1
|
Umeda M, Karino K, Satyam A, Yoshida N, Hisada R, Bhargava R, Vichos T, Kunzler AL, Igawa T, Ichinose K, Torigoe K, Nishino T, Maeda T, Owen CA, Abdi R, Kawakami A, Tsokos GC. Hypoxia Promotes the Expression of ADAM9 by Tubular Epithelial Cells, Which Enhances Transforming Growth Factor β1 Activation and Promotes Tissue Fibrosis in Patients With Lupus Nephritis. Arthritis Rheumatol 2024. [PMID: 39279154 DOI: 10.1002/art.42987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
OBJECTIVE Enhanced expression of transforming growth factor (TGF) β in the kidneys of patients with lupus nephritis (LN) can lead to progressive fibrosis, resulting in end-organ damage. ADAM9 activates TGFβ1 by cleaving the latency-associated peptide (LAP). We hypothesized that ADAM9 in the kidney may accelerate fibrogenesis by activating TGFβ1. METHODS We assessed the expression of ADAM9 in the kidneys of mice and humans who were lupus prone. In vitro experiments were conducted using tubular epithelial cells (TECs) isolated from mice and explored the mechanisms responsible for the up-regulation of ADAM9 and the subsequent activation of TGFβ1. To assess the role of ADAM9 in the development of tubular-intestinal fibrosis in individuals with LN, we generated MRL/lpr mice who were Adam9 deficient. RESULTS ADAM9 was highly expressed in tubules from MRL/lpr mice. The transcription factor hypoxia-inducible factor-1α was found to promote the transcription of ADAM9 in TECs. TECs from mice who were Adam9 deficient and exposed to the hypoxia mimetic agent dimethyloxalylglycine failed to cleave the LAP to produce bioactive TGFβ1 from latent TGFβ1. Coculture of TECs from mice who were Adam9 deficient with fibroblasts in the presence of dimethyloxalylglycine and latent TGFβ1 produced decreased amounts of type I collagen and α-smooth muscle actin (SMA) by fibroblasts. MRL/lpr mice who were Adam9 deficient showed reduced interstitial fibrosis. At the translational level, ADAM9 expression in tissues and urine of patients with LN was found to increase. CONCLUSION Hypoxia promotes the expression of ADAM9 by TECs, which is responsible for the development of interstitial fibrosis in patients with LN by enhancing the TGFβ1 activation, which promotes fibroblasts to produce collagen and α-SMA.
Collapse
Affiliation(s)
- Masataka Umeda
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, and Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kohei Karino
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Abhigyan Satyam
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Nobuya Yoshida
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ryo Hisada
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Rhea Bhargava
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Theodoros Vichos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ana Laura Kunzler
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Takashi Igawa
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kunihiro Ichinose
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, and Shimane University Faculty of Medicine, Izumo, Japan
| | | | | | - Takahiro Maeda
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Caroline A Owen
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Reza Abdi
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Atsushi Kawakami
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - George C Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Cook L, Gharzia FG, Bartsch JW, Yildiz D. A jack of all trades - ADAM8 as a signaling hub in inflammation and cancer. FEBS J 2024; 291:3989-4008. [PMID: 38097912 DOI: 10.1111/febs.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
As a member of the family of A Disintegrin And Metalloproteinases (ADAM) ADAM8 is preferentially expressed in lymphatic organs, immune cells, and tumor cells. The substrate spectrum for ADAM8 proteolytic activity is not exclusive but is related to effectors of inflammation and signaling in the tumor microenvironment. In addition, complexes of ADAM8 with extracellular binding partners such as integrin β-1 cause an extensive intracellular signaling in tumor cells, thereby activating kinase pathways with STAT3, ERK1/2, and Akt signaling, which causes increased cell survival and enhanced motility. The cytoplasmic domain of ADAM8 harbors five SRC homology-3 (SH3) domains that can potentially interact with several proteins involved in actin dynamics and cell motility, including Myosin 1F (MYO1F), which is essential for neutrophil motility. The concept of ADAM8 thus involves immune cell recruitment, in most cases leading to an enhancement of inflammatory (asthma, COPD) and tumor (including pancreatic and breast cancers) pathologies. In this review, we report on available studies that qualify ADAM8 as a therapeutic target in different pathologies. As a signaling hub, ADAM8 controls extracellular, intracellular, and intercellular communication, the latter one mainly mediated by the release of extracellular vesicles with ADAM8 as cargo. Here, we will dissect the contribution of different domains to these distinct ways of communication in several pathologies. We conclude that therapeutic targeting attempts for ADAM8 should consider blocking more than a single domain and that this requires a thorough evaluation of potent molecules targeting ADAM8 in an in vivo setting.
Collapse
Affiliation(s)
- Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Federico Guillermo Gharzia
- Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
3
|
Tang X, Liu Y, Wang J, Long T, Yee Mok BW, Huang Y, Peng Z, Jia Q, Liu C, So PK, Pui-Kam Tse S, Hei Ng C, Liu S, Sun F, Tang S, Yao ZP, Chen H, Guo Y. Identifications of novel host cell factors that interact with the receptor-binding domain of the SARS-CoV-2 spike protein. J Biol Chem 2024; 300:107390. [PMID: 38777146 PMCID: PMC11237930 DOI: 10.1016/j.jbc.2024.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
SARS-CoV-2 entry into host cells is facilitated by the interaction between the receptor-binding domain of its spike protein (CoV2-RBD) and host cell receptor, ACE2, promoting viral membrane fusion. The virus also uses endocytic pathways for entry, but the mediating host factors remain largely unknown. It is also unknown whether mutations in the RBD of SARS-CoV-2 variants promote interactions with additional host factors to promote viral entry. Here, we used the GST pull-down approach to identify novel surface-located host factors that bind to CoV2-RBD. One of these factors, SH3BP4, regulates internalization of CoV2-RBD in an ACE2-independent but integrin- and clathrin-dependent manner and mediates SARS-CoV-2 pseudovirus entry, suggesting that SH3BP4 promotes viral entry via the endocytic route. Many of the identified factors, including SH3BP4, ADAM9, and TMEM2, show stronger affinity to CoV2-RBD than to RBD of the less infective SARS-CoV, suggesting SARS-CoV-2-specific utilization. We also found factors preferentially binding to the RBD of the SARS-CoV-2 Delta variant, potentially enhancing its entry. These data identify the repertoire of host cell surface factors that function in the events leading to the entry of SARS-CoV-2.
Collapse
Affiliation(s)
- Xiao Tang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yang Liu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jinhui Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Teng Long
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bobo Wing Yee Mok
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yan Huang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ziqing Peng
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Qinyu Jia
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chengxi Liu
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Pui-Kin So
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sirius Pui-Kam Tse
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Cheuk Hei Ng
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shiyi Liu
- Thrust of Bioscience and Biomedical Engineering, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shaojun Tang
- Thrust of Bioscience and Biomedical Engineering, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Research Centre for Chinese Medicine Innovation, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Honglin Chen
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China; Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yusong Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
4
|
He H, Tan Y, Tang Z, Wang L, Liu S, Wu G. ADAM9: A regulator between HCMV infection and function of smooth muscle cells. J Med Virol 2023; 95:e28352. [PMID: 36437481 DOI: 10.1002/jmv.28352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Lots of epidemiological and clinical studies have shown that human cytomegalovirus (HCMV) is related to the pathogenesis of atherosclerosis. Released by inflammatory cells and vascular smooth muscle cell (VSMCs), metalloproteinases are observed in many pathological vessel conditions, including atherosclerosis and restenosis. This study was designed to investigate the effect of HCMV infection on the expression of metalloproteinases and their involvements in the HCMV-induced functional changes of VSMCs. Differential metalloproteinase after HCMV infection was assayed using reverse transcription-polymerase chain reaction (RT-PCR) microarray. The most significant increased a disintegrin and metalloprotease 9 (ADAM9) was chosen to investigate the mechanism of its specific increase after infection using the treatment of UV-irradiated replication-deficient HCMV, HCMV-infected cell lysate filters or Foscarnet. The function of proliferation, migration, production of inflammatoty factors and phenotypic transformation were determined by using cell counting kit-8, transwell, Enzyme-linked immunosorbent assay, RT-quantitative PCR (qPCR) and Western blot, respectively. Moreover, the effect of ADAM9 deficiency on HCMV replication was also determined using RT-qPCR and immunofluorescence. The expression levels of 6 genes were upregulated and 14 genes were downregulated at different time points after HCMV infection. Among these, the expression level of ADAM9 increased most significantly at each time point and the abnormal expression of ADAM9 might be induced by the early gene products of HCMV. Further studies found that ADAM9 promoted the proliferation, the migration, the production of inflammatory factors and the transit from the contractile phenotype (decreased ACTA2 expression) to the synthetic phenotype (increased osteopontin [OPN] expression). Knockdown theADAM9 expression could rescue the decreased ACTA2 expression, but has no effect on OPN expression. ADAM-9 deficiency didn't affect the replication of HCMV. The findings of our study suggest that HCMV infection changed VSMC function through ADAM9 expression, which may contribute to the understanding of the underlying pathological mechanisms of HCMV-induced atherosclerosis.
Collapse
Affiliation(s)
- Hanlin He
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lili Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuiping Liu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,School of Basic Medical Sciences, China-Africa Research Centre of Infectious Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Sharma D, Singh NK. The Biochemistry and Physiology of A Disintegrin and Metalloproteinases (ADAMs and ADAM-TSs) in Human Pathologies. Rev Physiol Biochem Pharmacol 2023; 184:69-120. [PMID: 35061104 DOI: 10.1007/112_2021_67] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metalloproteinases are a group of proteinases that plays a substantial role in extracellular matrix remodeling and its molecular signaling. Among these metalloproteinases, ADAMs (a disintegrin and metalloproteinases) and ADAM-TSs (ADAMs with thrombospondin domains) have emerged as highly efficient contributors mediating proteolytic processing of various signaling molecules. ADAMs are transmembrane metalloenzymes that facilitate the extracellular domain shedding of membrane-anchored proteins, cytokines, growth factors, ligands, and their receptors and therefore modulate their biological functions. ADAM-TSs are secretory, and soluble extracellular proteinases that mediate the cleavage of non-fibrillar extracellular matrix proteins. ADAMs and ADAM-TSs possess pro-domain, metalloproteinase, disintegrin, and cysteine-rich domains in common, but ADAM-TSs have characteristic thrombospondin motifs instead of the transmembrane domain. Most ADAMs and ADAM-TSs are activated by cleavage of pro-domain via pro-protein convertases at their N-terminus, hence directing them to various signaling pathways. In this article, we are discussing not only the structure and regulation of ADAMs and ADAM-TSs, but also the importance of these metalloproteinases in various human pathophysiological conditions like cardiovascular diseases, colorectal cancer, autoinflammatory diseases (sepsis/rheumatoid arthritis), Alzheimer's disease, proliferative retinopathies, and infectious diseases. Therefore, based on the emerging role of ADAMs and ADAM-TSs in various human pathologies, as summarized in this review, these metalloproteases can be considered as critical therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Deepti Sharma
- Department of Ophthalmology, Visual and Anatomical Sciences, Integrative Biosciences Center (IBio), Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikhlesh K Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Integrative Biosciences Center (IBio), Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
6
|
VanHeyst KA, Choi SH, Kingsley DT, Huang AY. Ectopic Tumor VCAM-1 Expression in Cancer Metastasis and Therapy Resistance. Cells 2022; 11:cells11233922. [PMID: 36497180 PMCID: PMC9735769 DOI: 10.3390/cells11233922] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular Cell Adhesion Molecule-1 (VCAM-1; CD106) is a membrane protein that contributes critical physiologic functional roles in cellular immune response, including leukocyte extravasation in inflamed and infected tissues. Expressed as a cell membrane protein, VCAM-1 can also be cleaved from the cell surface into a soluble form (sVCAM-1). The integrin α4β1 (VLA-4) was identified as the first major ligand for VCAM-1. Ongoing studies suggest that, in addition to mediating physiologic immune functions, VCAM-1/VLA-4 signaling plays an increasingly vital role in the metastatic progression of various tumors. Additionally, elevated concentrations of sVCAM-1 have been found in the peripheral blood of patients with cancer, suggesting the tumor microenvironment (TME) as the source of sVCAM-1. Furthermore, over-expression of VLA-4 was linked to tumor progression in various malignancies when VCAM-1 was also up-regulated. This review explores the functional role of VCAM-1 expression in cancer metastasis and therapy resistance, and the potential for the disruption of VCAM-1/VLA-4 signaling as a novel immunotherapeutic approach in cancer, including osteosarcoma, which disproportionately affects the pediatric, adolescent and young adult population, as an unmet medical need.
Collapse
Affiliation(s)
- Kristen A. VanHeyst
- Center for Pediatric Immunotherapy at Rainbow, Angie Fowler AYA Cancer Institute, Division of Pediatric Hematology-Oncology, UH Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sung Hee Choi
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Alex Y. Huang
- Center for Pediatric Immunotherapy at Rainbow, Angie Fowler AYA Cancer Institute, Division of Pediatric Hematology-Oncology, UH Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-368-1271
| |
Collapse
|
7
|
Qu H, Khalil RA. Role of ADAM and ADAMTS Disintegrin and Metalloproteinases in Normal Pregnancy and Preeclampsia. Biochem Pharmacol 2022; 206:115266. [PMID: 36191626 DOI: 10.1016/j.bcp.2022.115266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Normal pregnancy (NP) involves intricate processes starting with egg fertilization, proceeding to embryo implantation, placentation and gestation, and culminating in parturition. These pregnancy-related processes require marked uteroplacental and vascular remodeling by proteolytic enzymes and metalloproteinases. A disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) are members of the zinc-dependent family of proteinases with highly conserved protein structure and sequence homology, which include a pro-domain, and a metalloproteinase, disintegrin and cysteine-rich domain. In NP, ADAMs and ADAMTS regulate sperm-egg fusion, embryo implantation, trophoblast invasion, placental angiogenesis and spiral arteries remodeling through their ectodomain proteolysis of cell surface cytokines, cadherins and growth factors as well as their adhesion with integrins and cell-cell junction proteins. Preeclampsia (PE) is a serious complication of pregnancy characterized by new-onset hypertension (HTN) in pregnancy (HTN-Preg) at or after 20 weeks of gestation, with or without proteinuria. Insufficient trophoblast invasion of the uterine wall, inadequate expansive remodeling of the spiral arteries, reduced uteroplacental perfusion pressure, and placental ischemia/hypoxia are major initiating events in the pathogenesis of PE. Placental ischemia/hypoxia increase the release of reactive oxygen species (ROS), which lead to aberrant expression/activity of certain ADAMs and ADAMTS. In PE, abnormal expression/activity of specific ADAMs and ADAMTS that function as proteolytic sheddases could alter proangiogenic and growth factors, and promote the release of antiangiogenic factors and inflammatory cytokines into the placenta and maternal circulation leading to generalized inflammation, endothelial cell injury and HTN-Preg, renal injury and proteinuria, and further decreases in uteroplacental blood flow, exaggeration of placental ischemia, and consequently fetal growth restriction. Identifying the role of ADAMs and ADAMTS in NP and PE has led to a better understanding of the underlying molecular and vascular pathways, and advanced the potential for novel biomarkers for prediction and early detection, and new approaches for the management of PE.
Collapse
Affiliation(s)
- Hongmei Qu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA.
| |
Collapse
|
8
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Rieck S, Kilgus S, Meyer JH, Huang H, Zhao L, Matthey M, Wang X, Schmitz-Valckenberg S, Fleischmann BK, Wenzel D. Inhibition of Vascular Growth by Modulation of the Anandamide/Fatty Acid Amide Hydrolase Axis. Arterioscler Thromb Vasc Biol 2021; 41:2974-2989. [PMID: 34615374 PMCID: PMC8608012 DOI: 10.1161/atvbaha.121.316973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Pathological angiogenesis is a hallmark of various diseases characterized by local hypoxia and inflammation. These disorders can be treated with inhibitors of angiogenesis, but current compounds display a variety of side effects and lose efficacy over time. This makes the identification of novel signaling pathways and pharmacological targets involved in angiogenesis a top priority. Approach and Results: Here, we show that inactivation of FAAH (fatty acid amide hydrolase), the enzyme responsible for degradation of the endocannabinoid anandamide, strongly impairs angiogenesis in vitro and in vivo. Both, the pharmacological FAAH inhibitor URB597 and anandamide induce downregulation of gene sets for cell cycle progression and DNA replication in endothelial cells. This is underscored by cell biological experiments, in which both compounds inhibit proliferation and migration and evoke cell cycle exit of endothelial cells. This prominent antiangiogenic effect is also of pathophysiological relevance in vivo, as laser-induced choroidal neovascularization in the eye of FAAH−/− mice is strongly reduced. Conclusions: Thus, elevation of endogenous anandamide levels by FAAH inhibition represents a novel antiangiogenic mechanism.
Collapse
Affiliation(s)
- Sarah Rieck
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany
| | - Sofia Kilgus
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany
| | - Johanna H Meyer
- Department of Ophthalmology (J.H.M., S.S.-V.), University of Bonn, Germany
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong (H.H., L.Z., X.W.)
| | - Lan Zhao
- Department of Biomedical Sciences, City University of Hong Kong (H.H., L.Z., X.W.)
| | - Michaela Matthey
- Department of Systems Physiology, Institute of Physiology, Medical Faculty, Ruhr University of Bochum, Germany (M.M., D.W.)
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong (H.H., L.Z., X.W.)
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology (J.H.M., S.S.-V.), University of Bonn, Germany.,John A. Moran Eye Center, Ophthalmology & Visual Science, University of Utah, Salt Lake City (S.S.-V.)
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany.,Department of Systems Physiology, Institute of Physiology, Medical Faculty, Ruhr University of Bochum, Germany (M.M., D.W.)
| |
Collapse
|
10
|
Troncoso MF, Ortiz-Quintero J, Garrido-Moreno V, Sanhueza-Olivares F, Guerrero-Moncayo A, Chiong M, Castro PF, García L, Gabrielli L, Corbalán R, Garrido-Olivares L, Lavandero S. VCAM-1 as a predictor biomarker in cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166170. [PMID: 34000374 DOI: 10.1016/j.bbadis.2021.166170] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
The vascular cellular adhesion molecule-1 (VCAM-1) is a protein that canonically participates in the adhesion and transmigration of leukocytes to the interstitium during inflammation. VCAM-1 expression, together with soluble VCAM-1 (sVCAM-1) induced by the shedding of VCAM-1 by metalloproteinases, have been proposed as biomarkers in immunological diseases, cancer, autoimmune myocarditis, and as predictors of mortality and morbidity in patients with chronic heart failure (HF), endothelial injury in patients with coronary artery disease, and arrhythmias. This revision aims to discuss the role of sVCAM-1 as a biomarker to predict the occurrence, development, and preservation of cardiovascular disease.
Collapse
Affiliation(s)
- Mayarling Francisca Troncoso
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jafet Ortiz-Quintero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Bioanalysis & Immunology, Faculty of Sciences, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Valeria Garrido-Moreno
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra Guerrero-Moncayo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo F Castro
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena García
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ramón Corbalán
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Garrido-Olivares
- Division of Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
12
|
ADAM9 enhances Th17 cell differentiation and autoimmunity by activating TGF-β1. Proc Natl Acad Sci U S A 2021; 118:2023230118. [PMID: 33911034 DOI: 10.1073/pnas.2023230118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The a disintegrin and metalloproteinase (ADAM) family of proteinases alter the extracellular environment and are involved in the development of T cells and autoimmunity. The role of ADAM family members in Th17 cell differentiation is unknown. We identified ADAM9 to be specifically expressed and to promote Th17 differentiation. Mechanistically, we found that ADAM9 cleaved the latency-associated peptide to produce bioactive transforming growth factor β1, which promoted SMAD2/3 phosphorylation and activation. A transcription factor inducible cAMP early repressor was found to bind directly to the ADAM9 promoter and to promote its transcription. Adam9-deficient mice displayed mitigated experimental autoimmune encephalomyelitis, and transfer of Adam9-deficient myelin oligodendrocyte globulin-specific T cells into Rag1 -/- mice failed to induce disease. At the translational level, an increased abundance of ADAM9 levels was observed in CD4+ T cells from patients with systemic lupus erythematosus, and ADAM9 gene deletion in lupus primary CD4+ T cells clearly attenuated their ability to differentiate into Th17 cells. These findings revealed that ADAM9 as a proteinase provides Th17 cells with an ability to activate transforming growth factor β1 and accelerates its differentiation, resulting in aberrant autoimmunity.
Collapse
|
13
|
Nattmann A, Breun M, Monoranu CM, Matthies C, Ernestus RI, Löhr M, Hagemann C. Analysis of ADAM9 regulation and function in vestibular schwannoma primary cells. BMC Res Notes 2020; 13:528. [PMID: 33176868 PMCID: PMC7659081 DOI: 10.1186/s13104-020-05378-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
Objective Recently, we described a disintegrin and metalloproteinase 9 (ADAM9) overexpression by Schwann cells of vestibular schwannoma (VS) and suggested that it might be a marker for VS tumor growth and invasiveness. This research note provides additional data utilizing a small cohort of VS primary cultures and tissue samples. We examined whether reconstitution of Merlin expression in VS cells regulates ADAM9 protein expression and performed lentiviral ADAM9 knock down to investigate possible effects on VS cells numbers. Moreover, the co-localization of ADAM9 and Integrins α6 and α2β1, respectively, was examined by immunofluorescence double staining. Results ADAM9 expression was not regulated by Merlin in VS. However, ADAM9 knock down led to 58% reduction in cell numbers in VS primary cell cultures (p < 0.0001). While ADAM9 and Integrin α2β1 were co-localized in only 22% (2 of 9) of VS, ADAM9 and Integrin α6 were co-localized in 91% (10 of 11) of VS. Therefore, we provide first observations on possible regulatory functions of ADAM9 expression in VS.
Collapse
Affiliation(s)
- Anja Nattmann
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Maria Breun
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, 97080, Würzburg, Germany
| | - Cordula Matthies
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Mario Löhr
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Carsten Hagemann
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| |
Collapse
|
14
|
VCAM-1 Target in Non-Invasive Imaging for the Detection of Atherosclerotic Plaques. BIOLOGY 2020; 9:biology9110368. [PMID: 33138124 PMCID: PMC7692297 DOI: 10.3390/biology9110368] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Simple Summary Cardiovascular diseases are the first cause of morbimortality worldwide. They are mainly caused by atherosclerosis, with progressive plaque formation in the arterial wall. In this context, several imaging techniques have been developed to screen, detect and quantify atherosclerosis. Early screening improves primary prevention and promotes the prescription of adequate medication before adverse clinical events. In this review, we focus on the imaging of vascular cell adhesion molecule-1, an adhesion molecule involved in the first stages of the development of atherosclerosis. This molecule could therefore be a promising target to detect early atherosclerosis non-invasively. Potential clinical applications are critically discussed. Abstract Atherosclerosis is a progressive chronic arterial disease characterised by atheromatous plaque formation in the intima of the arterial wall. Several invasive and non-invasive imaging techniques have been developed to detect and characterise atherosclerosis in the vessel wall: anatomic/structural imaging, functional imaging and molecular imaging. In molecular imaging, vascular cell adhesion molecule-1 (VCAM-1) is a promising target for the non-invasive detection of atherosclerosis and for the assessment of novel antiatherogenic treatments. VCAM-1 is an adhesion molecule expressed on the activated endothelial surface that binds leucocyte ligands and therefore promotes leucocyte adhesion and transendothelial migration. Hence, for several years, there has been an increase in molecular imaging methods for detecting VCAM-1 in MRI, PET, SPECT, optical imaging and ultrasound. The use of microparticles of iron oxide (MPIO), ultrasmall superparamagnetic iron oxide (USPIO), microbubbles, echogenic immunoliposomes, peptides, nanobodies and other nanoparticles has been described. However, these approaches have been tested in animal models, and the remaining challenge is bench-to-bedside development and clinical applicability.
Collapse
|
15
|
Chou CW, Huang YK, Kuo TT, Liu JP, Sher YP. An Overview of ADAM9: Structure, Activation, and Regulation in Human Diseases. Int J Mol Sci 2020; 21:ijms21207790. [PMID: 33096780 PMCID: PMC7590139 DOI: 10.3390/ijms21207790] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
ADAM9 (A disintegrin and a metalloprotease 9) is a membrane-anchored protein that participates in a variety of physiological functions, primarily through the disintegrin domain for adhesion and the metalloprotease domain for ectodomain shedding of a wide variety of cell surface proteins. ADAM9 influences the developmental process, inflammation, and degenerative diseases. Recently, increasing evidence has shown that ADAM9 plays an important role in tumor biology. Overexpression of ADAM9 has been found in several cancer types and is correlated with tumor aggressiveness and poor prognosis. In addition, through either proteolytic or non-proteolytic pathways, ADAM9 promotes tumor progression, therapeutic resistance, and metastasis of cancers. Therefore, comprehensively understanding the mechanism of ADAM9 is crucial for the development of therapeutic anti-cancer strategies. In this review, we summarize the current understanding of ADAM9 in biological function, pathophysiological diseases, and various cancers. Recent advances in therapeutic strategies using ADAM9-related pathways are presented as well.
Collapse
Affiliation(s)
- Cheng-Wei Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
- Department of Medicine, Division of Hematology/Medical Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yu-Kai Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
| | - Ting-Ting Kuo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan;
| | - Jing-Pei Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2205-2121
| |
Collapse
|
16
|
Cao D, Mikosz AM, Ringsby AJ, Anderson KC, Beatman EL, Koike K, Petrache I. MicroRNA-126-3p Inhibits Angiogenic Function of Human Lung Microvascular Endothelial Cells via LAT1 (L-Type Amino Acid Transporter 1)-Mediated mTOR (Mammalian Target of Rapamycin) Signaling. Arterioscler Thromb Vasc Biol 2020; 40:1195-1206. [PMID: 32212853 PMCID: PMC7370836 DOI: 10.1161/atvbaha.119.313800] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/13/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE MicroRNA-126-3p (miR-126) is required for angiogenesis during organismal development or the repair of injured arterial vasculature. The role of miR-126 in lung microvascular endothelial cells, which are essential for gas exchange and for lung injury repair and regeneration, remains poorly understood. Considering the significant heterogeneity of endothelial cells from different vascular beds, we aimed to determine the role of miR-126 in regulating lung microvascular endothelial cell function and to elucidate its downstream signaling pathways. Approach and Results: Overexpression and knockdown of miR-126 in primary human lung microvascular endothelial cells (HLMVEC) were achieved via transfections of miR-126 mimics and antisense inhibitors. Increasing miR-126 levels in HLMVEC reduced cell proliferation, weakened tube formation, and increased cell apoptosis, whereas decreased miR-126 levels stimulated cell proliferation and tube formation. Whole-genome RNA sequencing revealed that miR-126 was associated with an antiangiogenic and proapoptotic transcriptomic profile. Using validation assays and knockdown approaches, we identified that the effect of miR-126 on HLMVEC angiogenesis was mediated by the LAT1 (L-type amino acid transporter 1), via regulation of mTOR (mammalian target of rapamycin) signaling. Furthermore, downregulation of miR-126 in HLMVEC inhibited cell apoptosis and improved endothelial tube formation during exposure to environmental insults such as cigarette smoke. CONCLUSIONS miR-126 inhibits HLMVEC angiogenic function by targeting the LAT1-mTOR signaling axis, suggesting that miR-126 inhibition may be useful for conditions associated with microvascular loss, whereas miR-126 augmentation may help control unwanted microvascular angiogenesis.
Collapse
Affiliation(s)
- Danting Cao
- Department of Pharmacology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| | - Andrew M. Mikosz
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| | - Alexandra J. Ringsby
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA
| | - Kelsey C. Anderson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO
| | - Erica L. Beatman
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| | - Kengo Koike
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
- Division of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Irina Petrache
- Department of Pharmacology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| |
Collapse
|
17
|
Pan YB, Wang S, Yang B, Jiang Z, Lenahan C, Wang J, Zhang J, Shao A. Transcriptome analyses reveal molecular mechanisms underlying phenotypic differences among transcriptional subtypes of glioblastoma. J Cell Mol Med 2020; 24:3901-3916. [PMID: 32091665 PMCID: PMC7171397 DOI: 10.1111/jcmm.14976] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Using molecular signatures, previous studies have defined glioblastoma (GBM) subtypes with different phenotypes, such as the proneural (PN), neural (NL), mesenchymal (MES) and classical (CL) subtypes. However, the gene programmes underlying the phenotypes of these subtypes were less known. We applied weighted gene co-expression network analysis to establish gene modules corresponding to various subtypes. RNA-seq and immunohistochemical data were used to validate the expression of identified genes. We identified seven molecular subtype-specific modules and several candidate signature genes for different subtypes. Next, we revealed, for the first time, that radioresistant/chemoresistant gene signatures exist only in the PN subtype, as described by Verhaak et al, but do not exist in the PN subtype described by Phillips et al PN subtype. Moreover, we revealed that the tumour cells in the MES subtype GBMs are under ER stress and that angiogenesis and the immune inflammatory response are both significantly elevated in this subtype. The molecular basis of these biological processes was also uncovered. Genes associated with alternative RNA splicing are up-regulated in the CL subtype GBMs, and genes pertaining to energy synthesis are elevated in the NL subtype GBMs. In addition, we identified several survival-associated genes that positively correlated with glioma grades. The identified intrinsic characteristics of different GBM subtypes can offer a potential clue to the pathogenesis and possible therapeutic targets for various subtypes.
Collapse
Affiliation(s)
- Yuan-Bo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Siqi Wang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China.,Department of Nuclear Medicine, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Biao Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jianhua Wang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Meyer JG, Garcia TY, Schilling B, Gibson BW, Lamba DA. Proteome and Secretome Dynamics of Human Retinal Pigment Epithelium in Response to Reactive Oxygen Species. Sci Rep 2019; 9:15440. [PMID: 31659173 PMCID: PMC6817852 DOI: 10.1038/s41598-019-51777-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries, and is characterized by slow retinal degeneration linked to chronic reactive oxygen species (ROS) in the retinal pigmented epithelium (RPE). The molecular mechanisms leading to RPE dysfunction in response to ROS are unclear. Here, human stem cell-derived RPE samples were stressed with ROS for 1 or 3 weeks, and both intracellular and secreted proteomes were quantified by mass spectrometry. ROS increased glycolytic proteins but decreased mitochondrial complex I subunits, as well as membrane proteins required for endocytosis. RPE secreted over 1,000 proteins, many of which changed significantly due to ROS. Notably, secreted APOE is decreased 4-fold, and urotensin-II, the strongest known vasoconstrictor, doubled. Furthermore, secreted TGF-beta is increased, and its cognate signaler BMP1 decreased in the secretome. Together, our results paint a detailed molecular picture of the retinal stress response in space and time.
Collapse
Affiliation(s)
- Jesse G Meyer
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Department of Chemistry, Department of Biomolecular Chemistry, National Center for Quantitative Biology of Complex Systems, University of Wisconsin - Madison, Madison, WI, 53706, USA.
| | - Thelma Y Garcia
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Bradford W Gibson
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Discovery Attribute Sciences, Research, Amgen, South San Francisco, CA, 94080, USA
| | - Deepak A Lamba
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Department of Ophthalmology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California - San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
19
|
Abstract
EMCV is an animal pathogen that causes acute viral infections, usually myocarditis or encephalitis. It is thought to circulate mainly among rodents, from which it is occasionally transmitted to other animal species, including humans. EMCV causes fatal outbreaks of myocarditis and encephalitis in pig farms and zoos, making it an important veterinary pathogen. Although EMCV has been widely used as a model to study mechanisms of viral disease in mice, little is known about its entry mechanism. Here, we employ a haploid genetic screen for EMCV host factors and identify an essential role for ADAM9 in EMCV entry. Encephalomyocarditis virus (EMCV) is an animal pathogen and an important model organism, whose receptor requirements are poorly understood. Here, we employed a genome-wide haploid genetic screen to identify novel EMCV host factors. In addition to the previously described picornavirus receptors sialic acid and glycosaminoglycans, this screen unveiled important new host factors for EMCV. These factors include components of the fibroblast growth factor (FGF) signaling pathway, such as the potential receptors FGFR1 and ADAM9, a cell-surface metalloproteinase. By employing various knockout cells, we confirmed the importance of the identified host factors for EMCV infection. The largest reduction in infection efficiency was observed in cells lacking ADAM9. Pharmacological inhibition of the metalloproteinase activity of ADAM9 did not affect virus infection. Moreover, reconstitution of inactive ADAM9 in knockout cells restored susceptibility to EMCV, pointing to a proteinase-independent role of ADAM9 in mediating EMCV infection. Using neutralization assays with ADAM9-specific antiserum and soluble receptor proteins, we provided evidence for a role of ADAM9 in EMCV entry. Finally, binding assays showed that ADAM9 facilitates attachment of EMCV to the cell surface. Together, our findings reveal a role for ADAM9 as a novel receptor or cofactor for EMCV.
Collapse
|
20
|
Opdenakker G, Abu El-Asrar A. Metalloproteinases mediate diabetes-induced retinal neuropathy and vasculopathy. Cell Mol Life Sci 2019; 76:3157-3166. [PMID: 31183508 PMCID: PMC11105743 DOI: 10.1007/s00018-019-03177-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) and related metalloproteinases with a disintegrin domain (ADAMs) have become interesting probes and targets in eye diseases, including diabetic retinopathy. We here summarize recent data about MMPs and ADAMs in retinopathies. Retinal diseases range from rare genetic afflictions to diabetic retinopathy, the latter of which is reaching epidemic proportions. MMPs and ADAMs play roles in normal eye development and in disease states, not only in local proteolysis but also signaling functions mediated by specific protein domains, interacting with cell surface receptors. In proliferative diabetic retinopathy, inflammation, hypoxia-induced vascular endothelial growth factor and oxidative stress collectively stimulate the production, activation and signaling functions of pro-MMP-9. This leads to angiogenesis, destruction of neuroprotective prominin-1, loss of photoreceptors and blood-retina barrier breakdown. Biological inhibition of proteolysis and control of signaling functions are executed by the tissue inhibitors of metalloproteases (TIMPs). Angiogenic, inflammatory and fibrotic reactions, in which MMPs, ADAMs and TIMPs are involved, co-determine common eye diseases. Therefore, visions about the use of these proteases as biomarkers and as targets for therapeutic inhibitors, including small molecule inhibitors and monoclonal antibodies, may lead to breakthroughs in tissue regeneration, maintenance of photoreceptors and neuroprotection.
Collapse
Affiliation(s)
- Ghislain Opdenakker
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, University of Leuven, Leuven, Belgium.
| | - Ahmed Abu El-Asrar
- Department of Ophthalmology, Dr. Nasser Al-Rashid Research Chair in Ophthalmology, King Saud University, Rhiyad, Saudi Arabia
| |
Collapse
|
21
|
Hsia HE, Tüshaus J, Brummer T, Zheng Y, Scilabra SD, Lichtenthaler SF. Functions of 'A disintegrin and metalloproteases (ADAMs)' in the mammalian nervous system. Cell Mol Life Sci 2019; 76:3055-3081. [PMID: 31236626 PMCID: PMC11105368 DOI: 10.1007/s00018-019-03173-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
'A disintegrin and metalloproteases' (ADAMs) are a family of transmembrane proteins with diverse functions in multicellular organisms. About half of the ADAMs are active metalloproteases and cleave numerous cell surface proteins, including growth factors, receptors, cytokines and cell adhesion proteins. The other ADAMs have no catalytic activity and function as adhesion proteins or receptors. Some ADAMs are ubiquitously expressed, others are expressed tissue specifically. This review highlights functions of ADAMs in the mammalian nervous system, including their links to diseases. The non-proteolytic ADAM11, ADAM22 and ADAM23 have key functions in neural development, myelination and synaptic transmission and are linked to epilepsy. Among the proteolytic ADAMs, ADAM10 is the best characterized one due to its substrates Notch and amyloid precursor protein, where cleavage is required for nervous system development or linked to Alzheimer's disease (AD), respectively. Recent work demonstrates that ADAM10 has additional substrates and functions in the nervous system and its substrate selectivity may be regulated by tetraspanins. New roles for other proteolytic ADAMs in the nervous system are also emerging. For example, ADAM8 and ADAM17 are involved in neuroinflammation. ADAM17 additionally regulates neurite outgrowth and myelination and its activity is controlled by iRhoms. ADAM19 and ADAM21 function in regenerative processes upon neuronal injury. Several ADAMs, including ADAM9, ADAM10, ADAM15 and ADAM30, are potential drug targets for AD. Taken together, this review summarizes recent progress concerning substrates and functions of ADAMs in the nervous system and their use as drug targets for neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Hung-En Hsia
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Tobias Brummer
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Yuanpeng Zheng
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Simone D Scilabra
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
- Fondazione Ri.MED, Department of Research, IRCCS-ISMETT, via Tricomi 5, 90127, Palermo, Italy
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany.
- Munich Center for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
22
|
A Disintegrin and Metalloproteinase 9 Domain (ADAM9) Is a Major Susceptibility Factor in the Early Stages of Encephalomyocarditis Virus Infection. mBio 2019; 10:mBio.02734-18. [PMID: 30723129 PMCID: PMC6428755 DOI: 10.1128/mbio.02734-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Encephalomyocarditis virus (EMCV) is a picornavirus that produces lytic infections in murine and human cells. Employing a genome-wide CRISPR-Cas9 knockout screen to find host factors required for EMCV infection, we identified a role for ADAM9 in EMCV infection. CRISPR-mediated deletion of ADAM9 in multiple human cell lines rendered the cells highly resistant to EMCV infection and cell death. Primary fibroblasts from ADAM9 KO mice were also strongly resistant to EMCV infection and cell death. In contrast, ADAM9 KO and WT cells were equally susceptible to infection with other viruses, including the picornavirus Coxsackie virus B. ADAM9 KO cells failed to produce viral progeny when incubated with EMCV. However, bypassing EMCV entry into cells through delivery of viral RNA directly to the cytosol yielded infectious EMCV virions from ADAM9 KO cells, suggesting that ADAM9 is not required for EMCV replication post-entry. These findings establish that ADAM9 is required for the early stage of EMCV infection, likely for virus entry or viral genome delivery to the cytosol.IMPORTANCE Viral myocarditis is a leading cause of death in the United States, contributing to numerous unexplained deaths in people ≤35 years old. Enteroviruses contribute to many cases of human myocarditis. Encephalomyocarditis virus (EMCV) infection causes viral myocarditis in rodent models, but its receptor requirements have not been fully identified. CRISPR-Cas9 screens can identify host dependency factors essential for EMCV infection and enhance our understanding of key events that follow viral infection, potentially leading to new strategies for preventing viral myocarditis. Using a CRISPR-Cas9 screen, we identified a disintegrin and metalloproteinase 9 domain (ADAM9) as a major factor required for the early stages of EMCV infection in both human and murine infection.
Collapse
|
23
|
Oria VO, Lopatta P, Schmitz T, Preca BT, Nyström A, Conrad C, Bartsch JW, Kulemann B, Hoeppner J, Maurer J, Bronsert P, Schilling O. ADAM9 contributes to vascular invasion in pancreatic ductal adenocarcinoma. Mol Oncol 2019; 13:456-479. [PMID: 30556643 PMCID: PMC6360373 DOI: 10.1002/1878-0261.12426] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
A disintegrin and a metalloprotease (ADAM)‐9 is a metzincin cell‐surface protease with strongly elevated expression in solid tumors, including pancreatic ductal adenocarcinoma (PDAC). In this study, we performed immunohistochemistry (IHC) of a tissue microarray (TMA) to examine the expression of ADAM9 in a cohort of >100 clinically annotated PDAC cases. We report that ADAM9 is prominently expressed by PDAC tumor cells, and increased ADAM9 expression levels correlate with poor tumor grading (P = 0.027) and the presence of vasculature invasion (P = 0.017). We employed gene expression silencing to generate a loss‐of‐function system for ADAM9 in two established PDAC cell lines. In vitro analysis showed that loss of ADAM9 does not impede cellular proliferation and invasiveness in basement membrane. However, ADAM9 plays a crucial role in mediating cell migration and adhesion to extracellular matrix substrates such as fibronectin, tenascin, and vitronectin. This effect appears to depend on its catalytic activity. In addition, ADAM9 facilitates anchorage‐independent growth. In AsPC1 cells, but not in MiaPaCa‐2 cells, we noted a pronounced yet heterogeneous impact of ADAM9 on the abundance of various integrins, a process that we characterized as post‐translational regulation. Sprout formation of human umbilical vein endothelial cells (HUVECs) is promoted by ADAM9, as examined by transfer of cancer cell conditioned medium; this finding further supports a pro‐angiogenic role of ADAM9 expressed by PDAC cancer cells. Immunoblotting analysis of cancer cell conditioned medium highlighted that ADAM9 regulates the levels of angiogenic factors, including shed heparin‐binding EGF‐like growth factor (HB‐EGF). Finally, we carried out orthotopic seeding of either wild‐type AsPC‐1 cells or AsPC‐1 cells with silenced ADAM9 expression into murine pancreas. In this in vivo setting, ADAM9 was also found to foster angiogenesis without an impact on tumor cell proliferation. In summary, our results characterize ADAM9 as an important regulator in PDAC tumor biology with a strong pro‐angiogenic impact.
Collapse
Affiliation(s)
- Victor O Oria
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany
| | - Paul Lopatta
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany
| | - Tatjana Schmitz
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany
| | | | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Germany
| | - Catharina Conrad
- Department of Neurosurgery, Philipps University Marburg, Germany.,Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Birte Kulemann
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany
| | - Jens Hoeppner
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Germany
| | - Jochen Maurer
- Department of Gynecology, University Clinic RWTH, Aachen, Germany
| | - Peter Bronsert
- Faculty of Medicine, University of Freiburg, Germany.,Institute of Surgical Pathology, Medical Center - University of Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany.,Tumorbank Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Germany
| | - Oliver Schilling
- Faculty of Medicine, University of Freiburg, Germany.,Institute of Surgical Pathology, Medical Center - University of Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany.,Centre for Biological Signaling Studies BIOSS, University of Freiburg, Germany
| |
Collapse
|
24
|
Jiang L, Liu Y, Ma C, Li B. MicroRNA-30a suppresses the proliferation, migration and invasion of human renal cell carcinoma cells by directly targeting ADAM9. Oncol Lett 2018; 16:3038-3044. [PMID: 30127894 PMCID: PMC6096089 DOI: 10.3892/ol.2018.8999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/30/2018] [Indexed: 12/30/2022] Open
Abstract
An increasing number of studies reported that microRNA (miR)-30a was dysregulated in several types of human cancer and may contribute to cancer carcinogenesis and progression. However, its expression and roles in renal cell carcinoma (RCC) remain unknown. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to quantify miR-30a expression in RCC tissues and cell lines. The cell counting kit-8 assay, migration and invasion assays were used to evaluate the roles of miR-30a on the proliferation, migration and invasion of RCC cells. The target gene of miR-30a was identified by luciferase reporter assays, RT-qPCR and western blotting. The results indicated that miR-30a was downregulated in RCC tissues and cell lines compared with corresponding noncancerous tissues and normal renal cell line, respectively. Re-expression of miR-30a inhibited the proliferation, migration and invasion of RCC cells. Additionally, ADAM metallopeptidase domain 9 (ADAM9) was validated as a direct target of miR-30a. Furthermore, the knockdown of ADAM9 by small interfering RNAs was able to mimic the effects of miR-30a overexpression in RCC cells. These results highlight the important role for miR-30a in the occurrence and development of RCC, and the restoration of miR-30a might be investigated as a potential strategy for treating RCC.
Collapse
Affiliation(s)
- Lining Jiang
- Department of Urology, Cangzhou Central Hospital, Cangzhou, Hebei 061110, P.R. China
| | - Yabin Liu
- Department of Urology, Hebei Medical University Fourth Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Can Ma
- Department of Oncology, Shijiazhuang City No. 1 People's Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Binghui Li
- Department of Urology, Hebei Medical University Fourth Hospital, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
25
|
Chiu KL, Lin YS, Kuo TT, Lo CC, Huang YK, Chang HF, Chuang EY, Lin CC, Cheng WC, Liu YN, Lai LC, Sher YP. ADAM9 enhances CDCP1 by inhibiting miR-1 through EGFR signaling activation in lung cancer metastasis. Oncotarget 2018; 8:47365-47378. [PMID: 28537886 PMCID: PMC5564571 DOI: 10.18632/oncotarget.17648] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs), which are endogenous short noncoding RNAs, can regulate genes involved in important biological and pathological functions. Therefore, dysregulation of miRNAs plays a critical role in cancer progression. However, whether the aberrant expression of miRNAs is regulated by oncogenes remains unclear. We previously demonstrated that a disintegrin and metalloprotease domain 9 (ADAM9) promotes lung metastasis by enhancing the expression of a pro-migratory protein, CUB domain containing protein 1 (CDCP1). In this study, we found that this process occurred via miR-1 down-regulation. miR-1 expression was down-regulated in lung tumors, but increased in ADAM9-knockdown lung cancer cells, and was negatively correlated with CDCP1 expression as well as the migration ability of lung cancer cells. Luciferase-based reporter assays showed that miR-1 directly bound to the 3′-untranslated region of CDCP1 and inhibited its translation. Treatment with a miR-1 inhibitor restored CDCP1 protein levels and enhanced tumor cell mobility. Overexpression of miR-1 decreased tumor metastases and increased the survival rate in mice. ADAM9 knockdown reduced EGFR signaling and increased miR-1 expression. These results revealed that ADAM9 down-regulates miR-1 via activating EGFR signaling pathways, which in turn enhances CDCP1 expression to promote lung cancer progression.
Collapse
Affiliation(s)
- Kuo-Liang Chiu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu-Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yu-Sen Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Division of Thoracic Surgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Ting-Ting Kuo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chia-Chien Lo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Kai Huang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Hsien-Fang Chang
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ching-Chan Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Division of Hematology and Oncology, China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of BioMedical Sciences, China Medical University, Taichung 404, Taiwan.,Research Center for Tumor Medical Science, China Medical University, Taichung 404, Taiwan
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Liang-Chuan Lai
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 100, Taiwan.,Graduate Institute of Physiology, National Taiwan University, Taipei 106, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Graduate Institute of BioMedical Sciences, China Medical University, Taichung 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
26
|
Giraud S, Steichen C, Allain G, Couturier P, Labourdette D, Lamarre S, Ameteau V, Tillet S, Hannaert P, Thuillier R, Hauet T. Dynamic transcriptomic analysis of Ischemic Injury in a Porcine Pre-Clinical Model mimicking Donors Deceased after Circulatory Death. Sci Rep 2018; 8:5986. [PMID: 29654283 PMCID: PMC5899088 DOI: 10.1038/s41598-018-24282-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Due to organ shortage, clinicians are prone to consider alternative type of organ donors among them donors deceased after circulatory death (DCD). However, especially using these organs which are more prone to graft dysfunction, there is a need to better understand mechanistic events ocuring during ischemia phase and leading to ischemia/reperfusion injuries (IRI). The aim of this study is to provide a dynamic transcriptomic analysis of preclinical porcine model kidneys subjected to ischemic stress mimicking DCD donor. We compared cortex and corticomedullary junction (CMJ) tissues from porcine kidneys submitted to 60 min warm ischemia (WI) followed by 0, 6 or 24 hours of cold storage in University of Wisconsin solution versus control non-ischemic kidneys (n = 5 per group). 29 cortex genes and 113 CMJ genes were significantly up or down-regulated after WI versus healthy kidneys, and up to 400 genes were regulated after WI followed by 6 or 24 hours of cold storage (p < 0.05). Functionnal enrichment analysis (home selected gene kinetic classification, Gene-ontology-biological processes and Gene-ontology-molecular-function) revealed relevant genes implication during WI and cold storage. We uncovered targets which we will further validate as biomarkers and new therapeutic targets to optimize graft kidney quality before transplantation and improve whole transplantation outcome.
Collapse
Affiliation(s)
- Sebastien Giraud
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, F-86000, France.,CHU Poitiers, Service de Biochimie, Poitiers, F-86000, France
| | - Clara Steichen
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, F-86000, France
| | - Geraldine Allain
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, F-86000, France.,CHU Poitiers, Service de chirurgie cardio-thoracique, Poitiers, 86000, France
| | - Pierre Couturier
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France.,CHU Poitiers, Service de Biochimie, Poitiers, F-86000, France.,MOPICT, IBiSA plateforme 'Experimental Surgery and Transplantation', Domaine du Magneraud, Surgères, F-17700, France
| | | | - Sophie Lamarre
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, F- 31077, France
| | - Virginie Ameteau
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, F-86000, France
| | - Solenne Tillet
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, F-86000, France
| | | | - Raphael Thuillier
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, F-86000, France.,CHU Poitiers, Service de Biochimie, Poitiers, F-86000, France
| | - Thierry Hauet
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France. .,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, F-86000, France. .,CHU Poitiers, Service de Biochimie, Poitiers, F-86000, France. .,MOPICT, IBiSA plateforme 'Experimental Surgery and Transplantation', Domaine du Magneraud, Surgères, F-17700, France. .,FHU SUPORT 'SUrvival oPtimization in ORgan Transplantation', Poitiers, F-86000, France.
| |
Collapse
|
27
|
Mygind KJ, Störiko T, Freiberg ML, Samsøe-Petersen J, Schwarz J, Andersen OM, Kveiborg M. Sorting nexin 9 (SNX9) regulates levels of the transmembrane ADAM9 at the cell surface. J Biol Chem 2018; 293:8077-8088. [PMID: 29622675 DOI: 10.1074/jbc.ra117.001077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/12/2018] [Indexed: 11/06/2022] Open
Abstract
ADAM9 is an active member of the family of transmembrane ADAMs (a disintegrin and metalloproteases). It plays a role in processes such as bone formation and retinal neovascularization, and importantly, its expression in human cancers correlates with disease stage and poor prognosis. Functionally, ADAM9 can cleave several transmembrane proteins, thereby shedding their ectodomains from the cell surface. Moreover, ADAM9 regulates cell behavior by binding cell-surface receptors such as integrin and membrane-type matrix metalloproteases. Because these functions are mainly restricted to the cell surface, understanding the mechanisms regulating ADAM9 localization and activity at this site is highly important. To this end, we here investigated how intracellular trafficking regulates ADAM9 availability at the cell surface. We found that ADAM9 undergoes constitutive clathrin-dependent internalization and subsequent degradation or recycling to the plasma membrane. We confirmed previous findings of an interaction between ADAM9 and the intracellular sorting protein, sorting nexin 9 (SNX9), as well as its close homolog SNX18. Knockdown of either SNX9 or SNX18 had no apparent effects on ADAM9 internalization or recycling. However, double knockdown of SNX9 and SNX18 decreased ADAM9 internalization significantly, demonstrating a redundant role in this process. Moreover, SNX9 knockdown revealed a nonredundant effect on overall ADAM9 protein levels, resulting in increased ADAM9 levels at the cell surface, and a corresponding increase in the shedding of Ephrin receptor B4, a well-known ADAM9 substrate. Together, our findings demonstrate that intracellular SNX9-mediated trafficking constitutes an important ADAM9 regulatory pathway.
Collapse
Affiliation(s)
- Kasper J Mygind
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Theresa Störiko
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Marie L Freiberg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jacob Samsøe-Petersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jeanette Schwarz
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Olav M Andersen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Ole Worms Alle 3, 8000 Aarhus C, Denmark
| | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| |
Collapse
|
28
|
Mygind KJ, Schwarz J, Sahgal P, Ivaska J, Kveiborg M. Loss of ADAM9 expression impairs β1 integrin endocytosis, focal adhesion formation and cancer cell migration. J Cell Sci 2018; 131:jcs.205393. [PMID: 29142101 DOI: 10.1242/jcs.205393] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/09/2017] [Indexed: 12/28/2022] Open
Abstract
The transmembrane protease ADAM9 is frequently upregulated in human cancers, and it promotes tumour progression in mice. In vitro, ADAM9 regulates cancer cell adhesion and migration by interacting with integrins. However, how ADAM9 modulates integrin functions is not known. We here show that ADAM9 knockdown increases β1 integrin levels through mechanisms that are independent of its protease activity. In ADAM9-silenced cells, adhesion to collagen and fibronectin is reduced, suggesting an altered function of the accumulated integrins. Mechanistically, ADAM9 co-immunoprecipitates with β1 integrin, and both internalization and subsequent degradation of β1 integrin are significantly decreased in ADAM9-silenced cells, with no effect on β1 integrin recycling. Accordingly, the formation of focal adhesions and actin stress fibres in ADAM9-silenced cells is altered, possibly explaining the reduction in cell adhesion and migration in these cells. Taken together, our data provide mechanistic insight into the ADAM9-integrin interaction, demonstrating that ADAM9 regulates β1 integrin endocytosis. Moreover, our findings indicate that the reduced migration of ADAM9-silenced cells is, at least in part, caused by the accumulation and altered activity of β1 integrin at the cell surface.
Collapse
Affiliation(s)
- Kasper J Mygind
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jeanette Schwarz
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Pranshu Sahgal
- Turku Centre for Biotechnology, University of Turku, Turku 20520, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, Turku 20520, Finland.,Department of Biochemistry, University of Turku, Turku 20520, Finland
| | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
29
|
Zhang W, Chen S, Liu ML. Pathogenic roles of microvesicles in diabetic retinopathy. Acta Pharmacol Sin 2018; 39:1-11. [PMID: 28713160 DOI: 10.1038/aps.2017.77] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/23/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and has been recognized as the leading cause of blindness in adults. Several interrelated molecular pathways are involved in the development of DR. Microvesicles (MVs) are cell membrane vesicles, which carry many biologic molecules, such as mRNAs, microRNAs, transcription factors, membrane lipids, membrane receptors, and other proteins. They may be involved in intercellular communication that can promote inflammation, angiogenesis, and coagulation. Recent studies have indicated that changes in the number and composition of MVs may reflect the pathologic conditions of DR. At present, MVs are well recognized as being involved in the pathophysiological conditions of tumors and cardio-metabolic diseases. However, the roles of MVs in DR have yet to be investigated. In this review, we provide an overview of DR-induced microvascular injury that is caused by MVs derived from endothelial and circulating cells, and discuss the possible mechanisms by which MVs can lead to endothelial dysfunction, coagulation and inflammation. In addition, the protective effects of preconditioned MVs and stem cell-derived MVs are also described . Understanding the involvement of MVs in the pathophysiological conditions of DR may provide insight into the disease mechanisms and may suggest novel therapeutic strategies for DR in the future.
Collapse
|
30
|
Lin CY, Cho CF, Bai ST, Liu JP, Kuo TT, Wang LJ, Lin YS, Lin CC, Lai LC, Lu TP, Hsieh CY, Chu CN, Cheng DC, Sher YP. ADAM9 promotes lung cancer progression through vascular remodeling by VEGFA, ANGPT2, and PLAT. Sci Rep 2017; 7:15108. [PMID: 29118335 PMCID: PMC5678093 DOI: 10.1038/s41598-017-15159-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/23/2017] [Indexed: 12/27/2022] Open
Abstract
Lung cancer has a very high prevalence of brain metastasis, which results in a poor clinical outcome. Up-regulation of a disintegrin and metalloproteinase 9 (ADAM9) in lung cancer cells is correlated with metastasis to the brain. However, the molecular mechanism underlying this correlation remains to be elucidated. Since angiogenesis is an essential step for brain metastasis, microarray experiments were used to explore ADAM9-regulated genes that function in vascular remodeling. The results showed that the expression levels of vascular endothelial growth factor A (VEGFA), angiopoietin-2 (ANGPT2), and tissue plasminogen activator (PLAT) were suppressed in ADAM9-silenced cells, which in turn leads to decreases in angiogenesis, vascular remodeling, and tumor growth in vivo. Furthermore, simultaneous high expression of ADAM9 and VEGFA or of ADAM9 and ANGPT2 was correlated with poor prognosis in a clinical dataset. These findings suggest that ADAM9 promotes tumorigenesis through vascular remodeling, particularly by increasing the function of VEGFA, ANGPT2, and PLAT.
Collapse
Affiliation(s)
- Chen-Yuan Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan.,Division of Hematology and Oncology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Chia-Fong Cho
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Shih-Ting Bai
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Jing-Pei Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Ting-Ting Kuo
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Li-Ju Wang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Yu-Sen Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan.,Division of Thoracic Surgery, China Medical University Hospital, Taichung, 404, Taiwan
| | - Ching-Chan Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan.,Division of Hematology and Oncology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei, 106, Taiwan
| | - Tzu-Pin Lu
- Department of Public Health, National Taiwan University, Taipei, 106, Taiwan
| | - Chih-Ying Hsieh
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Chin-Nan Chu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan.,Department of Radiation Oncology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Da-Chuan Cheng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan.,Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 404, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan. .,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan.
| |
Collapse
|
31
|
English WR, Siviter RJ, Hansen M, Murphy G. ADAM9 is present at endothelial cell - cell junctions and regulates monocyte - endothelial transmigration. Biochem Biophys Res Commun 2017; 493:1057-1062. [PMID: 28928095 PMCID: PMC5643258 DOI: 10.1016/j.bbrc.2017.09.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 01/24/2023]
Abstract
We have found that A Disintegrin And Metalloproteinase-9 (ADAM9) localises to cell-cell junctions with VE-Cadherin in confluent endothelial monolayers. Co-cultures of cells separately transfected with ADAM9-EGFP or ADAM9-HA showed expression is required in two adjacent cells for localisation to cell-cell junctions suggesting the ADAM9 ectodomain may self-associate. A direct interaction between ADAM9 ectodomains was confirmed using recombinant proteins and an ELISA based method. As the ADAM9 ectodomain can also exist as a soluble form physiologically, we examined if this could inhibit endothelial functions dependent on cell-cell junctions. The soluble ADAM9 ectodomain could not increase endothelial monolayer permeability or inhibit monocyte-endothelial adhesion, but could inhibit monocyte-endothelial transmigration. These novel findings point to ADAM9 playing an important role in endothelial cell biology that is distinct from the other ADAMs. ADAM9 is a component of cell-cell junctions. ADAM9 must be expressed by both adjacent cells for cell junction localisation. ADAM9 can self-associate via its ectodomain. The soluble ADAM9 ectodomain inhibits monocyte-endothelial transmigration.
Collapse
Affiliation(s)
- William R English
- University of Cambridge Department of Oncology, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK; Tumour Microcirculation Group, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Richard J Siviter
- University of Cambridge Department of Oncology, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Martin Hansen
- University of Cambridge Department of Oncology, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Gillian Murphy
- University of Cambridge Department of Oncology, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
32
|
Ji T, Zhang X, Li W. MicroRNA‑543 inhibits proliferation, invasion and induces apoptosis of glioblastoma cells by directly targeting ADAM9. Mol Med Rep 2017; 16:6419-6427. [PMID: 28849046 DOI: 10.3892/mmr.2017.7332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/20/2017] [Indexed: 11/05/2022] Open
Abstract
Glioma is the most common type of malignant brain tumor in humans and accounts for 81% of all malignant brain tumor cases in adults. The abnormal expression of microRNAs (miRs) has been reported to be important in the formation and progression of various types of human cancer, including glioblastoma (GBM). Therefore, studies into the expression, and roles of microRNAs as diagnostic and prognostic markers, as well as their therapeutic value for patients with GBM are warranted. The expression and roles of miR‑543 have been reported in several types of human cancer. However, the role of miR‑543 in GBM remains unclear. In the current study, the expression pattern of miR‑543 in GBM, the effects of miR‑543 on GBM cells and the underlying molecular mechanism was determined. The results of the present study demonstrated that miR‑543 was significantly downregulated in GBM tissue samples and cell lines. Furthermore, the upregulation of miR‑543 inhibited GBM cell proliferation and invasion, as well as promoted cell apoptosis. In addition, a disintegrin and metalloproteinase 9 (ADAM9) was identified to be a direct target gene of miR‑543. Furthermore, ADAM9 was significantly upregulated in GBM tissue samples and its expression was inversely correlated with miR‑543 expression in GBM tissue, suggesting that miR‑543 downregulation may contribute to ADAM9 upregulation in GBM. Finally, the results of the rescue experiment indicated that ADAM9 overexpression significantly reversed the effects of miR‑543 on the proliferation, invasion and apoptosis of GBM cells, suggesting that miR‑543 serves as a tumor suppressor in GBM through ADAM9 regulation. Overall, these findings indicate that the miR‑543/ADAM9 signaling pathway may provide as a potential therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Tao Ji
- Department of Neurosurgery, Shenzhen Second People's Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong 518035, P.R. China
| | - Xiejun Zhang
- Department of Neurosurgery, Shenzhen Second People's Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong 518035, P.R. China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Second People's Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
33
|
Kossmann CM, Annereau M, Thomas-Schoemann A, Nicco-Overney C, Chéreau C, Batteux F, Alexandre J, Lemare F. ADAM9 expression promotes an aggressive lung adenocarcinoma phenotype. Tumour Biol 2017; 39:1010428317716077. [PMID: 28675123 DOI: 10.1177/1010428317716077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A disintegrin and metalloproteinase 9 (ADAM9) possesses potent metastasis-inducing capacities and is highly expressed in several cancer cells. Previous work has shown that ADAM9 participates in the adhesive-invasive phenotype in lung cancer cells in vitro. In this study, we evaluated whether ADAM9 expression plays a critical role in metastatic processes in vivo and in angiogenesis. We first found that high ADAM9 expression was correlated with poor lung adenocarcinoma patient prognosis on Prognoscan data base. In vivo model based on intravenous injection in nude mice showed that a stable downregulation of ADAM9 in A549 (TrA549 A9-) cells was associated with a lower number of nodules in the lung, suggesting lower potentials for extravasation and metastasis. On a subcutaneous xenograft we showed that TrA549 A9- produced significantly smaller tumours and exhibited fewer neovessels. In addition, in vitro human umbilical vein endothelial cells exposed to supernatant from TrA549 A9- could reduce the formation of more vessel-like structures. To further understand the mechanism, a human antibody array analysis confirmed that five cytokines were downregulated in TrA549 A9- cells. Interleukin 8 was the most significantly downregulated, and its interaction with CXCR2 was implicated in angiogenesis on an in vitro model. These results emphasize the critical influence of ADAM9 on lung cancer progression and aggressiveness. ADAM9 should at least be a marker of cancer aggressiveness and a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Céline Mongaret Kossmann
- 1 Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,2 UFR Pharmacie EA4691, Service Pharmacie, Hôpital Robert Debré, Reims, France
| | - Maxime Annereau
- 1 Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,3 Département de Pharmacie Clinique, Gustave Roussy, Villejuif, France
| | - Audrey Thomas-Schoemann
- 4 Hôpitaux Universitaires Paris Centre, Assistance Publique Hôpitaux de Paris, Paris, France.,5 Faculté de Pharmacie Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Carole Nicco-Overney
- 1 Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,6 Cancer Research Personalized Medicine (CARPEM), Paris, France
| | - Christiane Chéreau
- 1 Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,6 Cancer Research Personalized Medicine (CARPEM), Paris, France
| | - Frédéric Batteux
- 1 Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,4 Hôpitaux Universitaires Paris Centre, Assistance Publique Hôpitaux de Paris, Paris, France.,6 Cancer Research Personalized Medicine (CARPEM), Paris, France
| | - Jérôme Alexandre
- 1 Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,4 Hôpitaux Universitaires Paris Centre, Assistance Publique Hôpitaux de Paris, Paris, France.,6 Cancer Research Personalized Medicine (CARPEM), Paris, France
| | - François Lemare
- 3 Département de Pharmacie Clinique, Gustave Roussy, Villejuif, France.,5 Faculté de Pharmacie Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
34
|
Deletion of ADAM-9 in HGF/CDK4 mice impairs melanoma development and metastasis. Oncogene 2017; 36:5058-5067. [PMID: 28553955 DOI: 10.1038/onc.2017.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/31/2017] [Accepted: 04/22/2017] [Indexed: 12/11/2022]
Abstract
ADAM-9 is a metalloproteinase expressed in peritumoral areas by invading melanoma cells and by adjacent peritumoral stromal cells; however, its function in stromal and melanoma cells is not fully understood. To address this question in vivo in a spontaneous melanoma model, we deleted ADAM-9 in mice carrying the hepatocyte growth factor (Hgf) transgene and knock-in mutation Cdk4R24C/R24C, demonstrated to spontaneously develop melanoma. Spontaneous melanoma arose less frequently in ADAM-9-deleted mice than in controls. Similarly reduced tumor numbers (although with faster growth kinetics) were detected upon induction of melanoma with 7,12-dimethylbenz[a]anthracene (DMBA). However, more lesions were induced at early time points in the absence of ADAM-9. Increased initial and decreased late tumor numbers were paralleled by altered tumor cell proliferation, but not apoptosis or inflammation. Importantly, significantly reduced lung metastases were detected upon ADAM-9 deletion. Using in vitro assays to address this effect mechanistically, we detected reduced adhesion and transmigration of ADAM-9-silenced melanoma cells to/through the endothelium. This implies that ADAM-9 functionally and cell autonomously mediates extravasation of melanoma cells. In vitro and in vivo we demonstrated that the basement membrane (BM) component laminin β3-chain is a direct substrate of ADAM-9, thus contributing to destabilization and disruption of the BM barrier during invasion. In in vitro invasion assays using human melanoma cells and skin equivalents, depletion of ADAM-9 resulted in decreased invasion of the BM, which remained almost completely intact, as shown by continuous staining for laminin β3-chain. Importantly, supplying soluble ADAM-9 to the system reversed this effect. Taken together, our data show that melanoma derived ADAM-9 autonomously contributes to melanoma progression by modulating cell adhesion to the endothelium and altering BM integrity by proteolytically processing the laminin-β3 chain. This newly described process and ADAM-9 itself may represent potential targets for anti-tumor therapies.
Collapse
|
35
|
Characterization of the catalytic properties of the membrane-anchored metalloproteinase ADAM9 in cell-based assays. Biochem J 2017; 474:1467-1479. [PMID: 28264989 DOI: 10.1042/bcj20170075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 11/17/2022]
Abstract
ADAM9 (A Disintegrin And Metalloprotease 9) is a membrane-anchored metalloproteinase that has been implicated in pathological retinal neovascularization and in tumor progression. ADAM9 has constitutive catalytic activity in both biochemical and cell-based assays and can cleave several membrane proteins, including epidermal growth factor and Ephrin receptor B4; yet little is currently known about the catalytic properties of ADAM9 and its post-translational regulation and inhibitor profile in cell-based assays. To address this question, we monitored processing of the membrane-anchored Ephrin receptor B4 (EphB4) by co-expressing ADAM9, with the catalytically inactive ADAM9 E > A mutant serving as a negative control. We found that ADAM9-dependent shedding of EphB4 was not stimulated by three commonly employed activators of ADAM-dependent ectodomain shedding: phorbol esters, pervanadate or calcium ionophores. With respect to the inhibitor profile, we found that ADAM9 was inhibited by the hydroxamate-based metalloprotease inhibitors marimastat, TAPI-2, BB94, GM6001 and GW280264X, and by 10 nM of the tissue inhibitor of metalloproteinases (TIMP)-3, but not by up to 20 nM of TIMP-1 or -2. Additionally, we screened a non-hydroxamate small-molecule library for novel ADAM9 inhibitors and identified four compounds that selectively inhibited ADAM9-dependent proteolysis over ADAM10- or ADAM17-dependent processing. Taken together, the present study provides new information about the molecular fingerprint of ADAM9 in cell-based assays by showing that it is not stimulated by strong activators of ectodomain shedding and by defining a characteristic inhibitor profile. The identification of novel non-hydroxamate inhibitors of ADAM9 could provide the basis for designing more selective compounds that block the contribution of ADAM9 to pathological neovascularization and cancer.
Collapse
|
36
|
Antalis TM, Conway GD, Peroutka RJ, Buzza MS. Membrane-anchored proteases in endothelial cell biology. Curr Opin Hematol 2016; 23:243-52. [PMID: 26906027 DOI: 10.1097/moh.0000000000000238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The endothelial cell plasma membrane is a metabolically active, dynamic, and fluid microenvironment where pericellular proteolysis plays a critical role. Membrane-anchored proteases may be expressed by endothelial cells as well as mural cells and leukocytes with distribution both inside and outside of the vascular system. Here, we will review the recent advances in our understanding of the direct and indirect roles of membrane-anchored proteases in vascular biology and the possible conservation of their extravascular functions in endothelial cell biology. RECENT FINDINGS Membrane-anchored proteases belonging to the serine or metalloprotease families contain amino-terminal or carboxy-terminal domains, which serve to tether their extracellular protease domains directly at the plasma membrane. This architecture enables protease function and substrate repertoire to be regulated through dynamic localization in distinct areas of the cell membrane. These proteases are proving to be key components of the cell machinery for regulating vascular permeability, generation of vasoactive peptides, receptor tyrosine kinase transactivation, extracellular matrix proteolysis, and angiogenesis. SUMMARY A complex picture of the interdependence between membrane-anchored protease localization and function is emerging that may provide a mechanism for precise coordination of extracellular signals and intracellular responses through communication with the cytoskeleton and with cellular signaling molecules.
Collapse
Affiliation(s)
- Toni M Antalis
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
37
|
Liu X, Wang S, Yuan A, Yuan X, Liu B. MicroRNA-140 represses glioma growth and metastasis by directly targeting ADAM9. Oncol Rep 2016; 36:2329-38. [PMID: 27498787 DOI: 10.3892/or.2016.5007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/18/2016] [Indexed: 11/05/2022] Open
Abstract
Glioma is the most frequent primary malignant tumor of the human brain. Recently, great progress has been made in the combined therapy of glioma. However, the clinical effects of these treatments and prognosis for patients with glioma remains poor. MicroRNAs (miRNAs) have been demonstrated to play important roles in the initiation and progression of various types of human cancers, also including glioma. The present study investigated the expression patterns of microRNA‑140 (miR-140) in glioma, and the roles of miR-140 in glioma cell proliferation, migration and invasion. The results showed that miR-140 was significantly downreuglated in glioma tissues and cell lines, and low expression levels of miR-140 were correlated with World Health Organization (WHO) grade and Karnofsky performance score (KPS) of glioma patients. Restoration of miR-140 obviously suppressed glioma cell proliferation, migration and invasion. In addition, a disintegrin and metalloproteinase 9 (ADAM9) was identified as a novel direct target gene of miR-140 in glioma. Furthermore, knockdown of ADAM9 simulated the tumor suppressor functions of miR-140, while overexpression of ADAM9 abrogated these suppressive effects induced by miR-140 in glioma cells. In conclusion, the present study demonstrated the expression and clinical roles of miR-140 in glioma and suggested that miR-140 inhibited proliferation, migration and invasion of glioma cells, partially at least via suppressing ADAM9 expression. Therefore, miR-140 may be a novel candidate target for the development of therapeutic strategies for patients with glioma.
Collapse
Affiliation(s)
- Xiaogang Liu
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Shanjun Wang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Aiqin Yuan
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Xunhui Yuan
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Bing Liu
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261030, P.R. China
| |
Collapse
|
38
|
Toonen JA, Ronchetti A, Sidjanin DJ. A Disintegrin and Metalloproteinase10 (ADAM10) Regulates NOTCH Signaling during Early Retinal Development. PLoS One 2016; 11:e0156184. [PMID: 27224017 PMCID: PMC4880208 DOI: 10.1371/journal.pone.0156184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/10/2016] [Indexed: 01/22/2023] Open
Abstract
ADAM10 and ADAM17 are two closely related members of the ADAM (a disintegrin and metalloprotease) family of membrane-bound sheddases, which proteolytically cleave surface membrane proteins. Both ADAM10 and ADAM17 have been implicated in the proteolytic cleavage of NOTCH receptors and as such regulators of NOTCH signaling. During retinal development, NOTCH signaling facilitates retinal neurogenesis by maintaining progenitor cells in a proliferative state and by mediating retinal cell fates. However, the roles of ADAM10 and ADAM17 in the retina are not well defined. In this study, we set out to clarify the roles of ADAM10 and ADAM17 during early retinal development. The retinal phenotype of conditionally abated Adam17 retinae (Adam17 CKO) did not differ from the controls whereas conditionally ablated Adam10 retinae (Adam10 CKO) exhibited abnormal morphogenesis characterized by the formation of rosettes and a loss of retinal laminae phenotypically similar to morphological abnormalities identified in mice with retinal NOTCH signaling deficiency. Additionally, Adam10 CKO retinae exhibited abnormal neurogenesis characterized by fewer proliferating progenitor cells and greater differentiation of early photoreceptors and retinal ganglion cells. Moreover, constitutive activation of the NOTCH1-intracellular domain (N1-ICD) rescued Adam10 CKO abnormal neurogenesis, as well as abnormal retinal morphology by maintaining retinal cells in the progenitor state. Collectively these findings provide in vivo genetic evidence that ADAM10, and not ADAM17, is indispensable for proper retinal development as a regulator of NOTCH signaling.
Collapse
Affiliation(s)
- Joseph A. Toonen
- Department of Cell Biology, Neurobiology, and Anatomy, 8701 Watertown Plank Rd., Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Adam Ronchetti
- Department of Cell Biology, Neurobiology, and Anatomy, 8701 Watertown Plank Rd., Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - D. J. Sidjanin
- Department of Cell Biology, Neurobiology, and Anatomy, 8701 Watertown Plank Rd., Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Human and Molecular Genetics Center, 8701 Watertown Plank Rd., Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
39
|
A Disintegrin and Metalloprotease (ADAM): Historical Overview of Their Functions. Toxins (Basel) 2016; 8:122. [PMID: 27120619 PMCID: PMC4848645 DOI: 10.3390/toxins8040122] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
Since the discovery of the first disintegrin protein from snake venom and the following identification of a mammalian membrane-anchored metalloprotease-disintegrin implicated in fertilization, almost three decades of studies have identified additional members of these families and several biochemical mechanisms regulating their expression and activity in the cell. Most importantly, new in vivo functions have been recognized for these proteins including cell partitioning during development, modulation of inflammatory reactions, and development of cancers. In this review, we will overview the a disintegrin and metalloprotease (ADAM) family of proteases highlighting some of the major research achievements in the analysis of ADAMs' function that have underscored the importance of these proteins in physiological and pathological processes over the years.
Collapse
|
40
|
ADAM9 enhances CDCP1 protein expression by suppressing miR-218 for lung tumor metastasis. Sci Rep 2015; 5:16426. [PMID: 26553452 PMCID: PMC4639752 DOI: 10.1038/srep16426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/13/2015] [Indexed: 01/01/2023] Open
Abstract
Metastasis is the leading cause of death in cancer patients due to the difficulty of controlling this complex process. MicroRNAs (miRNA), endogenous noncoding short RNAs with important biological and pathological functions, may play a regulatory role during cancer metastasis, but this role has yet to be fully defined. We previously demonstrated that ADAM9 enhanced the expression of the pro-migratory protein CDCP1 to promote lung metastasis; however, the regulatory process remains unknown. Here we demonstrate that endogenous miR-218, which is abundant in normal lung tissue but suppressed in lung tumors, is regulated during the process of ADAM9-mediated CDCP1 expression. Suppression of miR-218 was associated with high migration ability in lung cancer cells. Direct interaction between miR-218 and the 3'-UTR of CDCP1 mRNAs was detected in luciferase-based transcription reporter assays. CDCP1 protein levels decreased as expression levels of miR-218 increased, and increased in cells treated with miR-218 antagomirs. Induction of miR-218 inhibited tumor cell mobility, anchorage-free survival, and tumor-initiating cell formation in vitro and delayed tumor metastases in mice. Our findings revealed an integrative tumor suppressor function of miR-218 in lung carcinogenesis and metastasis.
Collapse
|
41
|
Morancho B, Martínez-Barriocanal Á, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res 2015; 17:106. [PMID: 26260680 PMCID: PMC4532141 DOI: 10.1186/s13058-015-0619-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/16/2015] [Indexed: 01/07/2023] Open
Abstract
Introduction Cellular senescence is a terminal cell proliferation arrest that can be triggered by oncogenes. One of the traits of oncogene-induced senescence (OIS) is the so-called senescence-associated secretory phenotype or senescence secretome. Depending on the context, the non-cell autonomous effects of OIS may vary from tumor suppression to promotion of metastasis. Despite being such a physiological and pathologically relevant effector, the mechanisms of generation of the senescence secretome are largely unknown. Methods We analyzed by label-free proteomics the secretome of p95HER2-induced senescent cells and compared the levels of the membrane-anchored proteins with their transcript levels. Then, protein and RNA levels of ADAM17 were evaluated by using Western blot and reverse transcription-polymerase chain reaction, its localization by using biotin labeling and immunofluorescence, and its activity by using alkaline phosphatase-tagged substrates. The p95HER2-expressing cell lines, senescent MCF7 and proliferating MCF10A, were analyzed to study ADAM17 regulation. Finally, we knocked down ADAM17 to determine its contribution to the senescence-associated secretome. The effect of this secretome was evaluated in migration assays in vitro and in nude mice by assessing the metastatic ability of orthotopically co-injected non-senescent cells. Results Using breast cancer cells expressing p95HER2, a constitutively active fragment of the proto-oncogene HER2 that induces OIS, we show that the extracellular domains of a variety of membrane-bound proteins form part of the senescence secretome. We determine that these proteins are regulated transcriptionally and, in addition, that their shedding is limited by the protease ADAM17. The activity of the sheddase is constrained, at least in part, by the accumulation of cellular cholesterol. The blockade of ADAM17 abrogates several prometastatic effects of the p95HER2-induced senescence secretome, both in vitro and in vivo. Conclusions Considering these findings, we conclude that ectodomain shedding is tightly regulated in oncogene-induced senescent cells by integrating transcription of the shedding substrates with limiting ADAM17 activity. The remaining activity of ADAM17 contributes to the non-cell autonomous protumorigenic effects of p95HER2-induced senescent cells. Because ADAM17 is druggable, these results represent an approximation to the pharmacological regulation of the senescence secretome. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0619-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beatriz Morancho
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Águeda Martínez-Barriocanal
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Josep Villanueva
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Joaquín Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain. .,Department of Biochemistry and Molecular Biology, Building M, Campus UAB, Bellaterra (Cerdanyola del Valles), Barcelona, 08193, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
42
|
Dong Y, Harrington BS, Adams MN, Wortmann A, Stephenson SA, Lisle J, Herington A, Hooper JD, Clements JA. Activation of membrane-bound proteins and receptor systems: a link between tissue kallikrein and the KLK-related peptidases. Biol Chem 2015; 395:977-90. [PMID: 24854540 DOI: 10.1515/hsz-2014-0147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/12/2014] [Indexed: 11/15/2022]
Abstract
The 15 members of the kallikrein-related serine peptidase (KLK) family have diverse tissue-specific expression profiles and roles in a range of cellular processes, including proliferation, migration, invasion, differentiation, inflammation and angiogenesis that are required in both normal physiology as well as pathological conditions. These roles require cleavage of a range of substrates, including extracellular matrix proteins, growth factors, cytokines as well as other proteinases. In addition, it has been clear since the earliest days of KLK research that cleavage of cell surface substrates is also essential in a range of KLK-mediated cellular processes where these peptidases are essentially acting as agonists and antagonists. In this review we focus on these KLK-regulated cell surface receptor systems including bradykinin receptors, proteinase-activated receptors, as well as the plasminogen activator, ephrins and their receptors, and hepatocyte growth factor/Met receptor systems and other plasma membrane proteins. From this analysis it is clear that in many physiological and pathological settings KLKs have the potential to regulate multiple receptor systems simultaneously; an important issue when these peptidases and substrates are targeted in disease.
Collapse
|
43
|
Wong E, Maretzky T, Peleg Y, Blobel CP, Sagi I. The Functional Maturation of A Disintegrin and Metalloproteinase (ADAM) 9, 10, and 17 Requires Processing at a Newly Identified Proprotein Convertase (PC) Cleavage Site. J Biol Chem 2015; 290:12135-46. [PMID: 25795784 DOI: 10.1074/jbc.m114.624072] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 11/06/2022] Open
Abstract
Proenzyme maturation is a general mechanism to control the activation of enzymes. Catalytically active members of the A Disintegrin And Metalloprotease (ADAM) family of membrane-anchored metalloproteases are synthesized as proenzymes, in which the latency is maintained by their autoinhibitory pro-domains. A proteolytic processing then transforms the proenzyme into a catalytically active form. The removal of the pro-domain of ADAMs is currently thought to depend on processing at a canonical consensus site for the proprotein convertase Furin (RXXR) between the pro- and the catalytic domain. Here, we demonstrate that this previously described canonical site is a secondary cleavage site to a prerequisite cleavage in a newly characterized upstream PC site embedded within the pro-domain sequence. The novel upstream regulatory site is important for the maturation of several ADAM proenzymes. Mutations in the upstream regulatory site of ADAM17, ADAM10, and ADAM9 do not prevent pro-domain processing between the pro- and metalloprotease domain, but nevertheless, cause significantly reduced catalytic activity. Thus, our results have uncovered a novel functionally relevant PC processing site in the N-terminal part of the pro-domain that is important for the activation of these ADAMs. These results suggest that the novel PC site is part of a general mechanism underlying proenzyme maturation of ADAMs that is independent of processing at the previously identified canonical Furin cleavage site.
Collapse
Affiliation(s)
- Eitan Wong
- From the Department of Biological Regulation and
| | - Thorsten Maretzky
- the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery and
| | - Yoav Peleg
- The Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, 7610001, Israel and
| | - Carl P Blobel
- the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery and the Departments of Medicine and of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, New York 10021
| | - Irit Sagi
- From the Department of Biological Regulation and
| |
Collapse
|
44
|
Maretzky T, Blobel CP, Guaiquil V. Characterization of oxygen-induced retinopathy in mice carrying an inactivating point mutation in the catalytic site of ADAM15. Invest Ophthalmol Vis Sci 2014; 55:6774-82. [PMID: 25249606 DOI: 10.1167/iovs.14-14472] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Retinal neovascularization is found in diseases such as macular degeneration, diabetic retinopathy, or retinopathy of prematurity and is usually caused by alterations in oxygen supply. We have previously described that mice lacking the membrane-anchored metalloproteinase ADAM15 (a Disintegrin and Metalloprotease 15) have decreased pathological neovascularization of the retina in the oxygen-induced retinopathy (OIR) model. The main purpose of the present study was to determine the contribution of the catalytic activity of ADAM15 to OIR. METHODS To address this question, we generated knock-in mice carrying an inactivating Glutamate to Alanine (E>A) point mutation in the catalytic site of ADAM15 (Adam15E>A mice) and subjected these animals to the OIR model and a heterotopic tumor model. Moreover, we used cell-based assays to determine whether ADAM15 can process cell surface receptors involved in angiogenesis. RESULTS We found that pathological neovascularization in the OIR model in Adam15E>A mice was comparable to that observed in wild type mice, but tumor implantation by heterotopically injected melanoma cells was reduced. In cell-based assays, overexpressed ADAM15 could process the FGFR2iiib, but was unable to process several receptors with roles in angiogenesis. CONCLUSIONS Collectively, these results suggest that the catalytic activity of ADAM15 is not crucial for its function in promoting pathological neovascularization in the mouse OIR model, most likely because of the very limited substrate repertoire of ADAM15. Instead, other noncatalytic functions of ADAM15 must be important for its role in the OIR model.
Collapse
Affiliation(s)
- Thorsten Maretzky
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, United States
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, United States Departments of Medicine and of Physiology, Biophysics and Systems Biology, Weill-Cornell Medical College of Cornell University, New York, New York, United States
| | - Victor Guaiquil
- The Margaret M. Dyson Vision Research Institute, Department of Ophthalmology, Weill-Cornell Medical College of Cornell University, New York, New York, United States
| |
Collapse
|
45
|
Lin CY, Chen HJ, Huang CC, Lai LC, Lu TP, Tseng GC, Kuo TT, Kuok QY, Hsu JL, Sung SY, Hung MC, Sher YP. ADAM9 promotes lung cancer metastases to brain by a plasminogen activator-based pathway. Cancer Res 2014; 74:5229-43. [PMID: 25060522 DOI: 10.1158/0008-5472.can-13-2995] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The transmembrane cell adhesion protein ADAM9 has been implicated in cancer cell migration and lung cancer metastasis to the brain, but the underpinning mechanisms are unclear and clinical support has been lacking. Here, we demonstrate that ADAM9 enhances the ability of tissue plasminogen activator (tPA) to cleave and stimulate the function of the promigratory protein CDCP1 to promote lung metastasis. Blocking this mechanism of cancer cell migration prolonged survival in tumor-bearing mice and cooperated with dexamethasone and dasatinib (a dual Src/Abl kinase inhibitor) treatment to enhance cytotoxic treatment. In clinical specimens, high levels of ADAM9 and CDCP1 correlated with poor prognosis and high risk of mortality in patients with lung cancer. Moreover, ADAM9 levels in brain metastases derived from lung tumors were relatively higher than the levels observed in primary lung tumors. Our results show how ADAM9 regulates lung cancer metastasis to the brain by facilitating the tPA-mediated cleavage of CDCP1, with potential implications to target this network as a strategy to prevent or treat brain metastatic disease.
Collapse
Affiliation(s)
- Chen-Yuan Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan. Division of Hematology and Oncology, China Medical University Hospital, Taichung, Taiwan
| | - Hung-Jen Chen
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chung Huang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Tzu-Pin Lu
- YongLin Biomedical Engineering Center, National Taiwan University, Taipei, Taiwan
| | - Guan-Chin Tseng
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Ting Kuo
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Qian-Yu Kuok
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jennifer L Hsu
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan. Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Shian-Ying Sung
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan. Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Biotechnology, Asia University, Taichung, Taiwan. Graduate Institute for Cancer Biology, China Medical University, Taichung, Taiwan.
| | - Yuh-Pyng Sher
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan. Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
46
|
A disintegrin and metalloproteinase 9 is involved in ectodomain shedding of receptor-binding cancer antigen expressed on SiSo cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:482396. [PMID: 25177692 PMCID: PMC4142186 DOI: 10.1155/2014/482396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/16/2014] [Accepted: 07/09/2014] [Indexed: 11/18/2022]
Abstract
In several human malignancies, the expression of receptor-binding cancer antigen expressed on SiSo cells (RCAS1) is associated with aggressive characteristics and poor overall survival. RCAS1 alters the tumor microenvironment by inducing peripheral lymphocyte apoptosis and angiogenesis, while reducing the vimentin-positive cell population. Although proteolytic processing, referred to as "ectodomain shedding," is pivotal for induction of apoptosis by RCAS1, the proteases involved in RCAS1-dependent shedding remain unclear. Here we investigated proteases involved in RCAS1 shedding and the association between tumor protease expression and serum RCAS1 concentration in uterine cancer patients. A disintegrin and metalloproteinase (ADAM) 9 was shown to be involved in the ectodomain shedding of RCAS1. Given the significant correlation between tumor ADAM9 expression and serum RCAS1 concentration in both cervical and endometrial cancer as well as the role for ADAM9 in RCAS1 shedding, further exploration of the regulatory mechanisms by which ADAM9 converts membrane-anchored RCAS1 into its soluble form should aid the development of novel RCAS1-targeting therapeutic strategies to treat human malignancies.
Collapse
|
47
|
Schlesinger M, Bendas G. Vascular cell adhesion molecule-1 (VCAM-1)--an increasing insight into its role in tumorigenicity and metastasis. Int J Cancer 2014; 136:2504-14. [PMID: 24771582 DOI: 10.1002/ijc.28927] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/16/2014] [Indexed: 12/14/2022]
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) first attracted attention more than two decades ago as endothelial adhesion receptor with key function for leukocyte recruitment in term of cellular immune response. The early finding of VCAM-1 binding to melanoma cells, and thus a suggested mechanistic contribution to metastatic spread, was the first and for a long time the only link of VCAM-1 to cancer sciences. In the last few years, hallmarked by a growing insight into the molecular understanding of tumorigenicity and metastasis, an impressive variety of VCAM-1 functionalities in cancer have been elucidated. The present review aims to provide a current overview of VCAM-1 relevance for tumor growth, metastasis, angiogenesis, and related processes. By illustrating the intriguing role of VCAM-1 in cancer disease, VCAM-1 is suggested as a new and up to now underestimated target in cancer treatment and in clinical diagnosis of malignancies.
Collapse
Affiliation(s)
- Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, 53121, Bonn, Germany
| | | |
Collapse
|
48
|
Sher YP, Wang LJ, Chuang LL, Tsai MH, Kuo TT, Huang CC, Chuang EY, Lai LC. ADAM9 up-regulates N-cadherin via miR-218 suppression in lung adenocarcinoma cells. PLoS One 2014; 9:e94065. [PMID: 24705471 PMCID: PMC3976390 DOI: 10.1371/journal.pone.0094065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/11/2014] [Indexed: 12/27/2022] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide, and brain metastasis is a major cause of morbidity and mortality in lung cancer. CDH2 (N-cadherin, a mesenchymal marker of the epithelial-mesenchymal transition) and ADAM9 (a type I transmembrane protein) are related to lung cancer brain metastasis; however, it is unclear how they interact to mediate this metastasis. Because microRNAs regulate many biological functions and disease processes (e.g., cancer) by down-regulating their target genes, microRNA microarrays were used to identify ADAM9-regulated miRNAs that target CDH2 in aggressive lung cancer cells. Luciferase assays and western blot analysis showed that CDH2 is a target gene of miR-218. MiR-218 was generated from pri-mir-218-1, which is located in SLIT2, in non-invasive lung adenocarcinoma cells, whereas its expression was inhibited in aggressive lung adenocarcinoma. The down-regulation of ADAM9 up-regulated SLIT2 and miR-218, thus down-regulating CDH2 expression. This study revealed that ADAM9 activates CDH2 through the release of miR-218 inhibition on CDH2 in lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuh-Pyng Sher
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Li-Ju Wang
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Li-Ling Chuang
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Ting Kuo
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Cheng-Chung Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Eric Y. Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
49
|
Moro N, Mauch C, Zigrino P. Metalloproteinases in melanoma. Eur J Cell Biol 2014; 93:23-9. [PMID: 24530009 DOI: 10.1016/j.ejcb.2014.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/08/2013] [Accepted: 01/08/2014] [Indexed: 02/05/2023] Open
Abstract
Tumour cell adhesion, motility, proteolytic activities and cell receptors have important roles in cancer invasion. These processes are involved from early development of melanoma within the epidermis, to tumour cell invasion of the underlying tissue until intravasation of lymphatic or blood vessels, and thereafter, dissemination into distant organs occur. The activity of several proteolytic enzymes was shown to be pivotal in promoting melanoma cell invasion. These enzymes not only remodel the extracellular matrix, but also release active factors and shed cell surface receptors thereby mediating melanoma cross-communication with their microenvironment. This leads to the generation of a favourable environment for melanoma growth. Several proteases are involved in melanoma invasion and include serine, cysteine proteases, matrix metalloproteases (MMPs) and the disintegrin and metalloproteases (ADAMs). This study summarises the current knowledge on the role of metalloproteinases, MMPs and ADAMs, in melanoma.
Collapse
Affiliation(s)
- Nives Moro
- Department of Dermatology and Venerology, University of Cologne, Germany
| | - Cornelia Mauch
- Department of Dermatology and Venerology, University of Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venerology, University of Cologne, Germany.
| |
Collapse
|
50
|
Guaiquil VH, Hewing NJ, Chiang MF, Rosenblatt MI, Chan RVP, Blobel CP. A murine model for retinopathy of prematurity identifies endothelial cell proliferation as a potential mechanism for plus disease. Invest Ophthalmol Vis Sci 2013; 54:5294-302. [PMID: 23833070 DOI: 10.1167/iovs.12-11492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To characterize the features and possible mechanism of plus disease in the mouse oxygen-induced retinopathy (OIR) model for retinopathy of prematurity. METHODS Wild-type and Adam (A Disintegrin And Metalloproteinase) knockout mice were exposed to 75% oxygen from postnatal day 7 to 12 (P7 to P12) (hyperoxia), then returned to normal air (relative hypoxia). Live fundus imaging and fluorescein angiography at P17 were compared to immunofluorescence analysis of flat-mounted retinas. Two hallmarks of plus disease, arterial tortuosity and venous dilation, were analyzed on fixed retinas (P12-P17). The length of tortuous vessels was compared to a straight line between two points; the diameter of retinal vessels was determined using ImageJ software, and bromo-deoxyuridine (BrdU) labeling was used to visualize proliferation of retinal vascular cells. RESULTS Mice developed retinal arterial tortuosity and venous dilation after exposure to OIR, which was visible in live fundus images and fixed whole-mounted retinas. Vein dilation, arterial tortuosity, and BrdU incorporation gradually increased over time. Moreover, Adam8(-/-) and Adam9(-/-) mice and mice lacking Adam10 in endothelial cells were partially protected from plus disease compared to controls. CONCLUSIONS The mouse OIR model can be used to study the pathogenesis of plus disease and identify potential therapeutic targets. The severity of plus disease increases over time following OIR and correlates with increased proliferation of endothelial cells, suggesting that proliferation of vascular cells may be a mechanism underlying the development of plus disease. Moreover, our findings suggest that ADAMs 8, 9, and 10 could be targets for treatment of plus disease.
Collapse
Affiliation(s)
- Victor H Guaiquil
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|