1
|
Shi S, Liu X, Geng X, Meng Q, Gao M, Wang E, Ma X, Hu H, Liu J, Han W, Yin H, Zhou X. Neonatal heart tissue-derived EVs alleviate adult ischemic cardiac injury via regulating the function of macrophages and cardiac regeneration in murine models. Int Immunopharmacol 2024; 143:113251. [PMID: 39353386 DOI: 10.1016/j.intimp.2024.113251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Previous studies confirmed the regenerative capacity of the mammalian neonatal heart. We recently found that adult heart tissue-derived EVs can protect the heart from myocardial ischemia-reperfusion (I/R). However, the role of EVs from neonatal heart tissue in cardiac healing post-ischemia remains unclear. In the present study, we revealed that intramyocardial administration of neonatal cardiac tissue-derived EVs (ncEVs) alleviated cardiac inflammation, mitigated reperfusion injury, and improved cardiac function in murine I/R models. In vitro, ncEVs inhibited M1 polarization of macrophages induced by LPS while up-regulated their phagocytic function via the miR-133a-3p-Ash1l signaling pathway. Moreover, the administration of ncEVs contributed to cardiac angiogenesis and improved cardiac function in murine myocardial infarction models. Collectively, these results suggested that neonatal heart-derived EVs can regulate the function of macrophages and contribute to cardiac regeneration and function recovery in murine cardiac ischemic models. Therefore, the derivatives in neonatal heart tissue-derived EVs might serve as a potential therapeutic strategy in ischemic diseases.
Collapse
Affiliation(s)
- Shanshan Shi
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuan Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuedi Geng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Mingkui Gao
- Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Enhao Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaoxue Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hao Hu
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Jie Liu
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wei Han
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Hui Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang 422000 China.
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
2
|
Du Y, Wu S, Xi S, Xu W, Sun L, Yan J, Gao H, Wang Y, Zheng J, Wang F, Yang H, Xie D, Chen X, Ou X, Guan XY, Li Y. ASH1L in Hepatoma Cells and Hepatic Stellate Cells Promotes Fibrosis-Associated Hepatocellular Carcinoma by Modulating Tumor-Associated Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404756. [PMID: 39377228 DOI: 10.1002/advs.202404756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/06/2024] [Indexed: 10/09/2024]
Abstract
Hepatocellular carcinoma (HCC) often occurs in the context of fibrosis or cirrhosis. Methylation of histone is an important epigenetic mechanism, but it is unclear whether histone methyltransferases are potent targets for fibrosis-associated HCC therapy. ASH1L, an H3K4 methyltransferase, is found at higher levels in activated hepatic stellate cells (HSCs) and hepatoma cells. To determine the role of ASH1L in vivo, transgenic mice with conditional Ash1l depletion in the hepatocyte cell lineage (Ash1lflox/floxAlbcre) or HSCs (Ash1lflox/floxGFAPcreERT2) are generated, and these mice are challenged in a diethylnitrosamine (DEN)/carbon tetrachloride (CCl4)-induced model of liver fibrosis and HCC. Depleting Ash1l in both hepatocytes and HSCs mitigates hepatic fibrosis and HCC development. Multicolor flow cytometry, bulk, and single-cell transcriptomic sequencing reveal that ASH1L creates an immunosuppressive microenvironment. Mechanically, ASH1L-mediated H3K4me3 modification increases the expression of CCL2 and CSF1, which recruites and polarizes M2-like pro-tumorigenic macrophages. The M2-like macrophages further enhance tumor cell proliferation and suppress CD8+ T cell activation. AS-99, a small molecule inhibitor of ASH1L, demonstrates similar anti-fibrosis and tumor-suppressive effects. Of pathophysiological significance, the increased expression levels of mesenchymal ASH1L and M2 marker CD68 are associated with poor prognosis of HCC. The findings reveal ASH1L as a potential small-molecule therapeutic target against fibrosis-related HCC.
Collapse
Affiliation(s)
- Yuyang Du
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shasha Wu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shaoyan Xi
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510275, China
| | - Wei Xu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liangzhan Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Jingsong Yan
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Han Gao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanchen Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Jingyi Zheng
- Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Fenfen Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hui Yang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510080, China
| | - Xi Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xijun Ou
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510080, China
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Yan Li
- Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| |
Collapse
|
3
|
Andjelkovic M, Klaassen K, Skakic A, Marjanovic I, Kravljanac R, Djordjevic M, Vucetic Tadic B, Kecman B, Pavlovic S, Stojiljkovic M. Characterization of 13 Novel Genetic Variants in Genes Associated with Epilepsy: Implications for Targeted Therapeutic Strategies. Mol Diagn Ther 2024; 28:645-663. [PMID: 39003674 PMCID: PMC11349789 DOI: 10.1007/s40291-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Childhood epilepsies are caused by heterogeneous underlying disorders where approximately 40% of the origins of epilepsy can be attributed to genetic factors. The application of next-generation sequencing (NGS) has revolutionized molecular diagnostics and has enabled the identification of disease-causing genes and variants in childhood epilepsies. The objective of this study was to use NGS to identify variants in patients with childhood epilepsy, to expand the variant spectrum and discover potential therapeutic targets. METHODS In our study, 55 children with epilepsy of unknown etiology were analyzed by combining clinical-exome and whole-exome sequencing. Novel variants were characterized using various in silico algorithms for pathogenicity and structure prediction. RESULTS The molecular genetic cause of epilepsy was identified in 28 patients and the overall diagnostic success rate was 50.9%. We identified variants in 22 different genes associated with epilepsy that correlate well with the described phenotype. SCN1A gene variants were found in five unrelated patients, while ALDH7A1 and KCNQ2 gene variants were found twice. In the other 19 genes, variants were found only in a single patient. This includes genes such as ASH1L, CSNK2B, RHOBTB2, and SLC13A5, which have only recently been associated with epilepsy. Almost half of diagnosed patients (46.4%) carried novel variants. Interestingly, we identified variants in ALDH7A1, KCNQ2, PNPO, SCN1A, and SCN2A resulting in gene-directed therapy decisions for 11 children from our study, including four children who all carried novel SCN1A genetic variants. CONCLUSIONS Described novel variants will contribute to a better understanding of the European genetic landscape, while insights into the genotype-phenotype correlation will contribute to a better understanding of childhood epilepsies worldwide. Given the expansion of molecular-based approaches, each newly identified genetic variant could become a potential therapeutic target.
Collapse
Affiliation(s)
- Marina Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Anita Skakic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Ruzica Kravljanac
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Maja Djordjevic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Biljana Vucetic Tadic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozica Kecman
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia.
| |
Collapse
|
4
|
Yancoskie M, Khaleghi R, Gururajan A, Raghunathan A, Gupta A, Diethelm S, Maritz C, Sturla S, Krishnan M, Naegeli H. ASH1L guards cis-regulatory elements against cyclobutane pyrimidine dimer induction. Nucleic Acids Res 2024; 52:8254-8270. [PMID: 38884271 PMCID: PMC11317172 DOI: 10.1093/nar/gkae517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024] Open
Abstract
The histone methyltransferase ASH1L, first discovered for its role in transcription, has been shown to accelerate the removal of ultraviolet (UV) light-induced cyclobutane pyrimidine dimers (CPDs) by nucleotide excision repair. Previous reports demonstrated that CPD excision is most efficient at transcriptional regulatory elements, including enhancers, relative to other genomic sites. Therefore, we analyzed DNA damage maps in ASH1L-proficient and ASH1L-deficient cells to understand how ASH1L controls enhancer stability. This comparison showed that ASH1L protects enhancer sequences against the induction of CPDs besides stimulating repair activity. ASH1L reduces CPD formation at C-containing but not at TT dinucleotides, and no protection occurs against pyrimidine-(6,4)-pyrimidone photoproducts or cisplatin crosslinks. The diminished CPD induction extends to gene promoters but excludes retrotransposons. This guardian role against CPDs in regulatory elements is associated with the presence of H3K4me3 and H3K27ac histone marks, which are known to interact with the PHD and BRD motifs of ASH1L, respectively. Molecular dynamics simulations identified a DNA-binding AT hook of ASH1L that alters the distance and dihedral angle between neighboring C nucleotides to disfavor dimerization. The loss of this protection results in a higher frequency of C->T transitions at enhancers of skin cancers carrying ASH1L mutations compared to ASH1L-intact counterparts.
Collapse
Affiliation(s)
- Michelle N Yancoskie
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich 8057, Switzerland
| | - Reihaneh Khaleghi
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich 8057, Switzerland
| | - Anirvinya Gururajan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Aadarsh Raghunathan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Aryan Gupta
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Sarah Diethelm
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich 8057, Switzerland
| | - Corina Maritz
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich 8057, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich 8057, Switzerland
| |
Collapse
|
5
|
Zhao X, Lin S, Ren H, Sun S, Zheng L, Chen LF, Wang Z. The histone methyltransferase ASH1L protects against bone loss by inhibiting osteoclastogenesis. Cell Death Differ 2024; 31:605-617. [PMID: 38431690 PMCID: PMC11094046 DOI: 10.1038/s41418-024-01274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Absent, small, or homeotic1-like (ASH1L) is a histone lysine methyltransferase that generally functions as a transcriptional activator in controlling cell fate. So far, its physiological relevance in bone homeostasis and osteoclast differentiation remains elusive. Here, by conditional deleting Ash1l in osteoclast progenitors of mice, we found ASH1L deficiency resulted in osteoporosis and potentiation of osteoclastogenesis in vivo and in vitro. Mechanistically, ASH1L binds the promoter of the Src homology 3 and cysteine-rich domain 2 (Stac2) and increases the gene's transcription via histone 3 lysine 4 (H3K4) trimethylation modification, thus augmenting the STAC2's protection against receptor activator of nuclear factor kB ligand (RANKL)-initiated inflammation during osteoclast formation. Collectively, we demonstrate the first piece of evidence to prove ASH1L as a critical checkpoint during osteoclastogenesis. The work sheds new light on our understanding about the biological function of ASH1L in bone homeostasis, therefore providing a valuable therapeutic target for the treatment of osteoporosis or inflammatory bone diseases.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Department of Biochemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Lin
- Department of Biochemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Hangjiang Ren
- Department of Biochemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shenghui Sun
- Department of Biochemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyun Zheng
- Department of Biochemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin-Feng Chen
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Zhen Wang
- Department of Biochemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Du WJ, Yang H, Tong F, Liu S, Zhang C, Chen Y, Yan Y, Xiang YW, Hua LY, Gong Y, Xu ZX, Liu X, Jiang X, Lu M, Guan JS, Han Q. Ash1L ameliorates psoriasis via limiting neuronal activity-dependent release of miR-let-7b. Br J Pharmacol 2024; 181:1107-1127. [PMID: 37766518 DOI: 10.1111/bph.16254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Psoriasis is a common autoimmune skin disease that significantly diminishes patients' quality of life. Interactions between primary afferents of the somatosensory system and the cutaneous immune system mediate the pathogenesis of psoriasis. This study aims to elucidate the molecular mechanisms of how primary sensory neurons regulate psoriasis formation. EXPERIMENTAL APPROACH Skin and total RNA were extracted from wild-type (WT) and ASH1-like histone lysine methyltransferase (Ash1l+/- ) mice in both naive and imiquimod (IMQ)-induced psoriasis models. Immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence-activated cell sorting (FACS) were then performed. Microfluidic chamber coculture was used to investigate the interaction between somatosensory neurons and bone marrow dendritic cells (BMDCs) ex vivo. Whole-cell patch clamp recordings were used to evaluate neuronal excitability after Ash1L haploinsufficiency in primary sensory neurons. KEY RESULTS The haploinsufficiency of ASH1L, a histone methyltransferase, in primary sensory neurons causes both neurite hyperinnervation and increased neuronal excitability, which promote miR-let-7b release from primary afferents in the skin in a neuronal activity-dependent manner. With a 'GUUGUGU' core sequence, miR-let-7b functions as an endogenous ligand of toll-like receptor 7 (TLR7) and stimulates the activation of dermal dendritic cells (DCs) and interleukin (IL)-23/IL-17 axis, ultimately exacerbating the symptoms of psoriasis. Thus, by limiting miR-let-7b release from primary afferents, ASH1L prevents dermal DC activation and ameliorates psoriasis. CONCLUSION AND IMPLICATIONS Somatosensory neuron ASH1L modulates the cutaneous immune system by limiting neuronal activity-dependent release of miR-let-7b, which can directly activate dermal DCs via TLR7 and ultimately lead to aggravated psoriatic lesion.
Collapse
Affiliation(s)
- Wan-Jie Du
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Huan Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuai Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yeying Chen
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE, NHC, CAMS), School of Basic Medical Sciences and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yuze Yan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Yang Hua
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ye Gong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhi-Xiang Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Liu
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Mingfang Lu
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE, NHC, CAMS), School of Basic Medical Sciences and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Ji-Song Guan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qingjian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Cordova I, Blesson A, Savatt JM, Sveden A, Mahida S, Hazlett H, Rooney Riggs E, Chopra M. Expansion of the Genotypic and Phenotypic Spectrum of ASH1L-Related Syndromic Neurodevelopmental Disorder. Genes (Basel) 2024; 15:423. [PMID: 38674358 PMCID: PMC11049257 DOI: 10.3390/genes15040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Pathogenic ASH1L variants have been reported in probands with broad phenotypic presentations, including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, seizures, congenital anomalies, and other skeletal, muscular, and sleep differences. Here, we review previously published individuals with pathogenic ASH1L variants and report three further probands with novel ASH1L variants and previously unreported phenotypic features, including mixed receptive language disorder and gait disturbances. These novel data from the Brain Gene Registry, an accessible repository of clinically derived genotypic and phenotypic data, have allowed for the expansion of the phenotypic and genotypic spectrum of this condition.
Collapse
Affiliation(s)
- Ineke Cordova
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA 17822, USA; (I.C.); (E.R.R.)
| | - Alyssa Blesson
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Juliann M. Savatt
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA 17822, USA; (I.C.); (E.R.R.)
| | - Abigail Sveden
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Sonal Mahida
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Heather Hazlett
- Department of Psychiatry, University of North Carolina Intellectual and Developmental Disability Research Center, Chapel Hill, NC 27510, USA
| | - Erin Rooney Riggs
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA 17822, USA; (I.C.); (E.R.R.)
| | - Maya Chopra
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
8
|
Zhao Y, Skovgaard Z, Wang Q. Regulation of adipogenesis by histone methyltransferases. Differentiation 2024; 136:100746. [PMID: 38241884 DOI: 10.1016/j.diff.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Epigenetic regulation is a critical component of lineage determination. Adipogenesis is the process through which uncommitted stem cells or adipogenic precursor cells differentiate into adipocytes, the most abundant cell type of the adipose tissue. Studies examining chromatin modification during adipogenesis have provided further understanding of the molecular blueprint that controls the onset of adipogenic differentiation. Unlike histone acetylation, histone methylation has context dependent effects on the activity of a transcribed region of DNA, with individual or combined marks on different histone residues providing distinct signals for gene expression. Over half of the 42 histone methyltransferases identified in mammalian cells have been investigated in their role during adipogenesis, but across the large body of literature available, there is a lack of clarity over potential correlations or emerging patterns among the different players. In this review, we will summarize important findings from studies published in the past 15 years that have investigated the role of histone methyltransferases during adipogenesis, including both protein arginine methyltransferases (PRMTs) and lysine methyltransferases (KMTs). We further reveal that PRMT1/4/5, H3K4 KMTs (MLL1, MLL3, MLL4, SMYD2 and SET7/9) and H3K27 KMTs (EZH2) all play positive roles during adipogenesis, while PRMT6/7 and H3K9 KMTs (G9a, SUV39H1, SUV39H2, and SETDB1) play negative roles during adipogenesis.
Collapse
Affiliation(s)
| | | | - Qinyi Wang
- Computer Science Department, California State Polytechnic University Pomona, USA
| |
Collapse
|
9
|
Chen CY, Shao Z, Wang G, Zhao B, Hardtke HA, Leong J, Zhou T, Zhang YJ, Qiao H. Histone acetyltransferase HAF2 associates with PDC to control H3K14ac and H3K23ac in ethylene response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573642. [PMID: 38260516 PMCID: PMC10802238 DOI: 10.1101/2023.12.31.573642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Ethylene plays its essential roles in plant development, growth, and defense responses by controlling the transcriptional reprogramming, in which EIN2-C-directed regulation of histone acetylation is the first key-step for chromatin to perceive ethylene signaling. However, the histone acetyltransferase in this process remains unknown. Here, we identified histone acetyltransferase HAF2, and mutations in HAF2 confer plants with ethylene insensitivity. Furthermore, we found that HAF2 interacts with EIN2-C in response to ethylene. Biochemical assays demonstrated that the bromodomain of HAF2 binds to H3K14ac and H3K23ac peptides with a distinct affinity for H3K14ac; the HAT domain possesses acetyltransferase catalytic activity for H3K14 and H3K23 acetylation, with a preference for H3K14. ChIP-seq results provide additional evidence supporting the role of HAF2 in regulating H3K14ac and H3K23ac levels in response to ethylene. Finally, our findings revealed that HAF2 co-functions with pyruvate dehydrogenase complex (PDC) to regulate H3K14ac and H3K23ac in response to ethylene in an EIN2 dependent manner. Overall, this research reveals that HAF2 as a histone acetyltransferase that forms a complex with EIN2-C and PDC, collectively governing histone acetylation of H3H14ac and H3K23ac, preferentially for H3K14 in response to ethylene.
Collapse
|
10
|
Xie M, Zhang L, Han L, Huang L, Huang Y, Yang M, Zhang N. The ASH1L-AS1-ASH1L axis controls NME1-mediated activation of the RAS signaling in gastric cancer. Oncogene 2023; 42:3435-3445. [PMID: 37805663 DOI: 10.1038/s41388-023-02855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Gastric cancer (GC) is one of the most leading cause of malignancies. However, the molecular mechanisms underlying stomach carcinogenesis remain incompletely understood. Dysregulated genetic and epigenetic alternations significantly contribute to GC development. Here, we report that ASH1L and its antisense lncRNA ASH1L-AS1, which are transcribed from the most significant GC-risk signal at 1q22, act as novel oncogenes. The high levels of ASH1L or lncRNA ASH1L-AS1 expression in GC specimens are associated with worse prognosis of patients. In line with this, ASH1L and ASH1L-AS1 are functionally important in promoting GC disease progression. LncRNA ASH1L-AS1 up-regulates ASH1L transcription, increases histone methyltransferase ASH1L expression and elevates genome-wide H3K4me3 modification levels in GC cells. Furthermore, ASH1L-AS1 directly interacts with transcription factor NME1 protein to form the ASH1L-AS1-NME1 ribonucleoprotein, which transcriptionally promotes expression of ASH1L, ASH1L-AS1, KRAS and RAF1, and activates the RAS signaling pathway in GC cells. Taken together, our data demonstrated that the ASH1L-AS1-ASH1L regulatory axis controls histone modification reprogram and activation of the RAS signaling in cancers. Thus, ASH1L-AS1 might be a novel targets of GC therapeutics and diagnosis in the clinic.
Collapse
Affiliation(s)
- Mengyu Xie
- Departemnt of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Nasha Zhang
- Departemnt of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
11
|
Al-Harthi S, Li H, Winkler A, Szczepski K, Deng J, Grembecka J, Cierpicki T, Jaremko Ł. MRG15 activates histone methyltransferase activity of ASH1L by recruiting it to the nucleosomes. Structure 2023; 31:1200-1207.e5. [PMID: 37527654 DOI: 10.1016/j.str.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Abstract
ASH1L is a histone methyltransferase that regulates gene expression through methylation of histone H3 on lysine K36. While the catalytic SET domain of ASH1L has low intrinsic activity, several studies found that it can be vastly enhanced by the interaction with MRG15 protein and proposed allosteric mechanism of releasing its autoinhibited conformation. Here, we found that full-length MRG15, but not the MRG domain alone, can enhance the activity of the ASH1L SET domain. In addition, we showed that catalytic activity of MRG15-ASH1L depends on nucleosome binding mediated by MRG15 chromodomain. We found that in solution MRG15 binds to ASH1L, but has no impact on the conformation of the SET domain autoinhibitory loop or the S-adenosylmethionine cofactor binding site. Moreover, MRG15 binding did not impair the potency of small molecule inhibitors of ASH1L. These findings suggest that MRG15 functions as an adapter that enhances ASH1L catalytic activity by recruiting nucleosome substrate.
Collapse
Affiliation(s)
- Samah Al-Harthi
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hao Li
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Alyssa Winkler
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Kacper Szczepski
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jing Deng
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA.
| | - Łukasz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
12
|
Hadziselimovic F, Verkauskas G, Stadler MB. Epigenetics, cryptorchidism, and infertility. Basic Clin Androl 2023; 33:24. [PMID: 37730534 PMCID: PMC10512650 DOI: 10.1186/s12610-023-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/02/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Cryptorchid boys with defective mini-puberty and impaired differentiation of Ad spermatogonia (high infertility risk) have altered expression of several genes encoding histone methyltransferases compared to patients with intact differentiation of gonocytes into Ad spermatogonia (low infertility risk). RESULTS High infertility risk cryptorchid boys display hypogonadotropic hypogonadism, which, together with the diminished expression of histone deacetylases and increased expression of HDAC8 decrotonylase, indicates altered histone marks and, thus, a perturbed histone code. Curative GnRHa treatment induces normalization of histone methyltransferase, chromatin remodeling, and histone deacetylase gene expression. As a result, histone changes induce differentiation of Ad spermatogonia from their precursors and, thus, fertility. In this short report, we describe key functions of histone lysine methyltransferases, chromatin remodeling proteins, and long-noncoding RNAs, and discuss their potential roles in processes leading to infertility. CONCLUSION Our findings suggest that epigenetic mechanisms are critical to better understanding the root causes underlying male infertility related to cryptorchidism and its possible transgenerational transmission.
Collapse
Affiliation(s)
- Faruk Hadziselimovic
- Cryptorchidism Research Institute, Children’s Day Care Center, 4410 Liestal, Switzerland
| | - Gilvydas Verkauskas
- Children’s Surgery Centre, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
| | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
13
|
Jain I, Brougham-Cook A, Underhill GH. Effect of distinct ECM microenvironments on the genome-wide chromatin accessibility and gene expression responses of hepatic stellate cells. Acta Biomater 2023; 167:278-292. [PMID: 37343907 PMCID: PMC10527607 DOI: 10.1016/j.actbio.2023.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Hepatic stellate cells (HSCs) are one of the primary drivers of liver fibrosis in non-alcoholic fatty liver disease. Although HSC activation in liver disease is associated with changes in extracellular matrix (ECM) deposition and remodeling, it remains unclear how ECM regulates the phenotypic state transitions of HSCs. Using high-throughput cellular microarrays, coupled with genome-wide ATAC and RNA sequencing within engineered ECM microenvironments, we investigated the effect of ECM and substrate stiffness on chromatin accessibility and resulting gene expression in activated primary human HSCs. Cell microarrays demonstrated the cooperative effects of stiffness and ECM composition on H3K4 and H3K9 methylation/acetylation. ATAC sequencing revealed higher chromatin accessibility in HSCs on 1kPa compared to 25kPa substrates for all ECM conditions. Gene set enrichment analysis using RNA sequencing data of HSCs in defined ECM microenvironments demonstrated higher enrichment of NAFLD and fibrosis-related genes in pre-activated HSCs on 1kPa relative to 25kPa. Overall, these findings are indicative of a microenvironmental adaptation response in HSCs, and the acquisition of a persistent activation state. Combined ATAC/RNA sequencing analyses enabled identification of candidate regulatory factors, including HSD11B1 and CEBPb. siRNA-mediated knockdown of HSD11b1 and CEBPb demonstrated microenvironmental controlled reduction in fibrogenic markers in HSCs. STATEMENT OF SIGNIFICANCE: Hepatic stellate cells (HSCs) are one of the primary drivers of liver fibrosis in non-alcoholic fatty liver disease. Although HSC activation in liver disease is associated with changes in extracellular matrix (ECM) deposition and remodeling, it remains unclear how ECM regulates the phenotypic state transitions of HSCs. Using high-throughput cellular microarrays, coupled with genome-wide ATAC and RNA sequencing within engineered ECM microenvironments, we investigated the effect of ECM and substrate stiffness on chromatin accessibility and resulting gene expression in activated primary human HSCs. Overall, these findings were indicative of a microenvironmental adaptation response in HSCs, and the acquisition of a persistent activation state. Combined ATAC/RNA sequencing analyses enabled identification of candidate regulatory factors, including HSD11B1 and CEBPb. siRNA-mediated knockdown of HSD11b1 and CEBPb demonstrated microenvironmental controlled reduction in fibrogenic markers in HSCs.
Collapse
Affiliation(s)
- Ishita Jain
- University of Illinois at Urbana Champaign, Urbana, USA
| | | | | |
Collapse
|
14
|
Zhu JY, Liu C, Huang X, van de Leemput J, Lee H, Han Z. H3K36 Di-Methylation Marks, Mediated by Ash1 in Complex with Caf1-55 and MRG15, Are Required during Drosophila Heart Development. J Cardiovasc Dev Dis 2023; 10:307. [PMID: 37504562 PMCID: PMC10380788 DOI: 10.3390/jcdd10070307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Methyltransferases regulate transcriptome dynamics during development and aging, as well as in disease. Various methyltransferases have been linked to heart disease, through disrupted expression and activity, and genetic variants associated with congenital heart disease. However, in vivo functional data for many of the methyltransferases in the context of the heart are limited. Here, we used the Drosophila model system to investigate different histone 3 lysine 36 (H3K36) methyltransferases for their role in heart development. The data show that Drosophila Ash1 is the functional homolog of human ASH1L in the heart. Both Ash1 and Set2 H3K36 methyltransferases are required for heart structure and function during development. Furthermore, Ash1-mediated H3K36 methylation (H3K36me2) is essential for healthy heart function, which depends on both Ash1-complex components, Caf1-55 and MRG15, together. These findings provide in vivo functional data for Ash1 and its complex, and Set2, in the context of H3K36 methylation in the heart, and support a role for their mammalian homologs, ASH1L with RBBP4 and MORF4L1, and SETD2, during heart development and disease.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chen Liu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaohu Huang
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hangnoh Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Pan Z, Zhao Y, Wang X, Xie X, Liu M, Zhang K, Wang L, Bai D, Foster LJ, Shu R, He G. Targeting bromodomain-containing proteins: research advances of drug discovery. MOLECULAR BIOMEDICINE 2023; 4:13. [PMID: 37142850 PMCID: PMC10159834 DOI: 10.1186/s43556-023-00127-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023] Open
Abstract
Bromodomain (BD) is an evolutionarily conserved protein module found in 46 different BD-containing proteins (BCPs). BD acts as a specific reader for acetylated lysine residues (KAc) and serves an essential role in transcriptional regulation, chromatin remodeling, DNA damage repair, and cell proliferation. On the other hand, BCPs have been shown to be involved in the pathogenesis of a variety of diseases, including cancers, inflammation, cardiovascular diseases, and viral infections. Over the past decade, researchers have brought new therapeutic strategies to relevant diseases by inhibiting the activity or downregulating the expression of BCPs to interfere with the transcription of pathogenic genes. An increasing number of potent inhibitors and degraders of BCPs have been developed, some of which are already in clinical trials. In this paper, we provide a comprehensive review of recent advances in the study of drugs that inhibit or down-regulate BCPs, focusing on the development history, molecular structure, biological activity, interaction with BCPs and therapeutic potentials of these drugs. In addition, we discuss current challenges, issues to be addressed and future research directions for the development of BCPs inhibitors. Lessons learned from the successful or unsuccessful development experiences of these inhibitors or degraders will facilitate the further development of efficient, selective and less toxic inhibitors of BCPs and eventually achieve drug application in the clinic.
Collapse
Affiliation(s)
- Zhaoping Pan
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyun Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mingxia Liu
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyao Zhang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lian Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Gu He
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Yancoskie MN, Maritz C, van Eijk P, Reed SH, Naegeli H. To incise or not and where: SET-domain methyltransferases know. Trends Biochem Sci 2023; 48:321-330. [PMID: 36357311 DOI: 10.1016/j.tibs.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
The concept of the histone code posits that histone modifications regulate gene functions once interpreted by epigenetic readers. A well-studied case is trimethylation of lysine 4 of histone H3 (H3K4me3), which is enriched at gene promoters. However, H3K4me3 marks are not needed for the expression of most genes, suggesting extra roles, such as influencing the 3D genome architecture. Here, we highlight an intriguing analogy between the H3K4me3-dependent induction of double-strand breaks in several recombination events and the impact of this same mark on DNA incisions for the repair of bulky lesions. We propose that Su(var)3-9, Enhancer-of-zeste and Trithorax (SET)-domain methyltransferases generate H3K4me3 to guide nucleases into chromatin spaces, the favorable accessibility of which ensures that DNA break intermediates are readily processed, thereby safeguarding genome stability.
Collapse
Affiliation(s)
- Michelle N Yancoskie
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Corina Maritz
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Patrick van Eijk
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Simon H Reed
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
| |
Collapse
|
17
|
Roth C, Kilpinen H, Kurian MA, Barral S. Histone lysine methyltransferase-related neurodevelopmental disorders: current knowledge and saRNA future therapies. Front Cell Dev Biol 2023; 11:1090046. [PMID: 36923252 PMCID: PMC10009263 DOI: 10.3389/fcell.2023.1090046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Neurodevelopmental disorders encompass a group of debilitating diseases presenting with motor and cognitive dysfunction, with variable age of onset and disease severity. Advances in genetic diagnostic tools have facilitated the identification of several monogenic chromatin remodeling diseases that cause Neurodevelopmental disorders. Chromatin remodelers play a key role in the neuro-epigenetic landscape and regulation of brain development; it is therefore not surprising that mutations, leading to loss of protein function, result in aberrant neurodevelopment. Heterozygous, usually de novo mutations in histone lysine methyltransferases have been described in patients leading to haploinsufficiency, dysregulated protein levels and impaired protein function. Studies in animal models and patient-derived cell lines, have highlighted the role of histone lysine methyltransferases in the regulation of cell self-renewal, cell fate specification and apoptosis. To date, in depth studies of histone lysine methyltransferases in oncology have provided strong evidence of histone lysine methyltransferase dysregulation as a determinant of cancer progression and drug resistance. As a result, histone lysine methyltransferases have become an important therapeutic target for the treatment of different cancer forms. Despite recent advances, we still lack knowledge about the role of histone lysine methyltransferases in neuronal development. This has hampered both the study and development of precision therapies for histone lysine methyltransferases-related Neurodevelopmental disorders. In this review, we will discuss the current knowledge of the role of histone lysine methyltransferases in neuronal development and disease progression. We will also discuss how RNA-based technologies using small-activating RNAs could potentially provide a novel therapeutic approach for the future treatment of histone lysine methyltransferase haploinsufficiency in these Neurodevelopmental disorders, and how they could be first tested in state-of-the-art patient-derived neuronal models.
Collapse
Affiliation(s)
- Charlotte Roth
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Helena Kilpinen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Serena Barral
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
18
|
Singh SK, Dwivedi SD, Yadav K, Shah K, Chauhan NS, Pradhan M, Singh MR, Singh D. Novel Biotherapeutics Targeting Biomolecular and Cellular Approaches in Diabetic Wound Healing. Biomedicines 2023; 11:biomedicines11020613. [PMID: 36831151 PMCID: PMC9952895 DOI: 10.3390/biomedicines11020613] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Wound healing responses play a major role in chronic inflammation, which affects millions of people around the world. One of the daunting tasks of creating a wound-healing drug is finding equilibrium in the inflammatory cascade. In this study, the molecular and cellular mechanisms to regulate wound healing are explained, and recent research is addressed that demonstrates the molecular and cellular events during diabetic wound healing. Moreover, a range of factors or agents that facilitate wound healing have also been investigated as possible targets for successful treatment. It also summarises the various advances in research findings that have revealed promising molecular targets in the fields of therapy and diagnosis of cellular physiology and pathology of wound healing, such as neuropeptides, substance P, T cell immune response cDNA 7, miRNA, and treprostinil growth factors such as fibroblast growth factor, including thymosin beta 4, and immunomodulators as major therapeutic targets.
Collapse
Affiliation(s)
- Suraj Kumar Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Krishna Yadav
- Raipur Institute of Pharmaceutical Educations and Research, Sarona, Raipur 492010, Chhattisgarh, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| | | | - Madhulika Pradhan
- Gracious College of Pharmacy Abhanpur Raipur, Village-Belbhata, Taluka, Abhanpur 493661, Chhattisgarh, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
- Correspondence:
| |
Collapse
|
19
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
20
|
Luo S, Zhang H, Xie Y, Huang J, Luo D, Zhang Q. Decreased SUV39H1 at the promoter region leads to increased CREMα and accelerates autoimmune response in CD4 + T cells from patients with systemic lupus erythematosus. Clin Epigenetics 2022; 14:181. [PMID: 36536372 PMCID: PMC9764740 DOI: 10.1186/s13148-022-01411-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Overproduction of cAMP-responsive element modulator α (CREMα) in total T cells from patients with systemic lupus erythematosus (SLE) can inhibit IL-2 and increase IL-17A. These ultimately promote progression of SLE. This study aims to investigate the expression of CREMα in SLE CD4+ T cells and find out the mechanisms for the regulation of CREMα in SLE CD4+ T cells. RESULTS CREMα mRNA was overexpressed in CD4+ T cells from SLE patients. The levels of histone H3 lysine 9 trimethylation (H3K9me3) and suppressor of variation 3-9 homolog 1 (SUV39H1) at the CREMα promoter of SLE CD4+ T cells were markedly decreased. Down-regulating SUV39H1 in normal CD4+ T cells elevated the levels of CREMα, IL-17A, and histone H3 lysine 4 trimethylation (H3K4me3) in the CREMα promoter region, and lowered IL-2, H3K9me3, DNA methylation, and DNA methyltransferase 3a (DNMT3a) enrichments within the CREMα promoter, while no sharp change in SET domain containing 1 (Set1) at the CREMα promoter. Up-regulating SUV39H1 in SLE CD4+ T cells had the opposite effects. The DNA methylation and DNMT3a levels were obviously reduced, and H3K4me3 enrichment was greatly increased at the CREMα promoter of CD4+ T cells from SLE patients. The Set1 binding in the CREMα promoter region upgraded significantly, and knocking down Set1 in SLE CD4+ T cells alleviated the H3K4me3 enrichment within this region, suppressed CREMα and IL-17A productions, and promoted the levels of IL-2, CREMα promoter DNA methylation, and DNMT3a. But there were no obviously alterations in H3K9me3 and SUV39H1 amounts in the region after transfection. CONCLUSIONS Decreased SUV39H1 in the CREMα promoter region of CD4+ T cells from SLE patients contributes to under-expression of H3K9me3 at this region. In the meantime, the Set1 binding at the CREMα promoter of SLE CD4+ T cells is up-regulated. As a result, DNMT3a and DNA methylation levels alleviate, and H3K4me3 binding increases. All these lead to overproduction of CREMα. Thus, the secretion of IL-2 down-regulates and the concentration of IL-17A up-regulates, ultimately promoting SLE.
Collapse
Affiliation(s)
- Shuangyan Luo
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Huilin Zhang
- grid.216417.70000 0001 0379 7164Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Yuming Xie
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Junke Huang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Danhong Luo
- Department of Dermatology, The Fifth People’s Hospital of Hainan Province, #49 Longkun South Rd, Haikou, 570206 Hainan People’s Republic of China
| | - Qing Zhang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| |
Collapse
|
21
|
Zhuang Z, Pan X, Zhang M, Liu Y, Huang C, Li Y, Hao L, Wang S. Set2 family regulates mycotoxin metabolism and virulence via H3K36 methylation in pathogenic fungus Aspergillus flavus. Virulence 2022; 13:1358-1378. [PMID: 35943142 PMCID: PMC9364737 DOI: 10.1080/21505594.2022.2101218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aspergillus flavus infects various crops with aflatoxins, and leads to aspergillosis opportunistically. Though H3K36 methylation plays an important role in fungal toxin metabolism and virulence, no data about the biological function of H3K36 methylation in A. flavus virulence has been reported. Our study showed that the Set2 histone methyltransferase family, AshA and SetB, involves in morphogenesis and mycotoxin anabolism by regulating related transcriptional factors, and they are important for fungal virulence to crops and animals. Western-blotting and double deletion analysis revealed that AshA mainly regulates H3K36me2, whereas SetB is mainly responsible for H3K36me3 in the nucleus. By construction of domain deletion A. flavus strain and point mutation strains by homologous recombination, the study revealed that SET domain is indispensable in mycotoxin anabolism and virulence of A. flavus, and N455 and V457 in it are the key amino acid residues. ChIP analysis inferred that the methyltransferase family controls fungal reproduction and regulates the production of AFB1 by directly regulating the production of the transcriptional factor genes, including wetA, steA, aflR and amylase, through H3K36 trimethylation in their chromatin fragments, based on which this study proposed that, by H3K36 trimethylation, this methyltransferase family controls AFB1 anabolism through transcriptional level and substrate utilization level. This study illuminates the epigenetic mechanism of the Set2 family in regulating fungal virulence and mycotoxin production, and provides new targets for controlling the virulence of the fungus A. flavus.
AUTHOR SUMMARY
The methylation of H3K36 plays an important role in the fungal secondary metabolism and virulence, but no data about the regulatory mechanism of H3K36 methylation in the virulence of A. flavus have been reported. Our study revealed that, in the histone methyltransferase Set2 family, AshA mainly catalyzes H3K36me2, and involves in the methylation of H3K36me1, and SetB mainly catalyzes H3K36me3 and H3K36me1. Through domain deletion and point mutation analysis, this study also revealed that the SET domain was critical for the normal biological function of the Set2 family and that N455 and V457 in the domain were critical for AshA. By ChIP-seq and ChIP-qPCR analysis, H3K36 was found to be trimethylation modified in the promotors and ORF positions of wetA, steA, aflR and the amylase gene (AFLA_084340), and further qRT-PCR results showed that these methylation modifications regulate the expression levels of these genes. According to the results of ChIP-seq analysis, we proposed that, by H3K36 trimethylation, this methyltransferase family controls the metabolism of mycotoxin through transcriptional level and substrate utilization level. All the results from this study showed that Set2 family is essential for fungal secondary metabolism and virulence, which lays a theoretical groundwork in the early prevention and treatment of A. flavus pollution, and also provides an effective strategy to fight against other pathogenic fungi.
Collapse
Affiliation(s)
- Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohua Pan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Propagated Sensation along Meridian, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| | - Mengjuan Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaju Liu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuanzhong Huang
- Immuno-Oncology Laboratory of Fujian Cancer Hospital, Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yu Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling Hao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
22
|
Koyauchi T, Niida H, Motegi A, Sakai S, Uchida C, Ohhata T, Iijima K, Yokoyama A, Suda T, Kitagawa M. Chromatin-remodeling factor BAZ1A/ACF1 targets UV damage sites in an MLL1-dependent manner to facilitate nucleotide excision repair. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119332. [PMID: 35940372 DOI: 10.1016/j.bbamcr.2022.119332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Ultraviolet (UV) light irradiation generates pyrimidine dimers on DNA, such as cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts. Such dimers distort the high-order DNA structure and prevent transcription and replication. The nucleotide excision repair (NER) system contributes to resolving this type of DNA lesion. There are two pathways that recognize pyrimidine dimers. One acts on transcribed strands of DNA (transcription-coupled NER), and the other acts on the whole genome (global genome-NER; GG-NER). In the latter case, DNA damage-binding protein 2 (DDB2) senses pyrimidine dimers with several histone modification enzymes. We previously reported that histone acetyltransferase binding to ORC1 (HBO1) interacts with DDB2 and facilitates recruitment of the imitation switch chromatin remodeler at UV-irradiated sites via an unknown methyltransferase. Here, we found that the phosphorylated histone methyltransferase mixed lineage leukemia 1 (MLL1) was maintained at UV-irradiated sites in an HBO1-dependent manner. Furthermore, MLL1 catalyzed histone H3K4 methylation and recruited the chromatin remodeler bromodomain adjacent to zinc finger domain 1A (BAZ1A)/ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1). Depletion of MLL1 suppressed BAZ1A accumulation at UV-irradiated sites and inhibited the removal of CPDs. These data indicate that the DDB2-HBO1-MLL1 axis is essential for the recruitment of BAZ1A to facilitate GG-NER.
Collapse
Affiliation(s)
- Takafumi Koyauchi
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Akira Motegi
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Chiharu Uchida
- Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kenta Iijima
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata 997-0052, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
23
|
Wang T, Xu C, Zhang Z, Wu H, Li X, Zhang Y, Deng N, Dang N, Tang G, Yang X, Shi B, Li Z, Li L, Ye K. Cellular heterogeneity and transcriptomic profiles during intrahepatic cholangiocarcinoma initiation and progression. Hepatology 2022; 76:1302-1317. [PMID: 35340039 PMCID: PMC9790314 DOI: 10.1002/hep.32483] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Intrahepatic cholangiocarcinoma (ICC) is not fully investigated, and how stromal cells contribute to ICC formation is poorly understood. We aimed to uncover ICC origin, cellular heterogeneity, and critical modulators during ICC initiation/progression, and to decipher how fibroblast and endothelial cells in the stromal compartment favor ICC progression. APPROACH AND RESULTS We performed single-cell RNA sequencing (scRNA-seq) using AKT/Notch intracellular domain-induced mouse ICC tissues at early, middle, and late stages. We analyzed the transcriptomic landscape, cellular classification and evolution, and intercellular communication during ICC initiation/progression. We confirmed the findings using quantitative real-time PCR, western blotting, immunohistochemistry or immunofluorescence, and gene knockout/knockdown analysis. We identified stress-responding and proliferating subpopulations in late-stage mouse ICC tissues and validated them using human scRNA-seq data sets. By integrating weighted correlation network analysis and protein-protein interaction through least absolute shrinkage and selection operator regression, we identified zinc finger, MIZ-type containing 1 (Zmiz1) and Y box protein 1 (Ybx1) as core transcription factors required by stress-responding and proliferating ICC cells, respectively. Knockout of either one led to the blockade of ICC initiation/progression. Using two other ICC mouse models (YAP/AKT, KRAS/p19) and human ICC scRNA-seq data sets, we confirmed the orchestrating roles of Zmiz1 and Ybx1 in ICC occurrence and development. In addition, hes family bHLH transcription factor 1, cofilin 1, and inhibitor of DNA binding 1 were identified as driver genes for ICC. Moreover, periportal liver sinusoidal endothelial cells could differentiate into tip endothelial cells to promote ICC development, and this was Dll4-Notch4-Efnb2 signaling-dependent. CONCLUSIONS Stress-responding and ICC proliferating subtypes were identified, and Zmiz1 and Ybx1 were revealed as core transcription factors in these subtypes. Fibroblast-endothelial cell interaction promotes ICC development.
Collapse
Affiliation(s)
- Tingjie Wang
- School of Automation Science and EngineeringFaculty of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anShaanxiChina
| | - Chuanrui Xu
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhijing Zhang
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hua Wu
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiujuan Li
- School of Automation Science and EngineeringFaculty of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anShaanxiChina
| | - Yu Zhang
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Nan Deng
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ningxin Dang
- Genome Institutethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiChina
| | - Guangbo Tang
- School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anShaanxiChina
| | - Xiaofei Yang
- School of Computer Science and TechnologyFaculty of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anShaanxiChina,Genome Institutethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiChina,MOE Key Lab for Intelligent Networks & Networks SecurityFaculty of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anShaanxiChina
| | - Bingyin Shi
- Department of Endocrinologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiChina
| | - Zihang Li
- School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anShaanxiChina
| | - Lei Li
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kai Ye
- School of Automation Science and EngineeringFaculty of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anShaanxiChina,Genome Institutethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiChina,School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anShaanxiChina,Faculty of ScienceLeiden UniversityLeidenthe Netherlands,MOE Key Lab for Intelligent Networks & Networks SecurityFaculty of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anShaanxiChina
| |
Collapse
|
24
|
Yu M, Jia Y, Ma Z, Ji D, Wang C, Liang Y, Zhang Q, Yi H, Zeng L. Structural insight into ASH1L PHD finger recognizing methylated histone H3K4 and promoting cell growth in prostate cancer. Front Oncol 2022; 12:906807. [PMID: 36033518 PMCID: PMC9399681 DOI: 10.3389/fonc.2022.906807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
ASH1L is a member of the Trithorax-group protein and acts as a histone methyltransferase for gene transcription activation. It is known that ASH1L modulates H3K4me3 and H3K36me2/3 at its gene targets, but its specific mechanism of histone recognition is insufficiently understood. In this study, we found that the ASH1L plant homeodomain (PHD) finger interacts with mono-, di-, and trimethylated states of H3K4 peptides with comparable affinities, indicating that ASH1L PHD non-selectively binds to all three methylation states of H3K4. We solved nuclear magnetic resonance structures picturing the ASH1L PHD finger binding to the dimethylated H3K4 peptide and found that a narrow binding groove and residue composition in the methylated-lysine binding pocket restricts the necessary interaction with the dimethyl-ammonium moiety of K4. In addition, we found that the ASH1L protein is overexpressed in castrate-resistant prostate cancer (PCa) PC3 and DU145 cells in comparison to PCa LNCaP cells. The knockdown of ASH1L modulated gene expression and cellular pathways involved in apoptosis and cell cycle regulation and consequently induced cell cycle arrest, cell apoptosis, and reduced colony-forming abilities in PC3 and DU145 cells. The overexpression of the C-terminal core of ASH1L but not the PHD deletion mutant increased the overall H3K36me2 level but had no effect on the H3K4me2/3 level. Overall, our study identifies the ASH1L PHD finger as the first native reader that non-selectively recognizes the three methylation states of H3K4. Additionally, ASH1L is required for the deregulation of cell cycle and survival in PCas.
Collapse
Affiliation(s)
- Miaomiao Yu
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Yanjie Jia
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital, Jilin University, Changchun, China
| | - Donglei Ji
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Yingying Liang
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Qiang Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital, Jilin University, Changchun, China
- *Correspondence: Huanfa Yi, ; Lei Zeng,
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Huanfa Yi, ; Lei Zeng,
| |
Collapse
|
25
|
Lam UTF, Tan BKY, Poh JJX, Chen ES. Structural and functional specificity of H3K36 methylation. Epigenetics Chromatin 2022; 15:17. [PMID: 35581654 PMCID: PMC9116022 DOI: 10.1186/s13072-022-00446-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleosome collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in particular, H3K27me3, H3 acetylation, DNA methylation and N6-methyladenosine in RNAs) in the physiological regulation of the epigenomic functions of chromatin.
Collapse
Affiliation(s)
- Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan Kok Yan Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Jia Xin Poh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System (NUHS), Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
26
|
Ma Q, Song C, Yin B, Shi Y, Ye L. The role of Trithorax family regulating osteogenic and Chondrogenic differentiation in mesenchymal stem cells. Cell Prolif 2022; 55:e13233. [PMID: 35481717 PMCID: PMC9136489 DOI: 10.1111/cpr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) hold great promise and clinical efficacy in bone/cartilage regeneration. With a deeper understanding of stem cell biology over the past decade, epigenetics stands out as one of the most promising ways to control MSCs differentiation. Trithorax group (TrxG) proteins, including the COMPASS family, ASH1L, CBP/p300 as histone modifying factors, and the SWI/SNF complexes as chromatin remodelers, play an important role in gene expression regulation during the process of stem cell differentiation. This review summarises the components and functions of TrxG complexes. We provide an overview of the regulation mechanisms of TrxG in MSCs osteogenic and chondrogenic differentiation, and discuss the prospects of epigenetic regulation mediated by TrxG in bone and cartilage regeneration.
Collapse
Affiliation(s)
- Qingge Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bei Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Aljazi MB, Gao Y, Wu Y, He J. SMYD5 is a histone H3-specific methyltransferase mediating mono-methylation of histone H3 lysine 36 and 37. Biochem Biophys Res Commun 2022; 599:142-147. [PMID: 35182940 PMCID: PMC8896656 DOI: 10.1016/j.bbrc.2022.02.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
Abstract
Although post-translational modifications (-PTMs) of some histone H3 lysine residues are well studied, the PTMs of histone H3 lysine 37 in mammalian cells remain largely unknown. In this study, we provide evidence to show that SMYD family member 5 (SMYD5) is a histone H3-specfic methyltransferase that catalyzes mono-methylation of H3 lysine 36 and 37 (H3K36/K37me1) in vitro. The site-mutagenesis analysis shows that a species-conserved histidine in its catalytic SET domain is required for its histone methyltransferase activity. Genetic deletion of Smyd5 in murine embryonic stem cells (mESCs) partially reduces the global histone H3K37me1 level in cells, suggesting SMYD5 is one of histone methyltransferases catalyzing histone H3K37me1 in vivo. Hence, our study reveals that SMYD5 is a histone H3-specific methyltransferase that mediates histone H3K36/K37me1, which provides a biochemical basis for further studying its functions in mammalian cells.
Collapse
Affiliation(s)
- Mohammad B Aljazi
- Department of Biochemistry & Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuen Gao
- Department of Biochemistry & Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Yan Wu
- Department of Biochemistry & Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Jin He
- Department of Biochemistry & Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
28
|
Liu W, Xu L, Zhang C, Shen L, Dong J, Zhang H, Liu S, Che F, Zheng X. ASH1L may contribute to the risk of Tourette syndrome: Combination of family-based analysis and case-control study. Brain Behav 2022; 12:e2539. [PMID: 35307981 PMCID: PMC9014991 DOI: 10.1002/brb3.2539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Tourette syndrome (TS) is a childhood neurodevelopmental disorder caused by various genetic and environmental factors and presents with apparent genetic heterogeneity. As ASH1L potentially contributes to neurodevelopmental diseases, especially in TS, we aim to investigate the susceptibility of ASH1L on TS in the Chinese Han population. METHODS Three tag single nucleotide polymorphisms (SNPs) (rs5005770, rs12734374, and rs35615695) in ASH1L were screened in 271 TS nuclear family trios and 337 healthy subjects by the TaqMan assays real time. A case-control study combined with family-based analysis was applied to study the genetic susceptibility of common variants of ASH1L. RESULTS The results revealed a significant over-transmission of rs35615695 and rs5005770 (for rs35615695, transmission disequilibrium test, χ2 = 57.375, p = .000, HHRR, χ2 = 4.807, p = .028; for rs5005770, HRR, χ2 = 4.116, p = .042, HHRR, χ2 = 8.223, p = .004) in family-based study. Furthermore, rs5005770 and rs35615695 still remained significant after Bonferroni correction (p < .017). However, the two SNPs (rs5005770 and rs35615695) were found not to be associated with TS in case-control study. CONCLUSIONS Our study suggests that ASH1L may contribute to TS susceptibility in the Han Chinese population and involved in TS development as a risk factor.
Collapse
Affiliation(s)
- Wenmiao Liu
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lulu Xu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cheng Zhang
- Department of Neurology, Linyi People's Hospital, The Eleventh Clinical Medical College of Qingdao University, Linyi, China
| | - Lu Shen
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Han Zhang
- Department of Psychiatry, Qingdao University, Qingdao, China
| | - Shiguo Liu
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, The Eleventh Clinical Medical College of Qingdao University, Linyi, China
| | - Xueping Zheng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Cheon S, Culver AM, Bagnell AM, Ritchie FD, Vacharasin JM, McCord MM, Papendorp CM, Chukwurah E, Smith AJ, Cowen MH, Moreland TA, Ghate PS, Davis SW, Liu JS, Lizarraga SB. Counteracting epigenetic mechanisms regulate the structural development of neuronal circuitry in human neurons. Mol Psychiatry 2022; 27:2291-2303. [PMID: 35210569 PMCID: PMC9133078 DOI: 10.1038/s41380-022-01474-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/02/2022] [Indexed: 01/23/2023]
Abstract
Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for ASD. ASH1L methylates Histone H3 on Lysine 36, which is proposed to result primarily in transcriptional activation. However, how mutations in ASH1L lead to deficits in neuronal connectivity associated with ASD pathogenesis is not known. We report that ASH1L regulates neuronal morphogenesis by counteracting the catalytic activity of Polycomb Repressive complex 2 group (PRC2) in stem cell-derived human neurons. Depletion of ASH1L decreases neurite outgrowth and decreases expression of the gene encoding the neurotrophin receptor TrkB whose signaling pathway is linked to neuronal morphogenesis. The neuronal morphogenesis defect is overcome by inhibition of PRC2 activity, indicating that a balance between the Trithorax group protein ASH1L and PRC2 activity determines neuronal morphology. Thus, our work suggests that ASH1L may epigenetically regulate neuronal morphogenesis by modulating pathways like the BDNF-TrkB signaling pathway. Defects in neuronal morphogenesis could potentially impair the establishment of neuronal connections which could contribute to the neurodevelopmental pathogenesis associated with ASD in patients with ASH1L mutations.
Collapse
Affiliation(s)
- Seonhye Cheon
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Allison M Culver
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Anna M Bagnell
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Foster D Ritchie
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Janay M Vacharasin
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Mikayla M McCord
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Carin M Papendorp
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Austin J Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Mara H Cowen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Trevor A Moreland
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Pankaj S Ghate
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Judy S Liu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
- Department of Neurology, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sofia B Lizarraga
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
30
|
Nacarelli T, Azar A, Potnis M, Johannes G, Mell J, Johnson FB, Brown-Borg H, Nogouchi E, Sell C. The methyltransferase enzymes, KMT2D, SETD1B, and ASH1L, are key mediators of both metabolic and epigenetic changes during cellular senescence. Mol Biol Cell 2022; 33:ar36. [PMID: 35196069 PMCID: PMC9282020 DOI: 10.1091/mbc.e20-08-0523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cellular senescence is a terminal cell fate characterized by growth arrest and a metabolically active state characterized by high glycolytic activity. Human fibroblasts were placed in a unique metabolic state using a combination of methionine restriction (MetR) and rapamycin (Rapa). This combination induced a metabolic reprogramming that prevented the glycolytic shift associated with senescence. Surprisingly, cells treated in this manner did not undergo senescence but continued to divide at a slow rate even at high passage, in contrast with either Rapa treatment or MetR, both of which extended life span but eventually resulted in growth arrest. Transcriptome-wide analysis revealed a coordinated regulation of metabolic enzymes related to one-carbon metabolism including three methyltransferase enzymes (KMT2D, SETD1B, and ASH1L), key enzymes for both carnitine synthesis and histone modification. These enzymes appear to be involved in both the metabolic phenotype of senescent cells and the chromatin changes required for establishing the senescence arrest. Targeting one of these enzymes, ASH1L, produced both a glycolytic shift and senescence, providing proof of concept. These findings reveal a mechanistic link between a major metabolic hallmark of senescence and nuclear events required for senescence.
Collapse
Affiliation(s)
- Timothy Nacarelli
- Glaxosmithkline, Oncology Synthetic Lethal Research Unit, Collegeville PA
| | | | - Manali Potnis
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA
| | | | - Joshua Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA
| | - F Brad Johnson
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104
| | - Holly Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - Eishi Nogouchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA
| | - Christian Sell
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
31
|
Deficiency of autism risk factor ASH1L in prefrontal cortex induces epigenetic aberrations and seizures. Nat Commun 2021; 12:6589. [PMID: 34782621 PMCID: PMC8593046 DOI: 10.1038/s41467-021-26972-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
ASH1L, a histone methyltransferase, is identified as a top-ranking risk factor for autism spectrum disorder (ASD), however, little is known about the biological mechanisms underlying the link of ASH1L haploinsufficiency to ASD. Here we show that ASH1L expression and H3K4me3 level are significantly decreased in the prefrontal cortex (PFC) of postmortem tissues from ASD patients. Knockdown of Ash1L in PFC of juvenile mice induces the downregulation of risk genes associated with ASD, intellectual disability (ID) and epilepsy. These downregulated genes are enriched in excitatory and inhibitory synaptic function and have decreased H3K4me3 occupancy at their promoters. Furthermore, Ash1L deficiency in PFC causes the diminished GABAergic inhibition, enhanced glutamatergic transmission, and elevated PFC pyramidal neuronal excitability, which is associated with severe seizures and early mortality. Chemogenetic inhibition of PFC pyramidal neuronal activity, combined with the administration of GABA enhancer diazepam, rescues PFC synaptic imbalance and seizures, but not autistic social deficits or anxiety-like behaviors. These results have revealed the critical role of ASH1L in regulating synaptic gene expression and seizures, which provides insights into treatment strategies for ASH1L-associated brain diseases.
Collapse
|
32
|
Aljazi MB, Gao Y, Wu Y, Mias GI, He J. Histone H3K36me2-Specific Methyltransferase ASH1L Promotes MLL-AF9-Induced Leukemogenesis. Front Oncol 2021; 11:754093. [PMID: 34692539 PMCID: PMC8534482 DOI: 10.3389/fonc.2021.754093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/17/2021] [Indexed: 01/19/2023] Open
Abstract
ASH1L and MLL1 are two histone methyltransferases that facilitate transcriptional activation during normal development. However, the roles of ASH1L and its enzymatic activity in the development of MLL-rearranged leukemias are not fully elucidated in Ash1L gene knockout animal models. In this study, we used an Ash1L conditional knockout mouse model to show that loss of ASH1L in hematopoietic progenitor cells impaired the initiation of MLL-AF9-induced leukemic transformation in vitro. Furthermore, genetic deletion of ASH1L in the MLL-AF9-transformed cells impaired the maintenance of leukemic cells in vitro and largely blocked the leukemia progression in vivo. Importantly, the loss of ASH1L function in the Ash1L-deleted cells could be rescued by wild-type but not the catalytic-dead mutant ASH1L, suggesting the enzymatic activity of ASH1L was required for its function in promoting MLL-AF9-induced leukemic transformation. At the molecular level, ASH1L enhanced the MLL-AF9 target gene expression by directly binding to the gene promoters and modifying the local histone H3K36me2 levels. Thus, our study revealed the critical functions of ASH1L in promoting the MLL-AF9-induced leukemogenesis, which provides a molecular basis for targeting ASH1L and its enzymatic activity to treat MLL-AF9-induced leukemias.
Collapse
Affiliation(s)
- Mohammad B Aljazi
- Department of Biochemistry and Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, United States
| | - Yuen Gao
- Department of Biochemistry and Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, United States
| | - Yan Wu
- Department of Biochemistry and Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, United States
| | - George I Mias
- Department of Biochemistry and Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Jin He
- Department of Biochemistry and Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
33
|
The Role of Epigenetic Factors in Psoriasis. Int J Mol Sci 2021; 22:ijms22179294. [PMID: 34502197 PMCID: PMC8431057 DOI: 10.3390/ijms22179294] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Psoriasis is a chronic, systemic, immune-mediated disease with an incidence of approximately 2%. The pathogenesis of the disease is complex and not yet fully understood. Genetic factors play a significant role in the pathogenesis of the disease. In predisposed individuals, multiple trigger factors may contribute to disease onset and exacerbations of symptoms. Environmental factors (stress, infections, certain medications, nicotinism, alcohol, obesity) play a significant role in the pathogenesis of psoriasis. In addition, epigenetic mechanisms are considered result in modulation of individual gene expression and an increased likelihood of the disease. Studies highlight the significant role of epigenetic factors in the etiology and pathogenesis of psoriasis. Epigenetic mechanisms in psoriasis include DNA methylation, histone modifications and non-coding RNAs. Epigenetic mechanisms induce gene expression changes under the influence of chemical modifications of DNA and histones, which alter chromatin structure and activate transcription factors of selected genes, thus leading to translation of new mRNA without affecting the DNA sequence. Epigenetic factors can regulate gene expression at the transcriptional (via histone modification, DNA methylation) and posttranscriptional levels (via microRNAs and long non-coding RNAs). This study aims to present and discuss the different epigenetic mechanisms in psoriasis based on a review of the available literature.
Collapse
|
34
|
The Trithorax group protein ASH1 requires a combination of BAH domain and AT hooks, but not the SET domain, for mitotic chromatin binding and survival. Chromosoma 2021; 130:215-234. [PMID: 34331109 PMCID: PMC8426247 DOI: 10.1007/s00412-021-00762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022]
Abstract
The Drosophila Trithorax group (TrxG) protein ASH1 remains associated with mitotic chromatin through mechanisms that are poorly understood. ASH1 dimethylates histone H3 at lysine 36 via its SET domain. Here, we identify domains of the TrxG protein ASH1 that are required for mitotic chromatin attachment in living Drosophila. Quantitative live imaging demonstrates that ASH1 requires AT hooks and the BAH domain but not the SET domain for full chromatin binding in metaphase, and that none of these domains are essential for interphase binding. Genetic experiments show that disruptions of the AT hooks and the BAH domain together, but not deletion of the SET domain alone, are lethal. Transcriptional profiling demonstrates that intact ASH1 AT hooks and the BAH domain are required to maintain expression levels of a specific set of genes, including several involved in cell identity and survival. This study identifies in vivo roles for specific ASH1 domains in mitotic binding, gene regulation, and survival that are distinct from its functions as a histone methyltransferase.
Collapse
|
35
|
Laliotis GI, Chavdoula E, Paraskevopoulou MD, Kaba A, La Ferlita A, Singh S, Anastas V, Nair KA, Orlacchio A, Taraslia V, Vlachos I, Capece M, Hatzigeorgiou A, Palmieri D, Tsatsanis C, Alaimo S, Sehgal L, Carbone DP, Coppola V, Tsichlis PN. AKT3-mediated IWS1 phosphorylation promotes the proliferation of EGFR-mutant lung adenocarcinomas through cell cycle-regulated U2AF2 RNA splicing. Nat Commun 2021; 12:4624. [PMID: 34330897 PMCID: PMC8324843 DOI: 10.1038/s41467-021-24795-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
AKT-phosphorylated IWS1 regulates alternative RNA splicing via a pathway that is active in lung cancer. RNA-seq studies in lung adenocarcinoma cells lacking phosphorylated IWS1, identified a exon 2-deficient U2AF2 splice variant. Here, we show that exon 2 inclusion in the U2AF2 mRNA is a cell cycle-dependent process that is regulated by LEDGF/SRSF1 splicing complexes, whose assembly is controlled by the IWS1 phosphorylation-dependent deposition of histone H3K36me3 marks in the body of target genes. The exon 2-deficient U2AF2 mRNA encodes a Serine-Arginine-Rich (RS) domain-deficient U2AF65, which is defective in CDCA5 pre-mRNA processing. This results in downregulation of the CDCA5-encoded protein Sororin, a phosphorylation target and regulator of ERK, G2/M arrest and impaired cell proliferation and tumor growth. Analysis of human lung adenocarcinomas, confirmed activation of the pathway in EGFR-mutant tumors and showed that pathway activity correlates with tumor stage, histologic grade, metastasis, relapse after treatment, and poor prognosis.
Collapse
Affiliation(s)
- Georgios I Laliotis
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
- School of Medicine, University of Crete, Heraklion, Crete, Greece.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Evangelia Chavdoula
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | | | - Abdul Kaba
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Satishkumar Singh
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Vollter Anastas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, USA
| | - Keith A Nair
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Vasiliki Taraslia
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ioannis Vlachos
- DIANA-Lab, Hellenic Pasteur Institute, Athens, Greece
- Department Of Pathology, Beth Israel-Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Marina Capece
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | | | - Dario Palmieri
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Christos Tsatsanis
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Salvatore Alaimo
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Lalit Sehgal
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - David P Carbone
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Philip N Tsichlis
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
- Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, USA.
| |
Collapse
|
36
|
Chen X, Xu J, Wang X, Long G, You Q, Guo X. Targeting WD Repeat-Containing Protein 5 (WDR5): A Medicinal Chemistry Perspective. J Med Chem 2021; 64:10537-10556. [PMID: 34283608 DOI: 10.1021/acs.jmedchem.1c00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
WD repeat-containing protein 5 (WDR5) is a member of the WD40 protein family, and it is widely involved in various biological activities and not limited to epigenetic regulation in vivo. WDR5 is also involved in the initiation and development of many diseases and plays a key role in these diseases. Since WDR5 was discovered, it has been suggested as a potential disease treatment target, and a large number of inhibitors targeting WDR5 have been discovered. In this review, we discussed the development of inhibitors targeting WDR5 over the years, and the biological mechanisms of these inhibitors based on previous mechanistic studies were explored. Finally, we describe the development potential of inhibitors targeting WDR5 and prospects for further applications.
Collapse
Affiliation(s)
- Xin Chen
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Junjie Xu
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xianghan Wang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guanlu Long
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
37
|
Onishi-Seebacher M, Erikson G, Sawitzki Z, Ryan D, Greve G, Lübbert M, Jenuwein T. Repeat to gene expression ratios in leukemic blast cells can stratify risk prediction in acute myeloid leukemia. BMC Med Genomics 2021; 14:166. [PMID: 34174884 PMCID: PMC8234671 DOI: 10.1186/s12920-021-01003-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Repeat elements constitute a large proportion of the human genome and recent evidence indicates that repeat element expression has functional roles in both physiological and pathological states. Specifically for cancer, transcription of endogenous retrotransposons is often suppressed to attenuate an anti-tumor immune response, whereas aberrant expression of heterochromatin-derived satellite RNA has been identified as a tumor driver. These insights demonstrate separate functions for the dysregulation of distinct repeat subclasses in either the attenuation or progression of human solid tumors. For hematopoietic malignancies, such as Acute Myeloid Leukemia (AML), only very few studies on the expression/dysregulation of repeat elements were done. METHODS To study the expression of repeat elements in AML, we performed total-RNA sequencing of healthy CD34 + cells and of leukemic blast cells from primary AML patient material. We also developed an integrative bioinformatic approach that can quantify the expression of repeat transcripts from all repeat subclasses (SINE/ALU, LINE, ERV and satellites) in relation to the expression of gene and other non-repeat transcripts (i.e. R/G ratio). This novel approach can be used as an instructive signature for repeat element expression and has been extended to the analysis of poly(A)-RNA sequencing datasets from Blueprint and TCGA consortia that together comprise 120 AML patient samples. RESULTS We identified that repeat element expression is generally down-regulated during hematopoietic differentiation and that relative changes in repeat to gene expression can stratify risk prediction of AML patients and correlate with overall survival probabilities. A high R/G ratio identifies AML patient subgroups with a favorable prognosis, whereas a low R/G ratio is prevalent in AML patient subgroups with a poor prognosis. CONCLUSIONS We developed an integrative bioinformatic approach that defines a general model for the analysis of repeat element dysregulation in physiological and pathological development. We find that changes in repeat to gene expression (i.e. R/G ratios) correlate with hematopoietic differentiation and can sub-stratify AML patients into low-risk and high-risk subgroups. Thus, the definition of a R/G ratio can serve as a valuable biomarker for AML and could also provide insights into differential patient response to epigenetic drug treatment.
Collapse
Affiliation(s)
- M Onishi-Seebacher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Novartis Institute for Biomedical Research (NIBR), Basel, Switzerland
| | - G Erikson
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Z Sawitzki
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB) and University of Freiburg, Freiburg, Germany
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - D Ryan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - G Greve
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| | - T Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
38
|
SETD2-mediated H3K14 trimethylation promotes ATR activation and stalled replication fork restart in response to DNA replication stress. Proc Natl Acad Sci U S A 2021; 118:2011278118. [PMID: 34074749 PMCID: PMC8201831 DOI: 10.1073/pnas.2011278118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ataxia telangiectasia and Rad3 related (ATR) activation after replication stress involves a cascade of reactions, including replication protein A (RPA) complex loading onto single-stranded DNA and ATR activator loading onto chromatin. The contribution of histone modifications to ATR activation, however, is unclear. Here, we report that H3K14 trimethylation responds to replication stress by enhancing ATR activation. First, we confirmed that H3K14 monomethylation, dimethylation, and trimethylation all exist in mammalian cells, and that both SUV39H1 and SETD2 methyltransferases can catalyze H3K14 trimethylation in vivo and in vitro. Interestingly, SETD2-mediated H3K14 trimethylation markedly increases in response to replication stress induced with hydroxyurea, a replication stress inducer. Under these conditions, SETD2-mediated H3K14me3 recruited the RPA complex to chromatin via a direct interaction with RPA70. The increase in H3K14me3 levels was abolished, and RPA loading was attenuated when SETD2 was depleted or H3K14 was mutated. Rather, the cells were sensitive to replication stress such that the replication forks failed to restart, and cell-cycle progression was delayed. These findings help us understand how H3K14 trimethylation links replication stress with ATR activation.
Collapse
|
39
|
Prenatal nicotine exposure leads to decreased histone H3 lysine 9 (H3K9) methylation and increased p66shc expression in the neonatal pancreas. J Dev Orig Health Dis 2021; 13:156-160. [PMID: 34047687 DOI: 10.1017/s2040174421000283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prenatal exposure to nicotine, tobacco's major addictive constituent, has been shown to reduce birth weight and increases apoptosis, oxidative stress, and mitochondrial dysfunction in the postnatal pancreas. Given that upregulated levels of the pro-oxidative adapter protein p66shc is observed in growth-restricted offspring and is linked to beta-cell apoptosis, the goal of this study was to investigate whether alterations in p66shc expression underlie the pancreatic deficits in nicotine-exposed offspring. Maternal administration of nicotine in rats increased p66shc expression in the neonatal pancreas. Similarly, nicotine treatment augmented p66shc expression in INS-1E pancreatic beta cells. Increased p66shc expression was also associated with decreased histone H3 lysine 9 methylation. Finally, nicotine increased the expression of Kdm4c, a key histone lysine demethylase, and decreased Suv39h1, a critical histone lysine methyltransferase. Collectively, these results suggest that upregulation of p66shc through posttranslational histone modifications may underlie the reported adverse outcomes of nicotine exposure on pancreatic function.
Collapse
|
40
|
Rogawski DS, Deng J, Li H, Miao H, Borkin D, Purohit T, Song J, Chase J, Li S, Ndoj J, Klossowski S, Kim E, Mao F, Zhou B, Ropa J, Krotoska MZ, Jin Z, Ernst P, Feng X, Huang G, Nishioka K, Kelly S, He M, Wen B, Sun D, Muntean A, Dou Y, Maillard I, Cierpicki T, Grembecka J. Discovery of first-in-class inhibitors of ASH1L histone methyltransferase with anti-leukemic activity. Nat Commun 2021; 12:2792. [PMID: 33990599 PMCID: PMC8121805 DOI: 10.1038/s41467-021-23152-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
ASH1L histone methyltransferase plays a crucial role in the pathogenesis of different diseases, including acute leukemia. While ASH1L represents an attractive drug target, developing ASH1L inhibitors is challenging, as the catalytic SET domain adapts an inactive conformation with autoinhibitory loop blocking the access to the active site. Here, by applying fragment-based screening followed by medicinal chemistry and a structure-based design, we developed first-in-class small molecule inhibitors of the ASH1L SET domain. The crystal structures of ASH1L-inhibitor complexes reveal compound binding to the autoinhibitory loop region in the SET domain. When tested in MLL leukemia models, our lead compound, AS-99, blocks cell proliferation, induces apoptosis and differentiation, downregulates MLL fusion target genes, and reduces the leukemia burden in vivo. This work validates the ASH1L SET domain as a druggable target and provides a chemical probe to further study the biological functions of ASH1L as well as to develop therapeutic agents.
Collapse
Affiliation(s)
- David S Rogawski
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jing Deng
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Hao Li
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Dmitry Borkin
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jiho Song
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer Chase
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Shuangjiang Li
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Juliano Ndoj
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - EunGi Kim
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Fengbiao Mao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Bo Zhou
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - James Ropa
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marta Z Krotoska
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Zhuang Jin
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Patricia Ernst
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Xiaomin Feng
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Kenichi Nishioka
- Department of Internal Medicine Musashimurayama Hospital, Enoki 1-1-5, Musashimurayama, Tokyo, Japan
| | - Samantha Kelly
- Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miao He
- College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Bo Wen
- College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Duxin Sun
- College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Muntean
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Histone modifications centric-regulation in osteogenic differentiation. Cell Death Dis 2021; 7:91. [PMID: 33941771 PMCID: PMC8093204 DOI: 10.1038/s41420-021-00472-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/21/2021] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
Histone modification critically contributes to the epigenetic control of gene expression by changing the configuration of chromatin and modifying the access of transcription factors to gene promoters. Recently, we observed that histone acetylation and crotonylation mediated the expression of endocytosis-related genes and tumor-related immune checkpoint genes by regulating the enrichment of signal transducer and activator of transcription 3 on these gene promoters in Alzheimer's disease and tumorigenesis, suggesting that histone modification plays an important role in disease development. Furthermore, studies performed in the past decade revealed that histone modifications affect osteogenic differentiation by regulating the expression of osteogenic marker genes. In this review, we summarize and discuss the histone modification-centric regulation of osteogenic gene expression. This review improves the understanding of the role of histone modifications in osteogenic differentiation and describes its potential as a therapeutic target for osteogenic differentiation-related diseases.
Collapse
|
42
|
Cederquist GY, Tchieu J, Callahan SJ, Ramnarine K, Ryan S, Zhang C, Rittenhouse C, Zeltner N, Chung SY, Zhou T, Chen S, Betel D, White RM, Tomishima M, Studer L. A Multiplex Human Pluripotent Stem Cell Platform Defines Molecular and Functional Subclasses of Autism-Related Genes. Cell Stem Cell 2021; 27:35-49.e6. [PMID: 32619517 DOI: 10.1016/j.stem.2020.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 01/12/2023]
Abstract
Autism is a clinically heterogeneous neurodevelopmental disorder characterized by impaired social interactions, restricted interests, and repetitive behaviors. Despite significant advances in the genetics of autism, understanding how genetic changes perturb brain development and affect clinical symptoms remains elusive. Here, we present a multiplex human pluripotent stem cell (hPSC) platform, in which 30 isogenic disease lines are pooled in a single dish and differentiated into prefrontal cortex (PFC) lineages to efficiently test early-developmental hypotheses of autism. We define subgroups of autism mutations that perturb PFC neurogenesis and are correlated to abnormal WNT/βcatenin responses. Class 1 mutations (8 of 27) inhibit while class 2 mutations (5 of 27) enhance PFC neurogenesis. Remarkably, autism patient data reveal that individuals carrying subclass-specific mutations differ clinically in their corresponding language acquisition profiles. Our study provides a framework to disentangle genetic heterogeneity associated with autism and points toward converging molecular and developmental pathways of diverse autism-associated mutations.
Collapse
Affiliation(s)
- Gustav Y Cederquist
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Weill-Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Jason Tchieu
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Scott J Callahan
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Cancer Genetics and Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Gerstner Graduate School of Biomedical Sciences, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Kiran Ramnarine
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Sean Ryan
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chelsea Rittenhouse
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Nadja Zeltner
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Center for Molecular Medicine, Department of Cellular Biology, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sun Young Chung
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Ting Zhou
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard M White
- Cancer Genetics and Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Mark Tomishima
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA.
| |
Collapse
|
43
|
Strepkos D, Markouli M, Klonou A, Papavassiliou AG, Piperi C. Histone Methyltransferase SETDB1: A Common Denominator of Tumorigenesis with Therapeutic Potential. Cancer Res 2021; 81:525-534. [PMID: 33115801 DOI: 10.1158/0008-5472.can-20-2906] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
Epigenetic regulation of gene expression has been ultimately linked to cancer development, with posttranslational histone modifications representing attractive targets for disease monitoring and therapy. Emerging data have demonstrated histone lysine (K) methylation by methyltransferase SETDB1 as a common denominator of gene regulation in several cancer types. SETDB1 reversibly catalyzes the di- and trimethylation of histone 3 (H3) K9 in euchromatic regions of chromosomes, inhibiting gene transcription within these regions and promoting a switch from euchromatic to heterochromatic states. Recent studies have implicated aberrant SETDB1 activity in the development of various types of cancers, including brain, head and neck, lung, breast, gastrointestinal, ovarian, endometrial and prostate cancer, mesothelioma, melanoma, leukemias, and osteosarcoma. Although its role has not been fully elucidated in every case, most data point toward a pro-oncogenic potential of SETDB1 via the downregulation of critical tumor-suppressive genes. Less commonly, however, SETDB1 can also acquire a tumor-suppressive role, depending on cancer type and stage. Here we provide an updated overview of the cellular and molecular effects underlying SETDB1 activity in cancer development and progression along with current targeting strategies in different cancer types, with promising effects either as a standalone therapy or in conjunction with other therapeutic agents.
Collapse
Affiliation(s)
- Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexia Klonou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
44
|
Ganguly N, Chakrabarti S. Role of long non‑coding RNAs and related epigenetic mechanisms in liver fibrosis (Review). Int J Mol Med 2021; 47:23. [PMID: 33495817 PMCID: PMC7846421 DOI: 10.3892/ijmm.2021.4856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is one of the major liver pathologies affecting patients worldwide. It results from an improper tissue repair process following liver injury or inflammation. If left untreated, it ultimately leads to liver cirrhosis and liver failure. Long non‑coding RNAs (lncRNAs) have been implicated in a wide variety of diseases. They can regulate gene expression and modulate signaling. Some of the lncRNAs promote, while others inhibit liver fibrosis. Similarly, other epigenetic processes, such as methylation and acetylation regulate gene transcription and can modulate gene expression. Notably, there are several regulatory associations of lncRNAs with other epigenetic processes. A major mechanism of action of long non‑coding RNAs is to competitively bind to their target microRNAs (miRNAs or miRs), which in turn affects miRNA availability and bioactivity. In the present review, the role of lncRNAs and related epigenetic processes contributing to liver fibrosis is discussed. Finally, various potential therapeutic approaches targeting lncRNAs and related epigenetic processes, which are being considered as possible future treatment targets for liver fibrosis are identified.
Collapse
Affiliation(s)
- Niladri Ganguly
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
45
|
Her YR, Wang L, Chepelev I, Manterola M, Berkovits B, Cui K, Zhao K, Wolgemuth DJ. Genome-wide chromatin occupancy of BRDT and gene expression analysis suggest transcriptional partners and specific epigenetic landscapes that regulate gene expression during spermatogenesis. Mol Reprod Dev 2021; 88:141-157. [PMID: 33469999 DOI: 10.1002/mrd.23449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 11/09/2022]
Abstract
BRDT, a member of the BET family of double bromodomain-containing proteins, is essential for spermatogenesis in the mouse and has been postulated to be a key regulator of transcription in meiotic and post-meiotic cells. To understand the function of BRDT in these processes, we first characterized the genome-wide distribution of the BRDT binding sites, in particular within gene units, by ChIP-Seq analysis of enriched fractions of pachytene spermatocytes and round spermatids. In both cell types, BRDT binding sites were mainly located in promoters, first exons, and introns of genes. BRDT binding sites in promoters overlapped with several histone modifications and histone variants associated with active transcription, and were enriched for consensus sequences for specific transcription factors, including MYB, RFX, ETS, and ELF1 in pachytene spermatocytes, and JunD, c-Jun, CRE, and RFX in round spermatids. Subsequent integration of the ChIP-seq data with available transcriptome data revealed that stage-specific gene expression programs are associated with BRDT binding to their gene promoters, with most of the BDRT-bound genes being upregulated. Gene Ontology analysis further identified unique sets of genes enriched in diverse biological processes essential for meiosis and spermiogenesis between the two cell types, suggesting distinct developmentally stage-specific functions for BRDT. Taken together, our data suggest that BRDT cooperates with different transcription factors at distinctive chromatin regions within gene units to regulate diverse downstream target genes that function in male meiosis and spermiogenesis.
Collapse
Affiliation(s)
- Yoon Ra Her
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - Li Wang
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - Iouri Chepelev
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marcia Manterola
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Binyamin Berkovits
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Debra J Wolgemuth
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA.,Department Obstetrics & Gynecology, Columbia University Medical Center, New York, New York, USA.,Institute of Human Nutrition, Columbia University Medical Center, New York, New York, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
46
|
Muddassir M, Soni K, Sangani CB, Alarifi A, Afzal M, Abduh NAY, Duan Y, Bhadja P. Bromodomain and BET family proteins as epigenetic targets in cancer therapy: their degradation, present drugs, and possible PROTACs. RSC Adv 2021; 11:612-636. [PMID: 35746919 PMCID: PMC9133982 DOI: 10.1039/d0ra07971e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc. These changes are due to aberration in histone modification enzymes that function as readers, writers and erasers. Bromodomains (BDs) and BET proteins that recognize acetylation of chromatin regulate gene expression. To block the function of any of these BrDs and/or BET protein can be a controlling agent in disorders such as cancer. BrDs and BET proteins are now emerging as targets for new therapeutic development. Traditional drugs like enzyme inhibitors and protein–protein inhibitors have many limitations. Recently Proteolysis-Targeting Chimeras (PROTACs) have become an advanced tool in therapeutic intervention as they remove disease causing proteins. This review provides an overview of the development and mechanisms of PROTACs for BRD and BET protein regulation in cancer and advanced possibilities of genetic technologies in therapeutics. Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc.![]()
Collapse
Affiliation(s)
- Mohd. Muddassir
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Kunjal Soni
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Chetan B. Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Abdullah Alarifi
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Mohd. Afzal
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Naaser A. Y. Abduh
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases
- Zhengzhou Children's Hospital
- Zhengzhou University
- Zhengzhou 450018
- China
| | - Poonam Bhadja
- Arthropod Ecology and Biological Control Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Environment and Labour Safety
| |
Collapse
|
47
|
Ronzio M, Bernardini A, Pavesi G, Mantovani R, Dolfini D. On the NF-Y regulome as in ENCODE (2019). PLoS Comput Biol 2020; 16:e1008488. [PMID: 33370256 PMCID: PMC7793273 DOI: 10.1371/journal.pcbi.1008488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/08/2021] [Accepted: 11/04/2020] [Indexed: 11/19/2022] Open
Abstract
NF-Y is a trimeric Transcription Factor -TF- which binds with high selectivity to the conserved CCAAT element. Individual ChIP-seq analysis as well as ENCODE have progressively identified locations shared by other TFs. Here, we have analyzed data introduced by ENCODE over the last five years in K562, HeLa-S3 and GM12878, including several chromatin features, as well RNA-seq profiling of HeLa cells after NF-Y inactivation. We double the number of sequence-specific TFs and co-factors reported. We catalogue them in 4 classes based on co-association criteria, infer target genes categorizations, identify positional bias of binding sites and gene expression changes. Larger and novel co-associations emerge, specifically concerning subunits of repressive complexes as well as RNA-binding proteins. On the one hand, these data better define NF-Y association with single members of major classes of TFs, on the other, they suggest that it might have a wider role in the control of mRNA production. The ongoing ENCODE consortium represents a useful compendium of locations of TFs, chromatin marks, gene expression data. In previous reports, we identified modules of CCAAT-binding NF-Y with individual TFs. Here, we analyzed all 363 factors currently present: 68 with enrichment of CCAAT in their locations, 38 with overlap of peaks. New sequence-specific TFs, co-activators and co-repressors are reported. Co-association patterns correspond to specific targeted genes categorizations and gene expression changes, as assessed by RNA-seq after NF-Y inactivation. These data widen and better define a coherent model of synergy of NF-Y with selected groups of TFs and co-factors.
Collapse
Affiliation(s)
- Mirko Ronzio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- * E-mail:
| |
Collapse
|
48
|
Zhang C, Xu L, Zheng X, Liu S, Che F. Role of Ash1l in Tourette syndrome and other neurodevelopmental disorders. Dev Neurobiol 2020; 81:79-91. [PMID: 33258273 PMCID: PMC8048680 DOI: 10.1002/dneu.22795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Ash1l potentially contributes to neurodevelopmental diseases. Although specific Ash1l mutations are rare, they have led to informative studies in animal models that may bring therapeutic advances. Ash1l is highly expressed in the brain and correlates with the neuropathology of Tourette syndrome (TS), autism spectrum disorder, and intellectual disability during development, implicating shared epigenetic factors and overlapping neuropathological mechanisms. Functional convergence of Ash1l generated several significant signaling pathways: chromatin remodeling and transcriptional regulation, protein synthesis and cellular metabolism, and synapse development and function. Here, we systematically review the literature on Ash1l, including its discovery, expression, function, regulation, implication in the nervous system, signaling pathway, mutations, and putative involvement in TS and other neurodevelopmental traits. Such findings highlight Ash1l pleiotropy and the necessity of transcending a single gene to complicated mechanisms of network convergence underlying these diseases. With the progress in functional genomic analysis (highlighted in this review), and although the importance and necessity of Ash1l becomes increasingly apparent in the medical field, further research is required to discover the precise function and molecular regulatory mechanisms related to Ash1l. Thus, a new perspective is proposed for basic scientific research and clinical interventions for cross‐disorder diseases.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, China
| | - Lulu Xu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xueping Zheng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengyuan Che
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, China
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Although many signalling pathways have been discovered to be essential in mesenchymal stem/stromal (MSC) differentiation, it has become increasingly clear in recent years that epigenetic regulation of gene transcription is a vital component of lineage determination, encompassing diet, lifestyle and parental influences on bone, fat and cartilage development. RECENT FINDINGS This review discusses how specific enzymes that modify histone methylation and acetylation or DNA methylation orchestrate the differentiation programs in lineage determination of MSC and the epigenetic changes that facilitate development of bone related diseases such as osteoporosis. The review also describes how environmental factors such as mechanical loading influence the epigenetic signatures of MSC, and how the use of chemical agents or small peptides can regulate epigenetic drift in MSC populations during ageing and disease. Epigenetic regulation of MSC lineage commitment is controlled through changes in enzyme activity, which modifies DNA and histone residues leading to alterations in chromatin structure. The co-ordinated epigenetic regulation of transcriptional activation and repression act to mediate skeletal tissue homeostasis, where deregulation of this process can lead to bone loss during ageing or osteoporosis.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
50
|
Shang Z, Horovitz DJ, McKenzie RH, Keisler JL, Felder MR, Davis SW. Using genomic resources for linkage analysis in Peromyscus with an application for characterizing Dominant Spot. BMC Genomics 2020; 21:622. [PMID: 32912160 PMCID: PMC7488232 DOI: 10.1186/s12864-020-06969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Background Peromyscus are the most common mammalian species in North America and are widely used in both laboratory and field studies. The deer mouse, P. maniculatus and the old-field mouse, P. polionotus, are closely related and can generate viable and fertile hybrid offspring. The ability to generate hybrid offspring, coupled with developing genomic resources, enables researchers to conduct linkage analysis studies to identify genomic loci associated with specific traits. Results We used available genomic data to identify DNA polymorphisms between P. maniculatus and P. polionotus and used the polymorphic data to identify the range of genetic complexity that underlies physiological and behavioral differences between the species, including cholesterol metabolism and genes associated with autism. In addition, we used the polymorphic data to conduct a candidate gene linkage analysis for the Dominant spot trait and determined that Dominant spot is linked to a region of chromosome 20 that contains a strong candidate gene, Sox10. During the linkage analysis, we found that the spot size varied quantitively in affected Peromyscus based on genetic background. Conclusions The expanding genomic resources for Peromyscus facilitate their use in linkage analysis studies, enabling the identification of loci associated with specific traits. More specifically, we have linked a coat color spotting phenotype, Dominant spot, with Sox10, a member the neural crest gene regulatory network, and that there are likely two genetic modifiers that interact with Dominant spot. These results establish Peromyscus as a model system for identifying new alleles of the neural crest gene regulatory network.
Collapse
Affiliation(s)
- Zhenhua Shang
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - David J Horovitz
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Ronald H McKenzie
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Jessica L Keisler
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Michael R Felder
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|