1
|
Hanley SE, Willis SD, Friedson B, Cooper KF. Med13 is required for efficient P-body recruitment and autophagic degradation of Edc3 following nitrogen starvation. Mol Biol Cell 2024; 35:ar142. [PMID: 39320938 DOI: 10.1091/mbc.e23-12-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
The Cdk8 kinase module (CKM), a conserved, detachable unit of the Mediator complex, plays a vital role in regulating transcription and communicating stress signals from the nucleus to other organelles. Here, we describe a new transcription-independent role for Med13, a CKM scaffold protein, following nitrogen starvation. In Saccharomyces cerevisiae, nitrogen starvation triggers Med13 to translocate to the cytoplasm. This stress also induces the assembly of conserved membraneless condensates called processing bodies (P-bodies) that dynamically sequester translationally inactive messenger ribonucleoprotein particles. Cytosolic Med13 colocalizes with P-bodies, where it helps recruit Edc3, a highly conserved decapping activator and P-body assembly factor, into these conserved ribonucleoprotein granules. Moreover, Med13 orchestrates the autophagic degradation of Edc3 through a selective cargo-hitchhiking autophagy pathway that utilizes Ksp1 as its autophagic receptor protein. In contrast, the autophagic degradation of Xrn1, another conserved P-body assembly factor, is Med13 independent. These results place Med13 as a new player in P-body assembly and regulation following nitrogen starvation. They support a model in which Med13 acts as a conduit between P-bodies and phagophores, two condensates that use liquid-liquid phase separation in their assembly.
Collapse
Affiliation(s)
- Sara E Hanley
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Stephen D Willis
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Brittany Friedson
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Katrina F Cooper
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
2
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
3
|
Krempl C, Lazzaretti D, Sprangers R. A structural biology view on the enzymes involved in eukaryotic mRNA turnover. Biol Chem 2023; 404:1101-1121. [PMID: 37709756 DOI: 10.1515/hsz-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined. These enzymes and factors do not act in isolation, but are embedded in interaction networks which regulate enzyme activity and ensure that the appropriate substrates are recruited. The structural details of the higher order complexes that form can, in part, be accurately deduced from known structural data of sub-complexes. Interestingly, many of the ribonuclease and decapping enzymes have been observed in structurally different conformations. Together with experimental data, this highlights that structural changes are often important for enzyme function. We conclude that the known structural data of mRNA decay factors provide important functional insights, but that static structural data needs to be complemented with information regarding protein motions to complete the picture of how transcripts are turned over. In addition, we highlight multiple aspects that influence mRNA turnover rates, but that have not been structurally characterized so far.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Daniela Lazzaretti
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
Ciancone AM, Seo KW, Chen M, Borne AL, Libby AH, Bai DL, Kleiner RE, Hsu KL. Global Discovery of Covalent Modulators of Ribonucleoprotein Granules. J Am Chem Soc 2023; 145:11056-11066. [PMID: 37159397 PMCID: PMC10392812 DOI: 10.1021/jacs.3c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Stress granules (SGs) and processing-bodies (PBs, P-bodies) are ubiquitous and widely studied ribonucleoprotein (RNP) granules involved in cellular stress response, viral infection, and the tumor microenvironment. While proteomic and transcriptomic investigations of SGs and PBs have provided insights into molecular composition, chemical tools to probe and modulate RNP granules remain lacking. Herein, we combine an immunofluorescence (IF)-based phenotypic screen with chemoproteomics to identify sulfonyl-triazoles (SuTEx) capable of preventing or inducing SG and PB formation through liganding of tyrosine (Tyr) and lysine (Lys) sites in stressed cells. Liganded sites were enriched for RNA-binding and protein-protein interaction (PPI) domains, including several sites found in RNP granule-forming proteins. Among these, we functionally validate G3BP1 Y40, located in the NTF2 dimerization domain, as a ligandable site that can disrupt arsenite-induced SG formation in cells. In summary, we present a chemical strategy for the systematic discovery of condensate-modulating covalent small molecules.
Collapse
Affiliation(s)
- Anthony M. Ciancone
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kyung W. Seo
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Miaomiao Chen
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Adam L. Borne
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Adam H. Libby
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Dina L. Bai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
5
|
Abstract
RNA granules are mesoscale assemblies that form in the absence of limiting membranes. RNA granules contain factors for RNA biogenesis and turnover and are often assumed to represent specialized compartments for RNA biochemistry. Recent evidence suggests that RNA granules assemble by phase separation of subsoluble ribonucleoprotein (RNP) complexes that partially demix from the cytoplasm or nucleoplasm. We explore the possibility that some RNA granules are nonessential condensation by-products that arise when RNP complexes exceed their solubility limit as a consequence of cellular activity, stress, or aging. We describe the use of evolutionary and mutational analyses and single-molecule techniques to distinguish functional RNA granules from "incidental condensates."
Collapse
Affiliation(s)
- Andrea Putnam
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Laura Thomas
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Geraldine Seydoux
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
6
|
Bertoldo JB, Müller S, Hüttelmaier S. RNA-binding proteins in cancer drug discovery. Drug Discov Today 2023; 28:103580. [PMID: 37031812 DOI: 10.1016/j.drudis.2023.103580] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
RNA-binding proteins (RBPs) are crucial players in tumorigenesis and, hence, promising targets in cancer drug discovery. However, they are largely regarded as 'undruggable', because of the often noncatalytic and complex interactions between protein and RNA, which limit the discovery of specific inhibitors. Nonetheless, over the past 10 years, drug discovery efforts have uncovered RBP inhibitors with clinical relevance, highlighting the disruption of RNA-protein networks as a promising avenue for cancer therapeutics. In this review, we discuss the role of structurally distinct RBPs in cancer, and the mechanisms of RBP-directed small-molecule inhibitors (SMOIs) focusing on drug-protein interactions, binding surfaces, potency, and translational potential. Additionally, we underline the limitations of RBP-targeting drug discovery assays and comment on future trends in the field.
Collapse
Affiliation(s)
- Jean B Bertoldo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Simon Müller
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany; New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Stefan Hüttelmaier
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
7
|
Brulet JW, Ciancone AM, Yuan K, Hsu K. Advances in Activity‐Based Protein Profiling of Functional Tyrosines in Proteomes. Isr J Chem 2023. [DOI: 10.1002/ijch.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Jeffrey W. Brulet
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
| | - Anthony M. Ciancone
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
| | - Kun Yuan
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
| | - Ku‐Lung Hsu
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
- Department of Pharmacology University of Virginia School of Medicine Charlottesville Virginia 22908 United States
- Department of Molecular Physiology and Biological Physics University of Virginia Charlottesville Virginia 22908 United States
- University of Virginia Cancer Center University of Virginia Charlottesville VA 22903 USA
| |
Collapse
|
8
|
Ciancone AM, Hosseinibarkooie S, Bai DL, Borne AL, Ferris HA, Hsu KL. Global profiling identifies a stress-responsive tyrosine site on EDC3 regulating biomolecular condensate formation. Cell Chem Biol 2022; 29:1709-1720.e7. [PMID: 36476517 PMCID: PMC9779741 DOI: 10.1016/j.chembiol.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/01/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
RNA granules are cytoplasmic condensates that organize biochemical and signaling complexes in response to cellular stress. Functional proteomic investigations under RNA-granule-inducing conditions are needed to identify protein sites involved in coupling stress response with ribonucleoprotein regulation. Here, we apply chemical proteomics using sulfonyl-triazole (SuTEx) probes to capture cellular responses to oxidative and nutrient stress. The stress-responsive tyrosine and lysine sites detected mapped to known proteins involved in processing body (PB) and stress granule (SG) pathways, including LSM14A, FUS, and Enhancer of mRNA-decapping protein 3 (EDC3). Notably, disruption of EDC3 tyrosine 475 (Y475) resulted in hypo-phosphorylation at S161 and S131 and altered protein-protein interactions (PPIs) with decapping complex components (DDX6, DCP1A/B) and 14-3-3 proteins. This resulting mutant form of EDC3 was capable of rescuing the PB-deficient phenotype of EDC3 knockout cells. Taken together, our findings identify Y475 as an arsenic-responsive site that regulates RNA granule formation by coupling EDC3 post-translational modification and PPI states.
Collapse
Affiliation(s)
- Anthony M Ciancone
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Adam L Borne
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Heather A Ferris
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
9
|
Gnawali GR, Okumura K, Perez K, Gallagher R, Wulfkuhle J, Petricoin EF, Padi SKR, Bearss J, He Z, Wang W, Kraft AS. Synthesis of 2-oxoquinoline derivatives as dual pim and mTORC protein kinase inhibitors. Med Chem Res 2022; 31:1154-1175. [DOI: 10.1007/s00044-022-02904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Roy R, Das G, Kuttanda IA, Bhatter N, Rajyaguru PI. Low complexity RGG-motif sequence is required for Processing body (P-body) disassembly. Nat Commun 2022; 13:2077. [PMID: 35440550 PMCID: PMC9019020 DOI: 10.1038/s41467-022-29715-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/21/2022] [Indexed: 01/12/2023] Open
Abstract
P-bodies are conserved mRNP complexes that are implicated in determining mRNA fate by affecting translation and mRNA decay. In this report, we identify RGG-motif containing translation repressor protein Sbp1 as a disassembly factor of P-bodies since disassembly of P-bodies is defective in Δsbp1. RGG-motif is necessary and sufficient to rescue the PB disassembly defect in Δsbp1. Binding studies using purified proteins revealed that Sbp1 physically interacts with Edc3 and Sbp1-Edc3 interaction competes with Edc3-Edc3 interaction. Purified Edc3 forms assemblies, promoted by the presence of RNA and NADH and the addition of purified Sbp1, but not the RGG-deletion mutant, leads to significantly decreased Edc3 assemblies. We further note that the aggregates of human EWSR1 protein, implicated in neurodegeneration, are more persistent in the absence of Sbp1 and overexpression of EWSR1 in Δsbp1 leads to a growth defect. Taken together, our observations suggest a role of Sbp1 in disassembly, which could apply to disease-relevant heterologous protein-aggregates.
Collapse
Affiliation(s)
- Raju Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Gitartha Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | | | - Nupur Bhatter
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
11
|
Abstract
The 5'-terminal cap is a fundamental determinant of eukaryotic gene expression which facilitates cap-dependent translation and protects mRNAs from exonucleolytic degradation. Enzyme-directed hydrolysis of the cap (decapping) decisively affects mRNA expression and turnover, and is a heavily regulated event. Following the identification of the decapping holoenzyme (Dcp1/2) over two decades ago, numerous studies revealed the complexity of decapping regulation across species and cell types. A conserved set of Dcp1/2-associated proteins, implicated in decapping activation and molecular scaffolding, were identified through genetic and molecular interaction studies, and yet their exact mechanisms of action are only emerging. In this review, we discuss the prevailing models on the roles and assembly of decapping co-factors, with considerations of conservation across species and comparison across physiological contexts. We next discuss the functional convergences of decapping machineries with other RNA-protein complexes in cytoplasmic P bodies and compare current views on their impact on mRNA stability and translation. Lastly, we review the current models of decapping activation and highlight important gaps in our current understanding.
Collapse
Affiliation(s)
- Elva Vidya
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Thomas F. Duchaine
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
12
|
Zhang Y, Wang K, Yang K, Shi Y, Hong J. Insight into the interaction between the RNA helicase CGH-1 and EDC-3 and its implications. Sci Rep 2021; 11:20359. [PMID: 34645931 PMCID: PMC8514580 DOI: 10.1038/s41598-021-99919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/30/2021] [Indexed: 12/03/2022] Open
Abstract
Previous studies indicated that the P-body components, CGH-1 and EDC-3 may play a crucial role in the regulation of lifespan in Caenorhabditis elegans. Homo sapiens DDX6 or Saccharomyces cerevisiae Dhh1p (CGH-1 in C. elegans) could form complexes with EDC3 (Edc3p in yeast), respectively, which is significant for translation inhibition and mRNA decay. However, it is currently unclear how CGH-1 can be recognized by EDC-3 in C. elegans. Here, we provided structural and biochemical insights into the interaction between CGH-1 and EDC-3. Combined with homology modeling, mutation, and ITC assays, we uncovered an interface between CGH-1 RecA2 domain and EDC-3 FDF-FEK. Additionally, GST-pulldown and co-localization experiments confirmed the interaction between CGH-1 and EDC-3 in vitro and in vivo. We also analyzed PATR-1-binding interface on CGH-1 RecA2 by ITC assays. Moreover, we unveiled the similarity and differences of the binding mode between EDC-3 and CAR-1 or PATR-1. Taken together, these findings provide insights into the recognition of DEAD-box protein CGH-1 by EDC-3 FDF-FEK motif, suggesting important functional implications.
Collapse
Affiliation(s)
- Yong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Ke Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Kanglong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Jingjun Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, People's Republic of China.
| |
Collapse
|
13
|
Ruff KM, Dar F, Pappu RV. Polyphasic linkage and the impact of ligand binding on the regulation of biomolecular condensates. BIOPHYSICS REVIEWS 2021; 2:021302. [PMID: 34179888 PMCID: PMC8211317 DOI: 10.1063/5.0050059] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022]
Abstract
Cellular matter can be spatially and temporally organized into membraneless biomolecular condensates. The current thinking is that these condensates form and dissolve via phase transitions driven by one or more condensate-specific multivalent macromolecules known as scaffolds. Cells likely regulate condensate formation and dissolution by exerting control over the concentrations of regulatory molecules, which we refer to as ligands. Wyman and Gill introduced the framework of polyphasic linkage to explain how ligands can exert thermodynamic control over phase transitions. This review focuses on describing the concepts of polyphasic linkage and the relevance of such a mechanism for controlling condensate formation and dissolution. We describe how ligand-mediated control over scaffold phase behavior can be quantified experimentally. Further, we build on recent studies to highlight features of ligands that make them suppressors vs drivers of phase separation. Finally, we highlight areas where advances are needed to further understand ligand-mediated control of condensates in complex cellular environments. These advances include understanding the effects of networks of ligands on condensate behavior and how ligands modulate phase transitions controlled by different combinations of homotypic and heterotypic interactions among scaffold macromolecules. Insights gained from the application of polyphasic linkage concepts should be useful for designing novel pharmaceutical ligands to regulate condensates.
Collapse
Affiliation(s)
- Kiersten M. Ruff
- Department of Biomedical Engineering and Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Furqan Dar
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
14
|
Bearss JJ, Padi SKR, Singh N, Cardo‐Vila M, Song JH, Mouneimne G, Fernandes N, Li Y, Harter MR, Gard JMC, Cress AE, Peti W, Nelson ADL, Buchan JR, Kraft AS, Okumura K. EDC3 phosphorylation regulates growth and invasion through controlling P-body formation and dynamics. EMBO Rep 2021; 22:e50835. [PMID: 33586867 PMCID: PMC8025014 DOI: 10.15252/embr.202050835] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/20/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Regulation of mRNA stability and translation plays a critical role in determining protein abundance within cells. Processing bodies (P-bodies) are critical regulators of these processes. Here, we report that the Pim1 and 3 protein kinases bind to the P-body protein enhancer of mRNA decapping 3 (EDC3) and phosphorylate EDC3 on serine (S)161, thereby modifying P-body assembly. EDC3 phosphorylation is highly elevated in many tumor types, is reduced upon treatment of cells with kinase inhibitors, and blocks the localization of EDC3 to P-bodies. Prostate cancer cells harboring an EDC3 S161A mutation show markedly decreased growth, migration, and invasion in tissue culture and in xenograft models. Consistent with these phenotypic changes, the expression of integrin β1 and α6 mRNA and protein is reduced in these mutated cells. These results demonstrate that EDC3 phosphorylation regulates multiple cancer-relevant functions and suggest that modulation of P-body activity may represent a new paradigm for cancer treatment.
Collapse
Affiliation(s)
| | - Sathish KR Padi
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Molecular Biology and BiophysicsUConn Health CenterFarmingtonCTUSA
| | - Neha Singh
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
| | - Marina Cardo‐Vila
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of ArizonaTucsonAZUSA
| | - Jin H Song
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Ghassan Mouneimne
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Nikita Fernandes
- Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonAZUSA
| | - Yang Li
- Department of Molecular Biology and BiophysicsUConn Health CenterFarmingtonCTUSA
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonAZUSA
| | - Matthew R Harter
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonAZUSA
| | - Jaime MC Gard
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
| | - Anne E Cress
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Wolfgang Peti
- Department of Molecular Biology and BiophysicsUConn Health CenterFarmingtonCTUSA
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonAZUSA
| | | | - J Ross Buchan
- Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonAZUSA
| | - Andrew S Kraft
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of MedicineUniversity of ArizonaTucsonAZUSA
| | - Koichi Okumura
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of PhysiologyUniversity of ArizonaTucsonAZUSA
| |
Collapse
|
15
|
Borne AL, Brulet JW, Yuan K, Hsu KL. Development and biological applications of sulfur-triazole exchange (SuTEx) chemistry. RSC Chem Biol 2021; 2:322-337. [PMID: 34095850 PMCID: PMC8174820 DOI: 10.1039/d0cb00180e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Sulfur electrophiles constitute an important class of covalent small molecules that have found widespread applications in synthetic chemistry and chemical biology. Various electrophilic scaffolds, including sulfonyl fluorides and arylfluorosulfates as recent examples, have been applied for protein bioconjugation to probe ligand sites amenable for chemical proteomics and drug discovery. In this review, we describe the development of sulfonyl-triazoles as a new class of electrophiles for sulfur-triazole exchange (SuTEx) chemistry. SuTEx achieves covalent reaction with protein sites through irreversible modification of a residue with an adduct group (AG) upon departure of a leaving group (LG). A principal differentiator of SuTEx from other chemotypes is the selection of a triazole heterocycle as the LG, which introduces additional capabilities for tuning the sulfur electrophile. We describe the opportunities afforded by modifications to the LG and AG alone or in tandem to facilitate nucleophilic substitution reactions at the SO2 center in cell lysates and live cells. As a result of these features, SuTEx serves as an efficient platform for developing chemical probes with tunable bioactivity to study novel nucleophilic sites on established and poorly annotated protein targets. Here, we highlight a suite of biological applications for the SuTEx electrophile and discuss future goals for this enabling covalent chemistry.
Collapse
Affiliation(s)
- Adam L. Borne
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
| | - Jeffrey W. Brulet
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Kun Yuan
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Ku-Lung Hsu
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
- University of Virginia Cancer Center, University of VirginiaCharlottesvilleVA 22903USA
- Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleVirginia 22908USA
| |
Collapse
|
16
|
Aoki ST, Lynch TR, Crittenden SL, Bingman CA, Wickens M, Kimble J. C. elegans germ granules require both assembly and localized regulators for mRNA repression. Nat Commun 2021; 12:996. [PMID: 33579952 PMCID: PMC7881195 DOI: 10.1038/s41467-021-21278-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Cytoplasmic RNA-protein (RNP) granules have diverse biophysical properties, from liquid to solid, and play enigmatic roles in RNA metabolism. Nematode P granules are paradigmatic liquid droplet granules and central to germ cell development. Here we analyze a key P granule scaffolding protein, PGL-1, to investigate the functional relationship between P granule assembly and function. Using a protein-RNA tethering assay, we find that reporter mRNA expression is repressed when recruited to PGL-1. We determine the crystal structure of the PGL-1 N-terminal region to 1.5 Å, discover its dimerization, and identify key residues at the dimer interface. Mutations of those interface residues prevent P granule assembly in vivo, de-repress PGL-1 tethered mRNA, and reduce fertility. Therefore, PGL-1 dimerization lies at the heart of both P granule assembly and function. Finally, we identify the P granule-associated Argonaute WAGO-1 as crucial for repression of PGL-1 tethered mRNA. We conclude that P granule function requires both assembly and localized regulators.
Collapse
Affiliation(s)
- Scott Takeo Aoki
- grid.257413.60000 0001 2287 3919Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN USA ,grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Tina R. Lynch
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Sarah L. Crittenden
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI USA
| | - Craig A. Bingman
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Marvin Wickens
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Judith Kimble
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
17
|
Enukashvily NI, Dobrynin MA, Chubar AV. RNA-seeded membraneless bodies: Role of tandemly repeated RNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:151-193. [PMID: 34090614 DOI: 10.1016/bs.apcsb.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Membraneless organelles (bodies, granules, etc.) are spatially distinct sub-nuclear and cytoplasmic foci involved in all the processes in a living cell, such as development, cell death, carcinogenesis, proliferation, and differentiation. Today the list of the membraneless organelles includes a wide spectrum of intranuclear and cytoplasmic bodies. Proteins with intrinsically disordered regions are the key players in the membraneless body assembly. However, recent data assume an important role of RNA molecules in the process of the liquid-liquid phase separation. High-level expression of RNA above a critical concentration threshold is mandatory to nucleate interactions with specific proteins and for seeding membraneless organelles. RNA components are considered by many authors as the principal determinants of organelle identity. Tandemly repeated (TR) DNA of big satellites (a TR family that includes centromeric and pericentromeric DNA sequences) was believed to be transcriptionally silent for a long period. Now we know about the TR transcription upregulation during gameto- and embryogenesis, carcinogenesis, stress response. In the review, we summarize the recent data about the involvement of TR RNA in the formation of nuclear membraneless granules, bodies, etc., with different functions being in some cases an initiator of the structures assembly. These RNP structures sequestrate and inactivate different proteins and transcripts. The TR induced sequestration is one of the key principles of nuclear architecture and genome functioning. Studying the role of the TR-based membraneless organelles in stress and disease will bring some new ideas for translational medicine.
Collapse
Affiliation(s)
- Natella I Enukashvily
- Institute of Cytology RAS, St. Petersburg, Russia; North-Western Medical State University named after I.I. Mechnikov, St. Petersburg, Russia.
| | | | | |
Collapse
|
18
|
Kanakamani S, Suresh PS, Venkatesh T. Regulation of processing bodies: From viruses to cancer epigenetic machinery. Cell Biol Int 2020; 45:708-719. [PMID: 33325125 DOI: 10.1002/cbin.11527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/17/2020] [Accepted: 12/13/2020] [Indexed: 11/08/2022]
Abstract
Processing bodies (PBs) are 100-300 nm cytoplasmic messenger ribonucleoprotein particle (mRNP) granules that regulate eukaryotic gene expression. These cytoplasmic compartments harbor messenger RNAs (mRNAs) and several proteins involved in mRNA decay, microRNA silencing, nonsense-mediated mRNA decay, and splicing. Though membrane-less, PB structures are maintained by RNA-protein and protein-protein interactions. PB proteins have intrinsically disordered regions and low complexity domains, which account for its liquid to liquid phase separation. In addition to being dynamic and actively involved in the exchange of materials with other mRNPs and organelles, they undergo changes on various cellular cues and environmental stresses, including viral infections. Interestingly, several PB proteins are individually implicated in cancer development, and no study has addressed the effects on PB dynamics after epigenetic modifications of cancer-associated PB genes. In the current review, we summarize modulations undergone by P bodies or P body components upon viral infections. Furthermore, we discuss the selective and widely investigated PB proteins that undergo methylation changes in cancer and their potential as biomarkers.
Collapse
Affiliation(s)
- Sunmathy Kanakamani
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| | - Padmanaban S Suresh
- Department of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| |
Collapse
|
19
|
Ruan T, Zhang Y, Liu W, Li Y, Wang D, Du Z, Tao K, Wu C. Expression of DCP1a in gastric cancer and its biological function and mechanism in chemotherapy resistance in gastric cancer cells. Dig Liver Dis 2020; 52:1351-1358. [PMID: 32646734 DOI: 10.1016/j.dld.2020.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
AIMS To detect the role of DCP1a in gastric cancer. To estimate the effect of DCP1a in gastric cancer cells on proliferation, invasion, migration and anti-drug behavior in vitro by down-regulating its expression. METHODS Using IHC staining and Western blot to check the expression of DCP1a in tissues and the cell lines. SGC7901 and BGC823 cells were transfected with DCP1a siRNA, and the expression of DCP1a protein and mRNA were detected. The cell proliferation rate was detected by MTT assay and plate cloning assay. Transwell assay was used to detect the change of cell metastasis. The inhibition rates of cells to chemotherapy were detected by MTT assay. And signal pathways were also detected. RESULTS The expression of DCP1a in cancer tissues is higher (p < 0.05), and higher expression of DCP1a is related to poor prognosis. After down-regulating the expression of DCP1a in cells, the proliferation rates, migration abilities and chemotherapy resistance decrease. We find that the expression of MRP-1 and the activation of AKT and STAT3 pathways might be involved in regulation. CONCLUSION The high expression of DCP1a might be associated with cancer development and prognosis. Down-regulating the expression of DCP1a will help to reduce chemotherapy resistance, which will help with further improvement of chemotherapy in gastric cancer.
Collapse
Affiliation(s)
- Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China
| | - Yazhi Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China
| | - Yuan Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China
| | - Dianshi Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China
| | - Zhouyuan Du
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China.
| | - Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China.
| |
Collapse
|
20
|
Khurana S, Hahn M, Klenow L, Golding H. Autoreactivity of Broadly Neutralizing Influenza Human Antibodies to Human Tissues and Human Proteins. Viruses 2020; 12:v12101140. [PMID: 33049994 PMCID: PMC7600923 DOI: 10.3390/v12101140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 01/11/2023] Open
Abstract
Broadly neutralizing monoclonal antibodies (bNAbs) against conserved domains in the influenza hemagglutinin are in clinical trials. Several next generation influenza vaccines designed to elicit such bNAbs are also in clinical development. One of the common features of the isolated bNAbs is the use of restricted IgVH repertoire. More than 80% of stem-targeting bNAbs express IgVH1-69, which may indicate genetic constraints on the evolution of such antibodies. In the current study, we evaluated a panel of influenza virus bNAbs in comparison with HIV-1 MAb 4E10 and anti-RSV MAb Palivizumab (approved for human use) for autoreactivity using 30 normal human tissues microarray and human protein (>9000) arrays. We found that several human bNAbs (CR6261, CR9114, and F2603) reacted with human tissues, especially with pituitary gland tissue. Importantly, protein array analysis identified high-affinity interaction of CR6261 with the autoantigen “Enhancer of mRNA decapping 3 homolog” (EDC3), which was not previously described. Moreover, EDC3 competed with hemagglutinin for binding to bNAb CR6261. These autoreactivity findings underscores the need for careful evaluation of such bNAbs for therapeutics and stem-based vaccines against influenza virus.
Collapse
|
21
|
Xing W, Muhlrad D, Parker R, Rosen MK. A quantitative inventory of yeast P body proteins reveals principles of composition and specificity. eLife 2020; 9:56525. [PMID: 32553117 PMCID: PMC7373430 DOI: 10.7554/elife.56525] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023] Open
Abstract
P bodies are archetypal biomolecular condensates that concentrate proteins and RNA without a surrounding membrane. While dozens of P body proteins are known, the concentrations of components in the compartment have not been measured. We used live cell imaging to generate a quantitative inventory of the major proteins in yeast P bodies. Only seven proteins are highly concentrated in P bodies (5.1–15µM); the 24 others examined are appreciably lower (most ≤ 2.6µM). P body concentration correlates inversely with cytoplasmic exchange rate. Sequence elements driving Dcp2 concentration into P bodies are distributed across the protein and act synergistically. Our data indicate that P bodies, and probably other condensates, are compositionally simpler than suggested by proteomic analyses, with implications for specificity, reconstitution and evolution.
Collapse
Affiliation(s)
- Wenmin Xing
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, United States
| | - Denise Muhlrad
- Department of Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, United States
| | - Roy Parker
- Department of Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, United States
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
22
|
Corbet GA, Parker R. RNP Granule Formation: Lessons from P-Bodies and Stress Granules. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:203-215. [PMID: 32482896 DOI: 10.1101/sqb.2019.84.040329] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is now clear that cells form a wide collection of large RNA-protein assemblies, referred to as RNP granules. RNP granules exist in bacterial cells and can be found in both the cytosol and nucleus of eukaryotic cells. Recent approaches have begun to define the RNA and protein composition of a number of RNP granules. Herein, we review the composition and assembly of RNP granules, as well as how RNPs are targeted to RNP granules using stress granules and P-bodies as model systems. Taken together, these reveal that RNP granules form through the summative effects of a combination of protein-protein, protein-RNA, and RNA-RNA interactions. Similarly, the partitioning of individual RNPs into stress granules is determined by the combinatorial effects of multiple elements. Thus, RNP granules are assemblies generally dominated by combinatorial effects, thereby providing rich opportunities for biological regulation.
Collapse
Affiliation(s)
- Giulia Ada Corbet
- Department of Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
23
|
Webber CJ, Lei SE, Wolozin B. The pathophysiology of neurodegenerative disease: Disturbing the balance between phase separation and irreversible aggregation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:187-223. [PMID: 32828466 DOI: 10.1016/bs.pmbts.2020.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liquid-liquid phase separation (LLPS) brings together functionally related proteins through the intrinsic biophysics of proteins in a process that is driven by reducing free energy and maximizing entropy. The process of LLPS allows proteins to form structures, termed membrane-less organelles. These diverse, dynamic organelles are active in a wide range of processes in the nucleus, cytoplasm, mitochondria and synapse, and ranging from bacteria to plants to eukaryotes. RNA and DNA present long chained charged polymers that promote LLPS. Consequently, many RNA binding proteins (RBPs) and DNA binding proteins form membrane-less organelles. However, the highly concentrated phase separated state creates conditions that also promote formation of irreversible protein aggregates. Mutations in RNA and DNA binding proteins that increase the stability of irreversible aggregates also increase the accumulation of irreversible aggregates directly and from membrane-less organelles. Many of the RBPs that exhibit disease-linked mutations carry out cytoplasmic actions through stress granules, which are a pleiotropic type of RNA granule that regulates the translational response to stress. Phosphorylation and oligomerization of tau facilitates its interactions with RBPs and ribosomal proteins, affecting RNA translation; we propose that this is a major reason that tau becomes phosphorylated with stress. Persistent stress leads to the accumulation of irreversible aggregates composed of RBPs or tau, which then cause toxicity and form many of the hallmark pathologies of major neurodegenerative diseases. This pathophysiology ultimately leads to multiple forms of neurodegenerative diseases, the specific type of which reflects the temporal and spatial accumulation of different aggregating proteins.
Collapse
Affiliation(s)
- Chelsea J Webber
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States
| | - Shuwen Eric Lei
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin Wolozin
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States; Department of Neurology, Boston University School of Medicine, Boston, MA, United States; Program in Neuroscience, Boston University, Boston, MA, United States; Neurophotonics Center, Boston University, Boston, MA, United States.
| |
Collapse
|
24
|
Rieckher M, Markaki M, Princz A, Schumacher B, Tavernarakis N. Maintenance of Proteostasis by P Body-Mediated Regulation of eIF4E Availability during Aging in Caenorhabditis elegans. Cell Rep 2020; 25:199-211.e6. [PMID: 30282029 PMCID: PMC6180348 DOI: 10.1016/j.celrep.2018.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/01/2018] [Accepted: 09/05/2018] [Indexed: 11/16/2022] Open
Abstract
Aging is accompanied by a pervasive collapse of proteostasis, while reducing general protein synthesis promotes longevity across taxa. Here, we show that the eIF4E isoform IFE-2 is increasingly sequestered in mRNA processing (P) bodies during aging and upon stress in Caenorhabditis elegans. Loss of the enhancer of mRNA decapping EDC-3 causes further entrapment of IFE-2 in P bodies and lowers protein synthesis rates in somatic tissues. Animals lacking EDC-3 are long lived and stress resistant, congruent with IFE-2-deficient mutants. Notably, neuron-specific expression of EDC-3 is sufficient to reverse lifespan extension, while sequestration of IFE-2 in neuronal P bodies counteracts age-related neuronal decline. The effects of mRNA decapping deficiency on stress resistance and longevity are orchestrated by a multimodal stress response involving the transcription factor SKN-1, which mediates lifespan extension upon reduced protein synthesis. Our findings elucidate a mechanism of proteostasis control during aging through P body-mediated regulation of protein synthesis in the soma.
Collapse
Affiliation(s)
- Matthias Rieckher
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Greece; Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, 50931 Cologne, Germany
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Greece
| | - Andrea Princz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Greece
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, 50931 Cologne, Germany
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Greece; Department of Basic Sciences, School of Medicine, University of Crete, Heraklion 71110, Greece.
| |
Collapse
|
25
|
Damman R, Schütz S, Luo Y, Weingarth M, Sprangers R, Baldus M. Atomic-level insight into mRNA processing bodies by combining solid and solution-state NMR spectroscopy. Nat Commun 2019; 10:4536. [PMID: 31586050 PMCID: PMC6778109 DOI: 10.1038/s41467-019-12402-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023] Open
Abstract
Liquid-liquid phase separation is increasingly recognized as a process involved in cellular organization. Thus far, a detailed structural characterization of this intrinsically heterogeneous process has been challenging. Here we combine solid- and solution-state NMR spectroscopy to obtain atomic-level insights into the assembly and maturation of cytoplasmic processing bodies that contain mRNA as well as enzymes involved in mRNA degradation. In detail, we have studied the enhancer of decapping 3 (Edc3) protein that is a central hub for processing body formation in yeast. Our results reveal that Edc3 domains exhibit diverse levels of structural organization and dynamics after liquid-liquid phase separation. In addition, we find that interactions between the different Edc3 domains and between Edc3 and RNA in solution are largely preserved in the condensed protein state, allowing processing bodies to rapidly form and dissociate upon small alterations in the cellular environment.
Collapse
Affiliation(s)
- Reinier Damman
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Stefan Schütz
- Department of Biophysics I, University of Regensburg, 93053, Regensburg, Germany
| | - Yanzhang Luo
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Remco Sprangers
- Department of Biophysics I, University of Regensburg, 93053, Regensburg, Germany.
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Wurm JP, Sprangers R. Dcp2: an mRNA decapping enzyme that adopts many different shapes and forms. Curr Opin Struct Biol 2019; 59:115-123. [PMID: 31473440 PMCID: PMC6900585 DOI: 10.1016/j.sbi.2019.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 02/01/2023]
Abstract
Structure of the active state of the Dcp2 decapping enzyme. Insights into the structural states that are sampled in solution. Details regarding the intermolecular network that Dcp2 is embedded in.
Eukaryotic mRNAs contain a 5’ cap structure that protects the transcript against rapid exonucleolytic degradation. The regulation of cellular mRNA levels therefore depends on a precise control of the mRNA decapping pathways. The major mRNA decapping enzyme in eukaryotic cells is Dcp2. It is regulated by interactions with several activators, including Dcp1, Edc1, and Edc3, as well as by an autoinhibition mechanism. The structural and mechanistical characterization of Dcp2 complexes has long been impeded by the high flexibility and dynamic nature of the enzyme. Here we review recent insights into the catalytically active conformation of the mRNA decapping complex, the mode of action of decapping activators and the large interactions network that Dcp2 is embedded in.
Collapse
Affiliation(s)
- Jan Philip Wurm
- Department of Biophysics I, University of Regensburg, 93053, Regensburg, Germany.
| | - Remco Sprangers
- Department of Biophysics I, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
27
|
Paquette DR, Tibble RW, Daifuku TS, Gross JD. Control of mRNA decapping by autoinhibition. Nucleic Acids Res 2019; 46:6318-6329. [PMID: 29618050 PMCID: PMC6158755 DOI: 10.1093/nar/gky233] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
5′ mediated cytoplasmic RNA decay is a conserved cellular process in eukaryotes. While the functions of the structured core domains in this pathway are well-studied, the role of abundant intrinsically disordered regions (IDRs) is lacking. Here we reconstitute the Dcp1:Dcp2 complex containing a portion of the disordered C-terminus and show its activity is autoinhibited by linear interaction motifs. Enhancers of decapping (Edc) 1 and 3 cooperate to activate decapping by different mechanisms: Edc3 alleviates autoinhibition by binding IDRs and destabilizing an inactive form of the enzyme, whereas Edc1 stabilizes the transition state for catalysis. Both activators are required to fully stimulate an autoinhibited Dcp1:Dcp2 as Edc1 alone cannot overcome the decrease in activity attributed to the C-terminal extension. Our data provide a mechanistic framework for combinatorial control of decapping by protein cofactors, a principle that is likely conserved in multiple 5′ mRNA decay pathways.
Collapse
Affiliation(s)
- David R Paquette
- Integrative Program in Quantitative Biology, Graduate Group in Biophysics, University of California, San Francisco, CA 94158, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Ryan W Tibble
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.,Program in Chemistry and Chemical Biology, University of California, San Francisco, CA 94158, USA
| | - Tristan S Daifuku
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - John D Gross
- Integrative Program in Quantitative Biology, Graduate Group in Biophysics, University of California, San Francisco, CA 94158, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.,Program in Chemistry and Chemical Biology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
28
|
Van Treeck B, Parker R. Emerging Roles for Intermolecular RNA-RNA Interactions in RNP Assemblies. Cell 2019; 174:791-802. [PMID: 30096311 DOI: 10.1016/j.cell.2018.07.023] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/05/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022]
Abstract
Eukaryotic cells contain large assemblies of RNA and protein, referred to as ribonucleoprotein (RNP) granules, which include cytoplasmic P-bodies, stress granules, and neuronal and germinal granules, as well as nuclear paraspeckles, Cajal bodies, and RNA foci formed from repeat expansion RNAs. Recent evidence argues that intermolecular RNA-RNA interactions play a role in forming and determining the composition of certain RNP granules. We hypothesize that intermolecular RNA-RNA interactions are favored in cells yet are limited by RNA-binding proteins, helicases, and ribosomes, thereby allowing normal RNA function. An over-abundance of intermolecular RNA-RNA interactions may be toxic since perturbations that increase RNA-RNA interactions such as long repeat expansion RNAs, arginine-containing dipeptide repeat polypeptides, and sequestration or loss of abundant RNA-binding proteins can contribute to degenerative diseases.
Collapse
Affiliation(s)
- Briana Van Treeck
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
29
|
RNA Granules and Their Role in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:195-245. [DOI: 10.1007/978-3-030-31434-7_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Bierma JC, Roskamp KW, Ledray AP, Kiss AJ, Cheng CHC, Martin RW. Controlling Liquid-Liquid Phase Separation of Cold-Adapted Crystallin Proteins from the Antarctic Toothfish. J Mol Biol 2018; 430:5151-5168. [PMID: 30414964 DOI: 10.1016/j.jmb.2018.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022]
Abstract
Liquid-liquid phase separation (LLPS) of proteins is important to a variety of biological processes both functional and deleterious, including the formation of membraneless organelles, molecular condensations that sequester or release molecules in response to stimuli, and the early stages of disease-related protein aggregation. In the protein-rich, crowded environment of the eye lens, LLPS manifests as cold cataract. We characterize the LLPS behavior of six structural γ-crystallins from the eye lens of the Antarctic toothfish Dissostichus mawsoni, whose intact lenses resist cold cataract in subzero waters. Phase separation of these proteins is not strongly correlated with thermal stability, aggregation propensity, or cross-species chaperone protection from heat denaturation. Instead, LLPS is driven by protein-protein interactions involving charged residues. The critical temperature of the phase transition can be tuned over a wide temperature range by selective substitution of surface residues, suggesting general principles for controlling this phenomenon, even in compactly folded proteins.
Collapse
Affiliation(s)
- Jan C Bierma
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
| | - Kyle W Roskamp
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Aaron P Ledray
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
| | - Andor J Kiss
- Center for Bioinformatics and Functional Genomics, Miami University, Oxford, OH 45056,USA.
| | - C-H Christina Cheng
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801,USA
| | - Rachel W Martin
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
31
|
Charenton C, Graille M. mRNA decapping: finding the right structures. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0164. [PMID: 30397101 DOI: 10.1098/rstb.2018.0164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2018] [Indexed: 12/14/2022] Open
Abstract
In eukaryotes, the elimination of the m7GpppN mRNA cap, a process known as decapping, is a critical, largely irreversible and highly regulated step of mRNA decay that withdraws the targeted mRNAs from the pool of translatable templates. The decapping reaction is catalysed by a multi-protein complex formed by the Dcp2 catalytic subunit and its Dcp1 cofactor, a holoenzyme that is poorly active on its own and needs several accessory proteins (Lsm1-7 complex, Pat1, Edc1-2, Edc3 and/or EDC4) to be fully efficient. Here, we discuss the several crystal structures of Dcp2 domains bound to various partners (proteins or small molecules) determined in the last couple of years that have considerably improved our current understanding of how Dcp2, assisted by its various activators, is recruited to its mRNA targets and adopts its active conformation upon substrate recognition. We also describe how, over the years, elegant integrative structural biology approaches combined to biochemistry and genetics led to the identification of the correct structure of the active Dcp1-Dcp2 holoenzyme among the many available conformations trapped by X-ray crystallography.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Clément Charenton
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| |
Collapse
|
32
|
Mittag T, Parker R. Multiple Modes of Protein-Protein Interactions Promote RNP Granule Assembly. J Mol Biol 2018; 430:4636-4649. [PMID: 30099026 DOI: 10.1016/j.jmb.2018.08.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
Abstract
Eukaryotic cells are known to contain a wide variety of RNA-protein assemblies, collectively referred to as RNP granules. RNP granules form from a combination of RNA-RNA, protein-RNA, and protein-protein interactions. In addition, RNP granules are enriched in proteins with intrinsically disordered regions (IDRs), which are frequently appended to a well-folded domain of the same protein. This structural organization of RNP granule components allows for a diverse set of protein-protein interactions including traditional structured interactions between well-folded domains, interactions of short linear motifs in IDRs with the surface of well-folded domains, interactions of short motifs within IDRs that weakly interact with related motifs, and weak interactions involving at most transient ordering of IDRs and folded domains with other components. In addition, both well-folded domains and IDRs in granule components frequently interact with RNA and thereby can contribute to RNP granule assembly. We discuss the contribution of these interactions to liquid-liquid phase separation and the possible role of phase separation in the assembly of RNP granules. We expect that these principles also apply to other non-membrane bound organelles and large assemblies in the cell.
Collapse
Affiliation(s)
- Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Roy Parker
- Department of Chemistry and Biochemistry & Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, United States.
| |
Collapse
|
33
|
Standart N, Weil D. P-Bodies: Cytosolic Droplets for Coordinated mRNA Storage. Trends Genet 2018; 34:612-626. [PMID: 29908710 DOI: 10.1016/j.tig.2018.05.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022]
Abstract
P-bodies (PBs) are cytosolic RNP granules that are conserved among eukaryotic organisms. In the past few years, major progress has been made in understanding the biochemical and biophysical mechanisms that lead to their formation. However, whether they play a role in mRNA storage or decay remains actively debated. P-bodies were recently isolated from human cells by a novel fluorescence-activated particle sorting (FAPS) approach that enabled the characterization of their protein and RNA content, providing new insights into their function. Together with recent innovative imaging studies, these new data show that mammalian PBs are primarily involved not in RNA decay but rather in the coordinated storage of mRNAs encoding regulatory functions. These small cytoplasmic droplets could thus be important for cell adaptation to the environment.
Collapse
Affiliation(s)
- Nancy Standart
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005 Paris, France.
| |
Collapse
|
34
|
Scheller U, Pfisterer K, Uebe S, Ekici AB, Reis A, Jamra R, Ferrazzi F. Integrative bioinformatics analysis characterizing the role of EDC3 in mRNA decay and its association to intellectual disability. BMC Med Genomics 2018; 11:41. [PMID: 29685133 PMCID: PMC5914069 DOI: 10.1186/s12920-018-0358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/04/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Decapping of mRNA is an important step in the regulation of mRNA turnover and therefore of gene expression, which is a key process controlling development and homeostasis of all organisms. It has been shown that EDC3 plays a role in mRNA decapping, however its function is not well understood. Previously, we have associated a homozygous variant in EDC3 with autosomal recessive intellectual disability. Here, we investigate the functional role of EDC3. METHODS We performed transcriptome analyses in patients' samples. In addition, we established an EDC3 loss-of-function model using siRNA-based knockdown in the human neuroblastoma cell line SKNBE and carried out RNA sequencing. Integrative bioinformatics analyses were performed to identify EDC3-dependent candidate genes and/or pathways. RESULTS Our analyses revealed that 235 genes were differentially expressed in patients versus controls. In addition, AU-rich element (ARE)-containing mRNAs, whose degradation in humans has been suggested to involve EDC3, had higher fold changes than non-ARE-containing genes. The analysis of RNA sequencing data from the EDC3 in vitro loss-of-function model confirmed the higher fold changes of ARE-containing mRNAs compared to non-ARE-containing mRNAs and further showed an upregulation of long non-coding and coding RNAs. In total, 764 genes were differentially expressed. Integrative bioinformatics analyses of these genes identified dysregulated candidate pathways, including pathways related to synapses/coated vesicles and DNA replication/cell cycle. CONCLUSION Our data support the involvement of EDC3 in mRNA decay, including ARE-containing mRNAs, and suggest that EDC3 might be preferentially involved in the degradation of long coding and non-coding RNAs. Furthermore, our results associate ECD3 loss-of-function with synapses-related pathways. Collectively, our data provide novel information that might help elucidate the molecular mechanisms underlying the association of intellectual disability with the dysregulation of mRNA degradation.
Collapse
Affiliation(s)
- Ute Scheller
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Kathrin Pfisterer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Arif B. Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Rami Jamra
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
- Institute of Human Genetics, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| |
Collapse
|
35
|
Valkov E, Jonas S, Weichenrieder O. Mille viae in eukaryotic mRNA decapping. Curr Opin Struct Biol 2017; 47:40-51. [PMID: 28591671 DOI: 10.1016/j.sbi.2017.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022]
Abstract
Cellular mRNA levels are regulated via rates of transcription and decay. Since the removal of the mRNA 5'-cap by the decapping enzyme DCP2 is generally an irreversible step towards decay, it requires regulation. Control of DCP2 activity is likely effected by two interdependent means: by conformational control of the DCP2-DCP1 complex, and by assembly control of the decapping network, an array of mutually interacting effector proteins. Here, we compare three recent and conformationally distinct crystal structures of the DCP2-DCP1 decapping complex in the presence of substrate analogs and decapping enhancers and we discuss alternative substrate recognition modes for the catalytic domain of DCP2. Together with structure-based insight into decapping network assembly, we propose that DCP2-mediated decapping follows more than one path.
Collapse
Affiliation(s)
- Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Stefanie Jonas
- Institute of Biochemistry, ETH Zürich, Otto-Stern Weg 3, 8093 Zürich, Switzerland.
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| |
Collapse
|
36
|
Structure of the active form of Dcp1-Dcp2 decapping enzyme bound to m 7GDP and its Edc3 activator. Nat Struct Mol Biol 2016; 23:982-986. [PMID: 27694841 DOI: 10.1038/nsmb.3300] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/01/2016] [Indexed: 01/19/2023]
Abstract
Elimination of the 5' cap of eukaryotic mRNAs, known as decapping, is considered to be a crucial, irreversible and highly regulated step required for the rapid degradation of mRNA by Xrn1, the major cytoplasmic 5'-3' exonuclease. Decapping is accomplished by the recruitment of a protein complex formed by the Dcp2 catalytic subunit and its Dcp1 cofactor. However, this complex has a low intrinsic enzymatic activity and requires several accessory proteins such as the Lsm1-7 complex, Pat1, Edc1-Edc2 and/or Edc3 to be fully active. Here we present the crystal structure of the active form of the yeast Kluyveromyces lactis Dcp1-Dcp2 enzyme bound to its product (m7GDP) and its potent activator Edc3. This structure of the Dcp1-Dcp2 complex bound to a cap analog further explains previously published data on substrate binding and provides hints as to the mechanism of Edc3-mediated Dcp2 activation.
Collapse
|
37
|
Lin Y, Protter DSW, Rosen MK, Parker R. Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol Cell 2015; 60:208-19. [PMID: 26412307 PMCID: PMC4609299 DOI: 10.1016/j.molcel.2015.08.018] [Citation(s) in RCA: 1106] [Impact Index Per Article: 122.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 01/04/2023]
Abstract
Eukaryotic cells possess numerous dynamic membrane-less organelles, RNP granules, enriched in RNA and RNA-binding proteins containing disordered regions. We demonstrate that the disordered regions of key RNP granule components and the full-length granule protein hnRNPA1 can phase separate in vitro, producing dynamic liquid droplets. Phase separation is promoted by low salt concentrations or RNA. Over time, the droplets mature to more stable states, as assessed by slowed fluorescence recovery after photobleaching and resistance to salt. Maturation often coincides with formation of fibrous structures. Different disordered domains can co-assemble into phase-separated droplets. These biophysical properties demonstrate a plausible mechanism by which interactions between disordered regions, coupled with RNA binding, could contribute to RNP granule assembly in vivo through promoting phase separation. Progression from dynamic liquids to stable fibers may be regulated to produce cellular structures with diverse physiochemical properties and functions. Misregulation could contribute to diseases involving aberrant RNA granules.
Collapse
Affiliation(s)
- Yuan Lin
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - David S W Protter
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michael K Rosen
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Roy Parker
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
38
|
Mitchell SF, Parker R. Principles and properties of eukaryotic mRNPs. Mol Cell 2014; 54:547-58. [PMID: 24856220 DOI: 10.1016/j.molcel.2014.04.033] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/12/2014] [Accepted: 04/04/2014] [Indexed: 12/26/2022]
Abstract
The proper processing, export, localization, translation, and degradation of mRNAs are necessary for regulation of gene expression. These processes are controlled by mRNA-specific regulatory proteins, noncoding RNAs, and core machineries common to most mRNAs. These factors bind the mRNA in large complexes known as messenger ribonucleoprotein particles (mRNPs). Herein, we review the components of mRNPs, how they assemble and rearrange, and how mRNP composition differentially affects mRNA biogenesis, function, and degradation. We also describe how properties of the mRNP "interactome" lead to emergent principles affecting the control of gene expression.
Collapse
Affiliation(s)
- Sarah F Mitchell
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
39
|
Edc3 function in yeast and mammals is modulated by interaction with NAD-related compounds. G3-GENES GENOMES GENETICS 2014; 4:613-22. [PMID: 24504254 PMCID: PMC4059234 DOI: 10.1534/g3.114.010470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The control of mRNA translation and degradation is mediated in part by a set of proteins that can inhibit translation and promote decapping, as well as function in the assembly of cytoplasmic mRNP granules referred to as processing bodies (P-bodies). The conserved enhancer of mRNA decapping 3 (Edc3) protein functions to promote both decapping and P-body assembly. Crystal structures of the YjeF_N domain in hEdc3 identified a putative binding site for a small molecule. Structure modeling of the human Edc3 Yjef_N along with other Yjef_N-containing proteins suggests that this molecule is related to NAD(H). We now show human Edc3 directly binds NADH. We also show that human and yeast Edc3 chemically modify NAD in vitro. Mutations that are predicted to disrupt the binding and/or hydrolysis of an NAD-related molecule by yeast and human Edc3 affect the control of mRNA degradation and/or P-body composition in vivo. This suggests that the interaction of Edc3 with an NAD-related molecule affects its function in the regulation of mRNA translation and degradation and provides a possible mechanism to couple the energetics of the cell to posttranscriptional control. Moreover, this provides a unique example of and lends strength to the postulated connection of metabolites, enzymes, and RNA.
Collapse
|
40
|
Colinas M, Shaw HV, Loubéry S, Kaufmann M, Moulin M, Fitzpatrick TB. A pathway for repair of NAD(P)H in plants. J Biol Chem 2014; 289:14692-706. [PMID: 24706747 DOI: 10.1074/jbc.m114.556092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Unwanted enzyme side reactions and spontaneous decomposition of metabolites can lead to a build-up of compounds that compete with natural enzyme substrates and must be dealt with for efficient metabolism. It has recently been realized that there are enzymes that process such compounds, formulating the concept of metabolite repair. NADH and NADPH are vital cellular redox cofactors but can form non-functional hydrates (named NAD(P)HX) spontaneously or enzymatically that compete with enzymes dependent on NAD(P)H, impairing normal enzyme function. Here we report on the functional characterization of components of a potential NAD(P)H repair pathway in plants comprising a stereospecific dehydratase (NNRD) and an epimerase (NNRE), the latter being fused to a vitamin B6 salvage enzyme. Through the use of the recombinant proteins, we show that the ATP-dependent NNRD and NNRE act concomitantly to restore NAD(P)HX to NAD(P)H. NNRD behaves as a tetramer and NNRE as a dimer, but the proteins do not physically interact. In vivo fluorescence analysis demonstrates that the proteins are localized to mitochondria and/or plastids, implicating these as the key organelles where this repair is required. Expression analysis indicates that whereas NNRE is present ubiquitously, NNRD is restricted to seeds but appears to be dispensable during the normal Arabidopsis life cycle.
Collapse
Affiliation(s)
- Maite Colinas
- From the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Holly V Shaw
- From the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Sylvain Loubéry
- From the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Markus Kaufmann
- From the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Michael Moulin
- From the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Teresa B Fitzpatrick
- From the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
41
|
He F, Li C, Roy B, Jacobson A. Yeast Edc3 targets RPS28B mRNA for decapping by binding to a 3' untranslated region decay-inducing regulatory element. Mol Cell Biol 2014; 34:1438-51. [PMID: 24492965 PMCID: PMC3993580 DOI: 10.1128/mcb.01584-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/31/2013] [Accepted: 01/30/2014] [Indexed: 11/20/2022] Open
Abstract
mRNA decapping commits a transcript to complete turnover in eukaryotic cells. In yeast, general mRNA decapping requires the Dcp1/Dcp2 decapping enzyme and a set of decapping activators, including Pat1, Dhh1, Edc3, and the Lsm1-7 complex. The exact function and mode of action of each of these decapping activators in mRNA decapping largely remain elusive. Here, we analyzed the role of Edc3 in the decay of yeast RPS28B mRNA, a pathway triggered by a negative-feedback autoregulatory mechanism. We show that Edc3-mediated RPS28B mRNA decay requires either of two orthologous proteins, Rps28a and Rps28b, expressed from the RPS28A and RPS28B genes, respectively. Contrary to a generally accepted model, we found that Rps28b does not bind to the 3'-untranslated region (UTR) regulatory element in RPS28B mRNA. Instead, Edc3 is directly involved in binding the element, and Rps28b binds Edc3 and regulates its activity. Decay of RPS28B mRNA requires the Lsm and YjeF-N domains of Edc3, but surprisingly, decay of YRA1 pre-mRNA, the only other known substrate of Edc3, requires only the Lsm domain. Collectively, our experiments reveal a new role for Edc3 in mRNA substrate recognition and suggest that this activity is subject to intricate regulation by additional factors, including the Rps28 ribosomal protein.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | |
Collapse
|
42
|
Jonas S, Izaurralde E. The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes Dev 2014; 27:2628-41. [PMID: 24352420 PMCID: PMC3877753 DOI: 10.1101/gad.227843.113] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Removal of the 5′ cap structure is a critical step in mRNA turnover, yet key questions regarding the assembly and regulation of decapping complexes remain unanswered. This review provides comprehensive insight into the structural and biochemical properties of decapping factors. Jonas and Izaurralde highlight the plasticity of the decapping network and cover recent advances that reveal how short linear motifs (SliMs) in disordered regions help maintain interactions between decapping network members. The removal of the 5′ cap structure by the decapping enzyme DCP2 inhibits translation and generally commits the mRNA to irreversible 5′-to-3′ exonucleolytic degradation by XRN1. DCP2 catalytic activity is stimulated by DCP1, and these proteins form the conserved core of the decapping complex. Additional decapping factors orchestrate the recruitment and activity of this complex in vivo. These factors include enhancer of decapping 3 (EDC3), EDC4, like Sm14A (LSm14A), Pat, the LSm1–7 complex, and the RNA helicase DDX6. Decapping factors are often modular and feature folded domains flanked or connected by low-complexity disordered regions. Recent studies have made important advances in understanding how these disordered regions contribute to the assembly of decapping complexes and promote phase transitions that drive RNP granule formation. These studies have also revealed that the decapping network is governed by interactions mediated by short linear motifs (SLiMs) in these disordered regions. Consequently, the network has rapidly evolved, and although decapping factors are conserved, individual interactions between orthologs have been rewired during evolution. The plasticity of the network facilitates the acquisition of additional subunits or domains in pre-existing subunits, enhances opportunities for regulating mRNA degradation, and eventually leads to the emergence of novel functions.
Collapse
Affiliation(s)
- Stefanie Jonas
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
43
|
Kolesnikova O, Back R, Graille M, Séraphin B. Identification of the Rps28 binding motif from yeast Edc3 involved in the autoregulatory feedback loop controlling RPS28B mRNA decay. Nucleic Acids Res 2013; 41:9514-23. [PMID: 23956223 PMCID: PMC3814365 DOI: 10.1093/nar/gkt607] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the Edc3 protein was previously reported to participate in the auto-regulatory feedback loop controlling the level of the RPS28B messenger RNA (mRNA). We show here that Edc3 binds directly and tightly to the globular core of Rps28 ribosomal protein. This binding occurs through a motif that is present exclusively in Edc3 proteins from yeast belonging to the Saccharomycetaceae phylum. Functional analyses indicate that the ability of Edc3 to interact with Rps28 is not required for its general function and for its role in the regulation of the YRA1 pre-mRNA decay. In contrast, this interaction appears to be exclusively required for the auto-regulatory mechanism controlling the RPS28B mRNA decay. These observations suggest a plausible model for the evolutionary appearance of a Rps28 binding motif in Edc3.
Collapse
Affiliation(s)
- Olga Kolesnikova
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé et de la Recherche Médicale (INSERM) U964/Université de Strasbourg, 67404 Illkirch, France, Ecole Polytechnique, Laboratoire de Biochimie, CNRS UMR7654, 91128 Palaiseau Cedex, France and Institut de Biochimie et Biophysique Moléculaire et Cellulaire (IBBMC), CNRS, UMR8619, Bat 430, Université Paris Sud, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
44
|
Arribas-Layton M, Wu D, Lykke-Andersen J, Song H. Structural and functional control of the eukaryotic mRNA decapping machinery. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:580-9. [PMID: 23287066 DOI: 10.1016/j.bbagrm.2012.12.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 01/12/2023]
Abstract
The regulation of mRNA degradation is critical for proper gene expression. Many major pathways for mRNA decay involve the removal of the 5' 7-methyl guanosine (m(7)G) cap in the cytoplasm to allow for 5'-to-3' exonucleolytic decay. The most well studied and conserved eukaryotic decapping enzyme is Dcp2, and its function is aided by co-factors and decapping enhancers. A subset of these factors can act to enhance the catalytic activity of Dcp2, while others might stimulate the remodeling of proteins bound to the mRNA substrate that may otherwise inhibit decapping. Structural studies have provided major insights into the mechanisms by which Dcp2 and decapping co-factors activate decapping. Additional mRNA decay factors can function by recruiting components of the decapping machinery to target mRNAs. mRNA decay factors, decapping factors, and mRNA substrates can be found in cytoplasmic foci named P bodies that are conserved in eukaryotes, though their function remains unknown. In addition to Dcp2, other decapping enzymes have been identified, which may serve to supplement the function of Dcp2 or act in independent decay or quality control pathways. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
45
|
Decker CJ, Parker R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 2012; 4:a012286. [PMID: 22763747 DOI: 10.1101/cshperspect.a012286] [Citation(s) in RCA: 538] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The control of translation and mRNA degradation is important in the regulation of eukaryotic gene expression. In general, translation and steps in the major pathway of mRNA decay are in competition with each other. mRNAs that are not engaged in translation can aggregate into cytoplasmic mRNP granules referred to as processing bodies (P-bodies) and stress granules, which are related to mRNP particles that control translation in early development and neurons. Analyses of P-bodies and stress granules suggest a dynamic process, referred to as the mRNA Cycle, wherein mRNPs can move between polysomes, P-bodies and stress granules although the functional roles of mRNP assembly into higher order structures remain poorly understood. In this article, we review what is known about the coupling of translation and mRNA degradation, the properties of P-bodies and stress granules, and how assembly of mRNPs into larger structures might influence cellular function.
Collapse
Affiliation(s)
- Carolyn J Decker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona 85721-0206, USA
| | | |
Collapse
|
46
|
Shumilin IA, Cymborowski M, Chertihin O, Jha KN, Herr JC, Lesley SA, Joachimiak A, Minor W. Identification of unknown protein function using metabolite cocktail screening. Structure 2012; 20:1715-25. [PMID: 22940582 DOI: 10.1016/j.str.2012.07.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 07/07/2012] [Accepted: 07/30/2012] [Indexed: 01/17/2023]
Abstract
Proteins of unknown function comprise a significant fraction of sequenced genomes. Defining the roles of these proteins is vital to understanding cellular processes. Here, we describe a method to determine a protein function based on the identification of its natural ligand(s) by the crystallographic screening of the binding of a metabolite library, followed by a focused search in the metabolic space. The method was applied to two protein families with unknown function, PF01256 and YjeF_N. The PF01256 proteins, represented by YxkO from Bacillus subtilis and the C-terminal domain of Tm0922 from Thermotoga maritima, were shown to catalyze ADP/ATP-dependent NAD(P)H-hydrate dehydratation, a previously described orphan activity. The YjeF_N proteins, represented by mouse apolipoprotein A-I binding protein and the N-terminal domain of Tm0922, were found to interact with an adenosine diphosphoribose-related substrate and likely serve as ADP-ribosyltransferases. Crystallographic screening of metabolites serves as an efficient tool in functional analyses of uncharacterized proteins.
Collapse
Affiliation(s)
- Igor A Shumilin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Fromm SA, Truffault V, Kamenz J, Braun JE, Hoffmann NA, Izaurralde E, Sprangers R. The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex. EMBO J 2011; 31:279-90. [PMID: 22085934 DOI: 10.1038/emboj.2011.408] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 10/12/2011] [Indexed: 01/01/2023] Open
Abstract
The Dcp1:Dcp2 decapping complex catalyses the removal of the mRNA 5' cap structure. Activator proteins, including Edc3 (enhancer of decapping 3), modulate its activity. Here, we solved the structure of the yeast Edc3 LSm domain in complex with a short helical leucine-rich motif (HLM) from Dcp2. The motif interacts with the monomeric Edc3 LSm domain in an unprecedented manner and recognizes a noncanonical binding surface. Based on the structure, we identified additional HLMs in the disordered C-terminal extension of Dcp2 that can interact with Edc3. Moreover, the LSm domain of the Edc3-related protein Scd6 competes with Edc3 for the interaction with these HLMs. We show that both Edc3 and Scd6 stimulate decapping in vitro, presumably by preventing the Dcp1:Dcp2 complex from adopting an inactive conformation. In addition, we show that the C-terminal HLMs in Dcp2 are necessary for the localization of the Dcp1:Dcp2 decapping complex to P-bodies in vivo. Unexpectedly, in contrast to yeast, in metazoans the HLM is found in Dcp1, suggesting that details underlying the regulation of mRNA decapping changed throughout evolution.
Collapse
Affiliation(s)
- Simon A Fromm
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Swisher KD, Parker R. Interactions between Upf1 and the decapping factors Edc3 and Pat1 in Saccharomyces cerevisiae. PLoS One 2011; 6:e26547. [PMID: 22065998 PMCID: PMC3204985 DOI: 10.1371/journal.pone.0026547] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, mRNA transcripts with premature termination codons are targeted for deadenylation independent decapping and 5′ to 3′ decay in a quality control pathway termed nonsense-mediated decay (NMD). Critical factors in NMD include Upf1, Upf2, and Upf3, as well as the decapping enzyme, Dcp2/Dcp1. Loss of Upf2 or Upf3 leads to the accumulation of not only Upf1 and Dcp2 in P-bodies, but also of the decapping-activators Pat1, Dhh1, and Lsm1. An interaction between Upf1 and Dcp2 has been identified, which might recruit Dcp2 to the NMD decapping complex. To determine the nature and significance of the Dcp2-Upf1 interaction, we utilized the yeast two-hybrid assay to assess Upf1 interactions with various mRNA decapping factors. We find that although Dcp2 can interact with Upf1, this interaction is indirect and is largely dependent on the Edc3 protein, which interacts with the N-terminal domain of Upf1 at an overlapping, but not identical, site as Upf2. We also found that Pat1 has an independent two-hybrid interaction with the N-terminus of Upf1. Assessment of both reporter and endogenous NMD transcripts suggest that the decapping stimulators, including Edc3 and Pat1, as well as Edc1 and Edc2, are not essential for NMD under normal conditions. This work defines a larger decapping complex involved in NMD, but indicates that components of that complex are not required for general NMD and might either regulate a subset of NMD transcripts or be essential for proper NMD under different environmental conditions.
Collapse
Affiliation(s)
- Kylie D. Swisher
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Roy Parker
- Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
49
|
Affiliation(s)
- Stacy L Erickson
- Division of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
50
|
Nissan T, Rajyaguru P, She M, Song H, Parker R. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 2010; 39:773-83. [PMID: 20832728 PMCID: PMC2946179 DOI: 10.1016/j.molcel.2010.08.025] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/30/2010] [Accepted: 07/01/2010] [Indexed: 11/23/2022]
Abstract
Eukaryotic mRNA degradation often occurs in a process whereby translation initiation is inhibited and the mRNA is targeted for decapping. In yeast cells, Pat1, Scd6, Edc3, and Dhh1 all function to promote decapping by an unknown mechanism(s). We demonstrate that purified Scd6 and a region of Pat1 directly repress translation in vitro by limiting the formation of a stable 48S preinitiation complex. Moreover, while Pat1, Edc3, Dhh1, and Scd6 all bind the decapping enzyme, only Pat1 and Edc3 enhance its activity. We also identify numerous direct interactions between Pat1, Dcp1, Dcp2, Dhh1, Scd6, Edc3, Xrn1, and the Lsm1-7 complex. These observations identify three classes of decapping activators that function to directly repress translation initiation and/or stimulate Dcp1/2. Moreover, Pat1 is identified as critical in mRNA decay by first inhibiting translation initiation, then serving as a scaffold to recruit components of the decapping complex, and finally activating Dcp2.
Collapse
Affiliation(s)
- Tracy Nissan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Purusharth Rajyaguru
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, 85721-0106, USA
| | - Meipei She
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, 85721-0106, USA
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | - Haiwei Song
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | - Roy Parker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, 85721-0106, USA
| |
Collapse
|