1
|
Kovács-Valasek A, Rák T, Pöstyéni E, Csutak A, Gábriel R. Three Major Causes of Metabolic Retinal Degenerations and Three Ways to Avoid Them. Int J Mol Sci 2023; 24:ijms24108728. [PMID: 37240082 DOI: 10.3390/ijms24108728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
An imbalance of homeostasis in the retina leads to neuron loss and this eventually results in a deterioration of vision. If the stress threshold is exceeded, different protective/survival mechanisms are activated. Numerous key molecular actors contribute to prevalent metabolically induced retinal diseases-the three major challenges are age-related alterations, diabetic retinopathy and glaucoma. These diseases have complex dysregulation of glucose-, lipid-, amino acid or purine metabolism. In this review, we summarize current knowledge on possible ways of preventing or circumventing retinal degeneration by available methods. We intend to provide a unified background, common prevention and treatment rationale for these disorders and identify the mechanisms through which these actions protect the retina. We suggest a role for herbal medicines, internal neuroprotective substances and synthetic drugs targeting four processes: parainflammation and/or glial cell activation, ischemia and related reactive oxygen species and vascular endothelial growth factor accumulation, apoptosis and/or autophagy of nerve cells and an elevation of ocular perfusion pressure and/or intraocular pressure. We conclude that in order to achieve substantial preventive or therapeutic effects, at least two of the mentioned pathways should be targeted synergistically. A repositioning of some drugs is considered to use them for the cure of the other related conditions.
Collapse
Affiliation(s)
- Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
| | - Tibor Rák
- Department of Ophthalmology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Robert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
2
|
Laitinen P, Väänänen MA, Kolari IL, Mäkinen PI, Kaikkonen MU, Weinberg MS, Morris KV, Korhonen P, Malm T, Ylä-Herttuala S, Roberts TC, Turunen MP, Turunen TA. Nuclear microRNA-466c regulates Vegfa expression in response to hypoxia. PLoS One 2022; 17:e0265948. [PMID: 35358280 PMCID: PMC8975276 DOI: 10.1371/journal.pone.0265948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs are well characterized in their role in silencing gene expression by targeting 3´-UTR of mRNAs in cytoplasm. However, recent studies have shown that miRNAs have a role in the regulation of genes in the nucleus, where they are abundantly located. We show here that in mouse endothelial cell line (C166), nuclear microRNA miR-466c participates in the regulation of vascular endothelial growth factor a (Vegfa) gene expression in hypoxia. Upregulation of Vegfa expression in response to hypoxia was significantly compromised after removal of miR-466c with CRISPR-Cas9 genomic deletion. We identified a promoter-associated long non-coding RNA on mouse Vegfa promoter and show that miR-466c directly binds to this transcript to modulate Vegfa expression. Collectively, these observations suggest that miR-466c regulates Vegfa gene transcription in the nucleus by targeting the promoter, and expands on our understanding of the role of miRNAs well beyond their canonical role.
Collapse
Affiliation(s)
- Pia Laitinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- RNatives Oy, Kuopio, Finland
| | - Mari-Anna Väänänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ida-Liisa Kolari
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri I. Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marc S. Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwaterstrand, Witwaterstrand, South Africa
| | - Kevin V. Morris
- Center for Gene Therapy, City of Hope–Beckman Research Institute at the City of Hope, Duarte, California, United States of America
- Menzies Health Institute Queensland, School of Medical Science Griffith University, Gold Coast Campus, Queensland, Australia
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Thomas C. Roberts
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MDUK Oxford Neuromuscular Centre, Oxford, United Kingdom
| | - Mikko P. Turunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- RNatives Oy, Kuopio, Finland
- * E-mail:
| | - Tiia A. Turunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- RNatives Oy, Kuopio, Finland
| |
Collapse
|
3
|
Figueiredo H, Figueroa ALC, Garcia A, Fernandez-Ruiz R, Broca C, Wojtusciszyn A, Malpique R, Gasa R, Gomis R. Targeting pancreatic islet PTP1B improves islet graft revascularization and transplant outcomes. Sci Transl Med 2020; 11:11/497/eaar6294. [PMID: 31217339 DOI: 10.1126/scitranslmed.aar6294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/16/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Deficient vascularization is a major driver of early islet graft loss and one of the primary reasons for the failure of islet transplantation as a viable treatment for type 1 diabetes. This study identifies the protein tyrosine phosphatase 1B (PTP1B) as a potential modulator of islet graft revascularization. We demonstrate that grafts of pancreatic islets lacking PTP1B exhibit increased revascularization, which is accompanied by improved graft survival and function, and recovery of normoglycemia and glucose tolerance in diabetic mice transplanted with PTP1B-deficient islets. Mechanistically, we show that the absence of PTP1B leads to activation of hypoxia-inducible factor 1α-independent peroxisome proliferator-activated receptor γ coactivator 1α/estrogen-related receptor α signaling and enhanced expression and production of vascular endothelial growth factor A (VEGF-A) by β cells. These observations were reproduced in human islets. Together, these findings reveal that PTP1B regulates islet VEGF-A production and suggest that this phosphatase could be targeted to improve islet transplantation outcomes.
Collapse
Affiliation(s)
- Hugo Figueiredo
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,University of Barcelona, 08036 Barcelona, Spain.,Escuela de Medicina y Ciencias de la Salud, Dept. Medicina Cardiovascular y Metabolómica, Tecnológico de Monterrey, 66278 San Pedro Garza García, Nuevo León, Mexico
| | - Ana Lucia C Figueroa
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,University of Barcelona, 08036 Barcelona, Spain
| | - Ainhoa Garcia
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Rebeca Fernandez-Ruiz
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Christophe Broca
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, 34295 Montpellier, France
| | - Anne Wojtusciszyn
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, 34295 Montpellier, France.,Department of Endocrinology, Diabetes and Nutrition, University Hospital of Montpellier, Lapeyronie Hospital, 34295 Montpellier, France.,Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Rita Malpique
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Rosa Gasa
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Ramon Gomis
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain. .,University of Barcelona, 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.,Universitat Oberta de Catalunya (UOC), 08018 Barcelona, Spain.,Department of Endocrinology and Nutrition, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
4
|
Evaluation of RNA purification methods by using different blood stabilization tubes: identification of key features for epidemiological studies. BMC Res Notes 2020; 13:77. [PMID: 32070402 PMCID: PMC7026973 DOI: 10.1186/s13104-020-04943-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 11/30/2022] Open
Abstract
Objective Peripheral blood is the most promising source of RNA biomarkers for diagnostic and epidemiological studies, because the presence of disease and prognostic information is reflected in the gene expression pattern. Quality RNA is used by a number of different downstream applications, so the selection of the most appropriate RNA stabilization and purification method is important. We have analyzed the RNA purified from 300 blood samples from 25 donors processed by two technicians using three methodologies with Tempus and PaxGene tubes. Results The best quality sample results were obtained with the Tempus Spin RNA Isolation Kit and the PaxGene Blood miRNA Kit, although larger amounts of RNA were obtained with the Tempus Spin RNA Isolation Kit. Lower Cq values were observed for RNA and miRNA genes in samples that were tested with PaxGene Blood miRNA Kit and Tempus Spin RNA Isolation Kit respectively. We identify the Tempus Spin RNA Isolation Kit as the most robust methodology, whilst the MagMax for Stabilized Blood Tubes RNA Isolation Kit showed the most instability. For biobanks, which process a large cohort and conduct epidemiological studies, the Tempus Spin RNA Isolation Kit is the most appropriate methodology. The study demonstrates the robustness of real-life procedures.
Collapse
|
5
|
Turunen TA, Roberts TC, Laitinen P, Väänänen MA, Korhonen P, Malm T, Ylä-Herttuala S, Turunen MP. Changes in nuclear and cytoplasmic microRNA distribution in response to hypoxic stress. Sci Rep 2019; 9:10332. [PMID: 31316122 PMCID: PMC6637125 DOI: 10.1038/s41598-019-46841-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/05/2019] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have well-characterized roles in cytoplasmic gene regulation, where they act by binding to mRNA transcripts and inhibiting their translation (i.e. post-transcriptional gene silencing, PTGS). However, miRNAs have also been implicated in transcriptional gene regulation and alternative splicing, events that are restricted to the cell nucleus. Here we performed nuclear-cytoplasmic fractionation in a mouse endothelial cell line and characterized the localization of miRNAs in response to hypoxia using small RNA sequencing. A highly diverse population of abundant miRNA species was detected in the nucleus, of which the majority (56%) was found to be preferentially localized in one compartment or the other. Induction of hypoxia resulted in changes in miRNA levels in both nuclear and cytoplasmic compartments, with the majority of changes being restricted to one location and not the other. Notably, the classical hypoxamiR (miR-210-3p) was highly up-regulated in the nuclear compartment after hypoxic stimulus. These findings reveal a previously unappreciated level of molecular complexity in the physiological response occurring in ischemic tissue. Furthermore, widespread differential miRNA expression in the nucleus strongly suggests that these small RNAs are likely to perform extensive nuclear regulatory functions in the general case.
Collapse
Affiliation(s)
- Tiia A Turunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland
| | - Thomas C Roberts
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.,Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pia Laitinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland
| | - Mari-Anna Väänänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, PO Box 100, 70029 KUH, Kuopio, Finland
| | - Mikko P Turunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland.
| |
Collapse
|
6
|
Abstract
The phenomenon of RNA activation (RNAa) was initially discovered by Li and colleagues about a decade ago. Subsequently, gene activation by exogenously expressed small activating RNA has been demonstrated in different cellular contexts by a number of laboratories. Conceivably, endogenously expressed microRNAs may also utilize RNA activation as a cellular mechanism for gene regulation, which may be dysregulated in disease states such as cancer. RNA activation can be applied to gain-of-function studies and holds great promise for disease intervention. This chapter will discuss examples of promoter-targeting microRNAs discovered in recent years and their pathophysiological relevance. I will also briefly touch upon other novel classes of microRNAs with positive gene regulatory roles, including TATA-box-activating microRNAs and enhancer-associated microRNAs.
Collapse
Affiliation(s)
- Vera Huang
- Molecular Stethoscope, Inc., 10835 Road to the Cure, Suite 100, San Diego, CA, 92121, USA.
| |
Collapse
|
7
|
Ramchandran R, Chaluvally-Raghavan P. miRNA-Mediated RNA Activation in Mammalian Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 28639193 DOI: 10.1007/978-981-10-4310-9_6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNA (miRNA or miR) is a small noncoding RNA molecule ~22 nucleotides in size, which is found in plants, animals, and some viruses. miRNAs are thought to primarily down regulate gene expression by binding to 3' untranslated regions of target transcripts, thereby triggering mRNA cleavage or repression of translation. Recently, evidence has emerged that miRNAs can interact with the promoter and activate gene expression. This mechanism, called RNA activation (RNAa), is a process of transcriptional activation where the direct interaction of miRNA on the promoter triggers the recruitment of transcription factors and RNA-Polymerase-II on the promoter to activate gene transcription. To date, very little is known about the mechanism by which miRNA regulates RNA activation (RNAa) and their role in tumor progression. This is an emerging field in RNA biology. In this chapter, we describe the mechanisms utilized by miRNAs to activate transcription.
Collapse
Affiliation(s)
- Ramani Ramchandran
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Pradeep Chaluvally-Raghavan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
8
|
Altered VEGF Splicing Isoform Balance in Tumor Endothelium Involves Activation of Splicing Factors Srpk1 and Srsf1 by the Wilms' Tumor Suppressor Wt1. Cells 2019; 8:cells8010041. [PMID: 30641926 PMCID: PMC6356959 DOI: 10.3390/cells8010041] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is one hallmark of cancer. Vascular endothelial growth factor (VEGF) is a known inducer of angiogenesis. Many patients benefit from antiangiogenic therapies, which however have limitations. Although VEGF is overexpressed in most tumors, different VEGF isoforms with distinct angiogenic properties are produced through alternative splicing. In podocytes, the Wilms' tumor suppressor 1 (WT1) suppresses the Serine/arginine-rich protein-specific splicing factor kinase (SRPK1), and indirectly Serine/arginine-rich splicing factor 1 (Srsf1) activity, and alters VEGF splicing. We analyzed VEGF isoforms, Wt1, Srpk1, and Srsf1 in normal and tumor endothelium. Wt1, Srpk1, Srsf1, and the angiogenic VEGF164a isoform were highly expressed in tumor endothelium compared to normal lung endothelium. Nuclear expression of Srsf1 was detectable in the endothelium of various tumor types, but not in healthy tissues. Inducible conditional vessel-specific knockout of Wt1 reduced Wt1, Srpk1, and Srsf1 expression in endothelial cells and induced a shift towards the antiangiogenic VEGF120 isoform. Wt1(-KTS) directly binds and activates both the promoters of Srpk1 and Srsf1 in endothelial cells. In conclusion, Wt1 activates Srpk1 and Srsf1 and induces expression of angiogenic VEGF isoforms in tumor endothelium.
Collapse
|
9
|
Nieminen T, Scott TA, Lin FM, Chen Z, Yla-Herttuala S, Morris KV. Long Non-Coding RNA Modulation of VEGF-A during Hypoxia. Noncoding RNA 2018; 4:ncrna4040034. [PMID: 30463374 PMCID: PMC6315885 DOI: 10.3390/ncrna4040034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
The role and function of long non-coding RNAs (lncRNAs) in modulating gene expression is becoming apparent. Vascular endothelial growth factor A (VEGF-A) is a key regulator of blood vessel formation and maintenance making it a promising therapeutic target for activation in ischemic diseases. In this study, we uncover a functional role for two antisense VEGF-A lncRNAs, RP1-261G23.7 and EST AV731492, in transcriptional regulation of VEGF-A during hypoxia. We find here that both lncRNAs are polyadenylated, concordantly upregulated with VEGF-A, localize to the VEGF-A promoter and upstream elements in a hypoxia dependent manner either as a single-stranded RNA or DNA bound RNA, and are associated with enhancer marks H3K27ac and H3K9ac. Collectively, these data suggest that VEGF-A antisense lncRNAs, RP1-261G23.7 and EST AV731492, function as VEGF-A promoter enhancer-like elements, possibly by acting as a local scaffolding for proteins and also small RNAs to tether.
Collapse
Affiliation(s)
- Tiina Nieminen
- The Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Tristan A Scott
- The Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| | - Feng-Mao Lin
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| | - Zhen Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| | - Seppo Yla-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, FI-70211 Kuopio, Finland.
| | - Kevin V Morris
- The Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
10
|
Meers MP, Adelman K, Duronio RJ, Strahl BD, McKay DJ, Matera AG. Transcription start site profiling uncovers divergent transcription and enhancer-associated RNAs in Drosophila melanogaster. BMC Genomics 2018; 19:157. [PMID: 29466941 PMCID: PMC5822475 DOI: 10.1186/s12864-018-4510-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/30/2018] [Indexed: 12/15/2022] Open
Abstract
Background High-resolution transcription start site (TSS) mapping in D. melanogaster embryos and cell lines has revealed a rich and detailed landscape of both cis- and trans-regulatory elements and factors. However, TSS profiling has not been investigated in an orthogonal in vivo setting. Here, we present a comprehensive dataset that links TSS dynamics with nucleosome occupancy and gene expression in the wandering third instar larva, a developmental stage characterized by large-scale shifts in transcriptional programs in preparation for metamorphosis. Results The data recapitulate major regulatory classes of TSSs, based on peak width, promoter-proximal polymerase pausing, and cis-regulatory element density. We confirm the paucity of divergent transcription units in D. melanogaster, but also identify notable exceptions. Furthermore, we identify thousands of novel initiation events occurring at unannotated TSSs that can be classified into functional categories by their local density of histone modifications. Interestingly, a sub-class of these unannotated TSSs overlaps with functionally validated enhancer elements, consistent with a regulatory role for “enhancer RNAs” (eRNAs) in defining developmental transcription programs. Conclusions High-depth TSS mapping is a powerful strategy for identifying and characterizing low-abundance and/or low-stability RNAs. Global analysis of transcription initiation patterns in a developing organism reveals a vast number of novel initiation events that identify potential eRNAs as well as other non-coding transcripts critical for animal development. Electronic supplementary material The online version of this article (10.1186/s12864-018-4510-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael P Meers
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.,Departments of Biology and Genetics, University of North Carolina, Chapel Hill, 27599, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.,Departments of Biology and Genetics, University of North Carolina, Chapel Hill, 27599, USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.,Departments of Biology and Genetics, University of North Carolina, Chapel Hill, 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599, USA. .,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Departments of Biology and Genetics, University of North Carolina, Chapel Hill, 27599, USA.
| |
Collapse
|
11
|
Zhou Q, Fan D, Huang K, Chen X, Chen Y, Mai Q. Activation of KLF4 expression by small activating RNA promotes migration and invasion in colorectal epithelial cells. Cell Biol Int 2018; 42:495-503. [PMID: 29274293 DOI: 10.1002/cbin.10926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/20/2017] [Indexed: 12/23/2022]
Abstract
RNA activation mediated by small double-stranded RNAs targeting promoter sequence named small activating RNAs (saRNAs) is one of the mechanisms for gene activation. Artificial regulation of gene expression through RNA activation does not affect the alteration of the genomic DNA sequences or exogenous plasmid DNA, therefore it is a relative manageable approach for gene perturbation. KLF4 is a member of zinc-finger transcription factors and its functions in colorectal cells are still controversial. In order to elucidate the functions of KLF4, we synthesized saRNAs that target the promoter regions of KLF4 and transfected into varied colorectal epithelial cell lines. We found the KLF4 gene expression is specifically increased in the human normal epithelial cell NCM460 and colorectal epithelial cancer cell Caco-2 and HCT116, but not in other human colorectal epithelial cell lines. In addition, we observed that saRNAs induced overexpression of KLF4 could promote cell migration/invasion in NCM460 and HCT116 cell lines. This effect is mediated partly by inducing EMT and facilitating nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Qinqin Zhou
- Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China
| | - Dejun Fan
- Department of Gastrointestinal Endoscopy, the Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China
| | - Kejun Huang
- The Center for Reproductive medicine, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou, 510080, China
| | - Xiuting Chen
- Department of Colorectal Surgery, the Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China
| | - Yufeng Chen
- Department of Colorectal Surgery, the Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China
| | - Qingyun Mai
- The Center for Reproductive medicine, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou, 510080, China
| |
Collapse
|
12
|
Zhang Y, Liu W, Chen Y, Liu J, Wu K, Su L, Zhang W, Jiang Y, Zhang X, Zhang Y, Liu C, Tao L, Liu B, Zhang H. A Cellular MicroRNA Facilitates Regulatory T Lymphocyte Development by Targeting the FOXP3 Promoter TATA-Box Motif. THE JOURNAL OF IMMUNOLOGY 2017; 200:1053-1063. [DOI: 10.4049/jimmunol.1700196] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022]
|
13
|
Nwanaji-Enwerem JC, Colicino E, Dai L, Di Q, Just AC, Hou L, Vokonas P, De Vivo I, Lemos B, Lu Q, Weisskopf MG, Baccarelli AA, Schwartz JD. miRNA processing gene polymorphisms, blood DNA methylation age and long-term ambient PM 2.5 exposure in elderly men. Epigenomics 2017; 9:1529-1542. [PMID: 29106301 PMCID: PMC5704092 DOI: 10.2217/epi-2017-0094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/06/2017] [Indexed: 01/26/2023] Open
Abstract
AIM We tested whether genetic variation in miRNA processing genes modified the association of PM2.5 with DNA methylation (DNAm) age. PATIENTS & METHODS We conducted a repeated measures study based on 552 participants from the Normative Aging Study with multiple visits between 2000 and 2011 (n = 940 visits). Address-level 1-year PM2.5 exposures were estimated using the GEOS-chem model. DNAm-age and a panel of 14 SNPs in miRNA processing genes were measured from participant blood samples. RESULTS & CONCLUSION In fully adjusted linear mixed-effects models, having at least one copy of the minor rs4961280 [AGO2] allele was associated with a lower DNAm-age (β = -1.13; 95% CI: -2.26 to -0.002). However, the association of PM2.5 with DNAm-age was significantly (Pinteraction = 0.01) weaker in homozygous carriers of the major rs4961280 [AGO2] allele (β = 0.38; 95% CI: -0.20 to 0.96) when compared with all other participants (β = 1.58; 95% CI: 0.76 to 2.39). Our results suggest that miRNA processing impacts DNAm-age relationships. Graphical abstract: miRNA processing AGO2 polymorphism (rs4961280) modifies the association of long-term ambient fine particle exposure with blood DNA methylation age [Formula: see text] The graph depicts lines from a fully adjusted linear regression model with fine particle exposure levels ranging from the tenth to the ninetieth percentile, all other continuous variables held constant at their means, and all other categorical variables held at their most frequent level.
Collapse
Affiliation(s)
| | - Elena Colicino
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Lingzhen Dai
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qian Di
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Allan C Just
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lifang Hou
- Center for Population Epigenetics, Department of Preventive Medicine, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System & the Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bernardo Lemos
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
14
|
Li LC. Small RNA-Guided Transcriptional Gene Activation (RNAa) in Mammalian Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [DOI: 10.1007/978-981-10-4310-9_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Piatek MJ, Henderson V, Fearn A, Chaudhry B, Werner A. Ectopically expressed Slc34a2a sense-antisense transcripts cause a cerebellar phenotype in zebrafish embryos depending on RNA complementarity and Dicer. PLoS One 2017; 12:e0178219. [PMID: 28542524 PMCID: PMC5436864 DOI: 10.1371/journal.pone.0178219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023] Open
Abstract
Natural antisense transcripts (NATs) are complementary to protein coding genes and potentially regulate their expression. Despite widespread occurrence of NATs in the genomes of higher eukaryotes, their biological role and mechanism of action is poorly understood. Zebrafish embryos offer a unique model system to study sense-antisense transcript interplay at whole organism level. Here, we investigate putative antisense transcript-mediated mechanisms by ectopically co-expressing the complementary transcripts during early zebrafish development. In zebrafish the gene Slc34a2a (Na-phosphate transporter) is bi-directionally transcribed, the NAT predominantly during early development up to 48 hours after fertilization. Declining levels of the NAT, Slc34a2a(as), coincide with an increase of the sense transcript. At that time, sense and antisense transcripts co-localize in the endoderm at near equal amounts. Ectopic expression of the sense transcript during embryogenesis leads to specific failure to develop a cerebellum. The defect is RNA-mediated and dependent on sense-antisense complementarity. Overexpression of a Slc34a2a paralogue (Slc34a2b) or the NAT itself had no phenotypic consequences. Knockdown of Dicer rescued the brain defect suggesting that RNA interference is required to mediate the phenotype. Our results corroborate previous reports of Slc34a2a-related endo-siRNAs in two days old zebrafish embryos and emphasize the importance of coordinated expression of sense-antisense transcripts. Our findings suggest that RNAi is involved in gene regulation by certain natural antisense RNAs.
Collapse
Affiliation(s)
- Monica J. Piatek
- RNA Interest Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Victoria Henderson
- RNA Interest Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy Fearn
- RNA Interest Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bill Chaudhry
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andreas Werner
- RNA Interest Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|