1
|
Lv B, Xing S, Wang Z, Zhang A, Wang Q, Bian Y, Pei Y, Sun H, Chen Y. NRF2 inhibitors: Recent progress, future design and therapeutic potential. Eur J Med Chem 2024; 279:116822. [PMID: 39241669 DOI: 10.1016/j.ejmech.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor involved in oxidative stress response, which controls the expression of various cytoprotective genes. Recent research has indicated that constitutively activated NRF2 can enhance patients' resistance to chemotherapy drugs, resulting in unfavorable prognosis. Therefore, the development of NRF2 inhibitors has emerged as a promising approach for overcoming drug resistance in cancer treatment. However, there are limited reports and reviews focusing on NRF2 inhibitors. This review aims to provide a comprehensive analysis of the structure and regulation of the NRF2 signaling pathway, followed by a comprehensive review of reported NRF2 inhibitors. Moreover, the current design strategies and future prospects of NRF2 inhibitors will be discussed, aiming to establish a foundation for the development of more effective NRF2 inhibitors.
Collapse
Affiliation(s)
- Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhiqiang Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ao Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qinjie Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
2
|
El Safadi M, Ahmad QUA, Majeebullah M, Ali A, Al-Emam A, Antoniolli G, Shah TA, Salamatullah AM. Palliative potential of velutin against abamectin induced cardiac toxicity via regulating JAK1/STAT3, NF-κB, Nrf-2/Keap-1 signaling pathways: An insight from molecular docking. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106117. [PMID: 39477578 DOI: 10.1016/j.pestbp.2024.106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 11/07/2024]
Abstract
Abamectin (ABN) is an agricultural insecticide that is reported to damage various body organs including the heart. Velutin (VLN) is a plant-derived flavonoid that exhibits a wide range of medicinal properties. This study was planned to investigate the medicinal value of VLN against ABN induced cardiotoxicity in rats. Thirty-two male albino rats (Rattus norvegicus) were divided into four equal groups including the control, ABN (10 mg/kg), ABN (10 mg/kg) + VLN (20 mg/kg), and VLN (20 mg/kg) alone administrated group. The doses were administrated for 6 weeks orally. The results demonstrated that ABN intoxication promoted the gene expression of Nrf-2 and its associated antioxidant genes including glutathione reductase (GSR), heme‑oxygenase-1 (HO-1), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) while reducing the gene expression of Keap-1 as well as levels of ROS and MDA. Moreover, ABN exposure enhanced the gene expression of Janus kinase-1 (JAK1), Signal transducer and activator of transcription-3 (STAT3), NF-κB, TNF-α, C-reactive proteins, Interferon-gamma-induced protein 10 (IP-10), IL-1β, Monocyte chemoattractant protein-1 (MCP-1), IL-6 and COX-2. The concentrations of CK-MB, Brain natriuretic peptide (BNP), CPK, troponin-I, N-terminal pro b-type natriuretic peptide (NT-proBNP) and LDH were elevated after ABN administration. ABN intoxication abruptly upregulated the levels of Caspase-3, Caspase-9 and Bax while reducing the levels of Bcl-2 in cardiac tissues. Additionally, ABN exposure prompted various histopathological damages. Nevertheless, VLN treatment remarkably protected the cardiac tissues via regulating aforementioned disruptions. Lastly, molecular docking analysis was performed to determine the potential affinity of VLN and targeted protein i.e., Bax, NF-kB, Nrf-2/Keap1, JAK1 and STAT3. Our in-silico evaluation showed a strong binding affinitybetween VLN and the targeted proteins which further confirms its effectiveness as a cardioprotective agent.
Collapse
Affiliation(s)
- Mahmoud El Safadi
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Qurat-Ul-Ain Ahmad
- Department of Zoology, Division of Sciences and Technology, University of Education Township Lahore, Pakistan
| | - Muhammad Majeebullah
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Adnan Ali
- Department of Zoology, University of Education, Faisalabad, Pakistan.
| | - Ahmed Al-Emam
- Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt
| | | | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, 255000, China
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P. O. Box 2460, Riyad, 11451, Saudi Arabia
| |
Collapse
|
3
|
Osikov MV, Korobkin EA, Fedosov AA, Sineglazova AV. The Role of Changes in the Redox Status in the Pathogenesis of Chronic Lymphocytic Leukemia. DOKL BIOCHEM BIOPHYS 2024:10.1134/S1607672924701217. [PMID: 39480632 DOI: 10.1134/s1607672924701217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 11/02/2024]
Abstract
Chronic lymphocytic leukemia is a hemoblastosis of CD5+ B lymphocytes with lymphocytosis, damage to the lymphatic organs, occurring in the older age group, the etiology and pathogenesis of which are not fully understood. Oxidative stress is an important factor in the regulation of stem cells and the activation of intracellular survival signaling pathways in chronic lymphocytic leukemia cells. The aim of the study was to analyze the current data on the role of redox status changes in the pathogenesis of chronic lymphocytic leukemia. A review of published relevant studies 2018-2023, scientific articles in scientific electronic bibliographic databases PubMed and Social Sciences Citation Index, devoted to the pathogenesis of chronic lymphocytic leukemia and the role of free-radical oxidation processes in it was carried out. In chronic lymphocytic leukemia, oxidative stress with a systemic excess of reactive oxygen species, an imbalance in the effectiveness of antioxidant defense is caused mainly by activation of oxidative phosphorylation in mitochondria, low levels of NADPH-oxidase type 2, increased expression of heme oxygenase-1, glutathione peroxidase and glutathione recycling enzymes, superoxide dismutase-2, thioredoxins and decreased expression of catalase. One of the mechanisms of resistance to drug therapy and oxidative stress of chronic lymphocytic leukemia cells is the intracellular signaling pathway dependent on erythroid nuclear factor-2, due to the activation of expression in cells of superoxide dismutase-2, catalase, glutathione peroxidase, peroxiredoxin-3 and -5, heme oxygenase-1, thioredoxin-1 and -2, reduced glutathione, natural killer cell activity, which is associated with lifespan, chemotaxis, proliferation, and survival. FOXO family proteins are believed to suppress carcinogenesis. FOXO3a increases the expression of superoxide dismutase-2, catalase, glutathione peroxidase, peroxiredoxin-3 and -5, and the activity of natural killer cells, which promotes the survival of tumor cells. The development of new targeted pharmacological agents that are capable of accumulating reactive oxygen species and reducing antioxidant protection due to the degradation of erythroid nuclear factor-2 and activation of NADPH-quinone oxidoreductase-1 is underway, which modernizes the therapy of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- M V Osikov
- South Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia.
- Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russia.
| | - E A Korobkin
- South Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia
- Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russia
| | - A A Fedosov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation, Moscow, Russia
| | | |
Collapse
|
4
|
Kitson RRA, Kitsonová D, Siegel D, Ross D, Moody CJ. Geldanamycin, a Naturally Occurring Inhibitor of Hsp90 and a Lead Compound for Medicinal Chemistry. J Med Chem 2024; 67:17946-17963. [PMID: 39361055 PMCID: PMC11513894 DOI: 10.1021/acs.jmedchem.4c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Geldanamycin remains a driver in the medicinal chemistry of heat shock protein 90 (Hsp90) inhibition, even half a century after its original isolation from nature. This Perspective focuses on the properties of the benzoquinone ring of the natural product that enable a range of functionalization reactions to take place. Therefore, inherent reactivity at C-17, where the methoxy group serves as a vinylogous ester, and at C-19 that demonstrates nucleophilic, enamide-type character toward electrophiles, and also as a conjugate acceptor to react with nucleophiles, has facilitated the synthesis of semisynthetic derivatives. Thus, a range of C-17-substituted amine derivatives has been investigated in oncology applications, with a number of compounds in this series reaching clinical trials. In contrast, the 19-position of geldanamycin has received less attention, although 19-substituted derivatives offer promise with markedly reduced toxicity compared to geldanamycin itself, while retaining Hsp90 inhibitory activity albeit with diminished potency in cellular studies.
Collapse
Affiliation(s)
- Russell R. A. Kitson
- Department
of Organic and Bioorganic Chemistry, Charles
University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Dominika Kitsonová
- Datwyler
Sealing Technologies CZ Ltd., Polní 224, 50401 Nový Bydžov, Czech
Republic
| | - David Siegel
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - David Ross
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Christopher J. Moody
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
5
|
Ramisetti SV, Patra T, Munirathnam V, Sainath JV, Veeraiyan D, Namani A. NRF2 Signaling Pathway in Chemo/Radio/Immuno-Therapy Resistance of Lung Cancer: Looking Beyond the Tip of the Iceberg. Arch Bronconeumol 2024; 60 Suppl 2:S59-S66. [PMID: 39060123 DOI: 10.1016/j.arbres.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Lung cancer is one of the most common causes of cancer death in men and women worldwide. Various combinations of surgery, chemotherapy, radiation therapy and immunotherapy are currently used to treat lung cancer. However, the prognosis remains relatively poor due to the higher frequency of tumor mutational burden (TMB). Nuclear factor E2-related factor 2 (NFE2L2/NRF2) is often considered a primary regulator of the expression of antioxidant enzymes and detoxification proteins and is involved in cytoprotection. On the contrary, NRF2 is even known to induce metastasis and support tumor progression. Kelch-like ECH-associated protein 1 (KEAP1) plays an important role in negatively regulating NRF2 activity via CUL3-mediated ubiquitinylation and successive proteasomal degradation. Extensive research has shown that the genetic alterations of KEAP1/NFE2L2/CUL3 genes lead to increased expression of NRF2 and its target genes in lung cancer. Thus, these studies provide ample evidence for the dual role of NRF2 in lung cancer. In this review, we discussed the mechanistic insights into the role of NRF2 signaling in therapy resistance by focusing on cell lines, mouse models, and translational studies in lung cancer. Finally, we highlighted the potential therapeutic strategies targeting NRF2 inhibition, followed by the discussion of biomarkers related to NRF2 activity in lung cancer. Overall, our article exclusively discusses in detail the NRF2 signaling pathway in resistance to therapy, especially immunotherapy, and its therapeutic avenue in the treatment of lung cancer.
Collapse
Affiliation(s)
- Sri Vidya Ramisetti
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India
| | - Tapas Patra
- Department of Molecular Research, Sri Shankara Cancer Hospital and Research Centre, Sri Shankara National Centre for Cancer Prevention and Research, Sri Shankara Cancer Foundation, Bangalore 560004, India
| | - Vinayak Munirathnam
- Department of Medical Oncology, Sri Shankara Cancer Hospital and Research Centre, Bangalore 560004, India
| | - Jyothi Venkat Sainath
- Department of Head and Neck Oncology, Sri Shankara Cancer Hospital and Research Centre, Bangalore 560004, India
| | - Durgadevi Veeraiyan
- Department of Molecular Research, Sri Shankara Cancer Hospital and Research Centre, Sri Shankara National Centre for Cancer Prevention and Research, Sri Shankara Cancer Foundation, Bangalore 560004, India
| | - Akhileshwar Namani
- Department of Molecular Research, Sri Shankara Cancer Hospital and Research Centre, Sri Shankara National Centre for Cancer Prevention and Research, Sri Shankara Cancer Foundation, Bangalore 560004, India.
| |
Collapse
|
6
|
Zhang M, Wang J, Liu R, Wang Q, Qin S, Chen Y, Li W. The role of Keap1-Nrf2 signaling pathway in the treatment of respiratory diseases and the research progress on targeted drugs. Heliyon 2024; 10:e37326. [PMID: 39309822 PMCID: PMC11414506 DOI: 10.1016/j.heliyon.2024.e37326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Lungs are exposed to external oxidants from the environment as in harmful particles and smog, causing oxidative stress in the lungs and consequently respiratory ailment. The NF-E2-related factor 2 (Nrf2) is the one with transcriptional regulatory function, while its related protein Kelch-like ECH-associated protein 1 (Keap1) inhibits Nrf2 activity. Together, they form the Keap1-Nrf2 pathway, which regulates the body's defense against oxidative stress. This pathway has been shown to maintain cellular homeostasis during oxidative stressing, inflammation, oncogenesis, and apoptosis by coordinating the expression of cytoprotective genes and making it a potential therapeutic target for respiratory diseases. This paper summarizes this point in detail in Chapter 2. In addition, this article summarizes the current drug development and clinical research progress related to the Keap1-Nrf2 signaling pathway, with a focus on the potential of Nrf2 agonists in treating respiratory diseases. Overall, the article reviews the regulatory mechanisms of the Keap1-Nrf2 signaling pathway in respiratory diseases and the progress of targeted drug research, aiming to provide new insights for treatment.
Collapse
Affiliation(s)
- Mengyang Zhang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, 92093, USA
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
7
|
Su H, Wang Z, Zhou L, Liu D, Zhang N. Regulation of the Nrf2/HO-1 axis by mesenchymal stem cells-derived extracellular vesicles: implications for disease treatment. Front Cell Dev Biol 2024; 12:1397954. [PMID: 38915448 PMCID: PMC11194436 DOI: 10.3389/fcell.2024.1397954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
This comprehensive review inspects the therapeutic potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) across multiple organ systems. Examining their impact on the integumentary, respiratory, cardiovascular, urinary, and skeletal systems, the study highlights the versatility of MSC-EVs in addressing diverse medical conditions. Key pathways, such as Nrf2/HO-1, consistently emerge as central mediators of their antioxidative and anti-inflammatory effects. From expediting diabetic wound healing to mitigating oxidative stress-induced skin injuries, alleviating acute lung injuries, and even offering solutions for conditions like myocardial infarction and renal ischemia-reperfusion injury, MSC-EVs demonstrate promising therapeutic efficacy. Their adaptability to different administration routes and identifying specific factors opens avenues for innovative regenerative strategies. This review positions MSC-EVs as promising candidates for future clinical applications, providing a comprehensive overview of their potential impact on regenerative medicine.
Collapse
Affiliation(s)
- Hua Su
- Xingyi People’s Hospital, Xingyi, China
| | | | - Lidan Zhou
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dezhi Liu
- Xingyi People’s Hospital, Xingyi, China
| | | |
Collapse
|
8
|
Giurini EF, Godla A, Gupta KH. Redefining bioactive small molecules from microbial metabolites as revolutionary anticancer agents. Cancer Gene Ther 2024; 31:187-206. [PMID: 38200347 PMCID: PMC10874892 DOI: 10.1038/s41417-023-00715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
Cancer treatment remains a significant challenge due to issues such as acquired resistance to conventional therapies and the occurrence of adverse treatment-related toxicities. In recent years, researchers have turned their attention to the microbial world in search of novel and effective drugs to combat this devastating disease. Microbial derived secondary metabolites have proven to be a valuable source of biologically active compounds, which exhibit diverse functions and have demonstrated potential as treatments for various human diseases. The exploration of these compounds has provided valuable insights into their mechanisms of action against cancer cells. In-depth studies have been conducted on clinically established microbial metabolites, unraveling their anticancer properties, and shedding light on their therapeutic potential. This review aims to comprehensively examine the anticancer mechanisms of these established microbial metabolites. Additionally, it highlights the emerging therapies derived from these metabolites, offering a glimpse into the immense potential they hold for anticancer drug discovery. Furthermore, this review delves into approved treatments and major drug candidates currently undergoing clinical trials, focusing on specific molecular targets. It also addresses the challenges and issues encountered in the field of anticancer drug research and development. It also presents a comprehensive exposition of the contemporary panorama concerning microbial metabolites serving as a reservoir for anticancer agents, thereby illuminating their auspicious prospects and the prospect of forthcoming strides in the domain of cancer therapeutics.
Collapse
Affiliation(s)
- Eileena F Giurini
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Aishvarya Godla
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kajal H Gupta
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Baird L, Yamamoto M. Immunoediting of KEAP1-NRF2 mutant tumours is required to circumvent NRF2-mediated immune surveillance. Redox Biol 2023; 67:102904. [PMID: 37839356 PMCID: PMC10590843 DOI: 10.1016/j.redox.2023.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
In human cancer, activating mutations in the KEAP1-NRF2 pathway are frequently observed, and positively selected for, as they confer the cytoprotective functions of the transcription factor NRF2 on the cancer cells. This results in the development of aggressive tumours which are resistant to treatment with chemotherapeutic compounds. Recent clinical developments have also revealed that NRF2-activated cancers are similarly resistant to immune checkpoint inhibitor drugs. As the mechanism of action of these immune modulating therapies is tangential to the classical cytoprotective function of NRF2, it is unclear how aberrant NRF2 activity could impact the anti-cancer functionality of the immune system. In this context, we found that in human cancer, NRF2-activated cells are highly immunoedited, which allows the cancer cells to escape immune surveillance and develop into malignant tumours. This immunoediting takes the form of reduced antigen presentation by the MHC-I complex, coupled with reduced expression of activating ligands for NK cells. Together, these modifications to the immunogenicity of NRF2-activated cancers inhibit immune effector cell infiltration and engagement, and contribute to the formation of the immunologically cold tumour microenvironment which is a characteristic feature of NRF2-activated cancers.
Collapse
Affiliation(s)
- Liam Baird
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8575, Japan.
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
10
|
Baird L, Taguchi K, Zhang A, Takahashi Y, Suzuki T, Kensler TW, Yamamoto M. A NRF2-induced secretory phenotype activates immune surveillance to remove irreparably damaged cells. Redox Biol 2023; 66:102845. [PMID: 37597423 PMCID: PMC10458321 DOI: 10.1016/j.redox.2023.102845] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023] Open
Abstract
While it is well established that the KEAP1-NRF2 pathway regulates the main inducible cellular response to oxidative stress, this cytoprotective function of NRF2 could become deleterious to the host if it confers survival onto irreparably damaged cells. In this regard, we have found that in diseased states, NRF2 promotes the transcriptional activation of a specific subset of the senescence-associated secretory phenotype (SASP) gene program, which we have named the NRF2-induced secretory phenotype (NISP). In two models of hepatic disease using Pten::Keap1 and Keap1::Atg7 double knockout mice, we found that the NISP functions in the liver to recruit CCR2 expressing monocytes, which function as immune system effector cells to directly remove the damaged cells. Through activation of this immune surveillance pathway, in non-transformed cells, NRF2 functions as a tumour suppressor to mitigate the long-term survival of damaged cells which otherwise would be detrimental for host survival. This pathway represents the final stage of the oxidative stress response, as it allows cells to be safely removed if the macromolecular damage caused by the original stressor is so extensive that it is beyond the repair capacity of the cell.
Collapse
Affiliation(s)
- Liam Baird
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, 980-8575, Japan.
| | - Keiko Taguchi
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Anqi Zhang
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Yushi Takahashi
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Takafumi Suzuki
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, United States
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
11
|
Adinolfi S, Patinen T, Jawahar Deen A, Pitkänen S, Härkönen J, Kansanen E, Küblbeck J, Levonen AL. The KEAP1-NRF2 pathway: Targets for therapy and role in cancer. Redox Biol 2023; 63:102726. [PMID: 37146513 DOI: 10.1016/j.redox.2023.102726] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023] Open
Abstract
The KEAP1-NRF2 pathway is the key regulator of cellular defense against both extrinsic and intrinsic oxidative and electrophilic stimuli. Since its discovery in the 1990s, its seminal role in various disease pathologies has become well appreciated, motivating research to elucidate the intricacies of NRF2 signaling and its downstream effects to identify novel targets for therapy. In this graphical review, we present an updated overview of the KEAP1-NRF2 signaling, focusing on the progress made within the past ten years. Specifically, we highlight the advances made in understanding the mechanism of activation of NRF2, resulting in novel discoveries in its therapeutic targeting. Furthermore, we will summarize new findings in the rapidly expanding field of NRF2 in cancer, with important implications for its diagnostics and treatment.
Collapse
Affiliation(s)
- Simone Adinolfi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Tommi Patinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Ashik Jawahar Deen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Sini Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Jouni Härkönen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland; Department of Pathology, Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Emilia Kansanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland; Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Jenni Küblbeck
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland.
| |
Collapse
|
12
|
Suzuki T, Takahashi J, Yamamoto M. Molecular Basis of the KEAP1-NRF2 Signaling Pathway. Mol Cells 2023; 46:133-141. [PMID: 36994473 PMCID: PMC10070164 DOI: 10.14348/molcells.2023.0028] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/31/2023] Open
Abstract
Transcription factor NRF2 (NF-E2-related factor 2) is a master regulator of cellular responses against environmental stresses. NRF2 induces expression of detoxification and antioxidant enzymes and suppresses inductions of pro-inflammatory cytokine genes. KEAP1 (Kelch-like ECH-associated protein 1) is an adaptor subunit of CULLIN 3 (CUL3)-based E3 ubiquitin ligase. KEAP1 regulates the activity of NRF2 and acts as a sensor for oxidative and electrophilic stresses. NRF2 has been found to be activated in many types of cancers with poor prognosis. Therapeutic strategies to control NRF2-overeactivated cancers have been considered not only by targeting cancer cells with NRF2 inhibitors or NRF2 synthetic lethal chemicals, but also by targeting host defense with NRF2 inducers. Understanding precise molecular mechanisms how the KEAP1-NRF2 system senses and regulates the cellular response is critical to overcome intractable NRF2-activated cancers.
Collapse
Affiliation(s)
- Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Jun Takahashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8573, Japan
| |
Collapse
|
13
|
Chen S, Wu D, Liu Q, Jin F, Yao F, Fang Y. POR overexpression induces tamoxifen-resistance in breast cancer through the STAT1/c-Myc pathway. Mol Carcinog 2023; 62:249-260. [PMID: 36321415 DOI: 10.1002/mc.23481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 01/20/2023]
Abstract
Breast cancer is the most common cancer in women worldwide. Although tamoxifen (TAM), a selective estrogen receptor (ER) modulator, is widely used to treat ER-positive breast cancers, resistance to TAM remains a major clinical problem. NADPH-dependent cytochrome P450 reductase (POR) is known to participate in drug metabolism and steroid metabolism. Recent studies showed that high POR expression was correlated with poor outcomes in triple-negative breast cancer (TNBC), and POR might be a prognostic biomarker in TNBC. However, the role of POR in TAM resistance is still elusive. In this study, we found that high POR expression was associated with poor prognosis of ER-positive and TAM-treated breast cancer patients. In addition, COX analysis showed that POR expression was an independent prognostic biomarker for ER-positive as well as TAM-treated breast cancer patients. Furthermore, our results suggested that POR overexpression promoted TAM resistance by activating the STAT1/c-Myc pathway in ER-positive breast cancer cells. Immunohistochemical analysis showed that high POR/STAT1 expression was correlated with poor prognosis in TAM-treated breast cancer patients. Notably, combined treatment with TAM and a specific STAT1 inhibitor Fludarabine was more effective for inhibiting TAM-resistant breast cancer cells. Altogether, our findings suggested that POR overexpression induced TAM resistance through STAT1/c-Myc pathway and might serve as an independent prognostic biomarker in TAM-treated breast cancer patients. Combining TAM and STAT1 inhibitors might be an effective strategy for treating POR-induced TAM-resistant breast cancer.
Collapse
Affiliation(s)
- Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Dingjie Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Feng Jin
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
14
|
Zeng Z, Zheng W, Hou P. The role of drug-metabolizing enzymes in synthetic lethality of cancer. Pharmacol Ther 2022; 240:108219. [PMID: 35636517 DOI: 10.1016/j.pharmthera.2022.108219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
Drug-metabolizing enzymes (DMEs) have shown increasing importance in anticancer therapy. It is not only due to their effect on activation or deactivation of anticancer drugs, but also because of their extensive connections with pathological and biochemistry changes during tumorigenesis. Meanwhile, it has become more accessible to discovery anticancer drugs that selectively targeted cancer cells with the development of synthetic lethal screen technology. Synthetic lethal strategy makes use of unique genetic markers that different cancer cells from normal tissues to discovery anticancer agents. Dysregulation of DMEs has been found in various cancers, making them promising candidates for synthetic lethal strategy. In this review, we will systematically discuss about the role of DMEs in tumor progression, the application of synthetic lethality strategy in drug discovery, and a link between DMEs and synthetic lethal of cancer.
Collapse
Affiliation(s)
- Zekun Zeng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Wenfang Zheng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
15
|
The KEAP1-NRF2 System and Esophageal Cancer. Cancers (Basel) 2022; 14:cancers14194702. [PMID: 36230622 PMCID: PMC9564177 DOI: 10.3390/cancers14194702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 12/18/2022] Open
Abstract
NRF2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that regulates the expression of many cytoprotective genes. NRF2 activation is mainly regulated by KEAP1 (kelch-like ECH-associated protein 1) through ubiquitination and proteasome degradation. Esophageal cancer is classified histologically into two major types: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC harbors more genetic alterations in the KEAP-NRF2 system than EAC does, which results in NRF2 activation in these cancers. NRF2-addicted ESCC exhibits increased malignancy and acquisition of resistance to chemoradiotherapy. Therefore, it has been recognized that the development of drugs targeting the KEAP1-NRF2 system based on the molecular dissection of NRF2 function is important and urgent for the treatment of ESCC, along with efficient clinical screening for NRF2-addicted ESCC patients. Recently, the fate of NRF2-activated cells in esophageal tissues, which was under the influence of strong cell competition, and its relationship to the pathogenesis of ESCC, was clarified. In this review, we will summarize the current knowledge of the KEAP1-NRF2 system and the treatment of ESCC. We propose three main strategies for the treatment of NRF2-addicted cancer: (1) NRF2 inhibitors, (2) synthetic lethal drugs for NRF2-addicted cancers, and (3) NRF2 inducers of the host defense system.
Collapse
|
16
|
Kitamura H, Takeda H, Motohashi H. Genetic, Metabolic and Immunological Features of Cancers with NRF2 Addiction. FEBS Lett 2022; 596:1981-1993. [PMID: 35899372 DOI: 10.1002/1873-3468.14458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022]
Abstract
Nuclear factor erythroid-derived 2-like 2 (NRF2) is a master transcription factor that coordinately regulates the expression of many cytoprotective genes and plays a central role in defense mechanisms against oxidative and electrophilic insults. Although increased NRF2 activity is principally beneficial for our health, NRF2 activation in cancer cells is detrimental. Many human cancers exhibit persistent NRF2 activation and such cancer cells rely on NRF2 for most of their malignant characteristics, such as therapeutic resistance and aggressive tumorigenesis, and thus fall into NRF2 addiction. The persistent activation of NRF2 confers great advantages on cancer cells, whereas it is not tolerated by normal cells, suggesting that certain requirements are necessary for a cell to exploit NRF2 and evolve into malignant a cancer cell. In this review, recent reports and data on the genetic, metabolic and immunological features of NRF2-activated cancer cells are summarized, and prerequisites for NRF2 addiction in cancer cells and their therapeutic applications are discussed.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Haruna Takeda
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
17
|
Wolowczyk C, Neckmann U, Aure MR, Hall M, Johannessen B, Zhao S, Skotheim RI, Andersen SB, Zwiggelaar R, Steigedal TS, Lingjærde OC, Sahlberg KK, Almaas E, Bjørkøy G. NRF2 drives an oxidative stress response predictive of breast cancer. Free Radic Biol Med 2022; 184:170-184. [PMID: 35381325 DOI: 10.1016/j.freeradbiomed.2022.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022]
Abstract
Many breast cancer patients are diagnosed with small, well-differentiated, hormone receptor-positive tumors. Risk of relapse is not easily identified in these patients, resulting in overtreatment. To identify metastasis-related gene expression patterns, we compared the transcriptomes of the non-metastatic 67NR and metastatic 66cl4 cell lines from the murine 4T1 mammary tumor model. The transcription factor nuclear factor, erythroid 2-like 2 (NRF2, encoded by NFE2L2) was constitutively activated in the metastatic cells and tumors, and correspondingly a subset of established NRF2-regulated genes was also upregulated. Depletion of NRF2 increased basal levels of reactive oxygen species (ROS) and severely reduced ability to form primary tumors and lung metastases. Consistently, a set of NRF2-controlled genes was elevated in breast cancer biopsies. Sixteen of these were combined into a gene expression signature that significantly improves the PAM50 ROR score, and is an independent, strong predictor of prognosis, even in hormone receptor-positive tumors.
Collapse
Affiliation(s)
- Camilla Wolowczyk
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.
| | - Ulrike Neckmann
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Miriam Ragle Aure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Martina Hall
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway; K.G.Jebsen Center for Genetic Epidemiology, Department of Public Health and General Practice, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Norwegian Cancer Genomics Consortium, Oslo, Norway
| | - Sen Zhao
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Norwegian Cancer Genomics Consortium, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway; Norwegian Cancer Genomics Consortium, Oslo, Norway
| | - Sonja B Andersen
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rosalie Zwiggelaar
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tonje S Steigedal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Kristine Kleivi Sahlberg
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; Department of Research, Vestre Viken Hospital Trust, Drammen, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway; K.G.Jebsen Center for Genetic Epidemiology, Department of Public Health and General Practice, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Norway
| | - Geir Bjørkøy
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
18
|
Multifaceted Roles of the KEAP1–NRF2 System in Cancer and Inflammatory Disease Milieu. Antioxidants (Basel) 2022; 11:antiox11030538. [PMID: 35326187 PMCID: PMC8944524 DOI: 10.3390/antiox11030538] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
In a multicellular environment, many different types of cells interact with each other. The KEAP1–NRF2 system defends against electrophilic and oxidative stresses in various types of cells. However, the KEAP1–NRF2 system also regulates the expression of genes involved in cell proliferation and inflammation, indicating that the system plays cell type-specific roles. In this review, we introduce the multifarious roles of the KEAP1–NRF2 system in various types of cells, especially focusing on cancer and inflammatory diseases. Cancer cells frequently hijack the KEAP1–NRF2 system, and NRF2 activation confers cancer cells with a proliferative advantage and therapeutic resistance. In contrast, the activation of NRF2 in immune cells, especially in myeloid cells, suppresses tumor development. In chronic inflammatory diseases, such as sickle cell disease, NRF2 activation in myeloid and endothelial cells represses the expression of proinflammatory cytokine and adherent molecule genes, mitigating inflammation and organ damage. Based on these cell-specific roles played by the KEAP1–NRF2 system, NRF2 inducers have been utilized for the treatment of inflammatory diseases. In addition, the use of NRF2 inducers and/or inhibitors with canonical antineoplastic drugs is an emerging approach to cancer treatment.
Collapse
|
19
|
Paiboonrungruang C, Simpson E, Xiong Z, Huang C, Li J, Li Y, Chen X. Development of targeted therapy of NRF2 high esophageal squamous cell carcinoma. Cell Signal 2021; 86:110105. [PMID: 34358647 PMCID: PMC8403639 DOI: 10.1016/j.cellsig.2021.110105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease and one of the most aggressive cancers of the gastrointestinal tract. As a master transcription factor regulating the stress response, NRF2 is often mutated and becomes hyperactive, and thus causes chemo-radioresistance and poor survival in human ESCC. There is a great need to develop NRF2 inhibitors for targeted therapy of NRF2high ESCC. In this review, we mainly focus on three aspects, NRF2 inhibitors and their mechanisms of action, screening novel drug targets, and evaluation of NRF2 activity in the esophagus. A research strategy has been proposed to develop NRF2 inhibitors using human ESCC cells and mouse models.
Collapse
Affiliation(s)
- Chorlada Paiboonrungruang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Emily Simpson
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Zhaohui Xiong
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Caizhi Huang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Jianying Li
- Euclados Bioinformatics Solutions, Cary, NC 27519, USA
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
20
|
Torrente L, DeNicola GM. Targeting NRF2 and Its Downstream Processes: Opportunities and Challenges. Annu Rev Pharmacol Toxicol 2021; 62:279-300. [PMID: 34499527 DOI: 10.1146/annurev-pharmtox-052220-104025] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transcription factor NRF2 coordinates the expression of a vast array of cytoprotective and metabolic genes in response to various stress inputs to restore cellular homeostasis. Transient activation of NRF2 in healthy tissues has been long recognized as a cellular defense mechanism and is critical to prevent cancer initiation by carcinogens. However, cancer cells frequently hijack the protective capability of NRF2 to sustain the redox balance and meet their metabolic requirements for proliferation. Further, aberrant activation of NRF2 in cancer cells confers resistance to commonly used chemotherapeutic agents and radiotherapy. During the last decade, many research groups have attempted to block NRF2 activity in tumors to counteract the survival and proliferative advantage of cancer cells and reverse resistance to treatment. In this review, we highlight the role of NRF2 in cancer progression and discuss the past and current approaches to disable NRF2 signaling in tumors. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Laura Torrente
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA;
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA;
| |
Collapse
|
21
|
Kinowaki Y, Taguchi T, Onishi I, Kirimura S, Kitagawa M, Yamamoto K. Overview of Ferroptosis and Synthetic Lethality Strategies. Int J Mol Sci 2021; 22:9271. [PMID: 34502181 PMCID: PMC8430824 DOI: 10.3390/ijms22179271] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022] Open
Abstract
Ferroptosis, a term first proposed in 2012, is iron-dependent, non-apoptotic regulatory cell death induced by erastin. Ferroptosis was originally discovered during synthetic lethal screening for drugs sensitive to RAS mutant cells, and is closely related to synthetic lethality. Ferroptosis sensitizes cancer stem cells and tumors that undergo epithelial-mesenchymal transition and are resistant to anticancer drugs or targeted therapy. Therefore, ferroptosis-inducing molecules are attractive new research targets. In contrast, synthetic lethal strategies approach mechanisms and genetic abnormalities that cannot be directly targeted by conventional therapeutic strategies, such as RAS mutations, hypoxia, and abnormalities in the metabolic environment. They also target the environment and conditions specific to malignant cells, have a low toxicity to normal cells, and can be used in combination with known drugs to produce new ones. However, the concept of synthetic lethality has not been widely adopted with ferroptosis. In this review, we surveyed the literature on ferroptosis-related factors and synthetic lethality to examine the potential therapeutic targets in ferroptosis-related molecules, focusing on factors related to synthetic lethality, discovery methods, clinical application stages, and issues in drug discovery.
Collapse
Affiliation(s)
- Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; (T.T.); (M.K.)
| | - Towako Taguchi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; (T.T.); (M.K.)
| | - Iichiroh Onishi
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; (I.O.); (S.K.)
| | - Susumu Kirimura
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; (I.O.); (S.K.)
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; (T.T.); (M.K.)
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; (T.T.); (M.K.)
| |
Collapse
|
22
|
Mohan CD, Rangappa S, Nayak SC, Jadimurthy R, Wang L, Sethi G, Garg M, Rangappa KS. Bacteria as a treasure house of secondary metabolites with anticancer potential. Semin Cancer Biol 2021; 86:998-1013. [PMID: 33979675 DOI: 10.1016/j.semcancer.2021.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022]
Abstract
Cancer stands in the frontline among leading killers worldwide and the annual mortality rate is expected to reach 16.4 million by 2040. Humans suffer from about 200 different types of cancers and many of them have a small number of approved therapeutic agents. Moreover, several types of major cancers are diagnosed at advanced stages as a result of which the existing therapies have limited efficacy against them and contribute to a dismal prognosis. Therefore, it is essential to develop novel potent anticancer agents to counteract cancer-driven lethality. Natural sources such as bacteria, plants, fungi, and marine microorganisms have been serving as an inexhaustible source of anticancer agents. Notably, over 13,000 natural compounds endowed with different pharmacological properties have been isolated from different bacterial sources. In the present article, we have discussed about the importance of natural products, with special emphasis on bacterial metabolites for cancer therapy. Subsequently, we have comprehensively discussed the various sources, mechanisms of action, toxicity issues, and off-target effects of clinically used anticancer drugs (such as actinomycin D, bleomycin, carfilzomib, doxorubicin, ixabepilone, mitomycin C, pentostatin, rapalogs, and romidepsin) that have been derived from different bacteria. Furthermore, we have also discussed some of the major secondary metabolites (antimycins, chartreusin, elsamicins, geldanamycin, monensin, plicamycin, prodigiosin, rebeccamycin, salinomycin, and salinosporamide) that are currently in the clinical trials or which have demonstrated potent anticancer activity in preclinical models. Besides, we have elaborated on the application of metagenomics in drug discovery and briefly described about anticancer agents (bryostatin 1 and ET-743) identified through the metagenomics approach.
Collapse
Affiliation(s)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, BG Nagara, 571448, Nagamangala Taluk, India
| | - S Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, Noida, 201313, India
| | | |
Collapse
|
23
|
Ross D, Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol 2021; 41:101950. [PMID: 33774477 PMCID: PMC8027776 DOI: 10.1016/j.redox.2021.101950] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
In this review, we summarize the multiple functions of NQO1, its established roles in redox processes and potential roles in redox control that are currently emerging. NQO1 has attracted interest due to its roles in cell defense and marked inducibility during cellular stress. Exogenous substrates for NQO1 include many xenobiotic quinones. Since NQO1 is highly expressed in many solid tumors, including via upregulation of Nrf2, the design of compounds activated by NQO1 and NQO1-targeted drug delivery have been active areas of research. Endogenous substrates have also been proposed and of relevance to redox stress are ubiquinone and vitamin E quinone, components of the plasma membrane redox system. Established roles for NQO1 include a superoxide reductase activity, NAD+ generation, interaction with proteins and their stabilization against proteasomal degradation, binding and regulation of mRNA translation and binding to microtubules including the mitotic spindles. We also summarize potential roles for NQO1 in regulation of glucose and insulin metabolism with relevance to diabetes and the metabolic syndrome, in Alzheimer's disease and in aging. The conformation and molecular interactions of NQO1 can be modulated by changes in the pyridine nucleotide redox balance suggesting that NQO1 may function as a redox-dependent molecular switch.
Collapse
Affiliation(s)
- David Ross
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
24
|
Taguchi K, Yamamoto M. The KEAP1-NRF2 System as a Molecular Target of Cancer Treatment. Cancers (Basel) 2020; 13:cancers13010046. [PMID: 33375248 PMCID: PMC7795874 DOI: 10.3390/cancers13010046] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Nuclear factor erythroid-derived 2-like 2 (encoded by the Nfe2l2 gene; NRF2) is a transcription factor that regulates a variety of cytoprotective genes, including antioxidant enzymes, detoxification enzymes, inflammation-related proteins, drug transporters and metabolic enzymes. NRF2 is regulated by unique molecular mechanisms that stem from Kelch-like ECH-associated protein 1 (KEAP1) in response to oxidative and electrophilic stresses. It has been shown that disturbance or perturbation of the NRF2 activation causes and/or exacerbates many kinds of diseases. On the contrary, aberrant activations of NRF2 also provoke intriguing pathologic features, especially in cancers. Cancer cells with high NRF2 activity have been referred to as NRF2-addicted cancers, which are frequently found in lung cancers. In this review, we summarize the current accomplishments of the KEAP1–NRF2 pathway analyses in special reference to the therapeutic target of cancer therapy. The concept of synthetic lethality provides a new therapeutic approach for NRF2-addicted cancers. Abstract The Kelch-like ECH-associated protein 1 (KEAP1)—Nuclear factor erythroid-derived 2-like 2 (encoded by the Nfe2l2 gene; NRF2) system attracts extensive interest from scientists in basic and clinical cancer research fields, as NRF2 exhibits activity as both an oncogene and tumor suppressor, depending on the context. Especially unique and malignant, NRF2-addicted cancers exhibit high levels of NRF2 expression. Somatic mutations identified in the NRF2 or KEAP1 genes of NRF2-addicted cancers cause the stabilization and accumulation of NRF2. NRF2-addicted cancers hijack the intrinsic roles that NRF2 plays in cytoprotection, including antioxidative and anti-electrophilic responses, as well as metabolic reprogramming, and acquire a marked advantage to survive under severe and limited microenvironments. Therefore, NRF2 inhibitors are expected to have therapeutic effects in patients with NRF2-addicted cancers. In contrast, NRF2 activation in host immune cells exerts significant suppression of cancer cell growth, indicating that NRF2 inducers also have the potential to be therapeutics for cancers. Thus, the KEAP1–NRF2 system makes a broad range of contributions to both cancer development and suppression. These observations thus demonstrate that both NRF2 inhibitors and inducers are useful for the treatment of cancers with high NRF2 activity.
Collapse
Affiliation(s)
- Keiko Taguchi
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan;
- Department of Medical Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8573, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan;
- Department of Medical Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8573, Japan
- Correspondence: ; Tel.: +81-22-728-3039
| |
Collapse
|
25
|
Robertson H, Dinkova-Kostova AT, Hayes JD. NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis. Cancers (Basel) 2020; 12:E3609. [PMID: 33276631 PMCID: PMC7761610 DOI: 10.3390/cancers12123609] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
NF-E2 p45-related factor 2 (NRF2, encoded in the human by NFE2L2) mediates short-term adaptation to thiol-reactive stressors. In normal cells, activation of NRF2 by a thiol-reactive stressor helps prevent, for a limited period of time, the initiation of cancer by chemical carcinogens through induction of genes encoding drug-metabolising enzymes. However, in many tumour types, NRF2 is permanently upregulated. In such cases, its overexpressed target genes support the promotion and progression of cancer by suppressing oxidative stress, because they constitutively increase the capacity to scavenge reactive oxygen species (ROS), and they support cell proliferation by increasing ribonucleotide synthesis, serine biosynthesis and autophagy. Herein, we describe cancer chemoprevention and the discovery of the essential role played by NRF2 in orchestrating protection against chemical carcinogenesis. We similarly describe the discoveries of somatic mutations in NFE2L2 and the gene encoding the principal NRF2 repressor, Kelch-like ECH-associated protein 1 (KEAP1) along with that encoding a component of the E3 ubiquitin-ligase complex Cullin 3 (CUL3), which result in permanent activation of NRF2, and the recognition that such mutations occur frequently in many types of cancer. Notably, mutations in NFE2L2, KEAP1 and CUL3 that cause persistent upregulation of NRF2 often co-exist with mutations that activate KRAS and the PI3K-PKB/Akt pathway, suggesting NRF2 supports growth of tumours in which KRAS or PKB/Akt are hyperactive. Besides somatic mutations, NRF2 activation in human tumours can occur by other means, such as alternative splicing that results in a NRF2 protein which lacks the KEAP1-binding domain or overexpression of other KEAP1-binding partners that compete with NRF2. Lastly, as NRF2 upregulation is associated with resistance to cancer chemotherapy and radiotherapy, we describe strategies that might be employed to suppress growth and overcome drug resistance in tumours with overactive NRF2.
Collapse
Affiliation(s)
- Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; (H.R.); (A.T.D.-K.)
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; (H.R.); (A.T.D.-K.)
| | - John D. Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; (H.R.); (A.T.D.-K.)
| |
Collapse
|