1
|
O'Bryan SM, Lavin KM, Graham ZA, Drummer DJ, Tuggle SC, Van Keuren-Jensen K, Reiman R, Alsop E, Kadakia MP, Craig MP, Zhang J, Bamman MM. Muscle-derived microRNAs correlated with thigh lean mass gains during progressive resistance training in older adults. J Appl Physiol (1985) 2024; 137:262-273. [PMID: 38932684 PMCID: PMC11424181 DOI: 10.1152/japplphysiol.00680.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Resistance training (RT) remains the most effective treatment for age-related declines in muscle mass. However, many older adults experience attenuated muscle hypertrophy in response to RT when compared with younger adults. This may be attributed to underlying molecular processes that are dysregulated by aging and exacerbated by improperly prescribed RT weekly volume, intensity, and/or frequency doses. MicroRNAs (miRNAs) are key epigenetic regulators that impact signaling pathways and protein expression within cells, are dynamic and responsive to exercise stimuli, and are often dysregulated in diseases. In this study, we used untargeted miRNA-seq to examine miRNA in skeletal muscle and serum-derived exosomes of older adults (n = 18, 11 M/7 F, 66 ± 1 yr) who underwent three times per wk RT for 30 wk [e.g., high intensity three times/wk (HHH, n = 9) or alternating high-low-high (HLH) intensity (n = 9)], after a standardized 4-wk washin. Within each tissue, miRNAs were clustered into modules based on pairwise correlation using weighted gene correlation network analysis (WGCNA). Modules were tested for association with the magnitude of RT-induced thigh lean mass (TLM) change [as measured by dual-energy X-ray absorptiometry (DXA)]. Although no modules were unique to training dose, we identified miRNA modules in skeletal muscle associated with TLM gains irrespective of exercise dose. Using miRNA-target interactions, we analyzed key miRNAs in significant modules for their potential regulatory involvement in biological pathways. Findings point toward potential miRNAs that may be informative biomarkers and could also be evaluated as potential therapeutic targets as an adjuvant to RT to maximize skeletal muscle mass accrual in older adults.NEW & NOTEWORTHY In this work, we identified a set of microRNAs correlated with thigh lean mass gains in a group of older adults. To our knowledge, this is the first time these microRNAs have been identified as novel predictive biomarkers correlating with lean mass gains in aging adults. As biomarkers, these may help interventionalists identify older individuals that are positively responding to an exercise intervention.
Collapse
Affiliation(s)
- Samia M O'Bryan
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kaleen M Lavin
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| | - Zachary A Graham
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| | - Devin J Drummer
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - S Craig Tuggle
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| | | | - Rebecca Reiman
- Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Eric Alsop
- Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Madhavi P Kadakia
- Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States
| | - Michael P Craig
- Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States
| | - Jin Zhang
- Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States
| | - Marcas M Bamman
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| |
Collapse
|
2
|
Su Y, He S, Chen Q, Zhang H, Huang C, Zhao Q, Pu Y, He X, Jiang L, Ma Y, Zhao Q. Integrative ATAC-seq and RNA-seq analysis of myogenic differentiation of ovine skeletal muscle satellite cell. Genomics 2024; 116:110851. [PMID: 38692440 DOI: 10.1016/j.ygeno.2024.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Skeletal muscle satellite cells (SMSCs) play an important role in regulating muscle growth and regeneration. Chromatin accessibility allows physical interactions that synergistically regulate gene expression through enhancers, promoters, insulators, and chromatin binding factors. However, the chromatin accessibility altas and its regulatory role in ovine myoblast differentiation is still unclear. Therefore, ATAC-seq and RNA-seq analysis were performed on ovine SMSCs at the proliferation stage (SCG) and differentiation stage (SCD). 17,460 DARs (differential accessibility regions) and 3732 DEGs (differentially expressed genes) were identified. Based on joint analysis of ATAC-seq and RNA-seq, we revealed that PI3K-Akt, TGF-β and other signaling pathways regulated SMSCs differentiation. We identified two novel candidate genes, FZD5 and MAP2K6, which may affect the proliferation and differentiation of SMSCs. Our data identify potential cis regulatory elements of ovine SMSCs. This study can provide a reference for exploring the mechanisms of the differentiation and regeneration of SMSCs in the future.
Collapse
Affiliation(s)
- Yingxiao Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Siqi He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Qian Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hechun Zhang
- Chaoyang Chaomu Breeding Farm Co., LTD, Chaoyang, Liaoning 122629, China
| | - Chang Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qian Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Xiaohong He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China.
| |
Collapse
|
3
|
Chen SL, Wu CC, Li N, Weng TH. Post-transcriptional regulation of myogenic transcription factors during muscle development and pathogenesis. J Muscle Res Cell Motil 2024; 45:21-39. [PMID: 38206489 DOI: 10.1007/s10974-023-09663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The transcriptional regulation of skeletal muscle (SKM) development (myogenesis) has been documented for over 3 decades and served as a paradigm for tissue-specific cell type determination and differentiation. Myogenic stem cells (MuSC) in embryos and adult SKM are regulated by the transcription factors Pax3 and Pax7 for their stem cell characteristics, while their lineage determination and terminal differentiation are both dictated by the myogenic regulatory factors (MRF) that comprise Mrf4, Myf5, Myogenin, and MyoD. The myocyte enhancer factor Mef2c is activated by MRF during terminal differentiation and collaborates with them to promote myoblast fusion and differentiation. Recent studies have found critical regulation of these myogenic transcription factors at mRNA level, including subcellular localization, stability, and translational regulation. Therefore, the regulation of Pax3/7, MRFs and Mef2c mRNAs by RNA-binding factors and non-coding RNAs (ncRNA), including microRNAs and long non-coding RNAs (lncRNA), will be the focus of this review and the impact of this regulation on myogenesis will be further addressed. Interestingly, the stem cell characteristics of MuSC has been found to be critically regulated by ncRNAs, implying the involvement of ncRNAs in SKM homeostasis and regeneration. Current studies have further identified that some ncRNAs are implicated in the etiology of some SKM diseases and can serve as valuable tools/indicators for prediction of prognosis. The roles of ncRNAs in the MuSC biology and SKM disease etiology will also be discussed in this review.
Collapse
Affiliation(s)
- Shen-Liang Chen
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan.
| | - Chuan-Che Wu
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| | - Ning Li
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| | - Tzu-Han Weng
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| |
Collapse
|
4
|
Muñoz-Gallardo MDM, Garcia-Padilla C, Vicente-Garcia C, Carvajal J, Arenega A, Franco D. miR-195b is required for proper cellular homeostasis in the elderly. Sci Rep 2024; 14:810. [PMID: 38191655 PMCID: PMC10774362 DOI: 10.1038/s41598-024-51256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Over the last decade we have witnessed an increasing number of studies revealing the functional role of non-coding RNAs in a multitude of biological processes, including cellular homeostasis, proliferation and differentiation. Impaired expression of non-coding RNAs can cause distinct pathological conditions, including herein those affecting the gastrointestinal and cardiorespiratory systems, respectively. miR-15/miR-16/miR-195 family members have been broadly implicated in multiple biological processes, including regulation of cell proliferation, apoptosis and metabolism within distinct tissues, such as heart, liver and lungs. While the functional contribution of miR-195a has been reported in multiple biological contexts, the role of miR-195b remains unexplored. In this study we dissected the functional role of miR-195b by generating CRISPR-Cas9 gene edited miR-195b deficient mice. Our results demonstrate that miR-195b is dispensable for embryonic development. miR-195b-/- mice are fertile and displayed no gross anatomical and/or morphological defects. Mechanistically, cell cycle regulation, metabolism and oxidative stress markers are distinctly impaired in the heart, liver and lungs of aged mice, a condition that is not overtly observed at midlife. The lack of overt functional disarray during embryonic development and early adulthood might be due to temporal and tissue-specific compensatory mechanisms driven by selective upregulation miR-15/miR-16/miR-195 family members. Overall, our data demonstrated that miR-195b is dispensable for embryonic development and adulthood but is required for cellular homeostasis in the elderly.
Collapse
Affiliation(s)
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, Badajoz, Spain
| | | | - Jaime Carvajal
- Andalusian Centre of Developmental Biology (CABD-CSIC-UPO-JA), Seville, Spain
| | - Amelia Arenega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
- Fundación Medina, Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain.
- Fundación Medina, Granada, Spain.
| |
Collapse
|
5
|
Matias-Valiente L, Sanchez-Fernandez C, Rodriguez-Outeiriño L, Ramos MC, Díaz C, Crespo G, González-Menéndez V, Genilloud O, Reyes F, Montolio M, Hernandez-Torres F, Aranega AE. Evaluation of pro-regenerative and anti-inflammatory effects of isolecanoric acid in the muscle: Potential treatment of Duchenne Muscular Dystrophy. Biomed Pharmacother 2024; 170:116056. [PMID: 38159372 DOI: 10.1016/j.biopha.2023.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating degenerative disease of skeletal muscles caused by loss of dystrophin, a key protein that maintains muscle integrity, which leads to progressive muscle degeneration aggravated by chronic inflammation, muscle stem cells' (MuSCs) reduced regenerative capacity and replacement of muscle with fibroadipose tissue. Previous research has shown that pharmacological GSK-3β inhibition favors myogenic differentiation and plays an important role in modulating inflammatory processes. Isolecanoric acid (ILA) is a natural product isolated from a fungal culture displaying GSK-3β inhibitory properties. The present study aimed to investigate the proregenerative and anti-inflammatory properties of this natural compound in the DMD context. Our results showed that ILA markedly promotes myogenic differentiation of myoblasts by increasing β-Catenin signaling and boosting the myogenic potential of mouse and human stem cells. One important finding was that the GSK-3β/β-Catenin pathway is altered in dystrophic mice muscle and ILA enhances the myofiber formation of dystrophic MuSCs. Treatment with this natural compound improves muscle regeneration of dystrophic mice by, in turn, improving functional performance. Moreover, ILA ameliorates the inflammatory response in both muscle explants and the macrophages isolated from dystrophic mice to, thus, mitigate fibrosis after muscle damage. Overall, we show that ILA modulates both inflammation and muscle regeneration to, thus, contribute to improve the dystrophic phenotype.
Collapse
Affiliation(s)
- Lidia Matias-Valiente
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Jaen, Spain; Fundación MEDINA, Technology Park of Health Sciences, Granada, Spain
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Jaen, Spain; Fundación MEDINA, Technology Park of Health Sciences, Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Jaen, Spain; Fundación MEDINA, Technology Park of Health Sciences, Granada, Spain
| | - Maria C Ramos
- Fundación MEDINA, Technology Park of Health Sciences, Granada, Spain
| | - Caridad Díaz
- Fundación MEDINA, Technology Park of Health Sciences, Granada, Spain
| | - Gloria Crespo
- Fundación MEDINA, Technology Park of Health Sciences, Granada, Spain
| | | | - Olga Genilloud
- Fundación MEDINA, Technology Park of Health Sciences, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Technology Park of Health Sciences, Granada, Spain
| | - Marisol Montolio
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain; Duchenne Parent Project Spain Madrid, Spain
| | - Francisco Hernandez-Torres
- Fundación MEDINA, Technology Park of Health Sciences, Granada, Spain; Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain.
| | - Amelia Eva Aranega
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Jaen, Spain; Fundación MEDINA, Technology Park of Health Sciences, Granada, Spain.
| |
Collapse
|
6
|
Koopmans PJ, Ismaeel A, Goljanek-Whysall K, Murach KA. The roles of miRNAs in adult skeletal muscle satellite cells. Free Radic Biol Med 2023; 209:228-238. [PMID: 37879420 PMCID: PMC10911817 DOI: 10.1016/j.freeradbiomed.2023.10.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Satellite cells are bona fide muscle stem cells that are indispensable for successful post-natal muscle growth and regeneration after severe injury. These cells also participate in adult muscle adaptation in several capacities. MicroRNAs (miRNAs) are post-transcriptional regulators of mRNA that are implicated in several aspects of stem cell function. There is evidence to suggest that miRNAs affect satellite cell behavior in vivo during development and myogenic progenitor behavior in vitro, but the role of miRNAs in adult skeletal muscle satellite cells is less studied. In this review, we provide evidence for how miRNAs control satellite cell function with emphasis on satellite cells of adult skeletal muscle in vivo. We first outline how miRNAs are indispensable for satellite cell viability and control the phases of myogenesis. Next, we discuss the interplay between miRNAs and myogenic cell redox status, senescence, and communication to other muscle-resident cells during muscle adaptation. Results from recent satellite cell miRNA profiling studies are also summarized. In vitro experiments in primary myogenic cells and cell lines have been invaluable for exploring the influence of miRNAs, but we identify a need for novel genetic tools to further interrogate how miRNAs control satellite cell behavior in adult skeletal muscle in vivo.
Collapse
Affiliation(s)
- Pieter Jan Koopmans
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Katarzyna Goljanek-Whysall
- School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
7
|
Yang Y, GuangXuan H, GenMeng W, MengHuan L, Bo C, XueJie Y. Idiopathic inflammatory myopathy and non-coding RNA. Front Immunol 2023; 14:1227945. [PMID: 37744337 PMCID: PMC10512060 DOI: 10.3389/fimmu.2023.1227945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/11/2023] [Indexed: 09/26/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are common autoimmune diseases that affect skeletal muscle quality and function. The lack of an early diagnosis and treatment can lead to irreversible muscle damage. Non-coding RNAs (ncRNAs) play an important role in inflammatory transfer, muscle regeneration, differentiation, and regulation of specific antibody levels and pain in IIMs. ncRNAs can be detected in blood and hair; therefore, ncRNAs detection has great potential for diagnosing, preventing, and treating IIMs in conjunction with other methods. However, the specific roles and mechanisms underlying the regulation of IIMs and their subtypes remain unclear. Here, we review the mechanisms by which micro RNAs and long non-coding RNA-messenger RNA networks regulate IIMs to provide a basis for ncRNAs use as diagnostic tools and therapeutic targets for IIMs.
Collapse
Affiliation(s)
- Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hu GuangXuan
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Wan GenMeng
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Li MengHuan
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Chang Bo
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yi XueJie
- Social Science Research Center, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Lim S, Lee DE, Morena da Silva F, Koopmans PJ, Vechetti IJ, von Walden F, Greene NP, Murach KA. MicroRNA control of the myogenic cell transcriptome and proteome: the role of miR-16. Am J Physiol Cell Physiol 2023; 324:C1101-C1109. [PMID: 36971422 PMCID: PMC10191132 DOI: 10.1152/ajpcell.00071.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
MicroRNAs (miRs) control stem cell biology and fate. Ubiquitously expressed and conserved miR-16 was the first miR implicated in tumorigenesis. miR-16 is low in muscle during developmental hypertrophy and regeneration. It is enriched in proliferating myogenic progenitor cells but is repressed during differentiation. The induction of miR-16 blocks myoblast differentiation and myotube formation, whereas knockdown enhances these processes. Despite a central role for miR-16 in myogenic cell biology, how it mediates its potent effects is incompletely defined. In this investigation, global transcriptomic and proteomic analyses after miR-16 knockdown in proliferating C2C12 myoblasts revealed how miR-16 influences myogenic cell fate. Eighteen hours after miR-16 inhibition, ribosomal protein gene expression levels were higher relative to control myoblasts and p53 pathway-related gene abundance was lower. At the protein level at this same time point, miR-16 knockdown globally upregulated tricarboxylic acid (TCA) cycle proteins while downregulating RNA metabolism-related proteins. miR-16 inhibition induced specific proteins associated with myogenic differentiation such as ACTA2, EEF1A2, and OPA1. We extend prior work in hypertrophic muscle tissue and show that miR-16 is lower in mechanically overloaded muscle in vivo. Our data collectively point to how miR-16 is implicated in aspects of myogenic cell differentiation. A deeper understanding of the role of miR-16 in myogenic cells has consequences for muscle developmental growth, exercise-induced hypertrophy, and regenerative repair after injury, all of which involve myogenic progenitors.
Collapse
Affiliation(s)
- Seongkyun Lim
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - David E Lee
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Francielly Morena da Silva
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Pieter J Koopmans
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| | - Ivan J Vechetti
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Ferdinand von Walden
- Neuropediatrics, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P Greene
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
9
|
miR-503 targets MafK to inhibit subcutaneous preadipocyte adipogenesis causing a decrease of backfat thickness in Guanzhong Black pigs. Meat Sci 2023; 198:109116. [PMID: 36657261 DOI: 10.1016/j.meatsci.2023.109116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Reducing backfat thickness (BFT), determined by subcutaneous fat deposition, is vital in Chinese developed pig breeds. The level of miR-503 in the backfat of Guanzhong Black pigs was found to be lower than that in Large White pigs, implying that miR-503 may be related to BFT. However, the effect and mechanism of miR-503 on adipogenic differentiation in subcutaneous preadipocytes remain unknown. Compared with Large White pigs, the BFT and body fat content of Guanzhong Black pigs were greater, but the level of miR-503 was lower in subcutaneous adipose tissue (SAT) at 180 days of age. Furthermore, miR-503 promoted preadipocyte proliferation by increasing the proportion of S-phase and EdU-positive cells. However, miR-503 inhibited preadipocyte differentiation by downregulating adipogenic gene expression. Mechanistically, miR-503 directly targeted musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) in both proliferating and differentiating preadipocytes to repress adipogenesis. Our findings provide a novel miRNA biomarker for reducing pig BFT levels to improve carcass quality.
Collapse
|
10
|
Abdurahman A, Aierken W, Zhang F, Obulkasim R, Aniwashi J, Sulayman A. miR-1306 induces cell apoptosis by targeting BMPR1B gene in the ovine granulosa cells. Front Genet 2022; 13:989912. [PMID: 36212145 PMCID: PMC9539929 DOI: 10.3389/fgene.2022.989912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Bone morphogenetic protein receptor type-1B (BMPR1B) is one of the major gene for sheep prolificacy. However, few studies investigated its regulatory region. In this study, we reported that miR-1306 is a direct inhibitor of BMPR1B gene in the ovine granulosa cells (ovine GCs). We detected a miRNA response element of miR-1306 in the 3’ untranslated region of the ovine BMPR1B gene. Luciferase assay showed that the ovine BMPR1B gene is a direct target of miR-1306. qPCR and western blotting revealed that miR-1306 reduces the expression of BMPR1B mRNA and protein in the ovine granulosa cells. Furthermore, miR-1306 promoted cell apoptosis by suppressing BMPR1B expression in the ovine granulosa cells. Overall, our results suggest that miR-1306 is an epigenetic regulator of BMPR1B, and may serve as a potential target to improve the fecundity of sheep.
Collapse
Affiliation(s)
- Anwar Abdurahman
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | - Fei Zhang
- Animal Diseases Control and Prevention Centre of Xinjiang Uygur Autonomous Region, Urumqi, China
| | | | - Jueken Aniwashi
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, China
| | - Ablat Sulayman
- Institute of Animal Husbandry, Xinjiang Academy of Animal Science, Urumqi, China
- *Correspondence: Ablat Sulayman,
| |
Collapse
|
11
|
Rodriguez-Outeiriño L, Hernandez-Torres F, Ramirez de Acuña F, Rastrojo A, Creus C, Carvajal A, Salmeron L, Montolio M, Soblechero-Martin P, Arechavala-Gomeza V, Franco D, Aranega AE. miR-106b is a novel target to promote muscle regeneration and restore satellite stem cell function in injured Duchenne dystrophic muscle. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:769-786. [PMID: 36159592 PMCID: PMC9463180 DOI: 10.1016/j.omtn.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/14/2022] [Indexed: 10/26/2022]
|
12
|
Vann CG, Zhang X, Khodabukus A, Orenduff MC, Chen YH, Corcoran DL, Truskey GA, Bursac N, Kraus VB. Differential microRNA profiles of intramuscular and secreted extracellular vesicles in human tissue-engineered muscle. Front Physiol 2022; 13:937899. [PMID: 36091396 PMCID: PMC9452896 DOI: 10.3389/fphys.2022.937899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise affects the expression of microRNAs (miR/s) and muscle-derived extracellular vesicles (EVs). To evaluate sarcoplasmic and secreted miR expression in human skeletal muscle in response to exercise-mimetic contractile activity, we utilized a three-dimensional tissue-engineered model of human skeletal muscle ("myobundles"). Myobundles were subjected to three culture conditions: no electrical stimulation (CTL), chronic low frequency stimulation (CLFS), or intermittent high frequency stimulation (IHFS) for 7 days. RNA was isolated from myobundles and from extracellular vesicles (EVs) secreted by myobundles into culture media; miR abundance was analyzed by miRNA-sequencing. We used edgeR and a within-sample design to evaluate differential miR expression and Pearson correlation to evaluate correlations between myobundle and EV populations within treatments with statistical significance set at p < 0.05. Numerous miRs were differentially expressed between myobundles and EVs; 116 miRs were differentially expressed within CTL, 3 within CLFS, and 2 within IHFS. Additionally, 25 miRs were significantly correlated (18 in CTL, 5 in CLFS, 2 in IHFS) between myobundles and EVs. Electrical stimulation resulted in differential expression of 8 miRs in myobundles and only 1 miR in EVs. Several KEGG pathways, known to play a role in regulation of skeletal muscle, were enriched, with differentially overrepresented miRs between myobundle and EV populations identified using miEAA. Together, these results demonstrate that in vitro exercise-mimetic contractile activity of human engineered muscle affects both their expression of miRs and number of secreted EVs. These results also identify novel miRs of interest for future studies of the role of exercise in organ-organ interactions in vivo.
Collapse
Affiliation(s)
- Christopher G Vann
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Melissa C. Orenduff
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Yu-Hsiu Chen
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - David L. Corcoran
- Department of Genetics, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - George A. Truskey
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Vicente-García C, Hernández-Camacho JD, Carvajal JJ. Regulation of myogenic gene expression. Exp Cell Res 2022; 419:113299. [DOI: 10.1016/j.yexcr.2022.113299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/22/2022]
|
14
|
Ramírez de Acuña F, Hernandez-Torres F, Rodriguez-Outeiriño L, Dominguez JN, Matias-Valiente L, Sanchez-Fernandez C, Franco D, Aranega AE. Pitx2 Differentially Regulates the Distinct Phases of Myogenic Program and Delineates Satellite Cell Lineages During Muscle Development. Front Cell Dev Biol 2022; 10:940622. [PMID: 35874842 PMCID: PMC9298408 DOI: 10.3389/fcell.2022.940622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The knowledge of the molecular mechanisms that regulate embryonic myogenesis from early myogenic progenitors to myoblasts, as well as the emergence of adult satellite stem cells (SCs) during development, are key concepts to understanding the genesis and regenerative abilities of the skeletal muscle. Several previous pieces of evidence have revealed that the transcription factor Pitx2 might be a player within the molecular pathways controlling somite-derived muscle progenitors’ fate and SC behavior. However, the role exerted by Pitx2 in the progression from myogenic progenitors to myoblasts including SC precursors remains unsolved. Here, we show that Pitx2 inactivation in uncommitted early myogenic precursors diminished cell proliferation and migration leading to muscle hypotrophy and a low number of SCs with decreased myogenic differentiation potential. However, the loss of Pitx2 in committed myogenic precursors gave rise to normal muscles with standard amounts of SCs exhibiting high levels of Pax7 expression. This SC population includes few MYF5+ SC-primed but increased amount of less proliferative miR-106b+cells, and display myogenic differentiation defects failing to undergo proper muscle regeneration. Overall our results demonstrate that Pitx2 is required in uncommitted myogenic progenitors but it is dispensable in committed precursors for proper myogenesis and reveal a role for this transcription factor in the generation of diverse SC subpopulations.
Collapse
Affiliation(s)
- Felícitas Ramírez de Acuña
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Francisco Hernandez-Torres
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Jorge N. Dominguez
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Lidia Matias-Valiente
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Cristina Sanchez-Fernandez
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Diego Franco
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
| | - Amelia E. Aranega
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaen, Jaén, Spain
- Cardiac and Skeletal Myogenesis Group, MEDINA Foundation, Center for Excellence in Research of Innovative Medicines in Andalusia, Granada, Spain
- *Correspondence: Amelia E. Aranega,
| |
Collapse
|
15
|
Moleón Baca JA, Ontiveros Ortega A, Aránega Jiménez A, Granados Principal S. Cells electric charge analyses define specific properties for cancer cells activity. Bioelectrochemistry 2022; 144:108028. [PMID: 34890991 DOI: 10.1016/j.bioelechem.2021.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022]
Abstract
The surface electrical charge of cells is conditioned by the ionic medium in which they are immersed. This charge is specific for each cell type and is especially important in tumour cells because it determines their state of aggregation and their adhesion in the different organs. This study analyses the variations in surface charge of cells when pH, electrolytes, and their concentration are modified. The modification of these factors leads to changes in the surface charge of tumour cells; therefore, their states of aggregation and behaviour can be modified. This may even have a use in the prognosis and treatment of various tumours. Some studies conclude that the activity associated with the glycolysis process is accompanied by a change in the surface charge of cells. Notably, there is a high rate of glycolysis in tumours. Our results show that surface charge of cells strongly depends on nature of ionic medium in which they are found, with the valence of the majority ion being the most important factor. When ionic strength was high, the charge decreased dramatically. On the other hand, charge becomes zero or positive in an acidic pH, while in a basic pH, the negative charge increases.
Collapse
Affiliation(s)
| | | | | | - S Granados Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer, University of Granada, Spain
| |
Collapse
|
16
|
Chen PH, Tjong WY, Yang HC, Liu HY, Stern A, Chiu DTY. Glucose-6-Phosphate Dehydrogenase, Redox Homeostasis and Embryogenesis. Int J Mol Sci 2022; 23:ijms23042017. [PMID: 35216131 PMCID: PMC8878822 DOI: 10.3390/ijms23042017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Normal embryogenesis requires complex regulation and precision, which depends on multiple mechanistic details. Defective embryogenesis can occur by various mechanisms. Maintaining redox homeostasis is of importance during embryogenesis. NADPH, as produced from the action of glucose-6-phosphate dehydrogenase (G6PD), has an important role in redox homeostasis, serving as a cofactor for glutathione reductase in the recycling of glutathione from oxidized glutathione and for NADPH oxidases and nitric oxide synthases in the generation of reactive oxygen (ROS) and nitrogen species (RNS). Oxidative stress differentially influences cell fate and embryogenesis. While low levels of stress (eustress) by ROS and RNS promote cell growth and differentiation, supra-physiological concentrations of ROS and RNS can lead to cell demise and embryonic lethality. G6PD-deficient cells and organisms have been used as models in embryogenesis for determining the role of redox signaling in regulating cell proliferation, differentiation and migration. Embryogenesis is also modulated by anti-oxidant enzymes, transcription factors, microRNAs, growth factors and signaling pathways, which are dependent on redox regulation. Crosstalk among transcription factors, microRNAs and redox signaling is essential for embryogenesis.
Collapse
Affiliation(s)
- Po-Hsiang Chen
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (P.-H.C.); (W.-Y.T.); (D.T.-Y.C.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Wen-Ye Tjong
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (P.-H.C.); (W.-Y.T.); (D.T.-Y.C.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
- Correspondence: ; Tel.: +886-3-6108175; Fax: +886-3-6102327
| | - Hui-Ya Liu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Arnold Stern
- Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Daniel Tsun-Yee Chiu
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (P.-H.C.); (W.-Y.T.); (D.T.-Y.C.)
| |
Collapse
|
17
|
Bai J, Lu Y, Zhu Y, Wang H, Yin D, Zhang H, Franco D, Zhao J. Understanding PITX2-Dependent Atrial Fibrillation Mechanisms through Computational Models. Int J Mol Sci 2021; 22:7681. [PMID: 34299303 PMCID: PMC8307824 DOI: 10.3390/ijms22147681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/11/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. Several major mechanisms cause AF in patients, including genetic predispositions to AF development. Genome-wide association studies have identified a number of genetic variants in association with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription PITX2. Because of the inherent complexity of the human heart, experimental and basic research is insufficient for understanding the functional impacts of PITX2 variants on AF. Linking PITX2 properties to ion channels, cells, tissues, atriums and the whole heart, computational models provide a supplementary tool for achieving a quantitative understanding of the functional role of PITX2 in remodelling atrial structure and function to predispose to AF. It is hoped that computational approaches incorporating all we know about PITX2-related structural and electrical remodelling would provide better understanding into its proarrhythmic effects leading to development of improved anti-AF therapies. In the present review, we discuss advances in atrial modelling and focus on the mechanistic links between PITX2 and AF. Challenges in applying models for improving patient health are described, as well as a summary of future perspectives.
Collapse
Affiliation(s)
- Jieyun Bai
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Yaosheng Lu
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Yijie Zhu
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Huijin Wang
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (Y.Z.)
| | - Dechun Yin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150000, China;
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain;
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
18
|
Tran TQ, Kioussi C. Pitx genes in development and disease. Cell Mol Life Sci 2021; 78:4921-4938. [PMID: 33844046 PMCID: PMC11073205 DOI: 10.1007/s00018-021-03833-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Homeobox genes encode sequence-specific transcription factors (SSTFs) that recognize specific DNA sequences and regulate organogenesis in all eukaryotes. They are essential in specifying spatial and temporal cell identity and as a result, their mutations often cause severe developmental defects. Pitx genes belong to the PRD class of the highly evolutionary conserved homeobox genes in all animals. Vertebrates possess three Pitx paralogs, Pitx1, Pitx2, and Pitx3 while non-vertebrates have only one Pitx gene. The ancient role of regulating left-right (LR) asymmetry is conserved while new functions emerge to afford more complex body plan and functionalities. In mouse, Pitx1 regulates hindlimb tissue patterning and pituitary development. Pitx2 is essential for the development of the oral cavity and abdominal wall while regulates the formation and symmetry of other organs including pituitary, heart, gut, lung among others by controlling growth control genes upon activation of the Wnt/ß-catenin signaling pathway. Pitx3 is essential for lens development and migration and survival of the dopaminergic neurons of the substantia nigra. Pitx gene mutations are linked to various congenital defects and cancers in humans. Pitx gene family has the potential to offer a new approach in regenerative medicine and aid in identifying new drug targets.
Collapse
Affiliation(s)
- Thai Q Tran
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
19
|
Aránega AE, Lozano-Velasco E, Rodriguez-Outeiriño L, Ramírez de Acuña F, Franco D, Hernández-Torres F. MiRNAs and Muscle Regeneration: Therapeutic Targets in Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22084236. [PMID: 33921834 PMCID: PMC8072594 DOI: 10.3390/ijms22084236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs required for the post-transcriptional control of gene expression. MicroRNAs play a critical role in modulating muscle regeneration and stem cell behavior. Muscle regeneration is affected in muscular dystrophies, and a critical point for the development of effective strategies for treating muscle disorders is optimizing approaches to target muscle stem cells in order to increase the ability to regenerate lost tissue. Within this framework, miRNAs are emerging as implicated in muscle stem cell response in neuromuscular disorders and new methodologies to regulate the expression of key microRNAs are coming up. In this review, we summarize recent advances highlighting the potential of miRNAs to be used in conjunction with gene replacement therapies, in order to improve muscle regeneration in the context of Duchenne Muscular Dystrophy (DMD).
Collapse
Affiliation(s)
- Amelia Eva Aránega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
- Correspondence:
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Felicitas Ramírez de Acuña
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Francisco Hernández-Torres
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avda. de la Investigación 11, 18016 Granada, Spain
| |
Collapse
|
20
|
Luo H, Lv W, Tong Q, Jin J, Xu Z, Zuo B. Functional Non-coding RNA During Embryonic Myogenesis and Postnatal Muscle Development and Disease. Front Cell Dev Biol 2021; 9:628339. [PMID: 33585483 PMCID: PMC7876409 DOI: 10.3389/fcell.2021.628339] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle is a highly heterogeneous tissue that plays a crucial role in mammalian metabolism and motion maintenance. Myogenesis is a complex biological process that includes embryonic and postnatal development, which is regulated by specific signaling pathways and transcription factors. Various non-coding RNAs (ncRNAs) account for the majority of total RNA in cells and have an important regulatory role in myogenesis. In this review, we introduced the research progress in miRNAs, circRNAs, and lncRNAs related to embryonic and postnatal muscle development. We mainly focused on ncRNAs that regulate myoblast proliferation, differentiation, and postnatal muscle development through multiple mechanisms. Finally, challenges and future perspectives related to the identification and verification of functional ncRNAs are discussed. The identification and elucidation of ncRNAs related to myogenesis will enrich the myogenic regulatory network, and the effective application of ncRNAs will enhance the function of skeletal muscle.
Collapse
Affiliation(s)
- Hongmei Luo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Lv
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qian Tong
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
21
|
Singh GB, Cowan DB, Wang DZ. Tiny Regulators of Massive Tissue: MicroRNAs in Skeletal Muscle Development, Myopathies, and Cancer Cachexia. Front Oncol 2020; 10:598964. [PMID: 33330096 PMCID: PMC7719840 DOI: 10.3389/fonc.2020.598964] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscles are the largest tissues in our body and the physiological function of muscle is essential to every aspect of life. The regulation of development, homeostasis, and metabolism is critical for the proper functioning of skeletal muscle. Consequently, understanding the processes involved in the regulation of myogenesis is of great interest. Non-coding RNAs especially microRNAs (miRNAs) are important regulators of gene expression and function. MiRNAs are small (~22 nucleotides long) noncoding RNAs known to negatively regulate target gene expression post-transcriptionally and are abundantly expressed in skeletal muscle. Gain- and loss-of function studies have revealed important roles of this class of small molecules in muscle biology and disease. In this review, we summarize the latest research that explores the role of miRNAs in skeletal muscle development, gene expression, and function as well as in muscle disorders like sarcopenia and Duchenne muscular dystrophy (DMD). Continuing with the theme of the current review series, we also briefly discuss the role of miRNAs in cancer cachexia.
Collapse
Affiliation(s)
- Gurinder Bir Singh
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Torma F, Gombos Z, Jokai M, Berkes I, Takeda M, Mimura T, Radak Z, Gyori F. The roles of microRNA in redox metabolism and exercise-mediated adaptation. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:405-414. [PMID: 32780693 PMCID: PMC7498669 DOI: 10.1016/j.jshs.2020.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/03/2020] [Accepted: 02/10/2020] [Indexed: 05/10/2023]
Abstract
MicroRNAs (miRs) are small regulatory RNA transcripts capable of post-transcriptional silencing of mRNA messages by entering a cellular bimolecular apparatus called RNA-induced silencing complex. miRs are involved in the regulation of cellular processes producing, eliminating or repairing the damage caused by reactive oxygen species, and they are active players in redox homeostasis. Increased mitochondrial biogenesis, function and hypertrophy of skeletal muscle are important adaptive responses to regular exercise. In the present review, we highlight some of the redox-sensitive regulatory roles of miRs.
Collapse
Affiliation(s)
- Ferenc Torma
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Zoltan Gombos
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Matyas Jokai
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Istvan Berkes
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Masaki Takeda
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe 610-0394, Japan
| | - Tatsuya Mimura
- Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka 573-1004, Japan
| | - Zsolt Radak
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan; Institute of Physical Education and Sport Science, JGYPK, University of Szeged, Szeged 6726, Hungary.
| | - Ferenc Gyori
- Institute of Physical Education and Sport Science, JGYPK, University of Szeged, Szeged 6726, Hungary
| |
Collapse
|
23
|
Pterostilbene Attenuates Fructose-Induced Myocardial Fibrosis by Inhibiting ROS-Driven Pitx2c/miR-15b Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1243215. [PMID: 31871537 PMCID: PMC6913258 DOI: 10.1155/2019/1243215] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
Excessive fructose consumption induces oxidative stress and myocardial fibrosis. Antioxidant compound pterostilbene has cardioprotective effect in experimental animals. This study is aimed at investigating how fructose drove fibrotic responses via oxidative stress in cardiomyocytes and explored the attenuation mechanisms of pterostilbene. We observed fructose-induced myocardial hypertrophy and fibrosis with ROS overproduction in rats. Paired-like homeodomain 2 (Pitx2c) increase, microRNA-15b (miR-15b) low expression, and p53 phosphorylation (p-p53) upregulation, as well as activation of transforming growth factor-β1 (TGF-β1)/drosophila mothers against DPP homolog (Smads) signaling and connective tissue growth factor (CTGF) induction, were also detected in fructose-fed rat hearts and fructose-exposed rat myocardial cell line H9c2 cells. The results from p53 siRNA or TGF-β1 siRNA transfection showed that TGF-β1-induced upregulation of CTGF expression and p-p53 activated TGF-β1/Smads signaling in fructose-exposed H9c2 cells. Of note, Pitx2c negatively modulated miR-15b expression via binding to the upstream of the miR-15b genetic loci by chromatin immunoprecipitation and transfection analysis with pEX1-Pitx2c plasmid and Pitx2c siRNA, respectively. In H9c2 cells pretreated with ROS scavenger N-acetylcysteine, or transfected with miR-15b mimic and inhibitor, fructose-induced cardiac ROS overload could drive Pitx2c-mediated miR-15b low expression, then cause p-p53-activated TGF-β1/Smads signaling and CTGF induction in myocardial fibrosis. We also found that pterostilbene significantly improved myocardial hypertrophy and fibrosis in fructose-fed rats and fructose-exposed H9c2 cells. Pterostilbene reduced cardiac ROS to block Pitx2c-mediated miR-15b low expression and p-p53-dependent TGF-β1/Smads signaling activation and CTGF induction in high fructose-induced myocardial fibrosis. These results firstly demonstrated that the ROS-driven Pitx2c/miR-15b pathway was required for p-p53-dependent TGF-β1/Smads signaling activation in fructose-induced myocardial fibrosis. Pterostilbene protected against high fructose-induced myocardial fibrosis through the inhibition of Pitx2c/miR-15b pathway to suppress p-p53-activated TGF-β1/Smads signaling, warranting the consideration of Pitx2c/miR-15b pathway as a therapeutic target in myocardial fibrosis.
Collapse
|
24
|
Cao H, Dong X, Mao H, Xu N, Yin Z. Expression Analysis of the PITX2 Gene and Associations between Its Polymorphisms and Body Size and Carcass Traits in Chickens. Animals (Basel) 2019; 9:ani9121001. [PMID: 31756915 PMCID: PMC6940742 DOI: 10.3390/ani9121001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/16/2019] [Accepted: 11/16/2019] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The Wuliang Mountain Black-bone chicken is a Chinese indigenous breed with good meat quality and strong resistance to disease. Like most of the other Chinese domestic breeds, it has a much slower early growth rate compared with foreign chicken breeds. Therefore, the genetic selection of body size and carcass traits is still the focus of Chinese indigenous chicken breeding. The paired-like homeodomain transcription factor 2 (PITX2) gene, an important transcription factor, plays an important role during the development of the eye, heart, skeletal muscle and other tissues in mammals. In chicken, the PITX2 gene affects the late myogenic differentiation of the limb. The objectives of this study were to detect the expression of the PITX2 gene and analyze the associations between the polymorphisms in the exons of the PITX2 gene and body size as well as carcass traits in chickens. The results could contribute to Chinese chicken breeding based on marker assisted-selection. Abstract PITX2 is expressed in and plays an important role in myocytes of mice, and it has effects on late myogenic differentiation in chickens. However, the expression profile and polymorphisms of PITX2 remain unclear in chickens. Therefore, the aim of the present study was to detect its expression and investigate single nucleotide polymorphisms (SNPs) within its exons and then to evaluate whether these polymorphisms affect body size as well as carcass traits in chickens. The expression analysis showed that the expression level of chicken PITX2 mRNA in the leg muscle and hypophysis was significantly higher (p < 0.01) than those in other tissues. The results of polymorphisms analysis identified two SNPs (i.e., g.9830C > T and g.10073C > T) in exon 1 and 10 SNPs (i.e., g.12713C > T, g.12755C > T, g.12938G > A, g. 3164C > T, g.13019G > A, g.13079G > A, g.13285G > A, g.13335G > A, g.13726A > G and g.13856C > T) in exon 3, including four novel SNPs (i.e., g.9830C > T, g.12713C > T, g.12938G > A and g.13856C > T). In the loci of g.10073C > T and g.12713C > T, chickens with the CT genotype had the highest (p < 0.05 or p < 0.01) breast depth and breast angle, respectively. For the locus of g.13335G > A, chickens with the GG genotype had the highest (p < 0.05 or p < 0.01) breast angle and shank circumference. For the locus of g.13726A > G, chickens with the GG genotype had the highest breast width, fossil keel bone length and shank circumference. The locus of g.12713A > G had significant effects on the PITX2 mRNA expression level in leg muscle. The H1H7 diplotype showed the highest shank circumference, and the H2H8 diplotype showed the highest breast muscle rate. The present research suggested that polymorphisms of the exons of the PITX2 gene were significantly associated with the body size and carcass traits of Wuliang Mountain Black-bone chickens and the PITX2 gene could be a potential candidate gene for molecular marker-aided selection in Wuliang Mountain Black-bone chickens and other chicken breeds.
Collapse
|
25
|
García-Padilla C, Domínguez JN, Aránega AE, Franco D. Differential chamber-specific expression and regulation of long non-coding RNAs during cardiac development. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:194435. [PMID: 31678627 DOI: 10.1016/j.bbagrm.2019.194435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular development is governed by a complex interplay between inducting signals such as Bmps and Fgfs leading to activation of cardiac specific transcription factors such as Nkx2.5, Mef2c and Srf that orchestrate the initial steps of cardiogenesis. Over the last decade we have witnessed the discovery of novel layers of gene regulation, i.e. post-transcriptional regulation exerted by non-coding RNAs. The function role of small non coding RNAs has been widely demonstrated, e.g. miR-1 knockout display several cardiovascular abnormalities during embryogenesis. More recently long non-coding RNAs have been also reported to modulate gene expression and function in the developing heart, as exemplified by the embryonic lethal phenotypes of Fendrr and Braveheart knock out mice, respectively. In this study, we investigated the differential expression profile during cardiogenesis of previously reported lncRNAs in heart development. Our data revealed that Braveheart, Fendrr, Carmen display a preferential adult expression while Miat, Alien, H19 preferentially display chamber-specific expression at embryonic stages. We also demonstrated that these lncRNAs are differentially regulated by Nkx2.5, Srf and Mef2c, Pitx2 > Wnt > miRNA signaling pathway and angiotensin II and thyroid hormone administration. Importantly isoform-specific expression and distinct nuclear vs cytoplasmic localization of Braveheart, Carmen and Fendrr during chamber morphogenesis is observed, suggesting distinct functional roles of these lncRNAs in atrial and ventricular chambers. Furthermore, we demonstrate by in situ hybridization a dynamic epicardial, myocardial and endocardial expression of H19 during cardiac development. Overall our data support novel roles of these lncRNAs in different temporal and tissue-restricted fashion during cardiogenesis.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Jorge N Domínguez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Amelia E Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain.
| |
Collapse
|
26
|
MiR-126* is a novel functional target of transcription factor SMAD4 in ovarian granulosa cells. Gene 2019; 711:143953. [PMID: 31269463 DOI: 10.1016/j.gene.2019.143953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 01/06/2023]
Abstract
Both SMAD4 and miR-126* have been proven to be involved in granulosa cell (GC) apoptosis and even follicular atresia, through commonly regulating follicle-stimulating hormone receptor (FSHR), the FSH-specific transmembrane receptor of GCs. However, the regulatory relationship between them in GCs is still unknown. In this study, we report that SMAD4 suppresses the expression of miR-126* and impairs its function in GCs of the porcine ovary by acting as a transcription factor. A classic SMAD4-binding element (SBE) site was found in the promoter of miR-126* by using in silico methods. Luciferase assay, qRT-PCR, and ChIP assay proved that SMAD4 serves as a transcriptional repressor and directly binds to SBE site within miR-126* gene promoter, which further reduces miR-126* gene expression and inhibits its transcriptional activity in GCs. Furthermore, SMAD4 also controls miR-126*-mediated expression of FSHR (a direct target of miR-126* in GCs). In addition, we prove that SMAD4 induces CYP19A1 expression (encodes aromatase, the key enzyme for oestrogen biosynthesis) and inhibits GC apoptosis through the miR-126*/FSHR axis. Taken together, our findings not only established a direct link between SMAD4 and miRNA-126*, two key factors of GC apoptosis, but also revealed an important way in which the SMAD4 regulates GC function, the miRNA-126*/FSHR axis.
Collapse
|
27
|
Mir BA, Islam R, Kalanon M, Russell AP, Foletta VC. MicroRNA suppression of stress-responsive NDRG2 during dexamethasone treatment in skeletal muscle cells. BMC Mol Cell Biol 2019; 20:12. [PMID: 31138100 PMCID: PMC6537443 DOI: 10.1186/s12860-019-0194-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs (miRNAs) are increasingly being identified as modulatory molecules for physiological and pathological processes in muscle. Here, we investigated whether miRNAs influenced the expression of the stress-responsive gene N-myc downstream-regulated gene 2 (Ndrg2) in skeletal muscle cells through the targeted degradation or translation inhibition of NDRG2 mRNA transcripts during basal or catabolic stress conditions. Results Three miRNAs, mmu-miR-23a-3p (miR-23a), mmu-miR-23b-3p (miR-23b) and mmu-miR-28-5p (miR-28), were identified using an in silico approach and confirmed to target the 3′ untranslated region of the mouse Ndrg2 gene through luciferase reporter assays. However, miR-23a, -23b or -28 overexpression had no influence on NDRG2 mRNA or protein levels up to 48 h post treatment in mouse C2C12 myotubes under basal conditions. Interestingly, a compensatory decrease in the endogenous levels of the miRNAs in response to each other’s overexpression was measured. Furthermore, dexamethasone, a catabolic stress agent that induces NDRG2 expression, decreased miR-23a and miR-23b endogenous levels at 24 h post treatment suggesting an interplay between these miRNAs and NDRG2 regulation under similar stress conditions. Accordingly, when overexpressed simultaneously, miR-23a, -23b and -28 attenuated the dexamethasone-induced increase of NDRG2 protein translation but did not affect Ndrg2 gene expression. Conclusion These findings highlight modulatory and co-regulatory roles for miR-23a, -23b and -28 and their novel regulation of NDRG2 during stress conditions in muscle. Electronic supplementary material The online version of this article (10.1186/s12860-019-0194-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bilal A Mir
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia
| | - Rabia Islam
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia
| | - Ming Kalanon
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia
| | - Victoria C Foletta
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia.
| |
Collapse
|
28
|
Lee WK, Thévenod F. Oncogenic PITX2 facilitates tumor cell drug resistance by inverse regulation of hOCT3/SLC22A3 and ABC drug transporters in colon and kidney cancers. Cancer Lett 2019; 449:237-251. [PMID: 30742940 DOI: 10.1016/j.canlet.2019.01.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/18/2023]
Abstract
Oncogenic pituitary homeobox 2 (PITX2), a de facto master regulator of developmental organ asymmetry, previously upregulated multidrug resistance (MDR) P-glycoprotein ABCB1 in A498 renal cell carcinoma (RCC) cells. The role of PITX2 isoforms in MDR cancers was investigated. Data mining correlated elevated PITX2 in >30% of cancers analyzed, maximally in colon (4.4-fold), confirmed in co-immunostaining of colon and renal cancer microarrays wherein ABCB1 concomitantly increased in RCC. Drug-resistant colorectal adenocarcinoma Colo320DM cells exhibited increased nuclear PITX2 (40-fold), PITX2 promoter activity (27-fold) and ABCB1 (8000-fold) compared to drug-sensitive Colo205. ABCB1 inhibitor PSC833/valspodar or PITX2 siRNA reversed doxorubicin resistance. Nuclei from Colo320DM and A498 cells harbored PITX2A/B1 and PITX2A/B1/B2/Cα/Cβ, respectively. ChIP-qPCR evidenced PITX2 promoter binding in drug exporters ABCB1, ABCC1, ABCG2 and importer hOCT3/SLC22A3. In A498, 786-O, Caki-1, Colo320DM, and Caco2 cells, PITX2 siRNA diminished exporters, increased hOCT3/SLC22A3 expression and activity, and reverted vincristine resistance. Heterologous PITX2 expression induced ABCB1, repressed hOCT3/SLC22A3, enhanced vincristine resistance and diminished proliferation inhibition wherein PITX2A and PITX2C were most effective. Furthermore, PITX2 activity and MDR depended on phosphorylation by GSK3 in A498 cells. Conclusively, oncogenic PITX2 limits sensitizing drug uptake and potentiates cytoprotective drug efflux, contributing to MDR phenotype.
Collapse
Affiliation(s)
- Wing-Kee Lee
- Institute of Physiology, Pathophysiology and Toxicology, Centre of Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Strasse 12, Witten, Germany.
| | - Frank Thévenod
- Institute of Physiology, Pathophysiology and Toxicology, Centre of Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Strasse 12, Witten, Germany.
| |
Collapse
|
29
|
Chang CN, Kioussi C. Location, Location, Location: Signals in Muscle Specification. J Dev Biol 2018; 6:E11. [PMID: 29783715 PMCID: PMC6027348 DOI: 10.3390/jdb6020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Muscles control body movement and locomotion, posture and body position and soft tissue support. Mesoderm derived cells gives rise to 700 unique muscles in humans as a result of well-orchestrated signaling and transcriptional networks in specific time and space. Although the anatomical structure of skeletal muscles is similar, their functions and locations are specialized. This is the result of specific signaling as the embryo grows and cells migrate to form different structures and organs. As cells progress to their next state, they suppress current sequence specific transcription factors (SSTF) and construct new networks to establish new myogenic features. In this review, we provide an overview of signaling pathways and gene regulatory networks during formation of the craniofacial, cardiac, vascular, trunk, and limb skeletal muscles.
Collapse
Affiliation(s)
- Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
30
|
Doñate Puertas R, Jalabert A, Meugnier E, Euthine V, Chevalier P, Rome S. Analysis of the microRNA signature in left atrium from patients with valvular heart disease reveals their implications in atrial fibrillation. PLoS One 2018; 13:e0196666. [PMID: 29723239 PMCID: PMC5933750 DOI: 10.1371/journal.pone.0196666] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Among the potential factors which may contribute to the development and perpetuation of atrial fibrillation, dysregulation of miRNAs has been suggested. Thus in this study, we have quantified the basal expressions of 662 mature human miRNAs in left atrium (LA) from patients undergoing cardiac surgery for valve repair, suffering or not from atrial fibrillation (AF) by using TaqMan® Low Density arrays (v2.0). RESULTS Among the 299 miRNAs expressed in all patients, 42 miRNAs had altered basal expressions in patients with AF. Binding-site predictions with Targetscan (conserved sites among species) indicated that the up- and down-regulated miRNAs controlled respectively 3,310 and 5,868 genes. To identify the most relevant cellular functions under the control of the altered miRNAs, we focused on the 100 most targeted genes of each list and identified 5 functional protein-protein networks among these genes. Up-regulated networks were involved in synchronisation of circadian rythmicity and in the control of the AKT/PKC signaling pathway (i.e., proliferation/adhesion). Down-regulated networks were the IGF-1 pathway and TGF-beta signaling pathway and a network involved in RNA-mediated gene silencing, suggesting for the first time that alteration of miRNAs in AF would also perturbate the whole miRNA machinery. Then we crossed the list of miRNA predicted genes, and the list of mRNAs altered in similar patients suffering from AF and we found that respectively 44.5% and 55% of the up- and down-regulated mRNA are predicted to be conserved targets of the altered miRNAs (at least one binding site in 3'-UTR). As they were involved in the same biological processes mentioned above, these data demonstrated that a great part of the transcriptional defects previously published in LA from AF patients are likely due to defects at the post-transcriptional level and involved the miRNAs. CONCLUSIONS Our stringent analysis permitted us to identify highly targeted protein-protein networks under the control of miRNAs in LA and, among them, to highlight those specifically affected in AF patients with altered miRNA signature. Further studies are now required to determine whether alterations of miRNA levels in AF pathology are causal or represent an adaptation to prevent cardiac electrical and structural remodeling.
Collapse
Affiliation(s)
- Rosa Doñate Puertas
- Institut NeuroMyoGene (INMG), UMR CNRS 5310-INSERM U1217 / University of Lyon, Lyon, France
| | - Audrey Jalabert
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
| | - Emmanuelle Meugnier
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
| | - Vanessa Euthine
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
| | - Philippe Chevalier
- Institut NeuroMyoGene (INMG), UMR CNRS 5310-INSERM U1217 / University of Lyon, Lyon, France
- Rhythmology Unit, Louis Pradel Cardiology Hospital, Hospices Civils de Lyon, Bron, France
- * E-mail: (SR); (PC)
| | - Sophie Rome
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
- * E-mail: (SR); (PC)
| |
Collapse
|
31
|
Vallejo D, Hernández-Torres F, Lozano-Velasco E, Rodriguez-Outeiriño L, Carvajal A, Creus C, Franco D, Aránega AE. PITX2 Enhances the Regenerative Potential of Dystrophic Skeletal Muscle Stem Cells. Stem Cell Reports 2018; 10:1398-1411. [PMID: 29641992 PMCID: PMC5998647 DOI: 10.1016/j.stemcr.2018.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), one of the most lethal genetic disorders, involves progressive muscle degeneration resulting from the absence of DYSTROPHIN. Lack of DYSTROPHIN expression in DMD has critical consequences in muscle satellite stem cells including a reduced capacity to generate myogenic precursors. Here, we demonstrate that the c-isoform of PITX2 transcription factor modifies the myogenic potential of dystrophic-deficient satellite cells. We further show that PITX2c enhances the regenerative capability of mouse DYSTROPHIN-deficient satellite cells by increasing cell proliferation and the number of myogenic committed cells, but importantly also increasing dystrophin-positive (revertant) myofibers by regulating miR-31. These PITX2-mediated effects finally lead to improved muscle function in dystrophic (DMD/mdx) mice. Our studies reveal a critical role for PITX2 in skeletal muscle repair and may help to develop therapeutic strategies for muscular disorders.
Collapse
Affiliation(s)
- Daniel Vallejo
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, Jaén 23071, Spain
| | - Francisco Hernández-Torres
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, Jaén 23071, Spain
| | - Estefanía Lozano-Velasco
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, Jaén 23071, Spain
| | - Lara Rodriguez-Outeiriño
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, Jaén 23071, Spain
| | - Alejandra Carvajal
- Servicio de Neurología, Hospital Universitario Virgen de las Nieves, Granada 18014, Spain
| | - Carlota Creus
- Servicio de Neurología, Hospital Universitario Virgen de las Nieves, Granada 18014, Spain
| | - Diego Franco
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, Jaén 23071, Spain
| | - Amelia Eva Aránega
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, Jaén 23071, Spain.
| |
Collapse
|
32
|
Mok GF, Lozano-Velasco E, Münsterberg A. microRNAs in skeletal muscle development. Semin Cell Dev Biol 2017; 72:67-76. [PMID: 29102719 DOI: 10.1016/j.semcdb.2017.10.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
A fundamental process during both embryo development and stem cell differentiation is the control of cell lineage determination. In developing skeletal muscle, many of the diffusible signaling molecules, transcription factors and more recently non-coding RNAs that contribute to this process have been identified. This has facilitated advances in our understanding of the molecular mechanisms underlying the control of cell fate choice. Here we will review the role of non-coding RNAs, in particular microRNAs (miRNAs), in embryonic muscle development and differentiation, and in satellite cells of adult muscle, which are essential for muscle growth and regeneration. Some of these short post-transcriptional regulators of gene expression are restricted to skeletal muscle, but their expression can also be more widespread. In addition, we discuss a few examples of long non-coding RNAs, which are numerous but much less well understood.
Collapse
Affiliation(s)
- Gi Fay Mok
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Estefania Lozano-Velasco
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
33
|
Wang W, Wang Y, Liu W, van Wijnen AJ. Regulation and biological roles of the multifaceted miRNA-23b (MIR23B). Gene 2017; 642:103-109. [PMID: 29101066 DOI: 10.1016/j.gene.2017.10.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are important short endogenous non-coding RNAs that have critical biological roles by acting as post-transcriptional regulators of gene expression. Chromosomal region 9q22.32 encodes the miR-23b/27b/24-1 cluster and produces miR-23b, which is a pleiotropic modulator in many developmental processes and pathological conditions. Expression of miR-23b is actively suppressed and induced in response to many different stimuli. We discuss the biological functions and transcriptional regulation of this multifaceted miRNA in different tumor types, during development, upon viral infection, as well as in various clinical disorders, immune responses, as well as cardiovascular and thyroid functions. The combined body of work suggests that miR-23b expression is modulated by a diverse array of stimuli in cells from different lineages and participates in multiple gene regulatory feedback loops. Elevation of miR-23b levels appears to instruct cells to limit their proliferative and migratory potential, while promoting the acquisition of specialized phenotypes or protection from invading viruses and parasites. In contrast, loss of miR-23b can deregulate normal tissue homeostasis by removing constraints on cell cycle progression and cell motility. Collectively, the findings on miR-23b indicate that it is a very potent post-transcriptional regulator of growth and differentiation during development, multiple cancers and other biological processes. Understanding the regulation and activity of miR-23b has significant diagnostic value in many biological disorders and may identify cellular pathways that are amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopeadics, Pu Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China; Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuji Wang
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopaedics, Changzhou No. 2 People's Hospital, Nanjing Medical University, 29 Xinglong Alley, Jiangsu, China
| | - Weijun Liu
- Department of Orthopeadics, Pu Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Andre J van Wijnen
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
34
|
Hernandez-Torres F, Rodríguez-Outeiriño L, Franco D, Aranega AE. Pitx2 in Embryonic and Adult Myogenesis. Front Cell Dev Biol 2017; 5:46. [PMID: 28507987 PMCID: PMC5410577 DOI: 10.3389/fcell.2017.00046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is a heterogeneous tissue that represents between 30 and 38% of the human body mass and has important functions in the organism, such as maintaining posture, locomotor impulse, or pulmonary ventilation. The genesis of skeletal muscle during embryonic development is a process controlled by an elaborate regulatory network combining the interplay of extrinsic and intrinsic regulatory mechanisms that transform myogenic precursor cells into functional muscle fibers through a finely tuned differentiation program. However, the capacity of generating muscle still remains once these fibers have matured. Adult myogenesis resembles many of the embryonic morphogenetic episodes and depends on the activation of satellite cells that have the potential to differentiate into new muscle fibers. Pitx2 is a member of the bicoid family of homeodomain transcription factors that play an important role in morphogenesis. In the last decade, Pitx2 has emerged as a key element involved in the fine-tuning mechanism that regulates skeletal-muscle development as well as the differentiation and cell fate of satellite cells in adult muscle. Here we present an integrative view of all aspects of embryonic and adult myogenesis in which Pitx2 is involved, from embryonic development to satellite-cell proliferation, fate specification, and differentiation. Those new Pitx2 functions on satellite-cell biology might open new perspectives to develop therapeutic strategies for muscular disorders.
Collapse
Affiliation(s)
- Francisco Hernandez-Torres
- Cardiac and Skeletal Myogenesis Group, Departmento de Biología Experimental, Universidad de JaénJaén, Spain.,Cardiac and Skeletal Myogenesis Group, Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranada, Spain
| | - Lara Rodríguez-Outeiriño
- Cardiac and Skeletal Myogenesis Group, Departmento de Biología Experimental, Universidad de JaénJaén, Spain.,Cardiac and Skeletal Myogenesis Group, Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranada, Spain
| | - Diego Franco
- Cardiac and Skeletal Myogenesis Group, Departmento de Biología Experimental, Universidad de JaénJaén, Spain.,Cardiac and Skeletal Myogenesis Group, Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranada, Spain
| | - Amelia E Aranega
- Cardiac and Skeletal Myogenesis Group, Departmento de Biología Experimental, Universidad de JaénJaén, Spain.,Cardiac and Skeletal Myogenesis Group, Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranada, Spain
| |
Collapse
|
35
|
Gonçalves TJ, Armand AS. Non-coding RNAs in skeletal muscle regeneration. Noncoding RNA Res 2017; 2:56-67. [PMID: 30159421 PMCID: PMC6096429 DOI: 10.1016/j.ncrna.2017.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 01/09/2023] Open
Abstract
Following injury, skeletal muscles can regenerate from muscle specific stem cells, called satellite cells. Quiescent in uninjured muscles, satellite cells become activated, proliferate and differentiate into myotubes. Muscle regeneration occurs following distinct main overlapping phases, including inflammation, regeneration and maturation of the regenerated myofibers. Each step of muscle regeneration is orchestrated through complex signaling networks and gene regulatory networks, leading to the expression of specific set of genes in each concerned cell type. Apart from the well-established transcriptional mechanisms involving the myogenic regulatory factors of the MyoD family, increasing data indicate that each step of muscle regeneration is controlled by a wide range of non-coding RNAs. In this review, we discuss the role of two classes of non-coding RNAs (microRNAs and long non-coding RNAs) in the inflammatory, regeneration and maturation steps of muscle regeneration.
Collapse
Affiliation(s)
- Tristan J.M. Gonçalves
- Institut Necker-Enfants Malades, Inserm, U1151, 14 rue Maria Helena Vieira Da Silva, CS 61431, Paris, F-75014, France
- INSERM UMRS 1124, 45 rue des Saints-Pères, F-75270 Paris cedex 06, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne-Sophie Armand
- Institut Necker-Enfants Malades, Inserm, U1151, 14 rue Maria Helena Vieira Da Silva, CS 61431, Paris, F-75014, France
- INSERM UMRS 1124, 45 rue des Saints-Pères, F-75270 Paris cedex 06, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
36
|
Bhat S, Kabekkodu SP, Varghese VK, Chakrabarty S, Mallya SP, Rotti H, Pandey D, Kushtagi P, Satyamoorthy K. Aberrant gene-specific DNA methylation signature analysis in cervical cancer. Tumour Biol 2017; 39:1010428317694573. [PMID: 28351298 DOI: 10.1177/1010428317694573] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Multicomponent molecular modifications such as DNA methylation may offer sensitive and specific cervical intraepithelial neoplasia and cervical cancer biomarkers. In this study, we tested cervical tissues at various stages of tumor progression for 5-methylcytosine and 5-hydroxymethylcytosine levels and also DNA promoter methylation profile of a panel of genes for its diagnostic potential. In total, 5-methylcytosine, 5-hydroxymethylcytosine, and promoter methylation of 33 genes were evaluated by reversed-phase high-performance liquid chromatography, enzyme-linked immunosorbent assay based technique, and bisulfate-based next generation sequencing. The 5-methylcytosine and 5-hydroxymethylcytosine contents were significantly reduced in squamous cell carcinoma and receiver operating characteristic curve analysis showed a significant difference in (1) 5-methylcytosine between normal and squamous cell carcinoma tissues (area under the curve = 0.946) and (2) 5-hydroxymethylcytosine levels among normal, squamous intraepithelial lesions and squamous cell carcinoma. Analyses of our next generation sequencing results and data from five independent published studies consisting of 191 normal, 10 low-grade squamous intraepithelial lesions, 21 high-grade squamous intraepithelial lesions, and 335 malignant tissues identified a panel of nine genes ( ARHGAP6, DAPK1, HAND2, NKX2-2, NNAT, PCDH10, PROX1, PITX2, and RAB6C) which could effectively discriminate among the various groups with sensitivity and specificity of 80%-100% (p < 0.05). Furthermore, 12 gene promoters (ARHGAP6, HAND2, LHX9, HEY2, NKX2-2, PCDH10, PITX2, PROX1, TBX3, IKBKG, RAB6C, and DAPK1) were also methylated in one or more of the cervical cancer cell lines tested. The global and gene-specific methylation of the panel of genes identified in our study may serve as useful biomarkers for the early detection and clinical management of cervical cancer.
Collapse
Affiliation(s)
- Samatha Bhat
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Shama Prasada Kabekkodu
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Vinay Koshy Varghese
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Sanjiban Chakrabarty
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Sandeep P Mallya
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Harish Rotti
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Deeksha Pandey
- 2 Department of Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Pralhad Kushtagi
- 3 Department of Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Kapaettu Satyamoorthy
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| |
Collapse
|
37
|
Rücker FG, Lang KM, Fütterer M, Komarica V, Schmid M, Döhner H, Schlenk RF, Döhner K, Knudsen S, Bullinger L. Molecular dissection of valproic acid effects in acute myeloid leukemia identifies predictive networks. Epigenetics 2016; 11:517-25. [PMID: 27309669 DOI: 10.1080/15592294.2016.1187350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Histone deacetylase inhibitors (HDACIs) like valproic acid (VPA) display activity in leukemia models and induce tumor-selective cytotoxicity against acute myeloid leukemia (AML) blasts. As there are limited data on HDACIs effects, we aimed to dissect VPA effects in vitro using myeloid cell lines with the idea to integrate findings with in vivo data from AML patients treated with VPA additionally to intensive chemotherapy (n = 12). By gene expression profiling we identified an in vitro VPA response signature enriched for genes/pathways known to be implicated in cell cycle arrest, apoptosis, and DNA repair. Following VPA treatment in vivo, gene expression changes in AML patients showed concordant results with the in vitro VPA response despite concomitant intensive chemotherapy. Comparative miRNA profiling revealed VPA-associated miRNA expression changes likely contributing to a VPA-induced reversion of deregulated gene expression. In addition, we were able to define markers predicting VPA response in vivo such as CXCR4 and LBH. These could be validated in an independent cohort of VPA and intensive chemotherapy treated AML patients (n = 114) in which they were inversely correlated with relapse-free survival. In summary, our data provide new insights into the molecular mechanisms of VPA in myeloid blasts, which might be useful in further advancing HDAC inhibition based treatment approaches in AML.
Collapse
Affiliation(s)
- Frank G Rücker
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Katharina M Lang
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Markus Fütterer
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Vladimir Komarica
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Mathias Schmid
- b Department of Medical Oncology and Hematology , Triemli Hospital , Zurich , Switzerland
| | - Hartmut Döhner
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Richard F Schlenk
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Konstanze Döhner
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| | - Steen Knudsen
- c Medical Prognosis Institute (MPI) , Hørsholm , Denmark
| | - Lars Bullinger
- a Department of Internal Medicine III , University Hospital of Ulm , Ulm , Germany
| |
Collapse
|