1
|
Geiselmann A, Micouin A, Vandormael-Pournin S, Laville V, Chervova A, Mella S, Navarro P, Cohen-Tannoudji M. PI3K/AKT signaling controls ICM maturation and proper epiblast and primitive endoderm specification in mice. Dev Cell 2025; 60:204-219.e6. [PMID: 39461340 DOI: 10.1016/j.devcel.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 05/07/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
The inner cell mass (ICM) of early mouse embryos is specified into epiblast (Epi) and primitive endoderm (PrE) lineages during blastocyst formation. The antagonistic transcription factors (TFs) NANOG and GATA-binding protein 6 (GATA6) in combination with fibroblast growth factor (FGF)/extracellular-signal-regulated kinase (ERK) signaling are central actors in ICM fate choice. However, what initiates the specification of ICM progenitors into Epi or PrE and whether other factors are involved in this process has not been fully understood yet. Here, we show that phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) is constitutively active during preimplantation development. Using pharmacological inhibition, we demonstrate that PI3K/AKT enables the formation of a functional ICM capable of giving rise to both the Epi and the PrE: it maintains the expression of the TF NANOG, which specifies the Epi, and confers responsiveness to FGF4, which is essential for PrE specification. Our work thus identifies PI3K/AKT signaling as an upstream regulator controlling the molecular events required for both Epi and PrE specification.
Collapse
Affiliation(s)
- Anna Geiselmann
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Sorbonne Université, Complexité du Vivant, 75005 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France
| | - Adèle Micouin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France; Université Paris Cité, BioSPC, 75013 Paris, France
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France
| | - Vincent Laville
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Almira Chervova
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Sébastien Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Pablo Navarro
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France.
| |
Collapse
|
2
|
Li J, Zhang Y, Tang R, Liu H, Li X, Lei W, Chen J, Jin Z, Tang J, Wang Z, Yang Y, Wu X. Glycogen synthase kinase-3β: A multifaceted player in ischemia-reperfusion injury and its therapeutic prospects. J Cell Physiol 2024; 239:e31335. [PMID: 38962880 DOI: 10.1002/jcp.31335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Ischemia-reperfusion injury (IRI) results in irreversible metabolic dysfunction and structural damage to tissues or organs, posing a formidable challenge in the field of organ implantation, cardiothoracic surgery, and general surgery. Glycogen synthase kinase-3β (GSK-3β) a multifunctional serine/threonine kinase, is involved in a variety of biological processes, including cell proliferation, apoptosis, and immune response. Phosphorylation of its tyrosine 216 and serine 9 sites positively and negatively regulates the activation and inactivation of the enzyme. Significantly, inhibition or inactivation of GSK-3β provides protection against IRI, making it a viable target for drug development. Though numerous GSK-3β inhibitors have been identified to date, the development of therapeutic treatments remains a considerable distance away. In light of this, this review summarizes the complicated network of GSK-3β roles in IRI. First, we provide an overview of GSK-3β's basic background. Subsequently, we briefly review the pathological mechanisms of GSK-3β in accelerating IRI, and highlight the latest progress of GSK-3β in multiorgan IRI, encompassing heart, brain, kidney, liver, and intestine. Finally, we discuss the current development of GSK-3β inhibitors in various organ IRI, offering a thorough and insightful reference for GSK-3β as a potential target for future IRI therapy.
Collapse
Affiliation(s)
- Jiayan Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Hui Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiayun Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Junmin Chen
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
3
|
Kociemba J, Jørgensen ACS, Tadić N, Harris A, Sideri T, Chan WY, Ibrahim F, Ünal E, Skehel M, Shahrezaei V, Argüello-Miranda O, van Werven FJ. Multi-signal regulation of the GSK-3β homolog Rim11 controls meiosis entry in budding yeast. EMBO J 2024; 43:3256-3286. [PMID: 38886580 PMCID: PMC11294583 DOI: 10.1038/s44318-024-00149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Starvation in diploid budding yeast cells triggers a cell-fate program culminating in meiosis and spore formation. Transcriptional activation of early meiotic genes (EMGs) hinges on the master regulator Ime1, its DNA-binding partner Ume6, and GSK-3β kinase Rim11. Phosphorylation of Ume6 by Rim11 is required for EMG activation. We report here that Rim11 functions as the central signal integrator for controlling Ume6 phosphorylation and EMG transcription. In nutrient-rich conditions, PKA suppresses Rim11 levels, while TORC1 retains Rim11 in the cytoplasm. Inhibition of PKA and TORC1 induces Rim11 expression and nuclear localization. Remarkably, nuclear Rim11 is required, but not sufficient, for Rim11-dependent Ume6 phosphorylation. In addition, Ime1 is an anchor protein enabling Ume6 phosphorylation by Rim11. Subsequently, Ume6-Ime1 coactivator complexes form and induce EMG transcription. Our results demonstrate how various signaling inputs (PKA/TORC1/Ime1) converge through Rim11 to regulate EMG expression and meiosis initiation. We posit that the signaling-regulatory network elucidated here generates robustness in cell-fate control.
Collapse
Affiliation(s)
- Johanna Kociemba
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andreas Christ Sølvsten Jørgensen
- Department of Mathematics, Imperial College London, London, SW7 2BX, UK
- I-X Centre for AI In Science, Imperial College London, White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Nika Tadić
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Anthony Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Theodora Sideri
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Wei Yee Chan
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Fairouz Ibrahim
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London, SW7 2BX, UK.
| | - Orlando Argüello-Miranda
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA.
| | | |
Collapse
|
4
|
Kotekar A, Singh AK, Devaiah BN. BRD4 and MYC: power couple in transcription and disease. FEBS J 2023; 290:4820-4842. [PMID: 35866356 PMCID: PMC9867786 DOI: 10.1111/febs.16580] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/26/2023]
Abstract
The MYC proto-oncogene and BRD4, a BET family protein, are two cardinal proteins that have a broad influence in cell biology and disease. Both proteins are expressed ubiquitously in mammalian cells and play central roles in controlling growth, development, stress responses and metabolic function. As chromatin and transcriptional regulators, they play a critical role in regulating the expression of a burgeoning array of genes, maintaining chromatin architecture and genome stability. Consequently, impairment of their function or regulation leads to many diseases, with cancer being the most predominant. Interestingly, accumulating evidence indicates that regulation of the expression and functions of MYC are tightly intertwined with BRD4 at both transcriptional and post-transcriptional levels. Here, we review the mechanisms by which MYC and BRD4 are regulated, their functions in governing various molecular mechanisms and the consequences of their dysregulation that lead to disease. We present a perspective of how the regulatory mechanisms for the two proteins could be entwined at multiple points in a BRD4-MYC nexus that leads to the modulation of their functions and disease upon dysregulation.
Collapse
Affiliation(s)
- Aparna Kotekar
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
5
|
Baral I, Shirude MB, Jothi DL, Mukherjee A, Dutta D. Characterization of a Distinct State in the Continuum of Pluripotency Facilitated by Inhibition of PKCζ in Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2023; 19:1098-1115. [PMID: 36781773 DOI: 10.1007/s12015-023-10513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Inhibition of PKC (PKCi) signaling maintains pluripotency of embryonic stem cells (ESCs) across different mammalian species. However, the position of PKCi maintained ESCs in the pluripotency continuum is largely unknown. Here we demonstrate that mouse ESCs when cultured continuously, with PKCi, for 75 days are retained in naïve state of pluripotency. Gene expression analysis and proteomics studies demonstrated enhanced naïve character of PKCi maintained ESCs in comparison to classical serum/LIF (S/L) supported ESCs. Molecular analysis revealed that activation of PKCζ isoform associate with primed state of pluripotency, present in epiblast-like stem cells generated in vitro while inhibition of PKCζ phosphorylation associated with naïve state of pluripotency in vitro and in vivo. Phosphoproteomics and chromatin modification enzyme array based studies showed loss in DNA methyl transferase 3B (DNMT3B) and its phosphorylation level upon functional inhibition of PKCζ as one of the crucial components of this regulatory pathway. Unlike ground state of pluripotency maintained by MEK/GSK3 inhibitor in addition to LIF (2i/LIF), loss in DNMT3B is a reversible phenomenon in PKCi maintained ESCs. Absence of phosphorylation of c-MYC, RAF1, SPRY4 while presence of ERF, DUSP6, CIC and YAP1 phosphorylation underlined the phosphoproteomics signature of PKCi mediated maintenance of naïve pluripotency. States of pluripotency represent the developmental continuum and the existence of PKCi mediated mouse ESCs in a distinct state in the continuum of pluripotency (DiSCo) might contribute to the establishment of stages of murine embryonic development that were non-permissible till date.
Collapse
Affiliation(s)
- Ishita Baral
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.,Manipal Academy of Higher Education, Karnataka State, Manipal, 576104, India
| | - Mayur Balkrishna Shirude
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.,Manipal Academy of Higher Education, Karnataka State, Manipal, 576104, India
| | - Dhana Lakshmi Jothi
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India
| | - Ananda Mukherjee
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
6
|
Legier T, Rattier D, Llewellyn J, Vannier T, Sorre B, Maina F, Dono R. Epithelial disruption drives mesendoderm differentiation in human pluripotent stem cells by enabling TGF-β protein sensing. Nat Commun 2023; 14:349. [PMID: 36681697 PMCID: PMC9867713 DOI: 10.1038/s41467-023-35965-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
The processes of primitive streak formation and fate specification in the mammalian epiblast rely on complex interactions between morphogens and tissue organization. Little is known about how these instructive cues functionally interact to regulate gastrulation. We interrogated the interplay between tissue organization and morphogens by using human induced pluripotent stem cells (hiPSCs) downregulated for the morphogen regulator GLYPICAN-4, in which defects in tight junctions result in areas of disrupted epithelial integrity. Remarkably, this phenotype does not affect hiPSC stemness, but impacts on cell fate acquisition. Strikingly, cells within disrupted areas become competent to perceive the gastrulation signals BMP4 and ACTIVIN A, an in vitro surrogate for NODAL, and thus differentiate into mesendoderm. Yet, disruption of epithelial integrity sustains activation of BMP4 and ACTIVIN A downstream effectors and correlates with enhanced hiPSC endoderm/mesoderm differentiation. Altogether, our results disclose epithelial integrity as a key determinant of TGF-β activity and highlight an additional mechanism guiding morphogen sensing and spatial cell fate change within an epithelium.
Collapse
Affiliation(s)
- Thomas Legier
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Diane Rattier
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Jack Llewellyn
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Thomas Vannier
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Benoit Sorre
- Institut Curie, Universite ́PSL, Sorbonne Universite ́, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Flavio Maina
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Rosanna Dono
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France.
| |
Collapse
|
7
|
Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Cells 2022; 11:cells11111812. [PMID: 35681507 PMCID: PMC9180032 DOI: 10.3390/cells11111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is an evolutionarily conserved, ubiquitously expressed, multifunctional serine/threonine protein kinase involved in the regulation of a variety of physiological processes. GSK-3 comprises two isoforms (α and β) which were originally discovered in 1980 as enzymes involved in glucose metabolism via inhibitory phosphorylation of glycogen synthase. Differently from other proteins kinases, GSK-3 isoforms are constitutively active in resting cells, and their modulation mainly involves inhibition through upstream regulatory networks. In the early 1990s, GSK-3 isoforms were implicated as key players in cancer cell pathobiology. Active GSK-3 facilitates the destruction of multiple oncogenic proteins which include β-catenin and Master regulator of cell cycle entry and proliferative metabolism (c-Myc). Therefore, GSK-3 was initially considered to be a tumor suppressor. Consistently, GSK-3 is often inactivated in cancer cells through dysregulated upstream signaling pathways. However, over the past 10–15 years, a growing number of studies highlighted that in some cancer settings GSK-3 isoforms inhibit tumor suppressing pathways and therefore act as tumor promoters. In this article, we will discuss the multiple and often enigmatic roles played by GSK-3 isoforms in some chronic hematological malignancies (chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B-cell non-Hodgkin’s lymphomas) which are among the most common blood cancer cell types. We will also summarize possible novel strategies targeting GSK-3 for innovative therapies of these disorders.
Collapse
|
8
|
Novel dual-targeting c-Myc inhibitor D347-2761 represses myeloma growth via blocking c-Myc/Max heterodimerization and disturbing its stability. Cell Commun Signal 2022; 20:73. [PMID: 35619182 PMCID: PMC9137135 DOI: 10.1186/s12964-022-00868-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/29/2022] [Indexed: 12/28/2022] Open
Abstract
Background Transcription factor c-Myc plays a critical role in various physiological and pathological events. c-Myc gene rearrangement is closely associated with multiple myeloma (MM) progression and drug resistance. Thereby, targeting c-Myc is expected to be a useful therapeutic strategy for hematological disease, especially in MM.
Methods Molecular docking-based virtual screening and dual-luciferase reporter gene assay were used to identify novel c-Myc inhibitors. Cell viability and flow cytometry were performed for evaluating myeloma cytotoxicity. Western blot, immunofluorescence, immunoprecipitation, GST pull down and Electrophoretic Mobility Shift Assay were performed for protein expression and interaction between c-Myc and Max. c-Myc downstream targets were measured by Q-PCR and Chromatin immunoprecipitation methods. Animal experiments were used to detect myeloma xenograft and infiltration in vivo. Results We successfully identified a novel c-Myc inhibitor D347-2761, which hindered the formation of c-Myc/Max heterodimer and disturbed c-Myc protein stability simultaneously. Compound D347-2761 dose-and time-dependently inhibited myeloma cell proliferation and induced apoptosis. Dual knockout Bak/Bax partially restored D347-2761-mediated cell death. Additionally, compound D347-2761 could, in combination with bortezomib (BTZ), enhance MM cell DNA damage and overcome BTZ drug resistance. Our in vivo studies also showed that compound D347-2761 repressed myeloma growth and distal infiltration by downregulating c-Myc expression. Mechanistically, novel dual-targeting c-Myc inhibitor D347-2761 promoted c-Myc protein degradation via stimulating c-Myc Thr58 phosphorylation levels, which ultimately led to transcriptional repression of CDK4 promoter activity. Conclusions We identified a novel dual-targeting c-Myc small molecular inhibitor D347-2761. And this study may provide a solid foundation for developing a novel therapeutic agent targeting c-Myc. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00868-6.
Collapse
|
9
|
Schreuder MJ, Wigman JTW, Groen RN, Wichers M, Hartman CA. On the transience or stability of subthreshold psychopathology. Sci Rep 2021; 11:23306. [PMID: 34857821 PMCID: PMC8640053 DOI: 10.1038/s41598-021-02711-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022] Open
Abstract
Symptoms of psychopathology lie on a continuum ranging from mental health to psychiatric disorders. Although much research has focused on progression along this continuum, for most individuals, subthreshold symptoms do not escalate into full-blown disorders. This study investigated how the stability of psychopathological symptoms (attractor strength) varies across severity levels (homebase). Data were retrieved from the TRAILS TRANS-ID study, where 122 at-risk young adults (mean age 23.6 years old, 57% males) monitored their mental states daily for a period of six months (± 183 observations per participant). We estimated each individual's homebase and attractor strength using generalized additive mixed models. Regression analyses showed no association between homebases and attractor strengths (linear model: B = 0.02, p = 0.47, R2 < 0.01; polynomial model: B < 0.01, p = 0.61, R2 < 0.01). Sensitivity analyses where we (1) weighed estimates according to their uncertainty and (2) removed individuals with a DSM-5 diagnosis from the analyses did not change this finding. This suggests that stability is similar across severity levels, implying that subthreshold psychopathology may resemble a stable state rather than a transient intermediate between mental health and psychiatric disorder. Our study thus provides additional support for a dimensional view on psychopathology, which implies that symptoms differ in degree rather than kind.
Collapse
Affiliation(s)
- Marieke J Schreuder
- Interdisciplinary Center for Psychopathology and Emotion regulation, Department of Psychiatry, University Medical Center Groningen, University of Groningen, Hanzeplein, 19713 GZ, Groningen, The Netherlands.
| | - Johanna T W Wigman
- Interdisciplinary Center for Psychopathology and Emotion regulation, Department of Psychiatry, University Medical Center Groningen, University of Groningen, Hanzeplein, 19713 GZ, Groningen, The Netherlands
| | - Robin N Groen
- Interdisciplinary Center for Psychopathology and Emotion regulation, Department of Psychiatry, University Medical Center Groningen, University of Groningen, Hanzeplein, 19713 GZ, Groningen, The Netherlands
| | - Marieke Wichers
- Interdisciplinary Center for Psychopathology and Emotion regulation, Department of Psychiatry, University Medical Center Groningen, University of Groningen, Hanzeplein, 19713 GZ, Groningen, The Netherlands
| | - Catharina A Hartman
- Interdisciplinary Center for Psychopathology and Emotion regulation, Department of Psychiatry, University Medical Center Groningen, University of Groningen, Hanzeplein, 19713 GZ, Groningen, The Netherlands
| |
Collapse
|
10
|
Sharma P, Tiufekchiev S, Lising V, Chung SW, Suk JS, Chung BM. Keratin 19 interacts with GSK3β to regulate its nuclear accumulation and degradation of cyclin D3. Mol Biol Cell 2021; 32:ar21. [PMID: 34406791 PMCID: PMC8693971 DOI: 10.1091/mbc.e21-05-0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclin D3 regulates the G1/S transition and is frequently overexpressed in several cancer types including breast cancer, where it promotes tumor progression. Here we show that a cytoskeletal protein keratin 19 (K19) physically interacts with a serine/threonine kinase GSK3β and prevents GSK3β-dependent degradation of cyclin D3. The absence of K19 allowed active GSK3β to accumulate in the nucleus and degrade cyclin D3. Specifically, the head (H) domain of K19 was required to sustain inhibitory phosphorylation of GSK3β Ser9, prevent nuclear accumulation of GSK3β, and maintain cyclin D3 levels and cell proliferation. K19 was found to interact with GSK3β and K19–GSK3β interaction was mapped out to require Ser10 and Ser35 residues on the H domain of K19. Unlike wildtype K19, S10A and S35A mutants failed to maintain total and nuclear cyclin D3 levels and induce cell proliferation. Finally, we show that the K19–GSK3β-cyclin D3 pathway affected sensitivity of cells toward inhibitors to cyclin-dependent kinase 4 and 6 (CDK4/6). Overall, these findings establish a role for K19 in the regulation of GSK3β-cyclin D3 pathway and demonstrate a potential strategy for overcoming resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Sarah Tiufekchiev
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Victoria Lising
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Seung Woo Chung
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, DC 20064
| |
Collapse
|
11
|
Moore SF, Agbani EO, Wersäll A, Poole AW, Williams CM, Zhao X, Li Y, Hutchinson JL, Hunter RW, Hers I. Opposing Roles of GSK3α and GSK3β Phosphorylation in Platelet Function and Thrombosis. Int J Mol Sci 2021; 22:10656. [PMID: 34638997 PMCID: PMC8508950 DOI: 10.3390/ijms221910656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
One of the mechanisms by which PI3 kinase can regulate platelet function is through phosphorylation of downstream substrates, including glycogen synthase kinase-3 (GSK3)α and GSK3β. Platelet activation results in the phosphorylation of an N-terminal serine residue in GSK3α (Ser21) and GSK3β (Ser9), which competitively inhibits substrate phosphorylation. However, the role of phosphorylation of these paralogs is still largely unknown. Here, we employed GSK3α/β phosphorylation-resistant mouse models to explore the role of this inhibitory phosphorylation in regulating platelet activation. Expression of phosphorylation-resistant GSK3α/β reduced thrombin-mediated platelet aggregation, integrin αIIbβ3 activation, and α-granule secretion, whereas platelet responses to the GPVI agonist collagen-related peptide (CRP-XL) were significantly enhanced. GSK3 single knock-in lines revealed that this divergence is due to differential roles of GSK3α and GSK3β phosphorylation in regulating platelet function. Expression of phosphorylation-resistant GSK3α resulted in enhanced GPVI-mediated platelet activation, whereas expression of phosphorylation-resistant GSK3β resulted in a reduction in PAR-mediated platelet activation and impaired in vitro thrombus formation under flow. Interestingly, the latter was normalised in double GSK3α/β KI mice, indicating that GSK3α KI can compensate for the impairment in thrombosis caused by GSK3β KI. In conclusion, our data indicate that GSK3α and GSK3β have differential roles in regulating platelet function.
Collapse
Affiliation(s)
- Samantha F. Moore
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; (S.F.M.); (E.O.A.); (A.W.); (A.W.P.); (C.M.W.); (X.Z.); (Y.L.); (J.L.H.); (R.W.H.)
| | - Ejaife O. Agbani
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; (S.F.M.); (E.O.A.); (A.W.); (A.W.P.); (C.M.W.); (X.Z.); (Y.L.); (J.L.H.); (R.W.H.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andreas Wersäll
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; (S.F.M.); (E.O.A.); (A.W.); (A.W.P.); (C.M.W.); (X.Z.); (Y.L.); (J.L.H.); (R.W.H.)
| | - Alastair W. Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; (S.F.M.); (E.O.A.); (A.W.); (A.W.P.); (C.M.W.); (X.Z.); (Y.L.); (J.L.H.); (R.W.H.)
| | - Chris M. Williams
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; (S.F.M.); (E.O.A.); (A.W.); (A.W.P.); (C.M.W.); (X.Z.); (Y.L.); (J.L.H.); (R.W.H.)
| | - Xiaojuan Zhao
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; (S.F.M.); (E.O.A.); (A.W.); (A.W.P.); (C.M.W.); (X.Z.); (Y.L.); (J.L.H.); (R.W.H.)
| | - Yong Li
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; (S.F.M.); (E.O.A.); (A.W.); (A.W.P.); (C.M.W.); (X.Z.); (Y.L.); (J.L.H.); (R.W.H.)
| | - James L. Hutchinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; (S.F.M.); (E.O.A.); (A.W.); (A.W.P.); (C.M.W.); (X.Z.); (Y.L.); (J.L.H.); (R.W.H.)
| | - Roger W. Hunter
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; (S.F.M.); (E.O.A.); (A.W.); (A.W.P.); (C.M.W.); (X.Z.); (Y.L.); (J.L.H.); (R.W.H.)
- NHS Blood and Transplant, North Bristol Park, Filton, Bristol BS34 7QH, UK
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; (S.F.M.); (E.O.A.); (A.W.); (A.W.P.); (C.M.W.); (X.Z.); (Y.L.); (J.L.H.); (R.W.H.)
| |
Collapse
|
12
|
Yang Y, Wang H, Zhao H, Miao X, Guo Y, Zhuo L, Xu Y. A GSK3-SRF Axis Mediates Angiotensin II Induced Endothelin Transcription in Vascular Endothelial Cells. Front Cell Dev Biol 2021; 9:698254. [PMID: 34381779 PMCID: PMC8350349 DOI: 10.3389/fcell.2021.698254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelin, encoded by ET1, is a vasoactive substance primarily synthesized in vascular endothelial cells (VECs). Elevation of endothelin levels, due to transcriptional hyperactivation, has been observed in a host of cardiovascular diseases. We have previously shown that serum response factor (SRF) is a regulator of ET1 transcription in VECs. Here we report that angiotensin II (Ang II) induced ET1 transcription paralleled activation of glycogen synthase kinase 3 (GSK3) in cultured VECs. GSK3 knockdown or pharmaceutical inhibition attenuated Ang II induced endothelin expression. Of interest, the effect of GSK3 on endothelin transcription relied on the conserved SRF motif within the ET1 promoter. Further analysis revealed that GSK3 interacted with and phosphorylated SRF at serine 224. Phosphorylation of SRF by GSK3 did not influence its recruitment to the ET1 promoter. Instead, GSK3-mediated SRF phosphorylation potentiated its interaction with MRTF-A, a key co-factor for SRF, which helped recruit the chromatin remodeling protein BRG1 to the ET1 promoter resulting in augmented histone H3 acetylation/H3K4 trimethylation. Consistently, over-expression of a constitutively active GSK enhanced Ang II-induced ET1 transcription and knockdown of either MRTF-A or BRG1 abrogated the enhancement of ET1 transcription. In conclusion, our data highlight a previously unrecognized mechanism that contributes to the transcriptional regulation of endothelin. Targeting this GSK3-SRF axis may yield novel approaches in the intervention of cardiovascular diseases.
Collapse
Affiliation(s)
- Yuyu Yang
- Jiangsu Key Laboratory for Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Huidi Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hongwei Zhao
- Jiangsu Key Laboratory for Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiulian Miao
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yan Guo
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Martelli AM, Evangelisti C, Paganelli F, Chiarini F, McCubrey JA. GSK-3: a multifaceted player in acute leukemias. Leukemia 2021; 35:1829-1842. [PMID: 33811246 DOI: 10.1038/s41375-021-01243-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) consists of two isoforms (α and β) that were originally linked to glucose metabolism regulation. However, GSK-3 is also involved in several signaling pathways controlling many different key functions in healthy cells. GSK-3 is a unique kinase in that its isoforms are constitutively active, while they are inactivated mainly through phosphorylation at Ser residues by a variety of upstream kinases. In the early 1990s, GSK-3 emerged as a key player in cancer cell pathophysiology. Since active GSK-3 promotes destruction of multiple oncogenic proteins (e.g., β-catenin, c-Myc, Mcl-1) it was considered to be a tumor suppressor. Accordingly, GSK-3 is frequently inactivated in human cancer via aberrant regulation of upstream signaling pathways. More recently, however, it has emerged that GSK-3 isoforms display also oncogenic properties, as they up-regulate pathways critical for neoplastic cell proliferation, survival, and drug-resistance. The regulatory roles of GSK-3 isoforms in cell cycle, apoptosis, DNA repair, tumor metabolism, invasion, and metastasis reflect the therapeutic relevance of these kinases and provide the rationale for combining GSK-3 inhibitors with other targeted drugs. Here, we discuss the multiple and often conflicting roles of GSK-3 isoforms in acute leukemias. We also review the current status of GSK-3 inhibitor development for innovative leukemia therapy.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
14
|
Dierolf JG, Watson AJ, Betts DH. Differential localization patterns of pyruvate kinase isoforms in murine naïve, formative, and primed pluripotent states. Exp Cell Res 2021; 405:112714. [PMID: 34181938 DOI: 10.1016/j.yexcr.2021.112714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022]
Abstract
Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) represent opposite ends of the pluripotency continuum, referred to as naïve and primed pluripotent states, respectively. These divergent pluripotent states differ in several ways, including growth factor requirements, transcription factor expression, DNA methylation patterns, and metabolic profiles. Naïve cells employ both glycolysis and oxidative phosphorylation (OXPHOS), whereas primed cells preferentially utilize aerobic glycolysis, a trait shared with cancer cells referred to as the Warburg Effect. Until recently, metabolism has been regarded as a by-product of cell fate, however, evidence now supports metabolism as being a driver of stem cell state and fate decisions. Pyruvate kinase muscle isoforms (PKM1 and PKM2) are important for generating and maintaining pluripotent stem cells (PSCs) and mediating the Warburg Effect. Both isoforms catalyze the final, rate limiting step of glycolysis, generating adenosine triphosphate and pyruvate, however, the precise role(s) of PKM1/2 in naïve and primed pluripotency is not well understood. The primary objective of this study was to characterize the cellular expression and localization patterns of PKM1 and PKM2 in mESCs, chemically transitioned epiblast-like cells (mEpiLCs) representing formative pluripotency, and mEpiSCs using immunoblotting and confocal microscopy. The results indicate that PKM1 and PKM2 are not only localized to the cytoplasm, but also accumulate in differential subnuclear regions of mESC, mEpiLCs, and mEpiSCs as determined by a quantitative confocal microscopy employing orthogonal projections and airyscan processing. Importantly, we discovered that the subnuclear localization of PKM1/2 changes during the transition from mESCs, mEpiLCs, and mEpiSCs. Finally, we have comprehensively validated the appropriateness and power of the Pearson's correlation coefficient and Manders's overlap coefficient for assessing nuclear and cytoplasmic protein colocalization in PSCs by immunofluorescence confocal microscopy. We propose that nuclear PKM1/2 may assist with distinct pluripotency state maintenance and lineage priming by non-canonical mechanisms. These results advance our understanding of the overall mechanisms controlling naïve, formative, and primed pluripotency.
Collapse
Affiliation(s)
- Joshua G Dierolf
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Andrew J Watson
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Department of Obstetrics and Gynecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Department of Obstetrics and Gynecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, Canada.
| |
Collapse
|
15
|
Wadhwa P, Jain P, Jadhav HR. Glycogen Synthase Kinase 3 (GSK3): Its Role and Inhibitors. Curr Top Med Chem 2021; 20:1522-1534. [PMID: 32416693 DOI: 10.2174/1568026620666200516153136] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022]
Abstract
Glycogen Synthase Kinase 3 (GSK3) is one of the Serine/Threonine protein kinases, which has gained a lot of attention for its role in a variety of pathways. It has two isoforms, GSK3α and GSK3β. However, GSK3β is highly expressed in different areas of the brain and has been implicated in Alzheimer's disease as it is involved in tau phosphorylation. Due to its high specificity concerning substrate recognition, GSK3 has been considered as an important target. In the last decade, several GSK3 inhibitors have been reported and two molecules are in clinical trials. This review collates the information published in the last decade about the role of GSK3 in Alzheimer's disease and progress in the development of its inhibitors. Using this collated information, medicinal chemists can strategize and design novel GSK3 inhibitors that could be useful in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Pankaj Wadhwa
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani- 333031, Rajasthan, India
| | - Priti Jain
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani- 333031, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani- 333031, Rajasthan, India
| |
Collapse
|
16
|
Song HR, Kim HK, Kim SG, Lim HJ, Kim HY, Han MK. Changes in the phosphorylation of nucleotide metabolism‑associated proteins by leukemia inhibitory factor in mouse embryonic stem cells. Mol Med Rep 2021; 23:431. [PMID: 33846773 PMCID: PMC8060798 DOI: 10.3892/mmr.2021.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/22/2020] [Indexed: 11/05/2022] Open
Abstract
Leukemia inhibitory factor (LIF) is a stem cell growth factor that maintains self‑renewal of mouse embryonic stem cells (mESCs). LIF is a cytokine in the interleukin‑6 family and signals via the common receptor subunit gp130 and ligand‑specific LIF receptor. LIF causes heterodimerization of the LIF receptor and gp130, activating the Janus kinase/STAT and MAPK pathways, resulting in changes in protein phosphorylation. The present study profiled LIF‑mediated protein phosphorylation changes in mESCs via proteomic analysis. mESCs treated in the presence or absence of LIF were analyzed via two‑dimensional differential in‑gel electrophoresis and protein and phosphoprotein staining. Protein identification was performed by matrix‑assisted laser desorption/ionization‑time of flight mass spectrophotometry. Increased phosphorylation of 16 proteins and decreased phosphorylation of 34 proteins in response to LIF treatment was detected. Gene Ontology terms enriched in these proteins included 'organonitrogen compound metabolic process', 'regulation of mRNA splicing via spliceosome' and 'nucleotide metabolic process'. The present results revealed that LIF modulated phosphorylation levels of nucleotide metabolism‑associated proteins, thus providing insight into the mechanism underlying LIF action in mESCs.
Collapse
Affiliation(s)
- Hwa-Ryung Song
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Han-Kyu Kim
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Seung-Gook Kim
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Hyung-Jin Lim
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Hyun-Yi Kim
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Myung-Kwan Han
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| |
Collapse
|
17
|
Sriram D, Dayma K, Devi AS, Raghawan AK, Rawat S, Radha V. Complex formation and reciprocal regulation between GSK3β and C3G. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118964. [PMID: 33450305 DOI: 10.1016/j.bbamcr.2021.118964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022]
Abstract
GSK3β, a ubiquitously expressed Ser/Thr kinase, regulates cell metabolism, proliferation and differentiation. Its activity is spatially and temporally regulated dependent on external stimuli and interacting partners, and its deregulation is associated with various human disorders. In this study, we identify C3G (RapGEF1), a protein essential for mammalian embryonic development as an interacting partner and substrate of GSK3β. In vivo and in vitro interaction assays demonstrated that GSK3β and Akt are present in complex with C3G. Molecular modelling and mutational analysis identified a domain in C3G that aids interaction with GSK3β, and overlaps with its nuclear export sequence. GSK3β phosphorylates C3G on primed as well as unprimed sites, and regulates its subcellular localization. Over-expression of C3G resulted in activation of Akt and inactivation of GSK3β. Huntingtin aggregate formation, dependent on GSK3β inhibition, was enhanced upon C3G overexpression. Stable clones of C2C12 cells generated by CRISPR/Cas9 mediated knockdown of C3G, that cannot differentiate, show reduced Akt activity and S9-GSK3β phosphorylation compared to wild type cells. Co-expression of catalytically active GSK3β inhibited C3G induced myocyte differentiation. C3G mutant defective for GSK3β phosphorylation, does not alter S9-GSK3β phosphorylation and, is compromised for inducing myocyte differentiation. Our results show complex formation and reciprocal regulation between GSK3β and C3G. We have identified a novel function of C3G as a negative regulator of GSK3β, a property important for its ability to induce myogenic differentiation.
Collapse
Affiliation(s)
- Divya Sriram
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Kunal Dayma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ambure Sharada Devi
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | - Shivali Rawat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Vegesna Radha
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
18
|
Dalby E, Christensen SM, Wang J, Hamidzadeh K, Chandrasekaran P, Hughitt VK, Tafuri WL, Arantes RME, Rodrigues IA, Herbst R, El-Sayed NM, Sims GP, Mosser DM. Immune Complex-Driven Generation of Human Macrophages with Anti-Inflammatory and Growth-Promoting Activity. THE JOURNAL OF IMMUNOLOGY 2020; 205:102-112. [PMID: 32434940 DOI: 10.4049/jimmunol.1901382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
Abstract
To maintain homeostasis, macrophages must be capable of assuming either an inflammatory or an anti-inflammatory phenotype. To better understand the latter, we stimulated human macrophages in vitro with TLR ligands in the presence of high-density immune complexes (IC). This combination of stimuli resulted in a broad suppression of inflammatory mediators and an upregulation of molecules involved in tissue remodeling and angiogenesis. Transcriptomic analysis of TLR stimulation in the presence of IC predicted the downstream activation of AKT and the inhibition of GSK3. Consequently, we pretreated LPS-stimulated human macrophages with small molecule inhibitors of GSK3 to partially phenocopy the regulatory effects of stimulation in the presence of IC. The upregulation of DC-STAMP and matrix metalloproteases was observed on these cells and may represent potential biomarkers for this regulatory activation state. To demonstrate the presence of these anti-inflammatory, growth-promoting macrophages in a human infectious disease, biopsies from patients with leprosy (Hanseniasis) were analyzed. The lepromatous form of this disease is characterized by hypergammaglobulinemia and defective cell-mediated immunity. Lesions in lepromatous leprosy contained macrophages with a regulatory phenotype expressing higher levels of DC-STAMP and lower levels of IL-12, relative to macrophages in tuberculoid leprosy lesions. Therefore, we propose that increased signaling by FcγR cross-linking on TLR-stimulated macrophages can paradoxically promote the resolution of inflammation and initiate processes critical to tissue growth and repair. It can also contribute to infectious disease progression.
Collapse
Affiliation(s)
- Elizabeth Dalby
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Stephen M Christensen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Jingya Wang
- Department of Respiratory, Inflammation, and Autoimmunity, AstraZeneca, Gaithersburg, MD 20878
| | - Kajal Hamidzadeh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Prabha Chandrasekaran
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - V Keith Hughitt
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Wagner Luiz Tafuri
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; and
| | - Rosa Maria Esteves Arantes
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; and
| | | | - Ronald Herbst
- Department of Respiratory, Inflammation, and Autoimmunity, AstraZeneca, Gaithersburg, MD 20878
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Gary P Sims
- Department of Respiratory, Inflammation, and Autoimmunity, AstraZeneca, Gaithersburg, MD 20878;
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742;
| |
Collapse
|
19
|
Temprine K, Campbell NR, Huang R, Langdon EM, Simon-Vermot T, Mehta K, Clapp A, Chipman M, White RM. Regulation of the error-prone DNA polymerase Polκ by oncogenic signaling and its contribution to drug resistance. Sci Signal 2020; 13:13/629/eaau1453. [PMID: 32345725 DOI: 10.1126/scisignal.aau1453] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The DNA polymerase Polκ plays a key role in translesion synthesis, an error-prone replication mechanism. Polκ is overexpressed in various tumor types. Here, we found that melanoma and lung and breast cancer cells experiencing stress from oncogene inhibition up-regulated the expression of Polκ and shifted its localization from the cytoplasm to the nucleus. This effect was phenocopied by inhibition of the kinase mTOR, by induction of ER stress, or by glucose deprivation. In unstressed cells, Polκ is continually transported out of the nucleus by exportin-1. Inhibiting exportin-1 or overexpressing Polκ increased the abundance of nuclear-localized Polκ, particularly in response to the BRAFV600E-targeted inhibitor vemurafenib, which decreased the cytotoxicity of the drug in BRAFV600E melanoma cells. These observations were analogous to how Escherichia coli encountering cell stress and nutrient deprivation can up-regulate and activate DinB/pol IV, the bacterial ortholog of Polκ, to induce mutagenesis that enables stress tolerance or escape. However, we found that the increased expression of Polκ was not excessively mutagenic, indicating that noncatalytic or other functions of Polκ could mediate its role in stress responses in mammalian cells. Repressing the expression or nuclear localization of Polκ might prevent drug resistance in some cancer cells.
Collapse
Affiliation(s)
- Kelsey Temprine
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nathaniel R Campbell
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Tri-Institutional M.D./Ph.D. Program, Weill Cornell Medical College, New York, NY 10065, USA
| | - Richard Huang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin M Langdon
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Theresa Simon-Vermot
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Krisha Mehta
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Mollie Chipman
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard M White
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
20
|
GSK3: A Kinase Balancing Promotion and Resolution of Inflammation. Cells 2020; 9:cells9040820. [PMID: 32231133 PMCID: PMC7226814 DOI: 10.3390/cells9040820] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
GSK3 has been implicated for years in the regulation of inflammation and addressed in a plethora of scientific reports using a variety of experimental (disease) models and approaches. However, the specific role of GSK3 in the inflammatory process is still not fully understood and controversially discussed. Following a detailed overview of structure, function, and various regulatory levels, this review focusses on the immunoregulatory functions of GSK3, including the current knowledge obtained from animal models. Its impact on pro-inflammatory cytokine/chemokine profiles, bacterial/viral infections, and the modulation of associated pro-inflammatory transcriptional and signaling pathways is discussed. Moreover, GSK3 contributes to the resolution of inflammation on multiple levels, e.g., via the regulation of pro-resolving mediators, the clearance of apoptotic immune cells, and tissue repair processes. The influence of GSK3 on the development of different forms of stimulation tolerance is also addressed. Collectively, the role of GSK3 as a kinase balancing the initiation/perpetuation and the amelioration/resolution of inflammation is highlighted.
Collapse
|
21
|
Madsen RR. PI3K in stemness regulation: from development to cancer. Biochem Soc Trans 2020; 48:301-315. [PMID: 32010943 PMCID: PMC7054754 DOI: 10.1042/bst20190778] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
The PI3K/AKT pathway is a key target in oncology where most efforts are focussed on phenotypes such as cell proliferation and survival. Comparatively, little attention has been paid to PI3K in stemness regulation, despite the emerging link between acquisition of stem cell-like features and therapeutic failure in cancer. The aim of this review is to summarise current known and unknowns of PI3K-dependent stemness regulation, by integrating knowledge from the fields of developmental, signalling and cancer biology. Particular attention is given to the role of the PI3K pathway in pluripotent stem cells (PSCs) and the emerging parallels to dedifferentiated cancer cells with stem cell-like features. Compelling evidence suggests that PI3K/AKT signalling forms part of a 'core molecular stemness programme' in both mouse and human PSCs. In cancer, the oncogenic PIK3CAH1047R variant causes constitutive activation of the PI3K pathway and has recently been linked to increased stemness in a dose-dependent manner, similar to observations in mouse PSCs with heterozygous versus homozygous Pten loss. There is also evidence that the stemness phenotype may become 'locked' and thus independent of the original PI3K activation, posing limitations for the success of PI3K monotherapy in cancer. Ongoing therapeutic developments for PI3K-associated cancers may therefore benefit from a better understanding of the pathway's two-layered and highly context-dependent regulation of cell growth versus stemness.
Collapse
Affiliation(s)
- Ralitsa R. Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, U.K
| |
Collapse
|
22
|
Park HK, Yoon NG, Lee JE, Hu S, Yoon S, Kim SY, Hong JH, Nam D, Chae YC, Park JB, Kang BH. Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1. Exp Mol Med 2020; 52:79-91. [PMID: 31956271 PMCID: PMC7000702 DOI: 10.1038/s12276-019-0360-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 01/22/2023] Open
Abstract
The Hsp90 family proteins Hsp90, Grp94, and TRAP1 are present in the cell cytoplasm, endoplasmic reticulum, and mitochondria, respectively; all play important roles in tumorigenesis by regulating protein homeostasis in response to stress. Thus, simultaneous inhibition of all Hsp90 paralogs is a reasonable strategy for cancer therapy. However, since the existing pan-Hsp90 inhibitor does not accumulate in mitochondria, the potential anticancer activity of pan-Hsp90 inhibition has not yet been fully examined in vivo. Analysis of The Cancer Genome Atlas database revealed that all Hsp90 paralogs were upregulated in prostate cancer. Inactivation of all Hsp90 paralogs induced mitochondrial dysfunction, increased cytosolic calcium, and activated calcineurin. Active calcineurin blocked prosurvival heat shock responses upon Hsp90 inhibition by preventing nuclear translocation of HSF1. The purine scaffold derivative DN401 inhibited all Hsp90 paralogs simultaneously and showed stronger anticancer activity than other Hsp90 inhibitors. Pan-Hsp90 inhibition increased cytotoxicity and suppressed mechanisms that protect cancer cells, suggesting that it is a feasible strategy for the development of potent anticancer drugs. The mitochondria-permeable drug DN401 is a newly identified in vivo pan-Hsp90 inhibitor with potent anticancer activity.
Collapse
Affiliation(s)
- Hye-Kyung Park
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Nam Gu Yoon
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Ji-Eun Lee
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sung Hu
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sora Yoon
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - So Yeon Kim
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Jun-Hee Hong
- 0000 0004 0628 9810grid.410914.9Rare Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Dougu Nam
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Young Chan Chae
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Jong Bae Park
- 0000 0004 0628 9810grid.410914.9Rare Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, 10408 Republic of Korea ,0000 0004 0628 9810grid.410914.9Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Byoung Heon Kang
- 0000 0004 0381 814Xgrid.42687.3fDepartment of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan, 44919 South Korea
| |
Collapse
|
23
|
Evangelisti C, Chiarini F, Paganelli F, Marmiroli S, Martelli AM. Crosstalks of GSK3 signaling with the mTOR network and effects on targeted therapy of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118635. [PMID: 31884070 DOI: 10.1016/j.bbamcr.2019.118635] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
The introduction of therapeutics targeting specific tumor-promoting oncogenic or non-oncogenic signaling pathways has revolutionized cancer treatment. Mechanistic (previously mammalian) target of rapamycin (mTOR), a highly conserved Ser/Thr kinase, is a central hub of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR network, one of the most frequently deregulated signaling pathways in cancer, that makes it an attractive target for therapy. Numerous mTOR inhibitors have progressed to clinical trials and two of them have been officially approved as anticancer therapeutics. However, mTOR-targeting drugs have met with a very limited success in cancer patients. Frequently, the primary impediment to a successful targeted therapy in cancer is drug-resistance, either from the very beginning of the therapy (innate resistance) or after an initial response and upon repeated drug treatment (evasive or acquired resistance). Drug-resistance leads to treatment failure and relapse/progression of the disease. Resistance to mTOR inhibitors depends, among other reasons, on activation/deactivation of several signaling pathways, included those regulated by glycogen synthase kinase-3 (GSK3), a protein that targets a vast number of substrates in its repertoire, thereby orchestrating many processes that include cell proliferation and survival, metabolism, differentiation, and stemness. A detailed knowledge of the rewiring of signaling pathways triggered by exposure to mTOR inhibitors is critical to our understanding of the consequences such perturbations cause in tumors, including the emergence of drug-resistant cells. Here, we provide the reader with an updated overview of intricate circuitries that connect mTOR and GSK3 and we relate them to the efficacy (or lack of efficacy) of mTOR inhibitors in cancer cells.
Collapse
Affiliation(s)
- Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Sandra Marmiroli
- Department of Biomedical, Metabolical, and Neurological Sciences, University of Modena and Reggio Emilia, 41124 Modena, MO, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy.
| |
Collapse
|
24
|
Li M, Yu JSL, Tilgner K, Ong SH, Koike-Yusa H, Yusa K. Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution. Cell Rep 2019; 24:489-502. [PMID: 29996108 PMCID: PMC6057492 DOI: 10.1016/j.celrep.2018.06.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/26/2018] [Accepted: 06/06/2018] [Indexed: 01/12/2023] Open
Abstract
The genetic basis of naive pluripotency maintenance and loss is a central question in embryonic stem cell biology. Here, we deploy CRISPR-knockout-based screens in mouse embryonic stem cells to interrogate this question through a genome-wide, non-biased approach using the Rex1GFP reporter as a phenotypic readout. This highly sensitive and efficient method identified genes in diverse biological processes and pathways. We uncovered a key role for negative regulators of mTORC1 in maintenance and exit from naive pluripotency and provided an integrated account of how mTORC1 activity influences naive pluripotency through Gsk3. Our study therefore reinforces Gsk3 as the central node and provides a comprehensive, data-rich resource that will improve our understanding of mechanisms regulating pluripotency and stimulate avenues for further mechanistic studies. Genome-wide CRISPR screening identifies naive pluripotency regulators in mouse ESCs mTORC1-negative regulators from two axes show opposing phenotypes Gator1 is required for proper self-renewal and differentiation via Gsk3 regulation Tsc2 loss causes Akt-dependent, mTORC1-dependent Gsk3 suppression
Collapse
Affiliation(s)
- Meng Li
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Jason S L Yu
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Swee Hoe Ong
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Kosuke Yusa
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
25
|
Mnatsakanyan H, Sabater I Serra R, Salmeron-Sanchez M, Rico P. Zinc Maintains Embryonic Stem Cell Pluripotency and Multilineage Differentiation Potential via AKT Activation. Front Cell Dev Biol 2019; 7:180. [PMID: 31544103 PMCID: PMC6728745 DOI: 10.3389/fcell.2019.00180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Embryonic stem cells (ESCs) possess remarkable abilities, as they can differentiate into all cell types (pluripotency) and be self-renewing, giving rise to two identical cells. These characteristics make ESCs a powerful research tool in fundamental embryogenesis as well as candidates for use in regenerative medicine. Significant efforts have been devoted to developing protocols to control ESC fate, including soluble and complex cocktails of growth factors and small molecules seeking to activate/inhibit key signaling pathways for the maintenance of pluripotency states or activate differentiation. Here we describe a novel method for the effective maintenance of mouse ESCs, avoiding the supplementation of complex inhibitory cocktails or cytokines, e.g., LIF. We show that the addition of zinc to ESC cultures leads to a stable pluripotent state that shares biochemical, transcriptional and karyotypic features with the classical LIF treatment. We demonstrate for the first time that ESCs maintained in long-term cultures with added zinc, are capable of sustaining a stable ESCs pluripotent phenotype, as well as differentiating efficiently upon external stimulation. We show that zinc promotes long-term ESC self-renewal (>30 days) via activation of ZIP7 and AKT signaling pathways. Furthermore, the combination of zinc with LIF results in a synergistic effect that enhances LIF effects, increases AKT and STAT3 activity, promotes the expression of pluripotency regulators and avoids the expression of differentiation markers.
Collapse
Affiliation(s)
- Hayk Mnatsakanyan
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
| | - Roser Sabater I Serra
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Manuel Salmeron-Sanchez
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Division of Biomedical Engineering, Centre for the Cellular Microenvironment, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Patricia Rico
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
26
|
Bautista SJ, Boras I, Vissa A, Mecica N, Yip CM, Kim PK, Antonescu CN. mTOR complex 1 controls the nuclear localization and function of glycogen synthase kinase 3β. J Biol Chem 2018; 293:14723-14739. [PMID: 30061153 DOI: 10.1074/jbc.ra118.002800] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/19/2018] [Indexed: 01/08/2023] Open
Abstract
Glycogen synthase kinase 3β (GSK3β) phosphorylates and thereby regulates a wide range of protein substrates involved in diverse cellular functions. Some GSK3β substrates, such as c-Myc and Snail, are nuclear transcription factors, suggesting the possibility that GSK3β function is controlled through its nuclear localization. Here, using ARPE-19 and MDA-MB-231 human cell lines, we found that inhibition of mTOR complex 1 (mTORC1) leads to partial redistribution of GSK3β from the cytosol to the nucleus and to a GSK3β-dependent reduction of the levels of both c-Myc and Snail. mTORC1 is known to be controlled by metabolic cues, such as by AMP-activated protein kinase (AMPK) or amino acid abundance, and we observed here that AMPK activation or amino acid deprivation promotes GSK3β nuclear localization in an mTORC1-dependent manner. GSK3β was detected on several distinct endomembrane compartments, including lysosomes. Consistently, disruption of late endosomes/lysosomes through a perturbation of RAS oncogene family member 7 (Rab7) resulted in loss of GSK3β from lysosomes and in enhanced GSK3β nuclear localization as well as GSK3β-dependent reduction of c-Myc levels. These findings indicate that the nuclear localization and function of GSK3β is suppressed by mTORC1 and suggest a link between metabolic conditions sensed by mTORC1 and GSK3β-dependent regulation of transcriptional networks controlling cellular biomass production.
Collapse
Affiliation(s)
- Stephen J Bautista
- From the Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario M5B 2K3
| | - Ivan Boras
- From the Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario M5B 2K3
| | - Adriano Vissa
- the Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E5.,the Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4
| | - Noa Mecica
- From the Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario M5B 2K3
| | - Christopher M Yip
- the Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E5.,the Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1X8, and.,the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Peter K Kim
- the Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4.,the Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1X8, and
| | - Costin N Antonescu
- From the Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario M5B 2K3, .,the Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario M5B 1W8
| |
Collapse
|
27
|
Shekari F, Baharvand H, Salekdeh GH. Organellar proteomics of embryonic stem cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:215-30. [PMID: 24985774 DOI: 10.1016/b978-0-12-800453-1.00007-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Embryonic stem cells (ESCs) are undifferentiated cells with two common remarkable features known as self-renewal and differentiation. Proteomics plays an increasingly important role in understanding molecular mechanisms underlying self-renewal and pluripotency of ESCs and their applications in cell therapy and developmental biology studies. As the function of a protein is strongly associated with its localization in cell, a complete and accurate picture of the proteome of ESCs cannot be achieved without knowing the subcellular locations of proteins. Subcellular fractionation allows enrichment of low abundant proteins and signaling complexes and reduces the complexity of the sample. It also provided insight into tracking proteins that shuttle between different compartments. Despite the substantial interest and efforts in ESC subcellular proteomics area, progress has been relatively limited. In this review, we present an overview on current status of ESCs organelle proteomics research and discuss challenges in subcellular proteomics.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran; Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.
| |
Collapse
|
28
|
Wang SB, Venkatraman V, Crowgey EL, Liu T, Fu Z, Holewinski R, Ranek M, Kass DA, O'Rourke B, Van Eyk JE. Protein S-Nitrosylation Controls Glycogen Synthase Kinase 3β Function Independent of Its Phosphorylation State. Circ Res 2018; 122:1517-1531. [PMID: 29563102 DOI: 10.1161/circresaha.118.312789] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 01/11/2023]
Abstract
RATIONALE GSK-3β (glycogen synthase kinase 3β) is a multifunctional and constitutively active kinase known to regulate a myriad of cellular processes. The primary mechanism to regulate its function is through phosphorylation-dependent inhibition at serine-9 residue. Emerging evidence indicates that there may be alternative mechanisms that control GSK-3β for certain functions. OBJECTIVES Here, we sought to understand the role of protein S-nitrosylation (SNO) on the function of GSK-3β. SNO-dependent modulation of the localization of GSK-3β and its ability to phosphorylate downstream targets was investigated in vitro, and the network of proteins differentially impacted by phospho- or SNO-dependent GSK-3β regulation and in vivo SNO modification of key signaling kinases during the development of heart failure was also studied. METHODS AND RESULTS We found that GSK-3β undergoes site-specific SNO both in vitro, in HEK293 cells, H9C2 myoblasts, and primary neonatal rat ventricular myocytes, as well as in vivo, in hearts from an animal model of heart failure and sudden cardiac death. S-nitrosylation of GSK-3β significantly inhibits its kinase activity independent of the canonical phospho-inhibition pathway. S-nitrosylation of GSK-3β promotes its nuclear translocation and access to novel downstream phosphosubstrates which are enriched for a novel amino acid consensus sequence motif. Quantitative phosphoproteomics pathway analysis reveals that nuclear GSK-3β plays a central role in cell cycle control, RNA splicing, and DNA damage response. CONCLUSIONS The results indicate that SNO has a differential effect on the location and activity of GSK-3β in the cytoplasm versus the nucleus. SNO modification of GSK-3β occurs in vivo and could contribute to the pathobiology of heart failure and sudden cardiac death.
Collapse
Affiliation(s)
- Sheng-Bing Wang
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - Vidya Venkatraman
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.).,Johns Hopkins University, Baltimore, MD; Department of Medicine, Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., R.H., J.E.V.E.)
| | - Erin L Crowgey
- Department of Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE (E.L.C.)
| | - Ting Liu
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | | | - Ronald Holewinski
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.).,Johns Hopkins University, Baltimore, MD; Department of Medicine, Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., R.H., J.E.V.E.)
| | - Mark Ranek
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - David A Kass
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - Brian O'Rourke
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - Jennifer E Van Eyk
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.) .,Johns Hopkins University, Baltimore, MD; Department of Medicine, Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., R.H., J.E.V.E.)
| |
Collapse
|
29
|
Zhao N, Cao J, Xu L, Tang Q, Dobrolecki LE, Lv X, Talukdar M, Lu Y, Wang X, Hu DZ, Shi Q, Xiang Y, Wang Y, Liu X, Bu W, Jiang Y, Li M, Gong Y, Sun Z, Ying H, Yuan B, Lin X, Feng XH, Hartig SM, Li F, Shen H, Chen Y, Han L, Zeng Q, Patterson JB, Kaipparettu BA, Putluri N, Sicheri F, Rosen JM, Lewis MT, Chen X. Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. J Clin Invest 2018; 128:1283-1299. [PMID: 29480818 DOI: 10.1172/jci95873] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
The unfolded protein response (UPR) is a cellular homeostatic mechanism that is activated in many human cancers and plays pivotal roles in tumor progression and therapy resistance. However, the molecular mechanisms for UPR activation and regulation in cancer cells remain elusive. Here, we show that oncogenic MYC regulates the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) branch of the UPR in breast cancer via multiple mechanisms. We found that MYC directly controls IRE1 transcription by binding to its promoter and enhancer. Furthermore, MYC forms a transcriptional complex with XBP1, a target of IRE1, and enhances its transcriptional activity. Importantly, we demonstrate that XBP1 is a synthetic lethal partner of MYC. Silencing of XBP1 selectively blocked the growth of MYC-hyperactivated cells. Pharmacological inhibition of IRE1 RNase activity with small molecule inhibitor 8866 selectively restrained the MYC-overexpressing tumor growth in vivo in a cohort of preclinical patient-derived xenograft models and genetically engineered mouse models. Strikingly, 8866 substantially enhanced the efficacy of docetaxel chemotherapy, resulting in rapid regression of MYC-overexpressing tumors. Collectively, these data establish the synthetic lethal interaction of the IRE1/XBP1 pathway with MYC hyperactivation and provide a potential therapy for MYC-driven human breast cancers.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jin Cao
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Longyong Xu
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lacey E Dobrolecki
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xiangdong Lv
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Manisha Talukdar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yang Lu
- Department of Molecular and Cellular Biology.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoran Wang
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Dorothy Z Hu
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Qing Shi
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Yunfei Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xia Liu
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Wen Bu
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and
| | - Yi Jiang
- Division of Biochemical Genetics, Baylor Genetics, Houston, Texas, USA
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yingyun Gong
- Department of Molecular and Cellular Biology.,Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Zheng Sun
- Department of Molecular and Cellular Biology.,Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bo Yuan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Xin-Hua Feng
- Department of Molecular and Cellular Biology.,Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | - Feng Li
- Department of Molecular and Cellular Biology
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Qingping Zeng
- Fosun Orinove PharmaTech Inc., Suzhou, Jiangsu, China
| | | | | | | | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology.,Lester and Sue Smith Breast Center, and.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
30
|
Phosphorylated mTOR Expression Profiles in Human Normal and Carcinoma Tissues. DISEASE MARKERS 2017; 2017:1397063. [PMID: 28831205 PMCID: PMC5555007 DOI: 10.1155/2017/1397063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 11/18/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a key controller of cell growth and proliferation in normal tissues and solid tumors. In the present study, an immunohistochemical analysis of the expression pattern of phosphorylated mTOR (p-mTOR) was performed in human normal fetal and adult tissues and various carcinoma tissues. p-mTOR expression showed tissue and cell type specificity in normal and cancer tissues. In normal fetal and adult tissues, p-mTOR staining was observed in the intestinal crypt, intrahepatic bile ductule, pancreatic duct, distal nephron of the kidney, umbrella cell of urothelium, mesothelial cell, and choroid plexus. In cancer tissues, p-mTOR expression was higher in adenocarcinoma than in other types of cancers, in metastatic cancer than in primary cancer, and in the forefront of the infiltrating cancer cells. These results suggest that p-mTOR is implicated not only in cell proliferation but also in tubular morphogenesis in normal and cancer tissues. In addition, mTOR activation appears to be associated with cancer cell invasion and migration in solid tumors.
Collapse
|
31
|
Gao S, Li S, Duan X, Gu Z, Ma Z, Yuan X, Feng X, Wang H. Inhibition of glycogen synthase kinase 3 beta (GSK3β) suppresses the progression of esophageal squamous cell carcinoma by modifying STAT3 activity. Mol Carcinog 2017; 56:2301-2316. [PMID: 28574599 DOI: 10.1002/mc.22685] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/13/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022]
Abstract
Although GSK3β has been reported to have contrasting effects on the progression of different tumors, it's possible functions in esophageal squamous cell carcinoma (ESCC) and the related molecular mechanisms remain unknown. Here, we investigated the expression, function, and molecular mechanism of GSK3β in the development of ESCC in vitro and in vivo. Though the expression of total GSK3β was significantly increased, the phosphorylated (inactivated) form of GSK3β (Ser9) was concurrently decreased in the cancerous tissues of patients with ESCC compared with controls, suggesting that GSK3β activity was enhanced in cancerous tissues. Further pathological data analysis revealed that higher GSK3β expression was associated with poorer differentiation, higher metastasis rates, and worse prognosis of ESCC. These results were confirmed in different ESCC cell lines using a pharmacological inhibitor and specific siRNA to block GSK3β. Using a cancer phospho-antibody array, we found that STAT3 is a target of GSK3β. GSK3 inhibition reduced STAT3 phosphorylation, and overexpression of constitutively active GSK3β had the opposite effect. Moreover, STAT3 inhibition mimicked the effects of GSK3β inhibition on ESCC cell migration and viability, while overexpression of a plasmid encoding mutant STAT3 (Y705F) abrogated these effects, and these results were further substantiated by clinicopathological data. In addition, a GSK3 inhibitor (LiCl) and/or STAT3 inhibitor (WP-1066) efficiently suppressed the growth of ESCC cells in a xenograft tumor model. Altogether, these results reveal that higher GSK3β expression promotes ESCC progression through STAT3 in vitro and in vivo, and GSK3β-STAT3 signaling could be a potential therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Shuoguo Li
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Xiaoxian Duan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Zhen Gu
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Zhikun Ma
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Xiaoshan Feng
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| |
Collapse
|
32
|
Wang M, Guo Y, Wang M, Zhou T, Xue Y, Du G, Wei X, Wang J, Qi L, Zhang H, Li L, Ye L, Guo X, Wu X. The Glial Cell-Derived Neurotrophic Factor (GDNF)-responsive Phosphoprotein Landscape Identifies Raptor Phosphorylation Required for Spermatogonial Progenitor Cell Proliferation. Mol Cell Proteomics 2017; 16:982-997. [PMID: 28408662 DOI: 10.1074/mcp.m116.065797] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/24/2017] [Indexed: 01/15/2023] Open
Abstract
Cytokine-dependent renewal of stem cells is a fundamental requisite for tissue homeostasis and regeneration. Spermatogonial progenitor cells (SPCs) including stem cells support life-long spermatogenesis and male fertility, but pivotal phosphorylation events that regulate fate decisions in SPCs remain unresolved. Here, we described a quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of SPCs following sustained stimulation with glial cell-derived neurotrophic factor (GDNF), an extrinsic factor supporting SPC proliferation. Stimulated SPCs contained 3382 identified phosphorylated proteins and 12141 phosphorylation sites. Of them, 325 differentially phosphorylated proteins and 570 phosphorylation sites triggered by GDNF were highly enriched for ERK1/2, GSK3, CDK1, and CDK5 phosphorylating motifs. We validated that inhibition of GDNF/ERK1/2-signaling impaired SPC proliferation and increased G2/M cell cycle arrest. Significantly, we found that proliferation of SPCs requires phosphorylation of the mTORC1 component Raptor at Ser863 Tissue-specific deletion of Raptor in mouse germline cells results in impaired spermatogenesis and progressive loss of spermatogonia, but in vitro increased phosphorylation of Raptor by raptor over-expression in SPCs induced a more rapidly growth of SPCs in culture. These findings implicate previously undescribed signaling networks in governing fate decision of SPCs, which is essential for the understanding of spermatogenesis and of potential consequences of pathogenic insult for male infertility.
Collapse
Affiliation(s)
- Min Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yueshuai Guo
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mei Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Zhou
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuanyuan Xue
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Guihua Du
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiang Wei
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jing Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lin Qi
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hao Zhang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lufan Li
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lan Ye
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuejiang Guo
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Wu
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
33
|
Hagiwara-Chatani N, Shirai K, Kido T, Horigome T, Yasue A, Adachi N, Hirai Y. Membrane translocation of t-SNARE protein syntaxin-4 abrogates ground-state pluripotency in mouse embryonic stem cells. Sci Rep 2017; 7:39868. [PMID: 28057922 PMCID: PMC5216394 DOI: 10.1038/srep39868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Embryonic stem (ES) and induced pluripotent stem (iPS) cells are attractive tools for regenerative medicine therapies. However, aberrant cell populations that display flattened morphology and lose ground-state pluripotency often appear spontaneously, unless glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase kinase (MEK1/2) are inactivated. Here, we show that membrane translocation of the t-SNARE protein syntaxin-4 possibly is involved in this phenomenon. We found that mouse ES cells cultured without GSK3β/MEK1/2 inhibitors (2i) spontaneously extrude syntaxin-4 at the cell surface and that artificial expression of cell surface syntaxin-4 induces appreciable morphological changes and mesodermal differentiation through dephosphorylation of Akt. Transcriptome analyses revealed several candidate elements responsible for this, specifically, an E-to P-cadherin switch and a marked downregulation of Zscan4 proteins, which are DNA-binding proteins essential for ES cell pluripotency. Embryonic carcinoma cell lines F9 and P19CL6, which maintain undifferentiated states independently of Zscan4 proteins, exhibited similar cellular behaviors upon stimulation with cell surface syntaxin-4. The functional ablation of E-cadherin and overexpression of P-cadherin reproduced syntaxin-4-induced cell morphology, demonstrating that the E- to P-cadherin switch executes morphological signals from cell surface syntaxin-4. Thus, spontaneous membrane translocation of syntaxin-4 emerged as a critical element for maintenance of the stem-cell niche.
Collapse
Affiliation(s)
- Natsumi Hagiwara-Chatani
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Kota Shirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Takumi Kido
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Tomoatsu Horigome
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Akihiro Yasue
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan
| | - Naoki Adachi
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Yohei Hirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
34
|
Sun K, Atoyan R, Borek MA, Dellarocca S, Samson MES, Ma AW, Xu GX, Patterson T, Tuck DP, Viner JL, Fattaey A, Wang J. Dual HDAC and PI3K Inhibitor CUDC-907 Downregulates MYC and Suppresses Growth of MYC-dependent Cancers. Mol Cancer Ther 2016; 16:285-299. [PMID: 27980108 DOI: 10.1158/1535-7163.mct-16-0390] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/26/2016] [Accepted: 11/12/2016] [Indexed: 11/16/2022]
Abstract
Upregulation of MYC is a common driver event in human cancers, and some tumors depend on MYC to maintain transcriptional programs that promote cell growth and proliferation. Preclinical studies have suggested that individually targeting upstream regulators of MYC, such as histone deacetylases (HDAC) and phosphoinositide 3-kinases (PI3K), can reduce MYC protein levels and suppress the growth of MYC-driven cancers. Synergy between HDAC and PI3K inhibition in inducing cancer cell death has also been reported, but the involvement of MYC regulation is unclear. In this study, we demonstrated that HDAC and PI3K inhibition synergistically downregulates MYC protein levels and induces apoptosis in "double-hit" (DH) diffuse large B-cell lymphoma (DLBCL) cells. Furthermore, CUDC-907, a small-molecule dual-acting inhibitor of both class I and II HDACs and class I PI3Ks, effectively suppresses the growth and survival of MYC-altered or MYC-dependent cancer cells, such as DH DLBCL and BRD-NUT fusion-positive NUT midline carcinoma (NMC) cells, and MYC protein downregulation is an early event induced by CUDC-907 treatment. Consistently, the antitumor activity of CUDC-907 against multiple MYC-driven cancer types was also demonstrated in animal models, including DLBCL and NMC xenograft models, Myc transgenic tumor syngeneic models, and MYC-amplified solid tumor patient-derived xenograft (PDX) models. Our findings suggest that dual function HDAC and PI3K inhibitor CUDC-907 is an effective agent targeting MYC and thus may be developed as potential therapy for MYC-dependent cancers. Mol Cancer Ther; 16(2); 285-99. ©2016 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna W Ma
- Curis, Inc., Lexington, Massachusetts
| | | | | | | | | | | | - Jing Wang
- Curis, Inc., Lexington, Massachusetts.
| |
Collapse
|
35
|
Baehr CA, Huntoon CJ, Hoang SM, Jerde CR, Karnitz LM. Glycogen Synthase Kinase 3 (GSK-3)-mediated Phosphorylation of Uracil N-Glycosylase 2 (UNG2) Facilitates the Repair of Floxuridine-induced DNA Lesions and Promotes Cell Survival. J Biol Chem 2016; 291:26875-26885. [PMID: 27875297 DOI: 10.1074/jbc.m116.746081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/10/2016] [Indexed: 12/23/2022] Open
Abstract
Uracil N-glycosylase 2 (UNG2), the nuclear isoform of UNG, catalyzes the removal of uracil or 5-fluorouracil lesions that accumulate in DNA following treatment with the anticancer agents 5-fluorouracil and 5-fluorodeoxyuridine (floxuridine), a 5-fluorouracil metabolite. By repairing these DNA lesions before they can cause cell death, UNG2 promotes cancer cell survival and is therefore critically involved in tumor resistance to these agents. However, the mechanisms by which UNG2 is regulated remain unclear. Several phosphorylation sites within the N-terminal regulatory domain of UNG2 have been identified, although the effects of these modifications on UNG2 function have not been fully explored, nor have the identities of the kinases involved been determined. Here we show that glycogen synthase kinase 3 (GSK-3) interacts with and phosphorylates UNG2 at Thr60 and that Thr60 phosphorylation requires a Ser64 priming phosphorylation event. We also show that mutating Thr60 or Ser64 to Ala increases the half-life of UNG2, reduces the rate of in vitro uracil excision, and slows UNG2 dissociation from chromatin after DNA replication. Using an UNG2-deficient ovarian cancer cell line that is hypersensitive to floxuridine, we show that GSK-3 phosphorylation facilitates UNG2-dependent repair of floxuridine-induced DNA lesions and promotes tumor cell survival following exposure to this agent. These data suggest that GSK-3 regulates UNG2 and promotes DNA damage repair.
Collapse
Affiliation(s)
- Carly A Baehr
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Catherine J Huntoon
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and.,the Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905-0002
| | - Song-My Hoang
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Calvin R Jerde
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Larry M Karnitz
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and .,the Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905-0002.,Radiation Oncology and
| |
Collapse
|
36
|
Isla AG, Vázquez-Cuevas FG, Peña-Ortega F. Exercise Prevents Amyloid-β-Induced Hippocampal Network Disruption by Inhibiting GSK3β Activation. J Alzheimers Dis 2016; 52:333-43. [DOI: 10.3233/jad-150352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Arturo G. Isla
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, México
| | | | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, México
| |
Collapse
|
37
|
Wu CC, Wu HJ, Wang CH, Lin CH, Hsu SC, Chen YR, Hsiao M, Schuyler SC, Lu FL, Ma N, Lu J. Akt suppresses DLK for maintaining self-renewal of mouse embryonic stem cells. Cell Cycle 2016; 14:1207-17. [PMID: 25802931 DOI: 10.1080/15384101.2015.1014144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mouse embryonic stem cells (ES cells) can proliferate indefinitely. To identify potential signals involved in suppression of self-renewal, we previously screened a kinase/phosphatase expression library in ES cells, and observed that inhibition of Dual Leucine zipper-bearing Kinase (DLK) increased relative cell numbers. DLK protein was detected in both the pluripotent and differentiated states of mouse ES cells while DLK kinase activity increased upon differentiation. Overexpression of DLK in mouse ES cells displayed reductions in relative cell/colony numbers and Nanog expression, suggesting a suppressive role of DLK in self-renewal. By examining protein sequences of DLK, we identified 2 putative Akt phosphorylation sites at S584 and T659. Blocking PI3K/Akt signaling with LY-294002 enhanced DLK kinase activity dramatically. We found that Akt interacts with and phosphorylates DLK. Mutations of DLK amino acid residues at putative Akt phosphorylation sites (S584A, T659A, or S584A and T659A) diminished the level of DLK phosphorylation. While the mutated DLKs (S584A, T659A, or S584A and T659A) were expressed, a further reduction in cell/colony numbers and Nanog expression appeared in mouse ES cells. In addition, these mutant DLKs (S584A, T659A, or S584A and T659A) exhibited more robust kinase activity and cell death compared to wild type DLK or green fluorescence (GFP) controls. In summary, our results show that DLK functions to suppress self-renewal of mouse ES cells and is restrained by Akt phosphorylation.
Collapse
Affiliation(s)
- Cheng-Chung Wu
- a Graduate Institute of Life Sciences; National Defense Medical Center ; Taipei , Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The Androgen Receptor Bridges Stem Cell-Associated Signaling Nodes in Prostate Stem Cells. Stem Cells Int 2016; 2016:4829602. [PMID: 26880966 PMCID: PMC4737002 DOI: 10.1155/2016/4829602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/04/2015] [Accepted: 12/13/2015] [Indexed: 11/18/2022] Open
Abstract
The therapeutic potential of stem cells relies on dissecting the complex signaling networks that are thought to regulate their pluripotency and self-renewal. Until recently, attention has focused almost exclusively on a small set of "core" transcription factors for maintaining the stem cell state. It is now clear that stem cell regulatory networks are far more complex. In this review, we examine the role of the androgen receptor (AR) in coordinating interactions between signaling nodes that govern the balance of cell fate decisions in prostate stem cells.
Collapse
|
39
|
Kato A, Naiki-Ito A, Nakazawa T, Hayashi K, Naitoh I, Miyabe K, Shimizu S, Kondo H, Nishi Y, Yoshida M, Umemura S, Hori Y, Mori T, Tsutsumi M, Kuno T, Suzuki S, Kato H, Ohara H, Joh T, Takahashi S. Chemopreventive effect of resveratrol and apocynin on pancreatic carcinogenesis via modulation of nuclear phosphorylated GSK3β and ERK1/2. Oncotarget 2015; 6:42963-75. [PMID: 26556864 PMCID: PMC4767484 DOI: 10.18632/oncotarget.5981] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022] Open
Abstract
Despite progress in clinical cancer medicine in multiple fields, the prognosis of pancreatic cancer has remained dismal. Recently, chemopreventive strategies using phytochemicals have gained considerable attention as an alternative in the management of cancer. The present study aimed to evaluate the chemopreventive effects of resveratrol (RV) and apocynin (AC) in N-Nitrosobis(2-oxopropyl)amine-induced pancreatic carcinogenesis in hamster. RV- and AC-treated hamsters showed significant reduction in the incidence of pancreatic cancer with a decrease in Ki-67 labeling index in dysplastic lesions. RV and AC suppressed cell proliferation of human and hamster pancreatic cancer cells by inhibiting the G1 phase of the cell cycle with cyclin D1 downregulation and inactivation of AKT-GSK3β and ERK1/2 signaling. Further, decreased levels of GSK3β(Ser9) and ERK1/2 phosphorylation and cyclin D1 expression in the nuclear fraction were observed in cells treated with RV or AC. Nuclear expression of phosphorylated GSK3β(Ser9) was also decreased in dysplastic lesions and adenocarcinomas of hamsters treated with RV or AC in vivo. These results suggest that RV and AC reduce phosphorylated GSK3β(Ser9) and ERK1/2 in the nucleus, resulting in inhibition of the AKT-GSK3β and ERK1/2 signaling pathways and cell cycle arrest in vitro and in vivo. Taken together, the present study indicates that RV and AC have potential as chemopreventive agents for pancreatic cancer.
Collapse
Affiliation(s)
- Akihisa Kato
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Aya Naiki-Ito
- 2 Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Nakazawa
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuki Hayashi
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Itaru Naitoh
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsuyuki Miyabe
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shuya Shimizu
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromu Kondo
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuji Nishi
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Michihiro Yoshida
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shuichiro Umemura
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuki Hori
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshio Mori
- 4 Radioisotope Research Center, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Masahiro Tsutsumi
- 5 Department of Pathology, Saiseikai Chuwa Hospital, Sakurai, Nara, Japan
| | - Toshiya Kuno
- 2 Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shugo Suzuki
- 2 Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Kato
- 2 Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirotaka Ohara
- 3 Department of Community-based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Joh
- 1 Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- 2 Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
40
|
Fernandez-Sanchez ME, Brunet T, Röper JC, Farge E. Mechanotransduction's Impact on Animal Development, Evolution, and Tumorigenesis. Annu Rev Cell Dev Biol 2015; 31:373-97. [DOI: 10.1146/annurev-cellbio-102314-112441] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria-Elena Fernandez-Sanchez
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
| | - Thibaut Brunet
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
- Evolution of the Nervous System in Bilateria Group, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Jens-Christian Röper
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
| |
Collapse
|
41
|
Grigor’eva EV, Shevchenko AI, Medvedev SP, Mazurok NA, Zhelezova AI, Zakian SM. Induced Pluripotent Stem Cells of Microtus levis x Microtus arvalis Vole Hybrids: Conditions Necessary for Their Generation and Self-Renewal. Acta Naturae 2015; 7:56-69. [PMID: 26798492 PMCID: PMC4717250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Every year, the list of mammalian species for which cultures of pluripotent stem cells (PSCs) are generated increases. PSCs are a unique tool for extending the limits of experimental studies and modeling different biological processes. In this work, induced pluripotent stem cells (iPSCs) from the hybrids of common voles Microtus levis and Microtus arvalis, which are used as model objects to study genome organization on the molecular-genetic level and the mechanisms of X-chromosome inactivation, have been generated. Vole iPSCs were isolated and cultured in a medium containing cytokine LIF, basic fibroblast growth factor (bFGF), ascorbic acid, and fetal bovine serum. Undifferentiated state of vole iPSCs is maintained by activation of their endogenous pluripotency genes - Nanog, Oct4, Sox2, Sall4, and Esrrb. The cells were able to maintain undifferentiated state for at least 28 passages without change in their morphology and give rise to three germ layers (ectoderm, mesoderm and endoderm) upon differentiation.
Collapse
Affiliation(s)
- E. V. Grigor’eva
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the, Rechkunovskaya Str., 15, 630055, Novosibirsk, Russia
| | - A. I. Shevchenko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the, Rechkunovskaya Str., 15, 630055, Novosibirsk, Russia
| | - S. P. Medvedev
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the, Rechkunovskaya Str., 15, 630055, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str., 2, 630090, Novosibirsk, Russia
| | - N. A. Mazurok
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the, Rechkunovskaya Str., 15, 630055, Novosibirsk, Russia
| | - A. I. Zhelezova
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
| | - S. M. Zakian
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 10, 630090, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Ministry of Healthcare of the, Rechkunovskaya Str., 15, 630055, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str., 2, 630090, Novosibirsk, Russia
| |
Collapse
|
42
|
Cui B, Jin J, Ding X, Deng M, Yu S, Song M, Yu Y, Zhao X, Chen J, Huang L. Glycogen synthase kinase 3β inhibition enhanced proliferation, migration and functional re-endothelialization of endothelial progenitor cells in hypercholesterolemia microenvironment. Exp Biol Med (Maywood) 2015; 240:1752-63. [PMID: 26069270 DOI: 10.1177/1535370215589908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/30/2015] [Indexed: 11/15/2022] Open
Abstract
Hypercholesterolemia impairs the quantity and function of endothelial progenitor cell. We hypothesized that glycogen synthase kinase 3β activity is involved in regulating biological function of endothelial progenitor cells in hypercholesterolemia microenvironment. For study, endothelial progenitor cells derived from apolipoprotein E-deficient mice fed with high-fat diet were used. Glycogen synthase kinase 3β activity was interfered with glycogen synthase kinase 3β inhibitor lithium chloride or transduced with replication defective adenovirus vector expressing catalytically inactive glycogen synthase kinase 3β (GSK3β-KM). Functions of endothelial progenitor cells, proliferation, migration, secretion and network formation of endothelial progenitor cells were assessed in vitro. The expression of phospho-glycogen synthase kinase 3β, β-catenin and cyclinD1 in endothelial progenitor cells was detected by Western blot. The in vivo function re-endothelialization and vasodilation were also analyzed by artery injury model transplanted with glycogen synthase kinase 3β-inhibited endothelial progenitor cells. We demonstrated that while the proliferation, migration, network formation as well as VEGF and NO secretion were impaired in apolipoprotein E-deficient endothelial progenitor cells, glycogen synthase kinase 3β inhibition significantly improved all these functions. Apolipoprotein E-deficient endothelial progenitor cells showed decreased phospho-glycogen synthase kinase 3β, β-catenin and cyclinD1 expression, whereas these signals were enhanced by glycogen synthase kinase 3β inhibition and accompanied with β-catenin nuclear translocation. Our in vivo model showed that glycogen synthase kinase 3β inhibition remarkably increased re-endothelial and vasodilation. Taken together, our data suggest that inhibition of glycogen synthase kinase 3β is associated with endothelial progenitor cell biological functions both in vitro and in vivo. It might be an important interference target in hypercholesterolemia microenvironment.
Collapse
Affiliation(s)
- Bin Cui
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Jun Jin
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Xiaohan Ding
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Mengyang Deng
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Shiyong Yu
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - MingBao Song
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Yang Yu
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Xiaohui Zhao
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Jianfei Chen
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| | - Lan Huang
- Institute of Cardiovascular disease of PLA, Xinqiao Hospital, Third military Medical University, Chongqing 400037, People's Republic of China
| |
Collapse
|
43
|
Voskas D, Ling LS, Woodgett JR. Signals controlling un-differentiated states in embryonic stem and cancer cells: role of the phosphatidylinositol 3' kinase pathway. J Cell Physiol 2014; 229:1312-22. [PMID: 24604594 PMCID: PMC4258093 DOI: 10.1002/jcp.24603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 12/23/2022]
Abstract
The capacity of embryonic stem (ES) cells to differentiate into cell lineages comprising the three germ layers makes them powerful tools for studying mammalian early embryonic development in vitro. The human body consists of approximately 210 different somatic cell types, the majority of which have limited proliferative capacity. However, both stem cells and cancer cells bypass this replicative barrier and undergo symmetric division indefinitely when cultured under defined conditions. Several signal transduction pathways play important roles in regulating stem cell development, and aberrant expression of components of these pathways is linked to cancer. Among signaling systems, the critical role of leukemia inhibitory factor (LIF) coupled to the Jak/STAT3 (signal transduction and activation of transcription-3) pathway in maintaining stem cell self-renewal has been extensively reviewed. This pathway additionally plays multiple roles in tumorigenesis. Likewise, the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt) pathway has been determined to play an important role in both stem cell maintenance and tumor development. This pathway is often induced in cancer with frequent mutational activation of the catalytic subunit of PI3K or loss of a primary PI3K antagonist, phosphatase and tensin homolog deleted on chromosome ten (PTEN). This review focusses on roles of the PI3K signal transduction pathway components, with emphasis on functions in stem cell maintenance and cancer. Since the PI3K pathway impinges on and collaborates with other signaling pathways in regulating stem cell development and/or cancer, aspects of the canonical Wnt, Ras/mitogen-activated protein kinase (MAPK), and TGF-β signaling pathways are also discussed.
Collapse
Affiliation(s)
- Daniel Voskas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
44
|
Serio RN. Wnt of the Two Horizons: Putting Stem Cell Self-Renewal and Cell Fate Determination into Context. Stem Cells Dev 2014; 23:1975-90. [DOI: 10.1089/scd.2014.0055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Ryan N. Serio
- Graduate School of Pharmacology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
45
|
Fang L, Zhang L, Wei W, Jin X, Wang P, Tong Y, Li J, Du JX, Wong J. A methylation-phosphorylation switch determines Sox2 stability and function in ESC maintenance or differentiation. Mol Cell 2014; 55:537-51. [PMID: 25042802 DOI: 10.1016/j.molcel.2014.06.018] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/08/2014] [Accepted: 06/06/2014] [Indexed: 11/16/2022]
Abstract
Sox2 is a key factor for maintaining embryonic stem cell (ESS) pluripotency, but little is known about its posttranslational regulation. Here we present evidence that the precise level of Sox2 proteins in ESCs is regulated by a balanced methylation and phosphorylation switch. Set7 monomethylates Sox2 at K119, which inhibits Sox2 transcriptional activity and induces Sox2 ubiquitination and degradation. The E3 ligase WWP2 specifically interacts with K119-methylated Sox2 through its HECT domain to promote Sox2 ubiquitination. In contrast, AKT1 phosphorylates Sox2 at T118 and stabilizes Sox2 by antagonizing K119me by Set7 and vice versa. In mouse ESCs, AKT1 activity toward Sox2 is greater than that of Set7, leading to Sox2 stabilization and ESC maintenance. In early development, increased Set7 expression correlates with Sox2 downregulation and appropriate differentiation. Our study highlights the importance of a Sox2 methylation-phosphorylation switch in determining ESC fate.
Collapse
Affiliation(s)
- Lan Fang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ling Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wei Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xueling Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ping Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - James X Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
46
|
Hatakeyama S. Ubiquitin-mediated regulation of JAK-STAT signaling in embryonic stem cells. JAKSTAT 2014; 1:168-75. [PMID: 24058766 PMCID: PMC3670240 DOI: 10.4161/jkst.21560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/12/2022] Open
Abstract
LIF activates several intracellular signaling pathways including JAK-STAT, PI3K/AKT and MAPK pathways. LIF is an important cytokine for maintenance of pluripotency and self-renewal of mouse ES cells. The JAK-STAT signal plays a key role in maintenance of the pluripotency of ESCs. Recent evidence shows that several post-translational modifications regulate activation or inhibition of intracellular signal transductions. The JAK-STAT signal is also modulated by several modifications including phosphorylation, acetylation and ubiquitination. In this review, we discuss regulation of the LIF-mediated-JAK-STAT signaling pathway that contributes to self-renewal of pluripotent ESCs.
Collapse
Affiliation(s)
- Shigetsugu Hatakeyama
- Department of Biochemistry; Hokkaido University Graduate School of Medicine; Sapporo, Hokkaido Japan
| |
Collapse
|
47
|
Abstract
The growth of axons is an intricately regulated process involving intracellular signaling cascades and gene transcription. We had previously shown that the stimulus-dependent transcription factor, serum response factor (SRF), plays a critical role in regulating axon growth in the mammalian brain. However, the molecular mechanisms underlying SRF-dependent axon growth remains unknown. Here we report that SRF is phosphorylated and activated by GSK-3 to promote axon outgrowth in mouse hippocampal neurons. GSK-3 binds to and directly phosphorylates SRF on a highly conserved serine residue. This serine phosphorylation is necessary for SRF activity and for its interaction with MKL-family cofactors, MKL1 and MKL2, but not with TCF-family cofactor, ELK-1. Axonal growth deficits caused by GSK-3 inhibition could be rescued by expression of a constitutively active SRF. The SRF target gene and actin-binding protein, vinculin, is sufficient to overcome the axonal growth deficits of SRF-deficient and GSK-3-inhibited neurons. Furthermore, short hairpin RNA-mediated knockdown of vinculin also attenuated axonal growth. Thus, our findings reveal a novel phosphorylation and activation of SRF by GSK-3 that is critical for SRF-dependent axon growth in mammalian central neurons.
Collapse
|
48
|
Ahn J, Jang J, Choi J, Lee J, Oh SH, Lee J, Yoon K, Kim S. GSK3β, but not GSK3α, inhibits the neuronal differentiation of neural progenitor cells as a downstream target of mammalian target of rapamycin complex1. Stem Cells Dev 2014; 23:1121-33. [PMID: 24397546 DOI: 10.1089/scd.2013.0397] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) acts as an important regulator during the proliferation and differentiation of neural progenitor cells (NPCs), but the roles of the isoforms of this molecule (GSK3α and GSK3β) have not been clearly defined. In this study, we investigated the functions of GSK3α and GSK3β in the context of neuronal differentiation of murine NPCs. Treatment of primary NPCs with a GSK3 inhibitor (SB216763) resulted in an increase in the percentage of TuJ1-positive immature neurons, suggesting an inhibitory role of GSK3 in embryonic neurogenesis. Downregulation of GSK3β expression increased the percentage of TuJ1-positive cells, while knock-down of GSK3α seemed to have no effect. When primary NPCs were engineered to stably express either isoform of GSK3 using retroviral vectors, GSK3β, but not GSK3α, inhibited neuronal differentiation and helped the cells to maintain the characteristics of NPCs. Mutant GSK3β (Y216F) failed to suppress neuronal differentiation, indicating that the kinase activity of GSK3β is important for this regulatory function. Similar results were obtained in vivo when a retroviral vector expressing GSK3β was delivered to E9.5 mouse brains using the ultrasound image-guided gene delivery technique. In addition, SB216763 was found to block the rapamycin-mediated inhibition of neuronal differentiation of NPCs. Taken together, our results demonstrate that GSK3β, but not GSK3α, negatively controls the neuronal differentiation of progenitor cells and that GSK3β may act downstream of the mammalian target of rapamycin complex1 signaling pathway.
Collapse
Affiliation(s)
- Jyhyun Ahn
- 1 School of Biological Sciences, Seoul National University , Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kinehara M, Kawamura S, Mimura S, Suga M, Hamada A, Wakabayashi M, Nikawa H, Furue MK. Protein kinase C-induced early growth response protein-1 binding to SNAIL promoter in epithelial-mesenchymal transition of human embryonic stem cells. Stem Cells Dev 2014; 23:2180-9. [PMID: 24410631 DOI: 10.1089/scd.2013.0424] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been thought to occur during early embryogenesis, and also the differentiation process of human embryonic stem (hES) cells. Spontaneous differentiation is sometimes observed at the peripheral of the hES cell colonies in conventional culture conditions, indicating that EMT occurs in hES cell culture. However, the triggering mechanism of EMT is not yet fully understood. The balance between self-renewal and differentiation of human pluripotent stem (hPS) cells is controlled by various signal pathways, including the fibroblast growth factor (FGF)-2. However, FGF-2 has a complex role for self-renewal of hES cells. FGF-2 activates phosphatidylinositol-3 kinase/AKT, mitogen-activated protein kinase/extracellular signal-regulated kinase-1/2 kinase, and also protein kinase C (PKC). Here, we showed that a PKC rapidly induced an early growth response protein-1 (EGR-1) in hES cells, which was followed by upregulation of EMT-related genes. Before the induction of EMT-related genes, EGR-1 was translocated into the nucleus, and then bound directly to the promoter region of SNAIL, which is a master regulator of EMT. SNAIL expression was attenuated by knockdown of EGR-1, but upregulated by ectopic expression of EGR-1. EGR-1 as the downstream signal of PKC might play a key role in EMT initiation during early differentiation of hES cells. This study would lead to a more robust understanding of the mechanisms underlying the balance between self-renewal and initiation of differentiation in hPS cells.
Collapse
Affiliation(s)
- Masaki Kinehara
- 1 Laboratory of Stem Cell Cultures, Department of Disease Bioresources Research, National Institute of Biomedical Innovation , Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hassani SN, Totonchi M, Gourabi H, Schöler HR, Baharvand H. Signaling Roadmap Modulating Naive and Primed Pluripotency. Stem Cells Dev 2014; 23:193-208. [DOI: 10.1089/scd.2013.0368] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|