response, mainly based on the proliferation of hepatocytes which otherwise are long-lived quiescent cells. Increasing observations suggest that loss of hepatocellular differentiation and quiescence underlie liver malfunction in chronic liver disease and pave the way for hepatocellular carcinoma development. Here, we briefly review the essential mechanisms leading to the acquisition of liver maturity. We also identify the key molecular factors involved in the preservation of hepatocellular homeostasis and finally discuss potential strategies to preserve liver identity and function.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology, CIMA, University of Navarra, CIBEREHD, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avda. Pio XII, n55, 31008, Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology, CIMA, University of Navarra, CIBEREHD, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avda. Pio XII, n55, 31008, Pamplona, Spain.
| |
Collapse
|
25
|
Kodama S, Yamazaki Y, Negishi M. Pregnane X Receptor Represses HNF4α Gene to Induce Insulin-Like Growth Factor-Binding Protein IGFBP1 that Alters Morphology of and Migrates HepG2 Cells. Mol Pharmacol 2015; 88:746-57. [PMID: 26232425 DOI: 10.1124/mol.115.099341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/23/2015] [Indexed: 12/27/2022] Open
Abstract
Upon treatment with the pregnane X receptor (PXR) activator rifampicin (RIF), human hepatocellular carcinoma HepG2-derived ShP51 cells that stably express PXR showed epithelial-mesenchymal transition (EMT)-like morphological changes and migration. Our recent DNA microarrays have identified hepatocyte nuclear factor (HNF) 4α and insulin-like growth factor-binding protein (IGFBP) 1 mRNAs to be downregulated and upregulated, respectively, in RIF-treated ShP51 cells, and these regulations were confirmed by the subsequent real-time polymerase chain reaction and Western blot analyses. Using this cell system, we demonstrated here that the PXR-HNF4α-IGFBP1 pathway is an essential signal for PXR-induced morphological changes and migration. First, we characterized the molecular mechanism underlying the PXR-mediated repression of the HNF4α gene. Chromatin conformation capture and chromatin immunoprecipitation (ChIP) assays revealed that PXR activation by RIF disrupted enhancer-promoter communication and prompted deacetylation of histone H3 in the HNF4α P1 promoter. Cell-based reporter and ChIP assays showed that PXR targeted the distal enhancer of the HNF4α P1 promoter and stimulated dissociation of HNF3β from the distal enhancer. Subsequently, small interfering RNA knockdown of HNF4α connected PXR-mediated gene regulation with the PXR-induced cellular responses, showing that the knockdown resulted in the upregulation of IGFBP1 and EMT-like morphological changes without RIF treatment. Moreover, recombinant IGFBP1 augmented migration, whereas an anti-IGFBP1 antibody attenuated both PXR-induced morphological changes and migration in ShP51 cells. PXR indirectly activated the IGFBP1 gene by repressing the HNF4α gene, thus enabling upregulation of IGFBP1 to change the morphology of ShP51 cells and cause migration. These results provide new insights into PXR-mediated cellular responses toward xenobiotics including therapeutics.
Collapse
Affiliation(s)
- Susumu Kodama
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Yuichi Yamazaki
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
26
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Xue TC, Jia QA, Bu Y, Chen RX, Cui JF, Tang ZY, Ye SL. CXCR7 correlates with the differentiation of hepatocellular carcinoma and suppresses HNF4α expression through the ERK pathway. Oncol Rep 2014; 32:2387-96. [PMID: 25242412 DOI: 10.3892/or.2014.3501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/12/2014] [Indexed: 12/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with dysregulated differentiation. However, effective differentiation therapy for HCC is lacking. Previous evidence suggests that CXCR7 is associated with the differentiation of embryonic stem cells. Here, we evaluated the potential role of CXCR7 in the differentiation of HCC. In HCC cell lines, the expression of cancer stem cell-related markers was assessed by flow cytometry and confirmed by western blot and immunofluorescence analyses. Dimethyl sulfoxide, oncostatin M and dexamethasone were used to induce the differentiation of HCC. Immunohistochemical assay was performed on a tissue microarray based on 112 HCC cases that received hepatectomy. Ligand activation, inhibition assays and RNA interference were used to analyze the regulation of hepatocyte nuclear factor 4α (HNF4α) by the CXCR7 pathway. Huh7 and HCCLM3 cell lines were screened for differentiation induction based on biomarkers of hepatic cancer stem cells. CXCR7 was found to be closely associated with the differentiation of HCC, and an inverse expression trend between CXCR7 and HNF4α was found upon induced differentiation. Clinically, high CXCR7 expression was negatively correlated with HNF4α expression in patients with relatively well-differentiated HCC. Moreover, high CXCR7 expression was correlated with poor overall survival and accelerated post-resection metastasis in HCC with a low HNF4α level. Mechanistically, CXCR7 signaling inhibited HNF4α through extracellular regulated protein kinase (ERK) activation, which was inhibited by U0126, an inhibitor of MAPK/ERK kinases 1 and 2. Knockdown of CXCR7 further confirmed that CXCR7 signaling can regulate HNF4α expression. Taken together, our findings indicate that CXCR7 participates in the differentiation of HCC by regulating HNF4α. The CXCR7-ERK-HNF4α cascade represents a new target for the differentiation therapy of HCC.
Collapse
Affiliation(s)
- Tong-Chun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Qing-An Jia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yang Bu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Rong-Xin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Zhao-You Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Sheng-Long Ye
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
28
|
Karagianni P, Talianidis I. Transcription factor networks regulating hepatic fatty acid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:2-8. [PMID: 24814048 DOI: 10.1016/j.bbalip.2014.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 02/06/2023]
Abstract
Tight regulation of lipid levels is critical for cellular and organismal homeostasis, not only in terms of energy utilization and storage, but also to prevent potential toxicity. The liver utilizes a set of hepatic transcription factors to regulate the expression of genes implicated in all aspects of lipid metabolism including catabolism, transport, and synthesis. In this article, we will review the main transcriptional mechanisms regulating the expression of genes involved in hepatic lipid metabolism. The principal regulatory pathways are composed of simple modules of transcription factor crosstalks, which correspond to building blocks of more complex regulatory networks. These transcriptional networks contribute to the regulation of proper lipid homeostasis in parallel to posttranslational mechanisms and end product-mediated modulation of lipid metabolizing enzymes. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.
Collapse
Affiliation(s)
| | - Iannis Talianidis
- Biomedical Sciences Research Center Alexander Fleming, 16672 Vari, Greece.
| |
Collapse
|
29
|
Shin GC, Ahn SH, Choi HS, Kim J, Park ES, Kim DH, Kim KH. Hepatocystin contributes to interferon-mediated antiviral response to hepatitis B virus by regulating hepatocyte nuclear factor 4α. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1648-57. [PMID: 24769044 DOI: 10.1016/j.bbadis.2014.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/06/2014] [Accepted: 04/13/2014] [Indexed: 02/07/2023]
Abstract
Hepatocystin/80K-H is known as a causative gene for autosomal dominant polycystic liver disease. However, the role of hepatocystin in hepatitis B virus-related liver disease remains unknown. Here, we investigated the role of hepatocystin on the cytokine-mediated antiviral response against hepatitis B virus infection. We investigated the antiviral effect and mechanism of hepatocystin by ectopic expression and RNAi knockdown in cell culture and mouse livers. Hepatocystin suppressed the replication of hepatitis B virus both in vitro and in vivo. This inhibitory effect was HBx-independent and mediated by the transcriptional regulation of viral genome via the activation of exogenous signal-regulated kinase 1/2 and the reduced expression of hepatocyte nuclear factor 4α, a transcription factor essential for hepatitis B virus replication. The amino-terminal region of hepatocystin was essential for regulation of this antiviral signaling pathway. We also found that hepatocystin acts as a critical component in interferon-mediated mitogen-activated protein kinase signaling pathway, and the interferon-induced antiviral activity against hepatitis B virus is associated with the expression levels of hepatocystin. We demonstrated that hepatocystin plays a critical role in modulating the susceptibility of hepatitis B virus to interferon, suggesting that the modulation of hepatocystin expression is important for cytokine-mediated viral clearance during hepatitis B virus infection.
Collapse
Affiliation(s)
- Gu-Choul Shin
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea; Institute of Functional Genomics, Konkuk University, Seoul, Republic of Korea
| | - Sung Hyun Ahn
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyo-Sun Choi
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jingyeong Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Eun-Sook Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Doo Hyun Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea; Institute of Functional Genomics, Konkuk University, Seoul, Republic of Korea; Research Institute of Medical Sciences, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Cooperativity and rapid evolution of cobound transcription factors in closely related mammals. Cell 2013; 154:530-40. [PMID: 23911320 PMCID: PMC3732390 DOI: 10.1016/j.cell.2013.07.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/22/2013] [Accepted: 07/08/2013] [Indexed: 12/04/2022]
Abstract
To mechanistically characterize the microevolutionary processes active in altering transcription factor (TF) binding among closely related mammals, we compared the genome-wide binding of three tissue-specific TFs that control liver gene expression in six rodents. Despite an overall fast turnover of TF binding locations between species, we identified thousands of TF regions of highly constrained TF binding intensity. Although individual mutations in bound sequence motifs can influence TF binding, most binding differences occur in the absence of nearby sequence variations. Instead, combinatorial binding was found to be significant for genetic and evolutionary stability; cobound TFs tend to disappear in concert and were sensitive to genetic knockout of partner TFs. The large, qualitative differences in genomic regions bound between closely related mammals, when contrasted with the smaller, quantitative TF binding differences among Drosophila species, illustrate how genome structure and population genetics together shape regulatory evolution. Earliest steps of regulatory evolution in mammals captured using five mouse species Interspecies differences in TF binding are rarely caused by DNA variation in motifs Cobound TFs change their genomic binding cooperatively in closely related mammals Genetic knockouts revealed the extent of cooperative stabilization in TF binding clusters
Collapse
|
31
|
Zhao Z, Hong W, Zeng Z, Wu Y, Hu K, Tian X, Li W, Cao Z. Mucroporin-M1 inhibits hepatitis B virus replication by activating the mitogen-activated protein kinase (MAPK) pathway and down-regulating HNF4α in vitro and in vivo. J Biol Chem 2012; 287:30181-90. [PMID: 22791717 DOI: 10.1074/jbc.m112.370312] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) is a noncytopathic human hepadnavirus that causes acute, chronic hepatitis and hepatocellular carcinoma (HCC). As the clinical utility of current therapies is limited, new anti-HBV agents and sources for such agents are still highly sought after. Here, we report that Mucroporin-M1, a scorpion venom-derived peptide, reduces the amount of extracellular HBsAg, HBeAg, and HBV DNA productions of HepG2.2.15 cells in a dose-dependent manner and inhibits HBV capsid DNA, HBV intracellular RNA replication intermediates and the HBV Core protein in the cytoplasm of HepG2.2.15 cells. Using a mouse model of HBV infection, we found that HBV replication was significantly inhibited by intravenous injection of the Mucroporin-M1 peptide. This inhibitory activity was due to a reduction in HBV promoter activity caused by a decrease in the binding of HNF4α to the precore/core promoter region. Furthermore, we confirmed that Mucroporin-M1 could selectively activate mitogen-activated protein kinases (MAPKs) and lead to the down-regulation of HNF4α expression, which explains the decreased binding of HNF4α to the HBV promoter. Moreover, when the protein phosphorylation activity of the MAPK pathway was inhibited, both HNF4α expression and HBV replication recovered. Finally, we proved that treatment with the Mucroporin-M1 peptide increased phosphorylation of the MAPK proteins in HBV-harboring mice. These results implicate Mucroporin-M1 peptide can activate the MAPK pathway and then reduce the expression of HNF4α, resulting in the inhibition of HBV replication in vitro and in vivo. Our work also opens new doors to discovering novel anti-HBV agents or sources.
Collapse
Affiliation(s)
- Zhenhuan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wirsing A, Senkel S, Klein-Hitpass L, Ryffel GU. A systematic analysis of the 3'UTR of HNF4A mRNA reveals an interplay of regulatory elements including miRNA target sites. PLoS One 2011; 6:e27438. [PMID: 22140441 PMCID: PMC3227676 DOI: 10.1371/journal.pone.0027438] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/17/2011] [Indexed: 12/17/2022] Open
Abstract
Dysfunction of hepatocyte nuclear factor 4α (HNF4α) has been linked to maturity onset diabetes of the young (MODY1), diabetes type II and possibly to renal cell carcinoma (RCC). Whereas diabetes causing mutations are well known, there are no HNF4A mutations found in RCC. Since so far analyses have been constricted to the promoter and open reading frame of HNF4A, we performed a systematic analysis of the human HNF4A 3′UTR. We identified a short (1724 nt) and long (3180 nt) 3′UTR that are much longer than the open reading frame and conferred a repressive effect in luciferase reporter assays in HEK293 and INS-1 cells. By dissecting the 3′UTR into several pieces, we located two distinct elements of about 400 nt conferring a highly repressive effect. These negative elements A and B are counteracted by a balancer element of 39 nt located within the 5′ end of the HNF4A 3′UTR. Dicer knock-down experiments implied that the HNF4A 3′UTR is regulated by miRNAs. More detailed analysis showed that miR-34a and miR-21 both overexpressed in RCC cooperate in downregulation of the HNF4A mRNA. One of the identified miR-34a binding sites is destroyed by SNP rs11574744. The identification of several regulatory elements within the HNF4A 3′UTR justifies the analysis of the 3′UTR sequence to explore the dysfunction of HNF4α in diabetes and RCC.
Collapse
Affiliation(s)
- Andrea Wirsing
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Sabine Senkel
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ludger Klein-Hitpass
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Gerhart U. Ryffel
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
33
|
Nuclear receptor HNF4α binding sequences are widespread in Alu repeats. BMC Genomics 2011; 12:560. [PMID: 22085832 PMCID: PMC3252374 DOI: 10.1186/1471-2164-12-560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 11/15/2011] [Indexed: 12/04/2022] Open
Abstract
Background Alu repeats, which account for ~10% of the human genome, were originally considered to be junk DNA. Recent studies, however, suggest that they may contain transcription factor binding sites and hence possibly play a role in regulating gene expression. Results Here, we show that binding sites for a highly conserved member of the nuclear receptor superfamily of ligand-dependent transcription factors, hepatocyte nuclear factor 4alpha (HNF4α, NR2A1), are highly prevalent in Alu repeats. We employ high throughput protein binding microarrays (PBMs) to show that HNF4α binds > 66 unique sequences in Alu repeats that are present in ~1.2 million locations in the human genome. We use chromatin immunoprecipitation (ChIP) to demonstrate that HNF4α binds Alu elements in the promoters of target genes (ABCC3, APOA4, APOM, ATPIF1, CANX, FEMT1A, GSTM4, IL32, IP6K2, PRLR, PRODH2, SOCS2, TTR) and luciferase assays to show that at least some of those Alu elements can modulate HNF4α-mediated transactivation in vivo (APOM, PRODH2, TTR, APOA4). HNF4α-Alu elements are enriched in promoters of genes involved in RNA processing and a sizeable fraction are in regions of accessible chromatin. Comparative genomics analysis suggests that there may have been a gain in HNF4α binding sites in Alu elements during evolution and that non Alu repeats, such as Tiggers, also contain HNF4α sites. Conclusions Our findings suggest that HNF4α, in addition to regulating gene expression via high affinity binding sites, may also modulate transcription via low affinity sites in Alu repeats.
Collapse
|
34
|
Váradi A, Szabó Z, Pomozi V, de Boussac H, Fülöp K, Arányi T. ABCC6 as a target in pseudoxanthoma elasticum. Curr Drug Targets 2011; 12:671-82. [PMID: 21039331 PMCID: PMC3324121 DOI: 10.2174/138945011795378612] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 05/10/2010] [Indexed: 01/30/2023]
Abstract
The ABCC6 gene encodes an organic anion transporter protein, ABCC6/MRP6. Mutations in the gene cause a rare, recessive genetic disease, pseudoxanthoma elasticum, while the loss of one ABCC6 allele is a genetic risk factor in coronary artery disease. We review here the information available on gene structure, evolution as well as the present knowledge on its transcriptional regulation. We give a detailed description of the characteristics of the protein, and analyze the relationship between the distributions of missense disease-causing mutations in the predicted three-dimensional structure of the transporter, which suggests functional importance of the domain-domain interactions. Though neither the physiological function of the protein nor its role in the pathobiology of the diseases are known, a current hypothesis that ABCC6 may be involved in the efflux of one form of Vitamin K from the liver is discussed. Finally, we analyze potential strategies how the gene can be targeted on the transcriptional level to increase protein expression in order to compensate for reduced activity. In addition, pharmacologic correction of trafficking-defect mutants or suppression of stop codon mutations as potential future therapeutic interventions are also reviewed.
Collapse
Affiliation(s)
- András Váradi
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
35
|
Sandovici I, Smith NH, Nitert MD, Ackers-Johnson M, Uribe-Lewis S, Ito Y, Jones RH, Marquez VE, Cairns W, Tadayyon M, O’Neill LP, Murrell A, Ling C, Constância M, Ozanne SE. Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci U S A 2011; 108:5449-54. [PMID: 21385945 PMCID: PMC3069181 DOI: 10.1073/pnas.1019007108] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Environmental factors interact with the genome throughout life to determine gene expression and, consequently, tissue function and disease risk. One such factor that is known to play an important role in determining long-term metabolic health is diet during critical periods of development. Epigenetic regulation of gene expression has been implicated in mediating these programming effects of early diet. The precise epigenetic mechanisms that underlie these effects remain largely unknown. Here, we show that the transcription factor Hnf4a, which has been implicated in the etiology of type 2 diabetes (T2D), is epigenetically regulated by maternal diet and aging in rat islets. Transcriptional activity of Hnf4a in islets is restricted to the distal P2 promoter through its open chromatin configuration and an islet-specific interaction between the P2 promoter and a downstream enhancer. Exposure to suboptimal nutrition during early development leads to epigenetic silencing at the enhancer region, which weakens the P2 promoter-enhancer interaction and results in a permanent reduction in Hnf4a expression. Aging leads to progressive epigenetic silencing of the entire Hnf4a locus in islets, an effect that is more pronounced in rats exposed to a poor maternal diet. Our findings provide evidence for environmentally induced epigenetic changes at the Hnf4a enhancer that alter its interaction with the P2 promoter, and consequently determine T2D risk. We therefore propose that environmentally induced changes in promoter-enhancer interactions represent a fundamental epigenetic mechanism by which nutrition and aging can influence long-term health.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories, Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge CB2 0SW, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Noel H. Smith
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 OQQ, United Kingdom
| | - Marloes Dekker Nitert
- Diabetes and Endocrinology Research Unit, Lund University, Malmö University Hospital, S-205 02 Malmö, Sweden
| | - Matthew Ackers-Johnson
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 OQQ, United Kingdom
| | - Santiago Uribe-Lewis
- Cancer Research United Kingdom Cambridge Research Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Yoko Ito
- Cancer Research United Kingdom Cambridge Research Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - R. Huw Jones
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 OQQ, United Kingdom
| | - Victor E. Marquez
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702
| | - William Cairns
- Biological Reagents and Assay Development, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom; and
| | - Mohammed Tadayyon
- Biological Reagents and Assay Development, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom; and
| | - Laura P. O’Neill
- Chromatin and Gene Expression Group, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom
| | - Adele Murrell
- Cancer Research United Kingdom Cambridge Research Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Charlotte Ling
- Diabetes and Endocrinology Research Unit, Lund University, Malmö University Hospital, S-205 02 Malmö, Sweden
| | - Miguel Constância
- Metabolic Research Laboratories, Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge CB2 0SW, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 OQQ, United Kingdom
| |
Collapse
|
36
|
Expression profile analysis of the inflammatory response regulated by hepatocyte nuclear factor 4α. BMC Genomics 2011; 12:128. [PMID: 21352552 PMCID: PMC3053261 DOI: 10.1186/1471-2164-12-128] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 02/25/2011] [Indexed: 12/17/2022] Open
Abstract
Background Hepatocyte nuclear factor 4α (HNF4α), a liver-specific transcription factor, plays a significant role in liver-specific functions. However, its functions are poorly understood in the regulation of the inflammatory response. In order to obtain a genomic view of HNF4α in this context, microarray analysis was used to probe the expression profile of an inflammatory response induced by cytokine stimulation in a model of HNF4α knock-down in HepG2 cells. Results The expression of over five thousand genes in HepG2 cells is significantly changed with the dramatic reduction of HNF4α concentration compared to the cells with native levels of HNF4α. Over two thirds (71%) of genes that exhibit differential expression in response to cytokine treatment also reveal differential expression in response to HNF4α knock-down. In addition, we found that a number of HNF4α target genes may be indirectly mediated by an ETS-domain transcription factor ELK1, a nuclear target of mitogen-activated protein kinase (MAPK). Conclusion The results indicate that HNF4α has an extensive impact on the regulation of a large number of the liver-specific genes. HNF4α may play a role in regulating the cytokine-induced inflammatory response. This study presents a novel function for HNF4α, acting not only as a global player in many cellular processes, but also as one of the components of inflammatory response in the liver.
Collapse
|
37
|
Abstract
The plasma concentration of fibrinogen varies in the healthy human population between 1.5 and 3.5 g/L. Understanding the basis of this variability has clinical importance because elevated fibrinogen levels are associated with increased cardiovascular disease risk. To identify novel regulatory elements involved in the control of fibrinogen expression, we used sequence conservation and in silico-predicted regulatory potential to select 14 conserved noncoding sequences (CNCs) within the conserved block of synteny containing the fibrinogen locus. The regulatory potential of each CNC was tested in vitro using a luciferase reporter gene assay in fibrinogen-expressing hepatoma cell lines (HuH7 and HepG2). 4 potential enhancers were tested for their ability to direct enhanced green fluorescent protein expression in zebrafish embryos. CNC12, a sequence equidistant from the human fibrinogen alpha and beta chain genes, activates strong liver enhanced green fluorescent protein expression in injected embryos and their transgenic progeny. A transgenic assay in embryonic day 14.5 mouse embryos confirmed the ability of CNC12 to activate transcription in the liver. While additional experiments are necessary to prove the role of CNC12 in the regulation of fibrinogen, our study reveals a novel regulatory element in the fibrinogen locus that is active in the liver and may contribute to variable fibrinogen expression in humans.
Collapse
|
38
|
Park JW, Lee MH, Choi JO, Park HY, Jung SC. Tissue-specific activation of mitogen-activated protein kinases for expression of transthyretin by phenylalanine and its metabolite, phenylpyruvic acid. Exp Mol Med 2010; 42:105-15. [PMID: 19946178 DOI: 10.3858/emm.2010.42.2.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Phenylketonuria is an autosomal recessive disorder caused by a deficiency of phenylalanine hydroxylase. Transthyretin has been implicated as an indicator of nutritional status in phenylketonuria patients. In this study, we report that phenylalanine and its metabolite, phenylpyruvic acid, affect MAPK, changing transthyretin expression in a cell- and tissue-specific manner. Treatment of HepG2 cells with phenylalanine or phenylpyruvic acid decreased transcription of the TTR gene and decreased the transcriptional activity of the TTR promoter site, which was partly mediated through HNF4alpha. Decreased levels of p38 MAPK were detected in the liver of phenylketonuria-affected mice compared with wild-type mice. In contrast, treatment with phenylalanine increased transthyretin expression and induced ERK1/2 activation in PC-12 cells; ERK1/2 activation was also elevated in the brainstem of phenylketonuria-affected mice. These findings may explain between-tissue differences in gene expression, including Ttr gene expression, in the phenylketonuria mouse model.
Collapse
Affiliation(s)
- Joo Won Park
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158-710, Korea
| | | | | | | | | |
Collapse
|
39
|
Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A, Kutter C, Watt S, Martinez-Jimenez CP, Mackay S, Talianidis I, Flicek P, Odom DT. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 2010; 328:1036-40. [PMID: 20378774 PMCID: PMC3008766 DOI: 10.1126/science.1186176] [Citation(s) in RCA: 544] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription factors (TFs) direct gene expression by binding to DNA regulatory regions. To explore the evolution of gene regulation, we used chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) to determine experimentally the genome-wide occupancy of two TFs, CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 alpha, in the livers of five vertebrates. Although each TF displays highly conserved DNA binding preferences, most binding is species-specific, and aligned binding events present in all five species are rare. Regions near genes with expression levels that are dependent on a TF are often bound by the TF in multiple species yet show no enhanced DNA sequence constraint. Binding divergence between species can be largely explained by sequence changes to the bound motifs. Among the binding events lost in one lineage, only half are recovered by another binding event within 10 kilobases. Our results reveal large interspecies differences in transcriptional regulation and provide insight into regulatory evolution.
Collapse
Affiliation(s)
- Dominic Schmidt
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
de Boussac H, Ratajewski M, Sachrajda I, Köblös G, Tordai A, Pulaski L, Buday L, Váradi A, Arányi T. The ERK1/2-hepatocyte nuclear factor 4alpha axis regulates human ABCC6 gene expression in hepatocytes. J Biol Chem 2010; 285:22800-8. [PMID: 20463007 DOI: 10.1074/jbc.m110.105593] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ABCC6 mutations are responsible for the development of pseudoxanthoma elasticum, a rare recessive disease characterized by calcification of elastic fibers. Although ABCC6 is mainly expressed in the liver the disease has dermatologic, ocular, and cardiovascular symptoms. We investigated the transcriptional regulation of the gene and observed that hepatocyte growth factor (HGF) inhibits its expression in HepG2 cells via the activation of ERK1/2. Similarly, other factors activating the cascade also inhibited ABCC6 expression. We identified the ERK1/2 response element in the proximal promoter by luciferase reporter gene assays. This site overlapped with a region conferring the tissue-specific expression pattern to the gene and with a putative hepatocyte nuclear factor 4alpha (HNF4alpha) binding site. We demonstrated that HNF4alpha regulates the expression of ABCC6, acts through the putative binding site, and determines its cell type-specific expression. We also showed that HNF4alpha is inhibited by the activation of the ERK1/2 cascade. In conclusion we describe here the first regulatory pathway of ABCC6 expression showing that the ERK1/2-HNF4alpha axis has an important role in regulation of the gene.
Collapse
Affiliation(s)
- Hugues de Boussac
- Institute of Enzymology, Hungarian Academy of Sciences, Karolina ut 29, 1113 Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Takagi S, Nakajima M, Kida K, Yamaura Y, Fukami T, Yokoi T. MicroRNAs regulate human hepatocyte nuclear factor 4alpha, modulating the expression of metabolic enzymes and cell cycle. J Biol Chem 2009; 285:4415-22. [PMID: 20018894 DOI: 10.1074/jbc.m109.085431] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte nuclear factor (HNF) 4alpha is a key transcription factor regulating endo/xenobiotic-metabolizing enzymes and transporters. We investigated whether microRNAs are involved in the regulation of human HNF4alpha. Potential recognition elements for miR-24 (MRE24) were identified in the coding region and the 3'-untranslated region (3'-UTR), and those for miR-34a (MRE34a) were identified in the 3'-UTR in HNF4alpha mRNA. The HNF4alpha protein level in HepG2 cells was markedly decreased by the overexpression of miR-24 and miR-34a. The HNF4alpha mRNA level was significantly decreased by the overexpression of miR-24 but not by miR-34a. In luciferase analyses in HEK293 cells, the reporter activity of plasmid containing the 3'-UTR of HNF4alpha was significantly decreased by miR-34a. The reporter activity of plasmid containing the HNF4alpha coding region downstream of the luciferase gene was significantly decreased by miR-24. These results suggest that the MRE24 in the coding region and MRE34a in the 3'-UTR are functional in the negative regulation by mRNA degradation and translational repression, respectively. The down-regulation of HNF4alpha by these microRNAs resulted in the decrease of various target genes such as cytochrome P450 7A1 and 8B1 as well as morphological changes and the decrease of the S phase population in HepG2 cells. We also clarified that the expressions of miR-24 and miR-34a were regulated by protein kinase C/mitogen-activated protein kinase and reactive oxygen species pathways, respectively. In conclusion, we found that human HNF4alpha was down-regulated by miR-24 and miR-34a, the expression of which are regulated by cellular stress, affecting the metabolism and cellular biology.
Collapse
Affiliation(s)
- Shingo Takagi
- Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Hepatocyte nuclear factor 4alpha coordinates a transcription factor network regulating hepatic fatty acid metabolism. Mol Cell Biol 2009; 30:565-77. [PMID: 19933841 DOI: 10.1128/mcb.00927-09] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adaptation of liver to nutritional signals is regulated by several transcription factors that are modulated by intracellular metabolites. Here, we demonstrate a transcription factor network under the control of hepatocyte nuclear factor 4alpha (HNF4alpha) that coordinates the reciprocal expression of fatty acid transport and metabolizing enzymes during fasting and feeding conditions. Hes6 is identified as a novel HNF4alpha target, which in normally fed animals, together with HNF4alpha, maintains PPARgamma expression at low levels and represses several PPARalpha-regulated genes. During fasting, Hes6 expression is diminished, and peroxisome proliferator-activated receptor alpha (PPARalpha) replaces the HNF4alpha/Hes6 complex on regulatory regions of target genes to activate transcription. Gene expression and promoter occupancy analyses confirmed that HNF4alpha is a direct activator of the Pparalpha gene in vivo and that its expression is subject to feedback regulation by PPARalpha and Hes6 proteins. These results establish the fundamental role of dynamic regulatory interactions between HNF4alpha, Hes6, PPARalpha, and PPARgamma in the coordinated expression of genes involved in fatty acid transport and metabolism.
Collapse
|
43
|
A significant increase of RNAi efficiency in human cells by the CMV enhancer with a tRNAlys promoter. J Biomed Biotechnol 2009; 2009:514287. [PMID: 19859553 PMCID: PMC2766573 DOI: 10.1155/2009/514287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 06/21/2009] [Accepted: 07/31/2009] [Indexed: 01/10/2023] Open
Abstract
RNA interference (RNAi) is the process of mRNA degradation induced by double-stranded RNA in a sequence-specific manner. Different types of promoters, such as U6, H1, tRNA, and CMV, have been used to control the inhibitory effect of RNAi expression vectors. In the present study, we constructed two shRNA expression vectors, respectively, controlled by tRNAlys
and CMV enhancer-tRNAlys promoters. Compared to the vectors with tRNAlys or U6 promoter, the vector with a CMV enhancer-tRNAlys promoter silenced pokemon more efficiently on both the mRNA and the protein levels. Meanwhile, the silencing of pokemon inhibited the proliferation of MCF7 cells, but the induction of apoptosis of MCF7 cells was not observed. We conclude that the CMV enhancer-tRNAlys promoter may be a powerful tool in driving intracellular expression of shRNA which can efficiently silence targeted gene.
Collapse
|
44
|
Jakobsson T, Venteclef N, Toresson G, Damdimopoulos AE, Ehrlund A, Lou X, Sanyal S, Steffensen KR, Gustafsson JA, Treuter E. GPS2 is required for cholesterol efflux by triggering histone demethylation, LXR recruitment, and coregulator assembly at the ABCG1 locus. Mol Cell 2009; 34:510-8. [PMID: 19481530 DOI: 10.1016/j.molcel.2009.05.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 02/02/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
Abstract
Transcriptional coregulators, rather than ligand signals, are suspected to confer context and pathway specificity to nuclear receptor signaling, but the identity of such specifying coregulators and the underlying molecular mechanisms remain largely enigmatic. Here we address this issue in metabolic oxysterol receptor LXR pathways and describe the selective requirement of GPS2 for ABCG1 cholesterol transporter gene transcription and cholesterol efflux from macrophages. We implicate GPS2 in facilitating LXR recruitment to an ABCG1-specific promoter/enhancer unit upon ligand activation and identify functional links to histone H3K9 demethylation. We further describe fundamental differences between ABCG1 and ABCA1 with regard to GPS2 in relation to other coregulators, which are likely to apply to additional LXR-regulated genes. Our work identifies a coregulator-dependent epigenetic mechanism governing the access of a nuclear receptor to communicating regulatory regions in the genome. The pathway and coregulator selectivity of this mechanism implies pharmacological possibilities for the development of selective LXR agonists.
Collapse
Affiliation(s)
- Tomas Jakobsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yamaguchi N, Miyamoto S, Ogura Y, Goda T, Suruga K. Hepatocyte nuclear factor-4alpha regulates human cellular retinol-binding protein type II gene expression in intestinal cells. Am J Physiol Gastrointest Liver Physiol 2009; 296:G524-33. [PMID: 19147806 DOI: 10.1152/ajpgi.90469.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cellular retinol-binding protein type II (CRBPII) is abundantly expressed in the small intestinal enterocytes of many vertebrates and plays important physiological roles in intestinal absorption, transport, and metabolism of vitamin A. In the present study, we investigated regulation of human CRBPII gene expression using human intestinal Caco-2 BBe cells. We found that the human CRBPII gene contained a direct repeat 1 (DR-1)-like nuclear receptor response element in the proximal promoter region and that endogenous hepatocyte nuclear factor-4alpha (HNF-4alpha) was a major transcription factor binding to the DR-1-like element. Cotransfection of HNF-4alpha expression vector transactivated the human CRBPII gene promoter activity, whereas mutation of the DR-1-like element abolished the promoter activity. Stably transfected Caco-2 BBe cells overexpressing HNF-4alpha significantly increased endogenous CRBPII gene expression and retinyl ester synthesis. Reduction of HNF-4alpha protein levels by HNF-4alpha small interference RNA decreased CRBPII gene expression. Caco-2 BBe cells treated with phorbol 12-myristate 13-acetate, a protein kinase C activator, decreased nuclear HNF-4alpha protein level and binding activity to the human CRBPII gene DR-1-like element, as well as CRBPII gene expression. Moreover, nuclear HNF-4alpha protein levels, HNF-4alpha protein binding to human CRBPII DR-1-like elements, and CRBPII gene expression level were coordinately increased during Caco-2 BBe cell differentiation. These results suggest that HNF-4alpha is an important transcriptional factor that regulates human CRBPII gene expression and provide the possibility for a novel function of HNF-4alpha in the regulation of human intestinal vitamin A absorption and metabolism.
Collapse
Affiliation(s)
- Noriaki Yamaguchi
- Graduate School of Human Health Sciences, University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishisonogi-gun, Nagasaki 851-2195, Japan
| | | | | | | | | |
Collapse
|
46
|
Lazarevich NL, Alpern DV. Hepatocyte nuclear factor 4 in epithelial development and carcinogenesis. Mol Biol 2008. [DOI: 10.1134/s0026893308050075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Lazarevich NL, Fleishman DI. Tissue-specific transcription factors in progression of epithelial tumors. BIOCHEMISTRY (MOSCOW) 2008; 73:573-91. [PMID: 18605982 DOI: 10.1134/s0006297908050106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dedifferentiation and epithelial-mesenchymal transition are important steps in epithelial tumor progression. A central role in the control of functional and morphological properties of different cell types is attributed to tissue-specific transcription factors which form regulatory cascades that define specification and differentiation of epithelial cells during embryonic development. The main principles of the action of such regulatory systems are reviewed on an example of a network of hepatocyte nuclear factors (HNFs) which play a key role in establishment and maintenance of hepatocytes--the major functional type of liver cells. HNFs, described as proteins binding to promoters of most hepatospecific genes, not only control expression of functional liver genes, but are also involved in regulation of proliferation, morphogenesis, and detoxification processes. One of the central components of the hepatospecific regulatory network is nuclear receptor HNF4alpha. Derangement of the expression of this gene is associated with progression of rodent and human hepatocellular carcinomas (HCCs) and contributes to increase of proliferation, loss of epithelial morphology, and dedifferentiation. Dysfunction of HNF4alpha during HCC progression can be either caused by structural changes of this gene or occurs due to modification of up-stream regulatory signaling pathways. Investigations preformed on a model system of the mouse one-step HCC progression have shown that the restoration of HNF4alpha function in dedifferentiated cells causes partial reversion of malignant phenotype both in vitro and in vivo. Derangement of HNFs function was also described in other tumors of epithelial origin. We suppose that tissue-specific factors that underlie the key steps in differentiation programs of certain tissues and are able to receive or modulate signals from the cell environment might be considered as promising candidates for the role of tumor suppressors in the tissue types where they normally play the most significant role.
Collapse
Affiliation(s)
- N L Lazarevich
- Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow 115478, Russia.
| | | |
Collapse
|
48
|
Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells. Mol Cell Biol 2008; 28:2732-44. [PMID: 18268006 DOI: 10.1128/mcb.02175-07] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wnt signaling activates gene expression through the induced formation of complexes between DNA-binding T-cell factors (TCFs) and the transcriptional coactivator beta-catenin. In colorectal cancer, activating Wnt pathway mutations transform epithelial cells through the inappropriate activation of a TCF7L2/TCF4 target gene program. Through a DNA array-based genome-wide analysis of TCF4 chromatin occupancy, we have identified 6,868 high-confidence TCF4-binding sites in the LS174T colorectal cancer cell line. Most TCF4-binding sites are located at large distances from transcription start sites, while target genes are frequently "decorated" by multiple binding sites. Motif discovery algorithms define the in vivo-occupied TCF4-binding site as evolutionarily conserved A-C/G-A/T-T-C-A-A-A-G motifs. The TCF4-binding regions significantly correlate with Wnt-responsive gene expression profiles derived from primary human adenomas and often behave as beta-catenin/TCF4-dependent enhancers in transient reporter assays.
Collapse
|
49
|
Sanyal S, Båvner A, Haroniti A, Nilsson LM, Lundåsen T, Rehnmark S, Witt MR, Einarsson C, Talianidis I, Gustafsson JÅ, Treuter E. Involvement of corepressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis. Proc Natl Acad Sci U S A 2007; 104:15665-70. [PMID: 17895379 PMCID: PMC2000397 DOI: 10.1073/pnas.0706736104] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Coordinated regulation of bile acid biosynthesis, the predominant pathway for hepatic cholesterol catabolism, is mediated by few key nuclear receptors including the orphan receptors liver receptor homolog 1 (LRH-1), hepatocyte nuclear factor 4alpha (HNF4alpha), small heterodimer partner (SHP), and the bile acid receptor FXR (farnesoid X receptor). Activation of FXR initiates a feedback regulatory loop via induction of SHP, which suppresses LRH-1- and HNF4alpha-dependent expression of cholesterol 7alpha hydroxylase (CYP7A1) and sterol 12alpha hydroxylase (CYP8B1), the two major pathway enzymes. Here we dissect the transcriptional network governing bile acid biosynthesis in human liver by identifying GPS2, a stoichiometric subunit of a conserved corepressor complex, as a differential coregulator of CYP7A1 and CYP8B1 expression. Direct interactions of GPS2 with SHP, LRH-1, HNF4alpha, and FXR indicate alternative coregulator recruitment strategies to cause differential transcriptional outcomes. In addition, species-specific differences in the regulation of bile acid biosynthesis were uncovered by identifying human CYP8B1 as a direct FXR target gene, which has implications for therapeutic approaches in bile acid-related human disorders.
Collapse
Affiliation(s)
- Sabyasachi Sanyal
- *Department of Biosciences and Nutrition, Karolinska Institutet
- To whom correspondence may be addressed. E-mail: or
| | | | - Anna Haroniti
- Biomedical Sciences Research Center, Alexander Fleming, 16672 Vari, Athens, Greece
| | | | - Thomas Lundåsen
- Department of Endocrinology, Metabolism, and Diabetes, Karolinska University Hospital, S-14157 Huddinge, Sweden; and
| | | | | | | | - Iannis Talianidis
- Biomedical Sciences Research Center, Alexander Fleming, 16672 Vari, Athens, Greece
| | | | - Eckardt Treuter
- *Department of Biosciences and Nutrition, Karolinska Institutet
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|