1
|
Alasady MJ, Mendillo ML. The heat shock factor code: Specifying a diversity of transcriptional regulatory programs broadly promoting stress resilience. Cell Stress Chaperones 2024; 29:735-749. [PMID: 39454718 PMCID: PMC11570959 DOI: 10.1016/j.cstres.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The heat shock factor (HSF) family of transcription factors drives gene expression programs that maintain cytosolic protein homeostasis (proteostasis) in response to a vast array of physiological and exogenous stressors. The importance of HSF function has been demonstrated in numerous physiological and pathological contexts. Evidence accumulating over the last two decades has revealed that the regulatory programs driven by the HSF family can vary dramatically depending on the context in which it is activated. To broadly maintain proteostasis across these contexts, HSFs must bind and appropriately regulate the correct target genes at the correct time. Here, we discuss "the heat shock factor code"-our current understanding of how human cells use HSF paralog diversification and interplay, local concentration, post-translational modifications, and interactions with other proteins to enable the functional plasticity required for cellular resilience across a multitude of environments.
Collapse
Affiliation(s)
- Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Simoncik O, Tichy V, Durech M, Hernychova L, Trcka F, Uhrik L, Bardelcik M, Coates PJ, Vojtesek B, Muller P. Direct activation of HSF1 by macromolecular crowding and misfolded proteins. PLoS One 2024; 19:e0312524. [PMID: 39495731 PMCID: PMC11534217 DOI: 10.1371/journal.pone.0312524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
Stress responses play a vital role in cellular survival against environmental challenges, often exploited by cancer cells to proliferate, counteract genomic instability, and resist therapeutic stress. Heat shock factor protein 1 (HSF1), a central transcription factor in stress response pathways, exhibits markedly elevated activity in cancer. Despite extensive research into the transcriptional role of HSF1, the mechanisms underlying its activation remain elusive. Upon exposure to conditions that induce protein damage, monomeric HSF1 undergoes rapid conformational changes and assembles into trimers, a key step for DNA binding and transactivation of target genes. This study investigates the role of HSF1 as a sensor of proteotoxic stress conditions. Our findings reveal that purified HSF1 maintains a stable monomeric conformation independent of molecular chaperones in vitro. Moreover, while it is known that heat stress triggers HSF1 trimerization, a notable increase in trimerization and DNA binding was observed in the presence of protein-based crowders. Conditions inducing protein misfolding and increased protein crowding in cells directly trigger HSF1 trimerization. In contrast, proteosynthesis inhibition, by reducing denatured proteins in the cell, prevents HSF1 activation. Surprisingly, HSF1 remains activated under proteotoxic stress conditions even when bound to Hsp70 and Hsp90. This finding suggests that the negative feedback regulation between HSF1 and chaperones is not directly driven by their interaction but is realized indirectly through chaperone-mediated restoration of cytoplasmic proteostasis. In summary, our study suggests that HSF1 serves as a molecular crowding sensor, trimerizing to initiate protective responses that enhance chaperone activities to restore homeostasis.
Collapse
Affiliation(s)
- Oliver Simoncik
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vlastimil Tichy
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Michal Durech
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Filip Trcka
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lukas Uhrik
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Miroslav Bardelcik
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Philip J. Coates
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Muller
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
3
|
Chao TC, Chen SF, Kim HJ, Tang HC, Tseng HC, Xu A, Palao L, Khadka S, Li T, Huang MF, Lee DF, Murakami K, Boyer TG, Tsai KL. Structural basis of the human transcriptional Mediator regulated by its dissociable kinase module. Mol Cell 2024; 84:3932-3949.e10. [PMID: 39321804 DOI: 10.1016/j.molcel.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/05/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The eukaryotic transcriptional Mediator comprises a large core (cMED) and a dissociable CDK8 kinase module (CKM). cMED recruits RNA polymerase II (RNA Pol II) and promotes pre-initiation complex formation in a manner repressed by the CKM through mechanisms presently unknown. Herein, we report cryoelectron microscopy structures of the complete human Mediator and its CKM. The CKM binds to multiple regions on cMED through both MED12 and MED13, including a large intrinsically disordered region (IDR) in the latter. MED12 and MED13 together anchor the CKM to the cMED hook, positioning CDK8 downstream and proximal to the transcription start site. Notably, the MED13 IDR obstructs the recruitment of RNA Pol II/MED26 onto cMED by direct occlusion of their respective binding sites, leading to functional repression of cMED-dependent transcription. Combined with biochemical and functional analyses, these structures provide a conserved mechanistic framework to explain the basis for CKM-mediated repression of cMED function.
Collapse
Affiliation(s)
- Ti-Chun Chao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui-Chi Tang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hsiang-Ching Tseng
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Leon Palao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Subash Khadka
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tao Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA; Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Thomas G Boyer
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
4
|
Ciccarelli M, Andréasson C. Protein Misfolding Releases Human HSF1 from HSP70 Latency Control. J Mol Biol 2024; 436:168740. [PMID: 39122169 DOI: 10.1016/j.jmb.2024.168740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Heat shock factor 1 (HSF1) responds to stress to mount the heat shock response (HSR), a conserved transcriptional program that allows cells to maintain proteostasis by upregulating heat shock proteins (HSPs). The homeostatic stress regulation of HSF1 plays a key role in human physiology and health but its mechanism has remained difficult to pinpoint. Recent work in the budding yeast model has implicated stress-inducible chaperones of the HSP70 family as direct negative regulators of HSF1 activity. Here, we have investigated the latency control and activation of human HSF1 by HSP70 and misfolded proteins. Purified oligomeric HSF1-HSP70 (HSPA1A) complexes exhibited basal DNA binding activity that was inhibited by increasing the levels of HSP70 and, importantly, misfolded proteins reverted the inhibitory effect. Using site-specific UV photo-crosslinking, we monitored HSP70-HSF1 complexes in HEK293T cells. While HSF1 was bound by the substrate binding domain of HSP70 in unstressed cells, activation of HSF1 by heat shock as well as by inducing the misfolding of newly synthesized proteins resulted in release of HSF1 from the chaperone. Taken our results together, we conclude that latent HSF1 populate dynamic complexes with HSP70, which are sensitive to increased levels of misfolded proteins that compete for binding to the HSP70 substrate binding domain. Thus, human HSF1 is activated by various stress conditions that all titrate available HSP70.
Collapse
Affiliation(s)
- Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.
| |
Collapse
|
5
|
Hank EC, Sai M, Kasch T, Meijer I, Marschner JA, Merk D. Development of Tailless Homologue Receptor (TLX) Agonist Chemical Tools. J Med Chem 2024; 67:16598-16611. [PMID: 39236094 DOI: 10.1021/acs.jmedchem.4c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The human tailless homologue receptor (TLX) is a ligand-activated transcription factor acting as a master regulator of neural stem cell homeostasis. Despite its promising potential in neurodegenerative disease treatment, TLX ligands are rare but required to explore phenotypic effects of TLX modulation and for target validation. We have systematically studied and optimized a TLX agonist scaffold obtained by fragment fusion. Structural modification enabled the development of two TLX agonists endowed with nanomolar potency and binding affinity. Both exhibited favorable chemical tool characteristics including high selectivity and low toxicity. Most notably, the TLX agonists comprise different scaffolds and display high chemical diversity, enabling their use as a set for target identification and validation studies.
Collapse
Affiliation(s)
- Emily C Hank
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Minh Sai
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Till Kasch
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Isabelle Meijer
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| |
Collapse
|
6
|
Pauciullo S, Riccio A, Santopolo S, Albecka A, Papa G, James LC, Piacentini S, Lanzilli G, Rossi A, Santoro MG. Human coronaviruses activate and hijack the host transcription factor HSF1 to enhance viral replication. Cell Mol Life Sci 2024; 81:386. [PMID: 39243335 PMCID: PMC11380654 DOI: 10.1007/s00018-024-05370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
Organisms respond to proteotoxic-stress by activating the heat-shock response, a cellular defense mechanism regulated by a family of heat-shock factors (HSFs); among six human HSFs, HSF1 acts as a proteostasis guardian regulating severe stress-driven transcriptional responses. Herein we show that human coronaviruses (HCoV), both low-pathogenic seasonal-HCoVs and highly-pathogenic SARS-CoV-2 variants, are potent inducers of HSF1, promoting HSF1 serine-326 phosphorylation and triggering a powerful and distinct HSF1-driven transcriptional-translational response in infected cells. Despite the coronavirus-mediated shut-down of the host translational machinery, selected HSF1-target gene products, including HSP70, HSPA6 and AIRAP, are highly expressed in HCoV-infected cells. Using silencing experiments and a direct HSF1 small-molecule inhibitor we show that, intriguingly, HCoV-mediated activation of the HSF1-pathway, rather than representing a host defense response to infection, is hijacked by the pathogen and is essential for efficient progeny particles production. The results open new scenarios for the search of innovative antiviral strategies against coronavirus infections.
Collapse
Affiliation(s)
- Silvia Pauciullo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Anna Riccio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Santopolo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sara Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Antonio Rossi
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - M Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
- Institute of Translational Pharmacology, CNR, Rome, Italy.
| |
Collapse
|
7
|
Dea A, Pincus D. The Heat Shock Response as a Condensate Cascade. J Mol Biol 2024; 436:168642. [PMID: 38848866 PMCID: PMC11214683 DOI: 10.1016/j.jmb.2024.168642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
The heat shock response (HSR) is a gene regulatory program controlling expression of molecular chaperones implicated in aging, cancer, and neurodegenerative disease. Long presumed to be activated by toxic protein aggregates, recent work suggests a new functional paradigm for the HSR in yeast. Rather than toxic aggregates, adaptive biomolecular condensates comprised of orphan ribosomal proteins (oRP) and stress granule components have been shown to be physiological chaperone clients. By titrating away the chaperones Sis1 and Hsp70 from the transcription factor Hsf1, these condensates activate the HSR. Upon release from Hsp70, Hsf1 forms spatially distinct transcriptional condensates that drive high expression of HSR genes. In this manner, the negative feedback loop controlling HSR activity - in which Hsf1 induces Hsp70 expression and Hsp70 represses Hsf1 activity - is embedded in the biophysics of the system. By analogy to phosphorylation cascades that transmit information via the dynamic activity of kinases, we propose that the HSR is organized as a condensate cascade that transmits information via the localized activity of molecular chaperones.
Collapse
Affiliation(s)
- Annisa Dea
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, United States; Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
8
|
Isigkeit L, Schallmayer E, Busch R, Brunello L, Menge A, Elson L, Müller S, Knapp S, Stolz A, Marschner JA, Merk D. Chemogenomics for NR1 nuclear hormone receptors. Nat Commun 2024; 15:5201. [PMID: 38890295 PMCID: PMC11189487 DOI: 10.1038/s41467-024-49493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Nuclear receptors (NRs) regulate transcription in response to ligand binding and NR modulation allows pharmacological control of gene expression. Although some NRs are relevant as drug targets, the NR1 family, which comprises 19 NRs binding to hormones, vitamins, and lipid metabolites, has only been partially explored from a translational perspective. To enable systematic target identification and validation for this protein family in phenotypic settings, we present an NR1 chemogenomic (CG) compound set optimized for complementary activity/selectivity profiles and chemical diversity. Based on broad profiling of candidates for specificity, toxicity, and off-target liabilities, sixty-nine comprehensively annotated NR1 agonists, antagonists and inverse agonists covering all members of the NR1 family and meeting potency and selectivity standards are included in the final NR1 CG set. Proof-of-concept application of this set reveals effects of NR1 members in autophagy, neuroinflammation and cancer cell death, and confirms the suitability of the set for target identification and validation.
Collapse
Affiliation(s)
- Laura Isigkeit
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
| | - Espen Schallmayer
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
| | - Romy Busch
- Ludwig-Maximilians-Universität (LMU) München, Department of Pharmacy, Munich, Germany
| | - Lorene Brunello
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Amelie Menge
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Lewis Elson
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Müller
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Knapp
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Alexandra Stolz
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Julian A Marschner
- Ludwig-Maximilians-Universität (LMU) München, Department of Pharmacy, Munich, Germany
| | - Daniel Merk
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany.
- Ludwig-Maximilians-Universität (LMU) München, Department of Pharmacy, Munich, Germany.
| |
Collapse
|
9
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. The dance of proteostasis and metabolism: Unveiling the caloristatic controlling switch. Cell Stress Chaperones 2024; 29:175-200. [PMID: 38331164 PMCID: PMC10939077 DOI: 10.1016/j.cstres.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
The heat shock response (HSR) is an ancient and evolutionarily conserved mechanism designed to restore cellular homeostasis following proteotoxic challenges. However, it has become increasingly evident that disruptions in energy metabolism also trigger the HSR. This interplay between proteostasis and energy regulation is rooted in the fundamental need for ATP to fuel protein synthesis and repair, making the HSR an essential component of cellular energy management. Recent findings suggest that the origins of proteostasis-defending systems can be traced back over 3.6 billion years, aligning with the emergence of sugar kinases that optimized glycolysis around 3.594 billion years ago. This evolutionary connection is underscored by the spatial similarities between the nucleotide-binding domain of HSP70, the key player in protein chaperone machinery, and hexokinases. The HSR serves as a hub that integrates energy metabolism and resolution of inflammation, further highlighting its role in maintaining cellular homeostasis. Notably, 5'-adenosine monophosphate-activated protein kinase emerges as a central regulator, promoting the HSR during predominantly proteotoxic stress while suppressing it in response to predominantly metabolic stress. The complex relationship between 5'-adenosine monophosphate-activated protein kinase and the HSR is finely tuned, with paradoxical effects observed under different stress conditions. This delicate equilibrium, known as caloristasis, ensures that cellular homeostasis is maintained despite shifting environmental and intracellular conditions. Understanding the caloristatic controlling switch at the heart of this interplay is crucial. It offers insights into a wide range of conditions, including glycemic control, obesity, type 2 diabetes, cardiovascular and neurodegenerative diseases, reproductive abnormalities, and the optimization of exercise routines. These findings highlight the profound interconnectedness of proteostasis and energy metabolism in cellular function and adaptation.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
10
|
Labbadia J. Potential roles for mitochondria-to-HSF1 signaling in health and disease. Front Mol Biosci 2023; 10:1332658. [PMID: 38164224 PMCID: PMC10757924 DOI: 10.3389/fmolb.2023.1332658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
The ability to respond rapidly and efficiently to protein misfolding is crucial for development, reproduction and long-term health. Cells respond to imbalances in cytosolic/nuclear protein homeostasis through the Heat Shock Response, a tightly regulated transcriptional program that enhances protein homeostasis capacity by increasing levels of protein quality control factors. The Heat Shock Response is driven by Heat Shock Factor 1, which is rapidly activated by the appearance of misfolded proteins and drives the expression of genes encoding molecular chaperones and protein degradation factors, thereby restoring proteome integrity. HSF1 is critical for organismal health, and this has largely been attributed to the preservation of cytosolic and nuclear protein homeostasis. However, evidence is now emerging that HSF1 is also a key mediator of mitochondrial function, raising the possibility that many of the health benefits conferred by HSF1 may be due to the maintenance of mitochondrial homeostasis. In this review, I will discuss our current understanding of the interplay between HSF1 and mitochondria and consider how mitochondria-to-HSF1 signaling may influence health and disease susceptibility.
Collapse
Affiliation(s)
- Johnathan Labbadia
- Department of Genetics, Evolution and Environment, Division of Biosciences, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
11
|
Gabriel S, Czerny T, Riegel E. Repression motif in HSF1 regulated by phosphorylation. Cell Signal 2023; 110:110813. [PMID: 37468051 DOI: 10.1016/j.cellsig.2023.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The heat shock factor 1 (HSF1) is a transcription factor that itself is a sensor for stress and integrates various intrinsic or environmental stress sensing pathways. Thus HSF1 orchestrates the heat shock response (HSR) by translating these pathways into a distinct transcriptional program that aids the cells to cope with and adapt to proteotoxic stress. Although heavily researched the regulation of HSF1 activation is still not completely understood. A conserved reaction to stress is the hyperphosphorylation of the otherwise confined constitutive phosphorylated HSF1. Therefore, this stress specific phosphorylation is believed to be involved in the regulatory mechanism and hence, was and is focus of many studies, ascribing various effects to single phosphorylation sites. To gain additional insight into effects of phosphorylation, HSF1 carrying amino acid substitutions on up to 18 amino acids were tested for their transactivation potential on an HSR reporter plasmid. A pattern of eleven phosphor-mimicking and diminishing amino acid substitutions on well-known phosphorylation sites of HSF1 were introduced to produce transcriptional active [11 M(+)] or repressed [11 M(-)] phenotypes. It could be confirmed that heat activates HSF1 regardless of phosphorylation. Distinct cellular stress, obtained by chemical HSR inducers or mimicked by a constitutively active HSF1, showed clear differences in the activation potential of HSF1-11 M(+) and 11 M(-). Further refinement to the single amino acid level identified the S303/307 double-phosphorylation motif, wherein phosphorylation of S303 was sole responsible for the repressing effect. The effect could be reproduced in different cell lines and is not entirely based on degradation. A small repression motif could be dissociated from the HSF1 context, which is still capable of repressing the background transcription of a specifically designed reporter plasmid. Taken together these results indicate, that besides already described mechanisms of pS303/307 mediated repression of HSF1 activation, an additional mechanism repressing the transcriptional output of the entire HSE containing promoter is mediated by this small repressive motif.
Collapse
Affiliation(s)
- Stefan Gabriel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Favoritenstraße 222, A-1100 Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Favoritenstraße 222, A-1100 Vienna, Austria
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Favoritenstraße 222, A-1100 Vienna, Austria.
| |
Collapse
|
12
|
Vietor J, Gege C, Stiller T, Busch R, Schallmayer E, Kohlhof H, Höfner G, Pabel J, Marschner JA, Merk D. Development of a Potent Nurr1 Agonist Tool for In Vivo Applications. J Med Chem 2023; 66:6391-6402. [PMID: 37127285 PMCID: PMC10184128 DOI: 10.1021/acs.jmedchem.3c00415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nuclear receptor related 1 (Nurr1) is a neuroprotective transcription factor and an emerging target in neurodegenerative diseases. Despite strong evidence for a role in Parkinson's and Alzheimer's disease, pharmacological control and validation of Nurr1 are hindered by a lack of suitable ligands. We have discovered considerable Nurr1 activation by the clinically studied dihydroorotate dehydrogenase (DHODH) inhibitor vidofludimus calcium and systematically optimized this scaffold to a Nurr1 agonist with nanomolar potency, strong activation efficacy, and pronounced preference over the highly related receptors Nur77 and NOR1. The optimized compound induced Nurr1-regulated gene expression in astrocytes and exhibited favorable pharmacokinetics in rats, thus emerging as a superior chemical tool to study Nurr1 activation in vitro and in vivo.
Collapse
Affiliation(s)
- Jan Vietor
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | | | - Tanja Stiller
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Romy Busch
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Espen Schallmayer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | | | - Georg Höfner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Jörg Pabel
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
13
|
Kovács D, Kovács M, Ahmed S, Barna J. Functional diversification of heat shock factors. Biol Futur 2022; 73:427-439. [PMID: 36402935 DOI: 10.1007/s42977-022-00138-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Heat shock transcription factors (HSFs) are widely known as master regulators of the heat shock response. In invertebrates, a single heat shock factor, HSF1, is responsible for the maintenance of protein homeostasis. In vertebrates, seven members of the HSF family have been identified, namely HSF1, HSF2, HSF3, HSF4, HSF5, HSFX, and HSFY, of which HSF1 and HSF2 are clearly associated with heat shock response, while HSF4 is involved in development. Other members of the family have not yet been studied as extensively. Besides their role in cellular proteostasis, HSFs influence a plethora of biological processes such as aging, development, cell proliferation, and cell differentiation, and they are implicated in several pathologies such as neurodegeneration and cancer. This is achieved by regulating the expression of a great variety of genes including chaperones. Here, we review our current knowledge on the function of HSF family members and important aspects that made possible the functional diversification of HSFs.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - Márton Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - Saqib Ahmed
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - János Barna
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary. .,ELKH-ELTE Genetics Research Group, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary.
| |
Collapse
|
14
|
Roos-Mattjus P, Sistonen L. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology. FEBS J 2022; 289:7710-7725. [PMID: 34478606 DOI: 10.1111/febs.16178] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
The heat-shock factors (HSFs) belong to an evolutionary conserved family of transcription factors that were discovered already over 30 years ago. The HSFs have been shown to a have a broad repertoire of target genes, and they also have crucial functions during normal development. Importantly, HSFs have been linked to several disease states, such as neurodegenerative disorders and cancer, highlighting their importance in physiology and pathology. However, it is still unclear how HSFs are regulated and how they choose their specific target genes under different conditions. Posttranslational modifications and interplay among the HSF family members have been shown to be key regulatory mechanisms for these transcription factors. In this review, we focus on the mammalian HSF1 and HSF2, including their interplay, and provide an updated overview of the advances in understanding how HSFs are regulated and how they function in multiple processes of development, aging, and disease. We also discuss HSFs as therapeutic targets, especially the recently reported HSF1 inhibitors.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
15
|
de Thonel A, Ahlskog JK, Daupin K, Dubreuil V, Berthelet J, Chaput C, Pires G, Leonetti C, Abane R, Barris LC, Leray I, Aalto AL, Naceri S, Cordonnier M, Benasolo C, Sanial M, Duchateau A, Vihervaara A, Puustinen MC, Miozzo F, Fergelot P, Lebigot É, Verloes A, Gressens P, Lacombe D, Gobbo J, Garrido C, Westerheide SD, David L, Petitjean M, Taboureau O, Rodrigues-Lima F, Passemard S, Sabéran-Djoneidi D, Nguyen L, Lancaster M, Sistonen L, Mezger V. CBP-HSF2 structural and functional interplay in Rubinstein-Taybi neurodevelopmental disorder. Nat Commun 2022; 13:7002. [PMID: 36385105 PMCID: PMC9668993 DOI: 10.1038/s41467-022-34476-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.
Collapse
Affiliation(s)
- Aurélie de Thonel
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France.
| | - Johanna K Ahlskog
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kevin Daupin
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Véronique Dubreuil
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Jérémy Berthelet
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Carole Chaput
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
- Ksilink, Strasbourg, France
| | - Geoffrey Pires
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Camille Leonetti
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Ryma Abane
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Lluís Cordón Barris
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Isabelle Leray
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Anna L Aalto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sarah Naceri
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Marine Cordonnier
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Département d'Oncologie médicale, Centre Georges-François Leclerc, Dijon, France
| | - Carène Benasolo
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Matthieu Sanial
- CNRS, UMR 7592 Institut Jacques Monod, F-75205, Paris, France
| | - Agathe Duchateau
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Anniina Vihervaara
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael C Puustinen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Federico Miozzo
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
- Neuroscience Institute-CNR (IN-CNR), Milan, Italy
| | - Patricia Fergelot
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Élise Lebigot
- Service de Biochimie-pharmaco-toxicologie, Hôpital Bicêtre, Hopitaux Universitaires Paris-Sud, 94270 Le Kremlin Bicêtre, Paris-Sud, France
| | - Alain Verloes
- Université de Paris, INSERM, NeuroDiderot, Robert-Debré Hospital, F-75019, Paris, France
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Pierre Gressens
- Université de Paris, INSERM, NeuroDiderot, Robert-Debré Hospital, F-75019, Paris, France
| | - Didier Lacombe
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Jessica Gobbo
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Département d'Oncologie médicale, Centre Georges-François Leclerc, Dijon, France
| | - Carmen Garrido
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Département d'Oncologie médicale, Centre Georges-François Leclerc, Dijon, France
| | - Sandy D Westerheide
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | - Laurent David
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Michel Petitjean
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Olivier Taboureau
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | | | - Sandrine Passemard
- Université de Paris, INSERM, NeuroDiderot, Robert-Debré Hospital, F-75019, Paris, France
| | | | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Madeline Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical, Campus, Cambridge, UK
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Valérie Mezger
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France.
| |
Collapse
|
16
|
Arifi S, Zaienne D, Heering J, Wein T, Zhubi R, Chaikuad A, Knapp S, Marschner JA, Merk D. Fragment-based discovery of orphan nuclear receptor Nur77/NGFI-B ligands. Bioorg Chem 2022; 129:106164. [PMID: 36162288 DOI: 10.1016/j.bioorg.2022.106164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
Abstract
The transcription factor nerve growth factor-induced clone B (NGFI-B, Nur77, NR4A1) is an orphan nuclear receptor playing a role in cell survival and apoptosis regulation. Pharmacological Nur77 modulation holds promise for cancer and (neuro-)inflammatory disease treatment. The available Nur77 ligand scaffolds based on highly lipophilic natural products cytosporone B, celastrol and isoalantolactone are inadequate for the development of potent Nur77 modulators with favorable properties as chemical tools and future drugs. By fragment library screening and subsequent modeling for fragment extension, we have obtained a set of new Nur77 ligands offering alternative chemotypes for the development of Nur77 agonists and inverse agonists. Computer-aided fragment extension in a second stage screening yielded a Nur77 agonist with significant activation efficacy and preference over the related NR4A receptors.
Collapse
Affiliation(s)
- Silvia Arifi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Thomas Wein
- Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Rezart Zhubi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; Structural Genomics Consortium, BMLS, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; Structural Genomics Consortium, BMLS, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; Structural Genomics Consortium, BMLS, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
17
|
Zaienne D, Arifi S, Marschner JA, Heering J, Merk D. Druggability Evaluation of the Neuron Derived Orphan Receptor (NOR-1) Reveals Inverse NOR-1 Agonists. ChemMedChem 2022; 17:e202200259. [PMID: 35704774 PMCID: PMC9542104 DOI: 10.1002/cmdc.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/23/2022]
Abstract
The neuron derived orphan receptor (NOR-1, NR4A3) is among the least studied nuclear receptors. Its physiological role and therapeutic potential remain widely elusive which is in part due to the lack of chemical tools that can directly modulate NOR-1 activity. To probe the possibility of pharmacological NOR-1 modulation, we have tested a drug fragment library for NOR-1 activation and repression. Despite low hit-rate (<1 %), we have obtained three NOR-1 ligand chemotypes one of which could be rapidly expanded to an analogue comprising low micromolar inverse NOR-1 agonist potency and altering NOR-1 regulated gene expression in a cellular setting. It confirms druggability of the transcription factor and may serve as an early tool to assess the role and potential of NOR-1.
Collapse
Affiliation(s)
- Daniel Zaienne
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Silvia Arifi
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Julian A. Marschner
- Department of PharmacyLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor-Stern-Kai 760596FrankfurtGermany
| | - Daniel Merk
- Department of PharmacyLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| |
Collapse
|
18
|
Cyran AM, Zhitkovich A. HIF1, HSF1, and NRF2: Oxidant-Responsive Trio Raising Cellular Defenses and Engaging Immune System. Chem Res Toxicol 2022; 35:1690-1700. [PMID: 35948068 PMCID: PMC9580020 DOI: 10.1021/acs.chemrestox.2c00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Cellular homeostasis is continuously challenged by damage
from
reactive oxygen species (ROS) and numerous reactive electrophiles.
Human cells contain various protective systems that are upregulated
in response to protein damage by electrophilic or oxidative stress.
In addition to the NRF2-mediated antioxidant response, ROS and reactive
electrophiles also activate HSF1 and HIF1 that control heat shock
response and hypoxia response, respectively. Here, we review chemical
and biological mechanisms of activation of these three transcription
factors by ROS/reactive toxicants and the roles of their gene expression
programs in antioxidant protection. We also discuss how NRF2, HSF1,
and HIF1 responses establish multilayered cellular defenses consisting
of largely nonoverlapping programs, which mitigates limitations of
each response. Some innate immunity links in these stress responses
help eliminate damaged cells, whereas others suppress deleterious
inflammation in normal tissues but inhibit immunosurveillance of cancer
cells in tumors.
Collapse
Affiliation(s)
- Anna M Cyran
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
19
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
20
|
Willems S, Marschner JA, Kilu W, Faudone G, Busch R, Duensing‐Kropp S, Heering J, Merk D. Nurr1 Modulation Mediates Neuroprotective Effects of Statins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104640. [PMID: 35488520 PMCID: PMC9218776 DOI: 10.1002/advs.202104640] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/15/2022] [Indexed: 05/09/2023]
Abstract
The ligand-sensing transcription factor Nurr1 emerges as a promising therapeutic target for neurodegenerative pathologies but Nurr1 ligands for functional studies and therapeutic validation are lacking. Here pronounced Nurr1 modulation by statins for which clinically relevant neuroprotective effects are demonstrated, is reported. Several statins directly affect Nurr1 activity in cellular and cell-free settings with low micromolar to sub-micromolar potencies. Simvastatin as example exhibits anti-inflammatory effects in astrocytes, which are abrogated by Nurr1 knockdown. Differential gene expression analysis in native and Nurr1-silenced cells reveals strong proinflammatory effects of Nurr1 knockdown while simvastatin treatment induces several neuroprotective mechanisms via Nurr1 involving changes in inflammatory, metabolic and cell cycle gene expression. Further in vitro evaluation confirms reduced inflammatory response, improved glucose metabolism, and cell cycle inhibition of simvastatin-treated neuronal cells. These findings suggest Nurr1 involvement in the well-documented but mechanistically elusive neuroprotection by statins.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 9Frankfurt60438Germany
| | - Julian A. Marschner
- Department of PharmacyLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐13Munich81377Germany
| | - Whitney Kilu
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 9Frankfurt60438Germany
| | - Giuseppe Faudone
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 9Frankfurt60438Germany
| | - Romy Busch
- Department of PharmacyLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐13Munich81377Germany
| | - Silke Duensing‐Kropp
- Department of PharmacyLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐13Munich81377Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 7Frankfurt60596Germany
| | - Daniel Merk
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 9Frankfurt60438Germany
- Department of PharmacyLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐13Munich81377Germany
| |
Collapse
|
21
|
Willems S, Müller M, Ohrndorf J, Heering J, Proschak E, Merk D. Scaffold Hopping from Amodiaquine to Novel Nurr1 Agonist Chemotypes via Microscale Analogue Libraries. ChemMedChem 2022; 17:e202200026. [PMID: 35132775 PMCID: PMC9305750 DOI: 10.1002/cmdc.202200026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Indexed: 11/22/2022]
Abstract
Several lines of evidence suggest the ligand-sensing transcription factor Nurr1 as a promising target to treat neurodegenerative diseases. Nurr1 modulators to validate and exploit this therapeutic potential are rare, however. To identify novel Nurr1 agonist chemotypes, we have employed the Nurr1 activator amodiaquine as template for microscale analogue library synthesis. The first set of analogues was based on the 7-chloroquiolin-4-amine core fragment of amodiaquine and revealed superior N-substituents compared to diethylaminomethylphenol contained in the template. A second library of analogues was subsequently prepared to replace the chloroquinolineamine scaffold. The two sets of analogues enabled a full scaffold hop from amodiaquine to a novel Nurr1 agonist sharing no structural features with the lead but comprising superior potency on Nurr1. Additionally, pharmacophore modeling based on the entire set of active and inactive analogues suggested key features for Nurr1 agonists.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Marcel Müller
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Julia Ohrndorf
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor-Stern-Kai 760596FrankfurtGermany
| | - Ewgenij Proschak
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Daniel Merk
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
- Department of PharmacyLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|
22
|
Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022; 12:860320. [PMID: 35311075 PMCID: PMC8924369 DOI: 10.3389/fonc.2022.860320] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Fitness of cells is dependent on protein homeostasis which is maintained by cooperative activities of protein chaperones and proteolytic machinery. Upon encountering protein-damaging conditions, cells activate the heat-shock response (HSR) which involves HSF1-mediated transcriptional upregulation of a group of chaperones - the heat shock proteins (HSPs). Cancer cells experience high levels of proteotoxic stress due to the production of mutated proteins, aneuploidy-induced excess of components of multiprotein complexes, increased translation rates, and dysregulated metabolism. To cope with this chronic state of proteotoxic stress, cancers almost invariably upregulate major components of HSR, including HSF1 and individual HSPs. Some oncogenic programs show dependence or coupling with a particular HSR factor (such as frequent coamplification of HSF1 and MYC genes). Elevated levels of HSPs and HSF1 are typically associated with drug resistance and poor clinical outcomes in various malignancies. The non-oncogene dependence ("addiction") on protein quality controls represents a pancancer target in treating human malignancies, offering a potential to enhance efficacy of standard and targeted chemotherapy and immune checkpoint inhibitors. In cancers with specific dependencies, HSR components can serve as alternative targets to poorly druggable oncogenic drivers.
Collapse
Affiliation(s)
- Anna M Cyran
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
23
|
Quantitative Comparison of HSF1 Activators. Mol Biotechnol 2022; 64:873-887. [PMID: 35218516 PMCID: PMC9259536 DOI: 10.1007/s12033-022-00467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
The heat shock response (HSR) pathway is a highly conserved rescue mechanism, which protects the cells from harmful insults disturbing the cellular protein homeostasis via expression of chaperones. Furthermore, it was demonstrated to play crucial roles in various diseases like neurodegeneration and cancer. For neurodegenerative diseases, an overexpression of chaperones is a potential therapeutic approach to clear the cells from non-functional protein aggregates. Therefore, activators of the HSR pathway and its master regulator HSF1 are under close observation. There are numerous HSR activators published in the literature using different model systems, experimental designs, and readout assays. The aim of this work was to provide a quantitative comparison of a broad range of published activators using a newly developed HSF responsive dual-luciferase cell line. Contrary to natural target genes, which are regulated by multiple input pathways, the artificial reporter exclusively reacts to HSF activity. In addition, the results were compared to endogenous heat shock protein expression. As a result, great differences in the intensity of pathway activation were observed. In addition, a parallel viability assessment revealed high variability in the specificity of the drugs. Furthermore, the differences seen compared to published data indicate that some activators exhibit tissue-specific differences leading to interesting assumptions about the regulation of HSF1.
Collapse
|
24
|
Lu WC, Omari R, Ray H, Wang J, Williams I, Jacobs C, Hockaden N, Bochman ML, Carpenter RL. AKT1 mediates multiple phosphorylation events that functionally promote HSF1 activation. FEBS J 2022; 289:3876-3893. [PMID: 35080342 PMCID: PMC9309721 DOI: 10.1111/febs.16375] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
Abstract
The heat stress response activates the transcription factor heat shock factor 1 (HSF1), which subsequently upregulates heat shock proteins to maintain the integrity of the proteome. HSF1 activation requires nuclear localization, trimerization, DNA binding, phosphorylation and gene transactivation. Phosphorylation at S326 is an important regulator of HSF1 transcriptional activity. Phosphorylation at S326 is mediated by AKT1, mTOR, p38, MEK1 and DYRK2. Here, we observed activation of HSF1 by AKT1 independently of mTOR. AKT2 also phosphorylated S326 of HSF1 but showed weak ability to activate HSF1. Similarly, mTOR, p38, MEK1 and DYRK2 all phosphorylated S326 but AKT1 was the most potent activator. Mass spectrometry showed that AKT1 also phosphorylated HSF1 at T142, S230 and T527 in addition to S326, whereas the other kinases did not. Subsequent investigation revealed that phosphorylation at T142 is necessary for HSF1 trimerization and that S230, S326 and T527 are required for HSF1 gene transactivation and recruitment of TFIIB and CDK9. Interestingly, T527 as a phosphorylated residue has not been previously shown and sits in the transactivation domain, further implying a role for this site in HSF1 gene transactivation. This study suggests that HSF1 hyperphosphorylation is targeted and these specific residues have direct function in regulating HSF1 transcriptional activity.
Collapse
Affiliation(s)
- Wen-Cheng Lu
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Ramsey Omari
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - John Wang
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Imade Williams
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Curteisha Jacobs
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Natasha Hockaden
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA.,Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, IN, USA
| | - Richard L Carpenter
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, IN, USA.,Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, IN, USA
| |
Collapse
|
25
|
Faudone G, Zhubi R, Celik F, Knapp S, Chaikuad A, Heering J, Merk D. Design of a Potent TLX Agonist by Rational Fragment Fusion. J Med Chem 2022; 65:2288-2296. [PMID: 34989568 DOI: 10.1021/acs.jmedchem.1c01757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a master regulator of neurogenesis, the orphan nuclear receptor tailless homologue (TLX, NR2E1) maintains neuronal stem cell homeostasis by acting as a transcriptional repressor of tumor suppressor genes. It is hence considered as an appealing target for the treatment of neurodegenerative diseases, but a lack of potent TLX modulators as tools to probe pharmacological TLX control hinders further validation of its promising potential. Here, we report the development of a potent TLX agonist based on fragment screening, pharmacophore modeling, and fragment fusion. Pharmacophore similarity of a fragment screening hit and the TLX ligand ccrp2 provided a rational basis for fragment linkage, which resulted in several TLX activator scaffolds. Among them, the fused compound 10 evolved as a valuable TLX agonist tool with submicromolar potency and high selectivity over related nuclear receptors, rendering it suitable for functional studies on TLX.
Collapse
Affiliation(s)
- Giuseppe Faudone
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Rezart Zhubi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany.,Structural Genomics Consortium, BMLS, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Fatih Celik
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany.,Structural Genomics Consortium, BMLS, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany.,Structural Genomics Consortium, BMLS, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, D-60596 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| |
Collapse
|
26
|
Heat Shock Factors in Protein Quality Control and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:181-199. [PMID: 36472823 DOI: 10.1007/978-3-031-12966-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proper regulation of cellular protein quality control is crucial for cellular health. It appears that the protein quality control machinery is subjected to distinct regulation in different cellular contexts such as in somatic cells and in germ cells. Heat shock factors (HSFs) play critical role in the control of quality of cellular proteins through controlling expression of many genes encoding different proteins including those for inducible protein chaperones. Mammalian cells exert distinct mechanism of cellular functions through maintenance of tissue-specific HSFs. Here, we have discussed different HSFs and their functions including those during spermatogenesis. We have also discussed the different heat shock proteins induced by the HSFs and their activities in those contexts. We have also identified several small molecule activators and inhibitors of HSFs from different sources reported so far.
Collapse
|
27
|
Faudone G, Kilu W, Ni X, Chaikuad A, Sreeramulu S, Heitel P, Schwalbe H, Knapp S, Schubert-Zsilavecz M, Heering J, Merk D. The Transcriptional Repressor Orphan Nuclear Receptor TLX Is Responsive to Xanthines. ACS Pharmacol Transl Sci 2021; 4:1794-1807. [PMID: 34927011 PMCID: PMC8669710 DOI: 10.1021/acsptsci.1c00195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 11/28/2022]
Abstract
The orphan nuclear receptor tailless homologue (TLX) is expressed almost exclusively in neural stem cells acting as an essential factor for their survival and is hence considered as a promising drug target in neurodegeneration. However, few studies have characterized the roles of TLX due to the lack of ligands and limited functional understanding. Here, we identify xanthines including caffeine and istradefylline as TLX modulators that counteract the receptor's intrinsic repressor activity. Mutagenesis of residues lining a cavity within the TLX ligand binding domain altered the activity of these ligands, suggesting direct interactions with helix 5. Using xanthines as tool compounds, we observed a ligand-sensitive recruitment of the co-repressor silencing mediator for retinoid or thyroid-hormone receptors, TLX homodimerization, and heterodimerization with the retinoid X receptor. These protein-protein interactions evolve as factors that modulate the TLX function and suggest an unprecedented role of TLX in directly repressing other nuclear receptors.
Collapse
Affiliation(s)
- Giuseppe Faudone
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Whitney Kilu
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Xiaomin Ni
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Structural
Genomics Consortium, BMLS, Goethe University
Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Structural
Genomics Consortium, BMLS, Goethe University
Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt, Germany
| | - Sridhar Sreeramulu
- Center
for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic
Chemistry and Chemical Biology, Goethe University
Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt, Germany
| | - Pascal Heitel
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Harald Schwalbe
- Center
for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic
Chemistry and Chemical Biology, Goethe University
Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Structural
Genomics Consortium, BMLS, Goethe University
Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt, Germany
| | - Manfred Schubert-Zsilavecz
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Daniel Merk
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Department
of Pharmacy, Ludwig-Maximilians-Universität
München, Butenandtstr.
5-13, D-81377 Munich, Germany
| |
Collapse
|
28
|
Kmiecik SW, Mayer MP. Molecular mechanisms of heat shock factor 1 regulation. Trends Biochem Sci 2021; 47:218-234. [PMID: 34810080 DOI: 10.1016/j.tibs.2021.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/08/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023]
Abstract
To thrive and to fulfill their functions, cells need to maintain proteome homeostasis even in the face of adverse environmental conditions or radical restructuring of the proteome during differentiation. At the center of the regulation of proteome homeostasis is an ancient transcriptional mechanism, the so-called heat shock response (HSR), orchestrated in all eukaryotic cells by heat shock transcription factor 1 (Hsf1). As Hsf1 is implicated in aging and several pathologies like cancer and neurodegenerative disorders, understanding the regulation of Hsf1 could open novel therapeutic opportunities. In this review, we discuss the regulation of Hsf1's transcriptional activity by multiple layers of control circuits involving Hsf1 synthesis and degradation, conformational rearrangements and post-translational modifications (PTMs), and molecular chaperones in negative feedback loops.
Collapse
Affiliation(s)
- Szymon W Kmiecik
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Zaienne D, Willems S, Schierle S, Heering J, Merk D. Development and Profiling of Inverse Agonist Tools for the Neuroprotective Transcription Factor Nurr1. J Med Chem 2021; 64:15126-15140. [PMID: 34633810 DOI: 10.1021/acs.jmedchem.1c01077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ligand-sensing transcription factor nuclear receptor related 1 (Nurr1) evolves as an appealing target to treat neurodegenerative diseases. Despite its therapeutic potential observed in various rodent models, potent modulators for Nurr1 are lacking as pharmacological tools. Here, we report the structure-activity relationship and systematic optimization of indole-based inverse Nurr1 agonists. Optimized analogues decreased the receptor's intrinsic transcriptional activity by up to more than 90% and revealed preference for inhibiting Nurr1 monomer activity. In orthogonal cell-free settings, we detected displacement of NCoRs and disruption of the Nurr1 homodimer as molecular modes of action. The inverse Nurr1 agonists reduced the expression of Nurr1-regulated genes in T98G cells, and treatment with an inverse Nurr1 agonist mimicked the effect of Nurr1 silencing on interleukin-6 release from LPS-stimulated human astrocytes. The indole-based inverse Nurr1 agonists valuably extend the toolbox of Nurr1 modulators to further probe the role of Nurr1 in neuroinflammation, cancer, and beyond.
Collapse
Affiliation(s)
- Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, D-60596 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| |
Collapse
|
30
|
Pesonen L, Svartsjö S, Bäck V, de Thonel A, Mezger V, Sabéran-Djoneidi D, Roos-Mattjus P. Gambogic acid and gambogenic acid induce a thiol-dependent heat shock response and disrupt the interaction between HSP90 and HSF1 or HSF2. Cell Stress Chaperones 2021; 26:819-833. [PMID: 34331200 PMCID: PMC8492855 DOI: 10.1007/s12192-021-01222-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer cells rely on heat shock proteins (HSPs) for growth and survival. Especially HSP90 has multiple client proteins and plays a critical role in malignant transformation, and therefore different types of HSP90 inhibitors are being developed. The bioactive natural compound gambogic acid (GB) is a prenylated xanthone with antitumor activity, and it has been proposed to function as an HSP90 inhibitor. However, there are contradicting reports whether GB induces a heat shock response (HSR), which is cytoprotective for cancer cells and therefore a potentially problematic feature for an anticancer drug. In this study, we show that GB and a structurally related compound, called gambogenic acid (GBA), induce a robust HSR, in a thiol-dependent manner. Using heat shock factor 1 (HSF1) or HSF2 knockout cells, we show that the GB or GBA-induced HSR is HSF1-dependent. Intriguingly, using closed form ATP-bound HSP90 mutants that can be co-precipitated with HSF1, a known facilitator of cancer, we show that also endogenous HSF2 co-precipitates with HSP90. GB and GBA treatment disrupt the interaction between HSP90 and HSF1 and HSP90 and HSF2. Our study implies that these compounds should be used cautiously if developed for cancer therapies, since GB and its derivative GBA are strong inducers of the HSR, in multiple cell types, by involving the dissociation of a HSP90-HSF1/HSF2 complex.
Collapse
Affiliation(s)
- Linda Pesonen
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland
| | - Sally Svartsjö
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland
| | - Viktor Bäck
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland
| | - Aurélie de Thonel
- Université de Paris, UMR7216 Épigénétique et Destin Cellulaire, CNRS, F-75013, Paris, France
| | - Valérie Mezger
- Université de Paris, UMR7216 Épigénétique et Destin Cellulaire, CNRS, F-75013, Paris, France
| | - Délara Sabéran-Djoneidi
- Université de Paris, UMR7216 Épigénétique et Destin Cellulaire, CNRS, F-75013, Paris, France
| | - Pia Roos-Mattjus
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland.
| |
Collapse
|
31
|
Faudone G, Bischoff-Kont I, Rachor L, Willems S, Zhubi R, Kaiser A, Chaikuad A, Knapp S, Fürst R, Heering J, Merk D. Propranolol Activates the Orphan Nuclear Receptor TLX to Counteract Proliferation and Migration of Glioblastoma Cells. J Med Chem 2021; 64:8727-8738. [PMID: 34115934 DOI: 10.1021/acs.jmedchem.1c00733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ligand-sensing transcription factor tailless homologue (TLX, NR2E1) is an essential regulator of neuronal stem cell homeostasis with appealing therapeutic potential in neurodegenerative diseases and central nervous system tumors. However, knowledge on TLX ligands is scarce, providing an obstacle to target validation and medicinal chemistry. To discover TLX ligands, we have profiled a drug fragment collection for TLX modulation and identified several structurally diverse agonists and inverse agonists of the nuclear receptor. Propranolol evolved as the strongest TLX agonist and promoted TLX-regulated gene expression in human glioblastoma cells. Structure-activity relationship elucidation of propranolol as a TLX ligand yielded a structurally related negative control compound. In functional cellular experiments, we observed an ability of propranolol to counteract glioblastoma cell proliferation and migration, while the negative control had no effect. Our results provide a collection of TLX modulators as initial chemical tools and set of lead compounds and support therapeutic potential of TLX modulation in glioblastoma.
Collapse
Affiliation(s)
- Giuseppe Faudone
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Iris Bischoff-Kont
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Lea Rachor
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Rezart Zhubi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.,Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.,Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.,Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
32
|
Augmentation of the heat shock axis during exceptional longevity in Ames dwarf mice. GeroScience 2021; 43:1921-1934. [PMID: 33846884 PMCID: PMC8492860 DOI: 10.1007/s11357-021-00362-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/29/2021] [Indexed: 11/06/2022] Open
Abstract
How the heat shock axis, repair pathways, and proteostasis impact the rate of aging is not fully understood. Recent reports indicate that normal aging leads to a 50% change in several regulatory elements of the heat shock axis. Most notably is the age-dependent enhancement of inhibitory signals associated with accumulated heat shock proteins and hyper-acetylation associated with marked attenuation of heat shock factor 1 (HSF1)–DNA binding activity. Because exceptional longevity is associated with increased resistance to stress, this study evaluated regulatory check points of the heat shock axis in liver extracts from 12 months and 24 months long-lived Ames dwarf mice and compared these findings with aging wild-type mice. This analysis showed that 12M dwarf and wild-type mice have comparable stress responses, whereas old dwarf mice, unlike old wild-type mice, preserve and enhance activating elements of the heat shock axis. Old dwarf mice thwart negative regulation of the heat shock axis typically observed in usual aging such as noted in HSF1 phosphorylation at Ser307 residue, acetylation within its DNA binding domain, and reduction in proteins that attenuate HSF1–DNA binding. Unlike usual aging, dwarf HSF1 protein and mRNA levels increase with age and further enhance by stress. Together these observations suggest that exceptional longevity is associated with compensatory and enhanced HSF1 regulation as an adaptation to age-dependent forces that otherwise downregulate the heat shock axis.
Collapse
|
33
|
Willems S, Ohrndorf J, Kilu W, Heering J, Merk D. Fragment-like Chloroquinolineamines Activate the Orphan Nuclear Receptor Nurr1 and Elucidate Activation Mechanisms. J Med Chem 2021; 64:2659-2668. [PMID: 33629841 DOI: 10.1021/acs.jmedchem.0c01779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ligand-activated transcription factor nuclear receptor related-1 (Nurr1) exhibits great potential for neurodegenerative disease treatment, but potent Nurr1 modulators to further probe and validate the nuclear receptor as a therapeutic target are lacking. We have systematically studied the structure-activity relationship of the 4-amino-7-chloroquinoline scaffold contained in Nurr1 activators amodiaquine and chloroquine and discovered fragment-like analogues that activated Nurr1 in several cellular settings. The most active descendants promoted the transcriptional activity of Nurr1 on human response elements as monomer, homodimer, and heterodimer and markedly enhanced Nurr1-dependent gene expression in human astrocytes. As a tool to elucidate mechanisms involving in Nurr1 activation, these Nurr1 agonists induced robust recruitment of NCoR1 and NCoR2 co-regulators to the Nurr1 ligand binding domain and promoted Nurr1 dimerization. These findings provide important insights in Nurr1 regulation. The fragment-sized Nurr1 agonists are appealing starting points for medicinal chemistry and valuable early Nurr1 agonist tools for pharmacology and chemical biology.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Julia Ohrndorf
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt am Main, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
34
|
Luo M, Meng Z, Moroishi T, Lin KC, Shen G, Mo F, Shao B, Wei X, Zhang P, Wei Y, Guan KL. Heat stress activates YAP/TAZ to induce the heat shock transcriptome. Nat Cell Biol 2020; 22:1447-1459. [PMID: 33199845 PMCID: PMC7757600 DOI: 10.1038/s41556-020-00602-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/09/2020] [Indexed: 02/05/2023]
Abstract
The Hippo pathway plays critical roles in cell growth, differentiation, organ development and tissue homeostasis, whereas its dysregulation can lead to tumorigenesis. YAP and TAZ are transcription co-activators and represent the main downstream effectors of the Hippo pathway. Here, we show that heat stress induces a strong and rapid YAP dephosphorylation and activation. The effect of heat shock on YAP is dominant to other signals known to modulate the Hippo pathway. Heat shock inhibits LATS kinase by promoting HSP90-dependent LATS interaction with and inactivation by protein phosphatase 5. Heat shock also induces LATS ubiquitination and degradation. YAP and TAZ are crucial for cellular heat shock responses, including the heat shock transcriptome and cell viability. This study uncovers previously unknown mechanisms of Hippo regulation by heat shock, as well as physiological functions of YAP, in the heat stress response. Our observations also reveal a potential combinational therapy involving hyperthermia and targeting of the Hippo pathway.
Collapse
Affiliation(s)
- Min Luo
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Molecular and Cellular Pharmacology & Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Toshiro Moroishi
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Kimberly C Lin
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Guobo Shen
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
35
|
Shen Y, Zou Y, Li J, Chen F, Li H, Cai Y. CDK5RAP3, a Novel Nucleoplasmic Shuttle, Deeply Regulates HSF1-Mediated Heat Stress Response and Protects Mammary Epithelial Cells from Heat Injury. Int J Mol Sci 2020; 21:E8400. [PMID: 33182370 PMCID: PMC7664939 DOI: 10.3390/ijms21218400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022] Open
Abstract
CDK5RAP3 was regarded as the most significant regulator of cellular responses against heat stress, which is associated with dysfunctions of the immune system and animal susceptibility to disease. Despite this, little known about how CDK5RAP3 regulates heat stress response. In this study, CDK5RAP3 conditional Knockout (CKO) mice, CDK5RAP3-/- mouse embryo fibroblasts (MEFs) and bovine mammary epithelial cells (BMECs) were used as an in vitro and in vivo model, respectively to reveal the role of CDK5RAP3 in regulating the heat stress response. The deletion of CDK5RAP3 unexpectedly caused animal lethality after 1.5-h heat stimulations. Furthermore, BMECs were re-cultured for eight hours after heat stress and was found that the expression of CDK5RAP3 and HSPs showed a similar fluctuating pattern of increase (0-2, 4-6 h) and decrease (2-4, 6-8 h). In addition to the remarkably enhanced expression of heat shock protein, apoptosis rate and endoplasmic reticulum stress, the deletion of CDK5RAP3 also affected nucleoplasmic translocation and trimer formation of heat shock factor 1 (HSF1). These programs were further confirmed in the mammary gland of CDK5RAP3 CKO mice and CDK5RAP3-/- MEFs as well. Interestingly, genetic silencing of HSF1 downregulated CDK5RAP3 expression in BMECs. Immunostaining and immunoprecipitation studies suggested a physical interaction between CDK5RAP3 and HSF1 being co-localized in the cytoplasm and nucleus. Besides, CDK5RAP3 also interacted with HSP90, suggesting an operative machinery at both transcriptional level and protein functionality of HSP90 per se. Together, our findings suggested that CDK5RAP3 works like a novel nucleoplasmic shuttle or molecular chaperone, deeply participating in HSF1-mediated heat stress response and protecting cells from heat injury.
Collapse
Affiliation(s)
- Yangyang Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (Y.Z.); (F.C.)
| | - Yan Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (Y.Z.); (F.C.)
| | - Jun Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
| | - Fanghui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (Y.Z.); (F.C.)
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (Y.Z.); (F.C.)
| |
Collapse
|
36
|
Meijer I, Willems S, Ni X, Heering J, Chaikuad A, Merk D. Chemical Starting Matter for HNF4α Ligand Discovery and Chemogenomics. Int J Mol Sci 2020; 21:E7895. [PMID: 33114319 PMCID: PMC7660650 DOI: 10.3390/ijms21217895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a ligand-sensing transcription factor and presents as a potential drug target in metabolic diseases and cancer. In humans, mutations in the HNF4α gene cause maturity-onset diabetes of the young (MODY), and the elevated activity of this protein has been associated with gastrointestinal cancers. Despite the high therapeutic potential, available ligands and structure-activity relationship knowledge for this nuclear receptor are scarce. Here, we disclose a chemically diverse collection of orthogonally validated fragment-like activators as well as inverse agonists, which modulate HNF4α activity in a low micromolar range. These compounds demonstrate the druggability of HNF4α and thus provide a starting point for medicinal chemistry as well as an early tool for chemogenomics.
Collapse
Affiliation(s)
- Isabelle Meijer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; (I.M.); (S.W.); (X.N.); (A.C.)
| | - Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; (I.M.); (S.W.); (X.N.); (A.C.)
| | - Xiaomin Ni
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; (I.M.); (S.W.); (X.N.); (A.C.)
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany;
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; (I.M.); (S.W.); (X.N.); (A.C.)
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; (I.M.); (S.W.); (X.N.); (A.C.)
| |
Collapse
|
37
|
Williams R, Laskovs M, Williams RI, Mahadevan A, Labbadia J. A Mitochondrial Stress-Specific Form of HSF1 Protects against Age-Related Proteostasis Collapse. Dev Cell 2020; 54:758-772.e5. [DOI: 10.1016/j.devcel.2020.06.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/11/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
|
38
|
Masser AE, Ciccarelli M, Andréasson C. Hsf1 on a leash - controlling the heat shock response by chaperone titration. Exp Cell Res 2020; 396:112246. [PMID: 32861670 DOI: 10.1016/j.yexcr.2020.112246] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 01/06/2023]
Abstract
Heat shock factor 1 (Hsf1) is an ancient transcription factor that monitors protein homeostasis (proteostasis) and counteracts disturbances by triggering a transcriptional programme known as the heat shock response (HSR). The HSR is transiently activated and upregulates the expression of core proteostasis genes, including chaperones. Dysregulation of Hsf1 and its target genes are associated with disease; cancer cells rely on a constitutively active Hsf1 to promote rapid growth and malignancy, whereas Hsf1 hypoactivation in neurodegenerative disorders results in formation of toxic aggregates. These central but opposing roles highlight the importance of understanding the underlying molecular mechanisms that control Hsf1 activity. According to current understanding, Hsf1 is maintained latent by chaperone interactions but proteostasis perturbations titrate chaperone availability as a result of chaperone sequestration by misfolded proteins. Liberated and activated Hsf1 triggers a negative feedback loop by inducing the expression of key chaperones. Until recently, Hsp90 has been highlighted as the central negative regulator of Hsf1 activity. In this review, we focus on recent advances regarding how the Hsp70 chaperone controls Hsf1 activity and in addition summarise several additional layers of activity control.
Collapse
Affiliation(s)
- Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden
| | - Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
39
|
The orphan nuclear receptor Nurr1 is responsive to non-steroidal anti-inflammatory drugs. Commun Chem 2020; 3:85. [PMID: 36703399 PMCID: PMC9814838 DOI: 10.1038/s42004-020-0331-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/05/2020] [Indexed: 01/29/2023] Open
Abstract
Nuclear receptor related 1 (Nurr1) is an orphan ligand-activated transcription factor and considered as neuroprotective transcriptional regulator with great potential as therapeutic target for neurodegenerative diseases. However, the collection of available Nurr1 modulators and mechanistic understanding of Nurr1 are limited. Here, we report the discovery of several structurally diverse non-steroidal anti-inflammatory drugs as inverse Nurr1 agonists demonstrating that Nurr1 activity can be regulated bidirectionally. As chemical tools, these ligands enable unraveling the co-regulatory network of Nurr1 and the mode of action distinguishing agonists from inverse agonists. In addition to its ability to dimerize, we observe an ability of Nurr1 to recruit several canonical nuclear receptor co-regulators in a ligand-dependent fashion. Distinct dimerization states and co-regulator interaction patterns arise as discriminating factors of Nurr1 agonists and inverse agonists. Our results contribute a valuable collection of Nurr1 modulators and relevant mechanistic insights for future Nurr1 target validation and drug discovery.
Collapse
|
40
|
Pincus D. Regulation of Hsf1 and the Heat Shock Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:41-50. [PMID: 32297210 DOI: 10.1007/978-3-030-40204-4_3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The heat shock response (HSR) is characterized by the induction of molecular chaperones following a sudden increase in temperature. In eukaryotes, the HSR comprises the set of genes controlled by the transcription factor Hsf1. The HSR is induced by defects in co-translational protein folding, ribosome biogenesis, organellar targeting of nascent proteins, and protein degradation by the ubiquitin proteasome system. Upon heat shock, these processes may be endogenous sources of polypeptide ligands that activate the HSR. Mechanistically, these ligands are thought to titrate the chaperone Hsp70 away from Hsf1, releasing Hsf1 to induce the full arsenal of cellular chaperones to restore protein homeostasis. In metazoans, this cell-autonomous feedback loop is modulated by the microenvironment and neuronal cues to enable tissue-level and organism-wide coordination.
Collapse
Affiliation(s)
- David Pincus
- Department of Molecular Genetics and Cell Biology, Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
41
|
Puustinen MC, Sistonen L. Molecular Mechanisms of Heat Shock Factors in Cancer. Cells 2020; 9:cells9051202. [PMID: 32408596 PMCID: PMC7290425 DOI: 10.3390/cells9051202] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Malignant transformation is accompanied by alterations in the key cellular pathways that regulate development, metabolism, proliferation and motility as well as stress resilience. The members of the transcription factor family, called heat shock factors (HSFs), have been shown to play important roles in all of these biological processes, and in the past decade it has become evident that their activities are rewired during tumorigenesis. This review focuses on the expression patterns and functions of HSF1, HSF2, and HSF4 in specific cancer types, highlighting the mechanisms by which the regulatory functions of these transcription factors are modulated. Recently developed therapeutic approaches that target HSFs are also discussed.
Collapse
Affiliation(s)
- Mikael Christer Puustinen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland;
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Lea Sistonen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland;
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
- Correspondence: ; Tel.: +358-2215-3311
| |
Collapse
|
42
|
Gellrich L, Heitel P, Heering J, Kilu W, Pollinger J, Goebel T, Kahnt A, Arifi S, Pogoda W, Paulke A, Steinhilber D, Proschak E, Wurglics M, Schubert-Zsilavecz M, Chaikuad A, Knapp S, Bischoff I, Fürst R, Merk D. l-Thyroxin and the Nonclassical Thyroid Hormone TETRAC Are Potent Activators of PPARγ. J Med Chem 2020; 63:6727-6740. [DOI: 10.1021/acs.jmedchem.9b02150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Leonie Gellrich
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Jan Heering
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Julius Pollinger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Tamara Goebel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Astrid Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Silvia Arifi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Werner Pogoda
- Department of Forensic Toxicology, Institute of Forensic Medicine, Goethe University Frankfurt, Kennedyallee 104, D-60596 Frankfurt, Germany
| | - Alexander Paulke
- Department of Forensic Toxicology, Institute of Forensic Medicine, Goethe University Frankfurt, Kennedyallee 104, D-60596 Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Mario Wurglics
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, D-60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, D-60438 Frankfurt, Germany
| | - Iris Bischoff
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
43
|
Das S, Ooi FK, Cruz Corchado J, Fuller LC, Weiner JA, Prahlad V. Serotonin signaling by maternal neurons upon stress ensures progeny survival. eLife 2020; 9:e55246. [PMID: 32324136 PMCID: PMC7237211 DOI: 10.7554/elife.55246] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
Germ cells are vulnerable to stress. Therefore, how organisms protect their future progeny from damage in a fluctuating environment is a fundamental question in biology. We show that in Caenorhabditis elegans, serotonin released by maternal neurons during stress ensures the viability and stress resilience of future offspring. Serotonin acts through a signal transduction pathway conserved between C. elegans and mammalian cells to enable the transcription factor HSF1 to alter chromatin in soon-to-be fertilized germ cells by recruiting the histone chaperone FACT, displacing histones, and initiating protective gene expression. Without serotonin release by maternal neurons, FACT is not recruited by HSF1 in germ cells, transcription occurs but is delayed, and progeny of stressed C. elegans mothers fail to complete development. These studies uncover a novel mechanism by which stress sensing by neurons is coupled to transcription response times of germ cells to protect future offspring.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | | | | | - Joshua A Weiner
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| |
Collapse
|
44
|
Crul T, Csoboz B, Gombos I, Marton A, Peter M, Balogh G, Vizler C, Szente L, Vigh L. Modulation of Plasma Membrane Composition and Microdomain Organization Impairs Heat Shock Protein Expression in B16-F10 Mouse Melanoma Cells. Cells 2020; 9:cells9040951. [PMID: 32290618 PMCID: PMC7226980 DOI: 10.3390/cells9040951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/23/2022] Open
Abstract
The heat shock response (HSR) regulates induction of stress/heat shock proteins (HSPs) to preserve proteostasis during cellular stress. Earlier, our group established that the plasma membrane (PM) acts as a sensor and regulator of HSR through changes in its microdomain organization. PM microdomains such as lipid rafts, dynamic nanoscale assemblies enriched in cholesterol and sphingomyelin, and caveolae, cholesterol-rich PM invaginations, constitute clustering platforms for proteins functional in signaling cascades. Here, we aimed to compare the effect of cyclodextrin (MβCD)- and nystatin-induced cholesterol modulations on stress-activated expression of the representative HSPs, HSP70, and HSP25 in mouse B16-F10 melanoma cells. Depletion of cholesterol levels with MβCD impaired the heat-inducibility of both HSP70 and HSP25. Sequestration of cholesterol with nystatin impaired the heat-inducibility of HSP25 but not of HSP70. Imaging fluorescent correlation spectroscopy marked a modulated lateral diffusion constant of fluorescently labelled cholesterol in PM during cholesterol deprived conditions. Lipidomics analysis upon MβCD treatment revealed, next to cholesterol reductions, decreased lysophosphatidylcholine and phosphatidic acid levels. These data not only highlight the involvement of PM integrity in HSR but also suggest that altered dynamics of specific cholesterol pools could represent a mechanism to fine tune HSP expression.
Collapse
Affiliation(s)
- Tim Crul
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
- Correspondence: ; Tel.: +36-62-599-652
| | - Balint Csoboz
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
- Institute of Medial Biology, University of Tromsø, Tromsø 9037, Norway
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| | - Annamaria Marton
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| | - Maria Peter
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| | - Gabor Balogh
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| | - Csaba Vizler
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| | - Lajos Szente
- Cyclolab Cyclodextrin R&D Laboratory Ltd., 1097 Budapest, Hungary
| | - Laszlo Vigh
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| |
Collapse
|
45
|
Duchateau A, de Thonel A, El Fatimy R, Dubreuil V, Mezger V. The "HSF connection": Pleiotropic regulation and activities of Heat Shock Factors shape pathophysiological brain development. Neurosci Lett 2020; 725:134895. [PMID: 32147500 DOI: 10.1016/j.neulet.2020.134895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022]
Abstract
The Heat Shock Factors (HSFs) have been historically identified as a family of transcription factors that are activated and work in a stress-responsive manner, after exposure to a large variety of stimuli. However, they are also critical in normal conditions, in a life long manner, in a number of physiological processes that encompass gametogenesis, embryonic development and the integrity of adult organs and organisms. The importance of such roles is emphasized by the devastating impact of their deregulation on health, ranging from reproductive failure, neurodevelopmental disorders, cancer, and aging pathologies, including neurodegenerative disorders. Here, we provide an overview of the delicate choreography of the regulation of HSFs during neurodevelopment, at prenatal and postnatal stages. The regulation of HSFs acts at multiple layers and steps, and comprises the control of (i) HSF mRNA and protein levels, (ii) HSF activity in terms of DNA-binding and transcription, (iii) HSF homo- and hetero-oligomerization capacities, and (iv) HSF combinatory set of post-translational modifications. We also describe how these regulatory mechanisms operate in the normal developing brain and how their perturbation impact neurodevelopment under prenatal or perinatal stress conditions. In addition, we put into perspective the possible role of HSFs in the evolution of the vertebrate brains and the importance of the HSF pathway in a large variety of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Agathe Duchateau
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France; ED 562 BioSPC, Université de Paris, F-75205, Paris Cedex 13, France
| | - Aurélie de Thonel
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Rachid El Fatimy
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Véronique Dubreuil
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Valérie Mezger
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France.
| |
Collapse
|
46
|
HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol 2020; 22:151-158. [PMID: 32015439 PMCID: PMC7135912 DOI: 10.1038/s41556-019-0458-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 12/16/2019] [Indexed: 01/05/2023]
Abstract
Under proteotoxic stress, some cells survive whereas others die. Mechanisms governing this heterogeneity in cell fate are unknown. We report that condensation and phase transition of heat-shock factor 1 (HSF1), a transcriptional regulator of chaperones1,2, is integral to cell fate decisions underlying survival or death. During stress, HSF1 drives chaperone expression but also accumulates separately in nuclear stress bodies (foci)3–6. Foci formation has been regarded as a marker of cells actively upregulating chaperones3,6–10. Using multiplexed tissue imaging, we observed HSF1 foci in human tumors. Paradoxically, their presence inversely correlated with chaperone expression. By live-cell microscopy and single-cell analysis, we found that foci dissolution rather than formation promoted HSF1 activity and cell survival. During prolonged stress, the biophysical properties of HSF1 foci changed; small, fluid condensates enlarged into indissoluble gel-like arrangements with immobilized HSF1. Chaperone gene induction was reduced in such cells, which were prone to apoptosis. Quantitative analysis suggests that survival under stress results from competition between concurrent yet opposing mechanisms. Foci may serve as sensors that tune cytoprotective responses, balancing rapid transient responses and irreversible outcomes.
Collapse
|
47
|
Alasady MJ, Mendillo ML. The Multifaceted Role of HSF1 in Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:69-85. [PMID: 32297212 DOI: 10.1007/978-3-030-40204-4_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heat Shock Factor 1 (HSF1), the master transcriptional regulator of the heat shock response (HSR), was first cloned more than 30 years ago. Most early research interrogating the role that HSF1 plays in biology focused on its cytoprotective functions, as a factor that promotes the survival of organisms by protecting against the proteotoxicity associated with neurodegeneration and other pathological conditions. However, recent studies have revealed a deleterious role of HSF1, as a factor that is co-opted by cancer cells to promote their own survival to the detriment of the organism. In cancer, HSF1 operates in a multifaceted manner to promote oncogenic transformation, proliferation, metastatic dissemination, and anti-cancer drug resistance. Here we review our current understanding of HSF1 activation and function in malignant progression and discuss the potential for HSF1 inhibition as a novel anticancer strategy. Collectively, this ever-growing body of work points to a prominent role of HSF1 in nearly every aspect of carcinogenesis.
Collapse
Affiliation(s)
- Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
48
|
Kuta R, Larochelle N, Fernandez M, Pal A, Minotti S, Tibshirani M, St Louis K, Gentil BJ, Nalbantoglu JN, Hermann A, Durham HD. Depending on the stress, histone deacetylase inhibitors act as heat shock protein co-inducers in motor neurons and potentiate arimoclomol, exerting neuroprotection through multiple mechanisms in ALS models. Cell Stress Chaperones 2020; 25:173-191. [PMID: 31900865 PMCID: PMC6985055 DOI: 10.1007/s12192-019-01064-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Upregulation of heat shock proteins (HSPs) is an approach to treatment of neurodegenerative disorders with impaired proteostasis. Many neurons, including motor neurons affected in amyotrophic lateral sclerosis (ALS), are relatively resistant to stress-induced upregulation of HSPs. This study demonstrated that histone deacetylase (HDAC) inhibitors enable the heat shock response in cultured spinal motor neurons, in a stress-dependent manner, and can improve the efficacy of HSP-inducing drugs in murine spinal cord cultures subjected to thermal or proteotoxic stress. The effect of particular HDAC inhibitors differed with the stress paradigm. The HDAC6 (class IIb) inhibitor, tubastatin A, acted as a co-inducer of Hsp70 (HSPA1A) expression with heat shock, but not with proteotoxic stress induced by expression of mutant SOD1 linked to familial ALS. Certain HDAC class I inhibitors (the pan inhibitor, SAHA, or the HDAC1/3 inhibitor, RGFP109) were HSP co-inducers comparable to the hydroxyamine arimoclomol in response to proteotoxic stress, but not thermal stress. Regardless, stress-induced Hsp70 expression could be enhanced by combining an HDAC inhibitor with either arimoclomol or with an HSP90 inhibitor that constitutively induced HSPs. HDAC inhibition failed to induce Hsp70 in motor neurons expressing ALS-linked mutant FUS, in which the heat shock response was suppressed; yet SAHA, RGFP109, and arimoclomol did reduce loss of nuclear FUS, a disease hallmark, and HDAC inhibition rescued the DNA repair response in iPSC-derived motor neurons carrying the FUSP525Lmutation, pointing to multiple mechanisms of neuroprotection by both HDAC inhibiting drugs and arimoclomol.
Collapse
Affiliation(s)
- Rachel Kuta
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Nancy Larochelle
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Mario Fernandez
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Arun Pal
- Department Neurology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Sandra Minotti
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Michael Tibshirani
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Kyle St Louis
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Benoit J Gentil
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Josephine N Nalbantoglu
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neuroscience (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany and German Center for Neurodegenerative Diseases (DZNE) Rostock, Rostock, Germany
| | - Heather D Durham
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
49
|
Takii R, Fujimoto M, Matsumoto M, Srivastava P, Katiyar A, Nakayama KI, Nakai A. The pericentromeric protein shugoshin 2 cooperates with HSF1 in heat shock response and RNA Pol II recruitment. EMBO J 2019; 38:e102566. [PMID: 31657478 DOI: 10.15252/embj.2019102566] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022] Open
Abstract
The recruitment of RNA polymerase II (Pol II) to core promoters is highly regulated during rapid induction of genes. In response to heat shock, heat shock transcription factor 1 (HSF1) is activated and occupies heat shock gene promoters. Promoter-bound HSF1 recruits general transcription factors and Mediator, which interact with Pol II, but stress-specific mechanisms of Pol II recruitment are unclear. Here, we show in comparative analyses of HSF1 paralogs and their mutants that HSF1 interacts with the pericentromeric adaptor protein shugoshin 2 (SGO2) during heat shock in mouse cells, in a manner dependent on inducible phosphorylation of HSF1 at serine 326, and recruits SGO2 to the HSP70 promoter. SGO2-mediated binding and recruitment of Pol II with a hypophosphorylated C-terminal domain promote expression of HSP70, implicating SGO2 as one of the coactivators that facilitate Pol II recruitment by HSF1. Furthermore, the HSF1-SGO2 complex supports cell survival and maintenance of proteostasis in heat shock conditions. These results exemplify a proteotoxic stress-specific mechanism of Pol II recruitment, which is triggered by phosphorylation of HSF1 during the heat shock response.
Collapse
Affiliation(s)
- Ryosuke Takii
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Masaki Matsumoto
- Division of Proteomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Pratibha Srivastava
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Arpit Katiyar
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Keiich I Nakayama
- Division of Proteomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| |
Collapse
|
50
|
Hsf1 Phosphorylation Generates Cell-to-Cell Variation in Hsp90 Levels and Promotes Phenotypic Plasticity. Cell Rep 2019; 22:3099-3106. [PMID: 29562166 PMCID: PMC5893160 DOI: 10.1016/j.celrep.2018.02.083] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/11/2017] [Accepted: 02/22/2018] [Indexed: 01/07/2023] Open
Abstract
Clonal populations of cells exhibit cell-to-cell variation in the transcription of individual genes. In addition to this noise in gene expression, heterogeneity in the proteome and the proteostasis network expands the phenotypic diversity of a population. Heat shock factor 1 (Hsf1) regulates chaperone gene expression, thereby coupling transcriptional noise to proteostasis. Here we show that cell-to-cell variation in Hsf1 activity is an important determinant of phenotypic plasticity. Budding yeast cells with high Hsf1 activity were enriched for the ability to acquire resistance to an antifungal drug, and this enrichment depended on Hsp90, a known phenotypic capacitor and canonical Hsf1 target. We show that Hsf1 phosphorylation promotes cell-to-cell variation, and this variation, rather than absolute Hsf1 activity, promotes antifungal resistance. We propose that Hsf1 phosphorylation enables differential tuning of the proteostasis network in individual cells, allowing populations to access a range of phenotypic states.
Collapse
|