1
|
Díaz-Mora E, González-Romero D, Meireles-da-Silva M, Sanz-Ezquerro JJ, Cuenda A. p38δ controls Mitogen- and Stress-activated Kinase-1 (MSK1) function in response to toll-like receptor activation in macrophages. Front Cell Dev Biol 2023; 11:1083033. [PMID: 36846591 PMCID: PMC9946961 DOI: 10.3389/fcell.2023.1083033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Mitogen- and Stress-activated Kinase (MSK) 1 is a nuclear protein, activated by p38α Mitogen-Activated Kinase (MAPK) and extracellular signal-regulated kinase (ERK1/2), that modulate the production of certain cytokines in macrophages. Using knockout cells and specific kinase inhibitors, we show that, besides p38α and ERK1/2, another p38MAPK, p38δ, mediates MSK phosphorylation and activation, in LPS-stimulated macrophages. Additionally, recombinant MSK1 was phosphorylated and activated by recombinant p38δ, to the same extent than by p38α, in in vitro experiments. Moreover, the phosphorylation of the transcription factors CREB and ATF1, that are MSK physiological substrates, and the expression of the CREB-dependent gene encoding DUSP1, were impaired in p38δ-deficient macrophages. Also, the transcription of IL-1Ra mRNA, that is MSK-dependent, was reduced. Our results indicate that MSK activation can be one possible mechanism by which p38δ regulates the production of a variety of inflammatory molecules involved in immune innate response.
Collapse
Affiliation(s)
- Ester Díaz-Mora
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Madrid, Spain
| | - Diego González-Romero
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Madrid, Spain
| | - Marta Meireles-da-Silva
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Madrid, Spain
| | - Juan José Sanz-Ezquerro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Madrid, Spain
| | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Madrid, Spain,*Correspondence: Ana Cuenda,
| |
Collapse
|
2
|
Abstract
Eryptosis is a coordinated non-lytic cell death of erythrocytes characterized by cell shrinkage, cell membrane scrambling, Ca2+ influx, ceramide accumulation, oxidative stress, activation of calpain and caspases. Physiologically, it aims at removing damaged or aged erythrocytes from circulation. A plethora of diseases are associated with enhanced eryptosis, including metabolic diseases, cardiovascular pathology, renal and hepatic diseases, hematological disorders, systemic autoimmune pathology, and cancer. This makes eryptosis and eryptosis-regulating signaling pathways a target for therapeutic interventions. This review highlights the eryptotic signaling machinery containing several protein kinases and its small molecular inhibitors with a special emphasis on casein kinase 1α (CK1α), a serine/threonine protein kinase with a broad spectrum of activity. In this review article, we provide a critical analysis of the regulatory role of CK1α in eryptosis, highlight triggers of CK1α-mediated suicidal death of red blood cells, cover the knowledge gaps in understanding CK1α-driven eryptosis and discover the opportunity of CK1α-targeted pharmacological modulation of eryptosis. Moreover, we discuss the directions of future research focusing on uncovering crosstalks between CK1α and other eryptosis-regulating kinases and pathways.
Collapse
Affiliation(s)
- Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine.
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine
| |
Collapse
|
3
|
Sharma T, Gupta A, Chauhan R, Bhat AA, Nisar S, Hashem S, Akhtar S, Ahmad A, Haris M, Singh M, Uddin S. Cross-talk between the microbiome and chronic inflammation in esophageal cancer: potential driver of oncogenesis. Cancer Metastasis Rev 2022; 41:281-299. [PMID: 35511379 PMCID: PMC9363391 DOI: 10.1007/s10555-022-10026-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
Esophageal cancer (EC) is frequently considered a lethal malignancy and is often identified at a later stage. It is one of the major causes of cancer-related deaths globally. The conventional treatment methods like chemotherapy, radiotherapy, and surgery offer limited efficacy and poor clinical outcome with a less than 25% 5-year survival rate. The poor prognosis of EC persists despite the growth in the development of diagnostic and therapeutic modalities to treat EC. This underlines the need to elucidate the complex molecular mechanisms that drive esophageal oncogenesis. Apart from the role of the tumor microenvironment and its structural and cellular components in tumorigenesis, mounting evidence points towards the involvement of the esophageal microbiome, inflammation, and their cross-talk in promoting esophageal cancer. The current review summarizes recent research that delineates the underlying molecular mechanisms by which the microbiota and inflammation promote the pathophysiology of esophageal cancer, thus unraveling targets for potential therapeutic intervention.
Collapse
Affiliation(s)
- Tarang Sharma
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar.,Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, PA, Philadelphia, USA.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 2020; 89:107087. [PMID: 33075714 PMCID: PMC7550173 DOI: 10.1016/j.intimp.2020.107087] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Sepsis infects more than 48.9 million people world-wide, with 19.7 million deaths. Cytokine storm plays a significant role in sepsis, along with severe COVID-19. TLR signaling pathways plays a crucial role in generating the cytokine storm. Endogenous negative regulators of TLR signaling are crucial to regulate cytokine storm.
Cytokine storm generates during various systemic acute infections, including sepsis and current pandemic called COVID-19 (severe) causing devastating inflammatory conditions, which include multi-organ failure or multi-organ dysfunction syndrome (MODS) and death of the patient. Toll-like receptors (TLRs) are one of the major pattern recognition receptors (PRRs) expressed by immune cells as well as non-immune cells, including neurons, which play a crucial role in generating cytokine storm. They recognize microbial-associated molecular patterns (MAMPs, expressed by pathogens) and damage or death-associate molecular patterns (DAMPs; released and/expressed by damaged/killed host cells). Upon recognition of MAMPs and DAMPs, TLRs activate downstream signaling pathways releasing several pro-inflammatory mediators [cytokines, chemokines, interferons, and reactive oxygen and nitrogen species (ROS or RNS)], which cause acute inflammation meant to control the pathogen and repair the damage. Induction of an exaggerated response due to genetic makeup of the host and/or persistence of the pathogen due to its evasion mechanisms may lead to severe systemic inflammatory condition called sepsis in response to the generation of cytokine storm and organ dysfunction. The activation of TLR-induced inflammatory response is hardwired to the induction of several negative feedback mechanisms that come into play to conclude the response and maintain immune homeostasis. This state-of-the-art review describes the importance of TLR signaling in the onset of the sepsis-associated cytokine storm and discusses various host-derived endogenous negative regulators of TLR signaling pathways. The subject is very important as there is a vast array of genes and processes implicated in these negative feedback mechanisms. These molecules and mechanisms can be targeted for developing novel therapeutic drugs for cytokine storm-associated diseases, including sepsis, severe COVID-19, and other inflammatory diseases, where TLR-signaling plays a significant role.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
5
|
Mukhopadhyay S, Heinz E, Porreca I, Alasoo K, Yeung A, Yang HT, Schwerd T, Forbester JL, Hale C, Agu CA, Choi YH, Rodrigues J, Capitani M, Jostins-Dean L, Thomas DC, Travis S, Gaffney D, Skarnes WC, Thomson N, Uhlig HH, Dougan G, Powrie F. Loss of IL-10 signaling in macrophages limits bacterial killing driven by prostaglandin E2. J Exp Med 2020; 217:132614. [PMID: 31819956 PMCID: PMC7041704 DOI: 10.1084/jem.20180649] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/09/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Cytokines and lipid mediators are key regulators of inflammation; but how they are mechanistically linked is poorly understood. Here, Mukhopadhyay et al. show a novel regulation between cytokine IL-10 and lipid mediator PGE2 that functionally connects them to intestinal inflammation. Loss of IL-10 signaling in macrophages (Mφs) leads to inflammatory bowel disease (IBD). Induced pluripotent stem cells (iPSCs) were generated from an infantile-onset IBD patient lacking a functional IL10RB gene. Mφs differentiated from IL-10RB−/− iPSCs lacked IL-10RB mRNA expression, were unable to phosphorylate STAT3, and failed to reduce LPS induced inflammatory cytokines in the presence of exogenous IL-10. IL-10RB−/− Mφs exhibited a striking defect in their ability to kill Salmonella enterica serovar Typhimurium, which was rescuable after experimentally introducing functional copies of the IL10RB gene. Genes involved in synthesis and receptor pathways for eicosanoid prostaglandin E2 (PGE2) were more highly induced in IL-10RB−/− Mφs, and these Mφs produced higher amounts of PGE2 after LPS stimulation compared with controls. Furthermore, pharmacological inhibition of PGE2 synthesis and PGE2 receptor blockade enhanced bacterial killing in Mφs. These results identify a regulatory interaction between IL-10 and PGE2, dysregulation of which may drive aberrant Mφ activation and impaired host defense contributing to IBD pathogenesis.
Collapse
Affiliation(s)
- Subhankar Mukhopadhyay
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Medical Research Council Centre for Transplantation, Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Eva Heinz
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | - Kaur Alasoo
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Amy Yeung
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Huei-Ting Yang
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Swiss Precision Dignostics Development Company Limited, Bedford, UK
| | - Tobias Schwerd
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Jessica L Forbester
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | | | | | - Yoon Ha Choi
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | - Melania Capitani
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Luke Jostins-Dean
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - David C Thomas
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Simon Travis
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - William C Skarnes
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | - Nicholas Thomson
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Fiona Powrie
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.,The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Samiea A, Yoon JSJ, Cheung ST, Chamberlain TC, Mui ALF. Interleukin-10 contributes to PGE2 signalling through upregulation of EP4 via SHIP1 and STAT3. PLoS One 2020; 15:e0230427. [PMID: 32240179 PMCID: PMC7117666 DOI: 10.1371/journal.pone.0230427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Macrophage cells form part of our first line defense against pathogens. Macrophages become activated by microbial products such as lipopolysaccharide (LPS) to produce inflammatory mediators, such as TNFα and other cytokines, which orchestrate the host defense against the pathogen. Once the pathogen has been eradicated, the activated macrophage must be appropriately deactivated or inflammatory diseases result. Interleukin-10 (IL10) is a key anti-inflammatory cytokine which deactivates the activated macrophage. The IL10 receptor (IL10R) signals through the Jak1/Tyk2 tyrosine kinases, STAT3 transcription factor and the SHIP1 inositol phosphatase. However, IL10 has also been described to induce the activation of the cyclic adenosine monophosphate (cAMP) regulated protein kinase A (PKA). We now report that IL10R signalling leads to STAT3/SHIP1 dependent expression of the EP4 receptor for prostaglandin E2 (PGE2). In macrophages, EP4 is a Gαs-protein coupled receptor that stimulates adenylate cyclase (AC) production of cAMP, leading to downstream activation of protein kinase A (PKA) and phosphorylation of the CREB transcription factor. IL10 induction of phospho-CREB and inhibition of LPS-induced phosphorylation of p85 PI3K and p70 S6 kinase required the presence of EP4. These data suggest that IL10R activation of STAT3/SHIP1 enhances EP4 expression, and that it is EP4 which activates cAMP-dependent signalling. The coordination between IL10R and EP4 signalling also provides an explanation for why cAMP elevating agents synergize with IL10 to elicit anti-inflammatory responses.
Collapse
MESH Headings
- Animals
- Dinoprostone/metabolism
- Female
- Interleukin-10/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Oxytocics/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- RAW 264.7 Cells
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Abrar Samiea
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Jeff S. J. Yoon
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Sylvia T. Cheung
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Thomas C. Chamberlain
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Alice L. -F. Mui
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
7
|
Li J, Liu X, Wang W, Li C, Li X. MSK1 promotes cell proliferation and metastasis in uveal melanoma by phosphorylating CREB. Arch Med Sci 2020; 16:1176-1188. [PMID: 32864007 PMCID: PMC7444723 DOI: 10.5114/aoms.2019.85810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Uveal melanoma is known as a frequent intraocular tumor, with high metastasis and poor prognosis. Mitogen- and stress-activated protein kinase 1 (MSK1) is a serine/threonine kinase that has been reported to be associated with tumor progression in several types of human cancer. However, the role of MSK1 has rarely been studied in uveal melanoma and the underlying mechanism remained unclear. MATERIAL AND METHODS The expression level of MSK1 in human uveal melanoma tissues and normal uveal tissues was determined by qRT-PCR analysis, western blotting and immunohistochemistry (IHC). Subsequently, MTT assay, colony formation assay and flow cytometry assay were performed to assess the effects of MSK1 on cell proliferation. Wound-healing and transwell chamber assays were adopted to clarify the role of MSK1 in cell metastasis. Finally, the function of MSK1 was confirmed in vivo in a tumor-bearing mouse model. RESULTS The expression levels of MSK1 and p-cyclic AMP-responsive element binding protein (CREB) were strongly up-regulated in human uveal melanoma tissues. MSK1 overexpression facilitated cell viability and clone formation, and promoted migration and invasion of uveal melanoma cells. However, mutation of cyclic AMP-responsive element binding protein (CREB) at Ser133 residues reversed the effect of MSK1 on uveal melanoma cell proliferation and metastasis. The in vivo experiment suggested that the tumor weight was lower and the tumor mass grew more slowly in the shMSK1 group as compared to the shNC group. CONCLUSIONS MSK1 promotes proliferation and metastasis of uveal melanoma cells by phosphorylated CREB at Ser133 residues. Therefore, MSK1 could be a promising candidate for uveal melanoma therapy and especially has tremendous potential in the treatment of cancers in which the MSK1-CREB pathway is abnormally active.
Collapse
Affiliation(s)
- Jianchang Li
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai' an, Jiangsu, China
| | - Xiuming Liu
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai' an, Jiangsu, China
| | - Wenqi Wang
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai' an, Jiangsu, China
| | - Chaopeng Li
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai' an, Jiangsu, China
| | - Xiaofeng Li
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai' an, Jiangsu, China
| |
Collapse
|
8
|
McNairn AJ, Chuang CH, Bloom JC, Wallace MD, Schimenti JC. Female-biased embryonic death from inflammation induced by genomic instability. Nature 2019; 567:105-108. [PMID: 30787433 PMCID: PMC6497049 DOI: 10.1038/s41586-019-0936-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
Genomic instability (GIN) can trigger cellular responses including
checkpoint activation, senescence, and inflammation 1,2.
Though extensively studied in cell culture and cancer paradigms, little is known
about the impact of GIN during embryonic development, a period of rapid cellular
proliferation. We report that GIN-causing mutations in the MCM2–7 DNA
replicative helicase 3,4 render female mouse embryos to be
dramatically more susceptible than males to embryonic lethality. This bias was
not attributable to X-inactivation defects, differential replication licensing,
or X vs Y chromosome size, but rather “maleness,” since XX embryos
could be rescued by transgene-mediated sex reversal or testosterone (T)
administration. The ability of exogenous or endogenous T to protect embryos was
related to its anti-inflammatory properties 5. The NSAID ibuprofen rescued female embryos containing
mutations not only in MCM genes but also Fancm, which like MCM
mutants have elevated GIN (micronuclei) from compromised replication fork repair
6. Additionally,
deficiency for the anti-inflammatory IL10 receptor was synthetically lethal with
the Mcm4Chaos3 helicase mutant. Our
experiments indicate that DNA replication-associated DNA damage during
development induces inflammation that is preferentially lethal to female
embryos, whereas male embryos are protected by high levels of intrinsic T.
Collapse
Affiliation(s)
- Adrian J McNairn
- Cornell University College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | | | - Jordana C Bloom
- Cornell University College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Marsha D Wallace
- Royal Veterinary College, Department of Clinical Science and Services, University of London, Hatfield, UK
| | - John C Schimenti
- Cornell University College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA. .,Cornell Center for Vertebrate Genomics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
McCarthy PC, Phair IR, Greger C, Pardali K, McGuire VA, Clark AR, Gaestel M, Arthur JSC. IL-33 regulates cytokine production and neutrophil recruitment via the p38 MAPK-activated kinases MK2/3. Immunol Cell Biol 2018; 97:54-71. [PMID: 30171775 PMCID: PMC6378613 DOI: 10.1111/imcb.12200] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
IL-33 is an IL-1-related cytokine that can act as an alarmin when released from necrotic cells. Once released, it can target various immune cells including mast cells, innate lymphoid cells and T cells to elicit a Th2-like immune response. We show here that bone marrow-derived mast cells produce IL-13, IL-6, TNF, GM-CSF, CCL3 and CCL4 in response to IL-33 stimulation. Inhibition of the p38 MAPK, or inhibition or knockout of its downstream kinases MK2 and MK3, blocked the production of these cytokines in response to IL-33. The mechanism downstream of MK2/3 was cytokine specific; however, MK2 and MK3 were able to regulate TNF and GM-CSF mRNA stability. Previous studies in macrophages have shown that MK2 regulates mRNA stability via phosphorylation of the RNA-binding protein TTP (Zfp36). The regulation of cytokine production in mast cells was, however, independent of TTP. MK2/3 were able to phosphorylate the TTP-related protein Brf1 (Zfp36 l1) in IL-33-stimulated mast cells, suggesting a mechanism by which MK2/3 might control mRNA stability in these cells. In line with its ability to regulate in vitro IL-33-stimulated cytokine production, double knockout of MK2 and 3 in mice prevented neutrophil recruitment following intraperitoneal injection of IL-33.
Collapse
Affiliation(s)
- Pierre C McCarthy
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,MRC Protein Phosphorylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Iain R Phair
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Corinna Greger
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Katerina Pardali
- Respiratory, Inflammation & Autoimmunity IMED Biotech Unit, AstraZeneca, Gothenburg, Mölndal, 43183, Sweden
| | - Victoria A McGuire
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,Photobiology Unit, Scottish Cutaneous Porphyria Service, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Matthias Gaestel
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,Institute for Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30623, Germany
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| |
Collapse
|
10
|
High expression of mitogen-activated and stress-activated protein kinase 1 indicates poor prognosis in patients with glioma. Neuroreport 2018; 29:1249-1255. [PMID: 30020192 DOI: 10.1097/wnr.0000000000001090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mitogen-activated and stress-activated protein kinase 1 (MSK1), which belongs to the subfamily of MAPK-activated protein kinase, plays an important role in cell proliferation and neoplastic transformation. It has been recently reported that MSK1 overexpression was closely related to the progression of some tumors such as colorectal cancer. However, the clinical significance of MSK1 in glioma has not been addressed. To investigate the potential role of MSK1 in glioma, we first examined the expression pattern of MSK1 in glioma tissues and normal brain tissues using quantitative RT-PCR, and the results showing that MSK1 expression was significantly elevated in glioma tissues compared with normal brain tissues. The clinical relevance of MSK1 expression level was then analyzed, and we found that high expression of MSK1 was closely related to the larger tumor size and advanced WHO grade. Univariate and multivariate analyses revealed that glioma patients with higher expression of MSK1 had poorer overall survival, and MSK1 was identified as an independent unfavorable prognosis factor. In addition, the effects of MSK1 on glioma cells were tested through cellular experiments, and we demonstrated that MSK1 can promote proliferation and invasion capacities of tumor cells. In conclusion, patients with glioma with higher MSK1 expression were more predisposed to poorer clinical outcomes and unfavorable prognosis, indicating the potential role of MSK1 as a novel clinical biomarker and therapeutic target.
Collapse
|
11
|
Tiwari A, Singh P, Jaitley P, Sharma S, Prakash A, Mandil R, Choudhury S, Gangwar NK, Garg SK. Eucalyptus robusta leaves methanolic extract suppresses inflammatory mediators by specifically targeting TLR4/TLR9, MPO, COX2, iNOS and inflammatory cytokines in experimentally-induced endometritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:149-158. [PMID: 29104078 DOI: 10.1016/j.jep.2017.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bacterial endometritis is one of the major causes of reproductive disorders including infertility in farm animals. Antibiotics are generally used for treatment of such disorders but now a days residues of antibiotics are of great public health concern, therefore, phytoremediation is being considered as an alternative to use of antibiotics. AIM OF THE STUDY Present study was undertaken to investigate the efficacy of Eucalyptus robusta leaves methanolic extract against endometritis along with the possible mechanism of action especially targeting inflammatory biomarkers. MATERIALS AND METHODS Bacterial endometritis was produced using clinical isolates of E. coli and Staphyloccocus aureus from bovines (cows and buffaloes) endometritis cases. After seven days of inoculation of the mixed bacterial culture, endometritis was confirmed based on the presence of visible pus and edema, thinning of endometrial lining and presence of large number of polymorphonuclear cells and bacterial load in uterine flushing. Female Wistar rats were divided in to five groups namely control, sham-operated, endometritis, endometritis plus Eucalyptus leaves extract and endometritis plus cefixime. Serum specific inflammatory biomarkers (interleukin-1β, interleukin-10, tumor necrosis factor-α, intercellular adhesion molecule-1, serum amyloid A) and myleoperoxidase, toll like receptors-4 and -9, inducible nitric oxide synthase, nitric oxide, cyclooxygenase 1 and 2 were estimated in uterine tissues using ELISA kits. RESULTS Interleukin-10, serum amyloid A, myleoperoxidase, toll like receptors-4 and-9, cyclooxygenase-2, inducible nitric oxide synthase and nitric oxide were significantly increased while non significant increase in interleukin-1β, cycloxygenase-1 and intercellular adhesion molecule-1 were observed but level of tumor necrosis factor-α was found decreased in rats of endometritis group. Histopathological lesions in uterus showed efficient induction of endometritis by presence of inflammatory cells which are lessened effectively after treatment with Eucalyptus leaves extract. Eucalyptus robusta leaves extract produced curative and protective effect against endometritis and results were comparable to or even better than cefixime. CONCLUSIONS Eucalyptus robusta leaves extract possess promising antibacterial activity and efficacy against experimental endometritis and, therefore, holds promising potential for development of effective formulation for treatment of endometritis in animals.
Collapse
Affiliation(s)
- Aastha Tiwari
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India.
| | - Preeti Singh
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India.
| | - Pooja Jaitley
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India.
| | - Sushant Sharma
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India.
| | - Atul Prakash
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India.
| | - Rajesh Mandil
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India.
| | - Soumen Choudhury
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India.
| | - Neeraj Kumar Gangwar
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India.
| | - Satish K Garg
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India.
| |
Collapse
|
12
|
Pankevich EV, Astakhova AA, Chistyakov DV, Sergeeva MG. Antiinflammatory effect of rosiglitazone via modulation of mRNA stability of interleukin 10 and cyclooxygenase 2 in astrocytes. BIOCHEMISTRY (MOSCOW) 2017; 82:1276-1284. [DOI: 10.1134/s0006297917110050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Autocrine Interleukin-10 Mediates Glucagon-Like Peptide-1 Receptor-Induced Spinal Microglial β-Endorphin Expression. J Neurosci 2017; 37:11701-11714. [PMID: 29084866 DOI: 10.1523/jneurosci.1799-17.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/18/2017] [Indexed: 01/03/2023] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor agonist exenatide stimulates microglial β-endorphin expression and subsequently produces neuroprotection and antinociception. This study illustrated an unrecognized autocrine role of IL-10 in mediation of exenatide-induced β-endorphin expression. Treatment with exenatide in cultured primary spinal microglia concentration dependently stimulated the expression of the M2 microglial markers IL-10, IL-4, Arg 1, and CD206, but not the M1 microglial markers TNF-α, IL-1β, IL-6, or CD68. Intrathecal exenatide injection also significantly upregulated spinal microglial expression of IL-10, IL-4, Arg 1, and CD206, but not TNF-α, IL-1β, IL-6, or CD68. Intrathecal injection of exenatide stimulated spinal microglial expression of IL-10 and β-endorphin in neuropathic rats. Furthermore, treatment with IL-10 (but not IL-4) stimulated β-endorphin expression in cultured primary microglia, whereas treatment with β-endorphin failed to increase IL-10 expression. The IL-10-neutralizing antibody entirely blocked exenatide-induced spinal microglial expression of β-endorphin in vitro and in vivo and fully blocked exenatide mechanical antiallodynia in neuropathic rats. Moreover, specific cAMP/PKA/p38 signal inhibitors and siRNA/p38β, but not siRNA/p38α, completely blocked exenatide-induced IL-10 expression in cultured primary microglia. Knock-down of IL-10 receptor-α mRNA using siRNA fully inhibited exenatide-induced spinal microglial β-endorphin expression and mechanical antiallodynia in neuropathy. Exenatide also markedly stimulated phosphorylation of the transcription factor STAT3 in cultured primary microglia and β-endorphin stimulation was completely inhibited by the specific STAT3 activation inhibitor. These results revealed that IL-10 in microglia mediated β-endorphin expression after GLP-1 receptor activation through the autocrine cAMP/PKA/p38β/CREB and subsequent IL-10 receptor/STAT3 signal pathways.SIGNIFICANCE STATEMENT Activation of GLP-1 receptors specifically and simultaneously stimulates the expression of anti-inflammatory cytokines IL-10 and IL-4, as well as the neuroprotective factor β-endorphin from microglia. GLP-1 receptor agonism induces β-endorphin expression and antinociception through autocrine release of IL-10. Activation of GLP-1 receptors stimulates IL-10 and β-endorphin expression subsequently through the Gs-cAMP/PKA/p38β/CREB and IL-10/IL-10 receptor-α/STAT3 signal transduction pathways.
Collapse
|
14
|
The Specific Mitogen- and Stress-Activated Protein Kinase MSK1 Inhibitor SB-747651A Modulates Chemokine-Induced Neutrophil Recruitment. Int J Mol Sci 2017; 18:ijms18102163. [PMID: 29039777 PMCID: PMC5666844 DOI: 10.3390/ijms18102163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/04/2017] [Accepted: 10/14/2017] [Indexed: 12/21/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling is involved in a variety of cellular functions. MAPK-dependent functions rely on phosphorylation of target proteins such as mitogen- and stress-activated protein kinase 1 (MSK1). MSK1 participates in the early gene expression and in the production of pro- and anti-inflammatory cytokines. However, the role of MSK1 in neutrophil recruitment remains elusive. Here, we show that chemokine macrophage inflammatory protein-2 (CXCL2) enhances neutrophil MSK1 expression. Using intravital microscopy and time-lapsed video analysis of cremasteric microvasculature in mice, we studied the effect of pharmacological suppression of MSK1 by SB-747651A on CXCL2-elicited neutrophil recruitment. SB-747651A treatment enhanced CXCL2-induced neutrophil adhesion while temporally attenuating neutrophil emigration. CXCL2-induced intraluminal crawling was reduced following SB-747651A treatment. Fluorescence-activated cell sorting analysis of integrin expression revealed that SB-747651A treatment attenuated neutrophil integrin αMβ₂ (Mac-1) expression following CXCL2 stimulation. Both the transmigration time and detachment time of neutrophils from the venule were increased following SB-747651A treatment. It also decreased the velocity of neutrophil migration in cremasteric tissue in CXCL2 chemotactic gradient. SB-747651A treatment enhanced the extravasation of neutrophils in mouse peritoneal cavity not at 1-2 h but at 3-4 h following CXCL2 stimulation. Collectively, our data suggest that inhibition of MSK1 by SB-747651A treatment affects CXCL2-induced neutrophil recruitment by modulating various steps of the recruitment cascade in vivo.
Collapse
|
15
|
Raza A, Crothers JW, McGill MM, Mawe GM, Teuscher C, Krementsov DN. Anti-inflammatory roles of p38α MAPK in macrophages are context dependent and require IL-10. J Leukoc Biol 2017; 102:1219-1227. [PMID: 28877953 DOI: 10.1189/jlb.2ab0116-009rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/04/2017] [Accepted: 08/13/2017] [Indexed: 12/31/2022] Open
Abstract
The p38 MAPK pathway was originally identified as a master regulator of proinflammatory cytokine production by myeloid cells. Numerous drugs targeting this kinase showed promise in preclinical models of inflammatory disease, but so far, none have shown efficacy in clinical trials. The reasons behind this are unclear, but may, in part, be explained by emerging anti-inflammatory functions of this kinase or overly refined selectivity of second-generation pharmacologic inhibitors. Here, we show that p38α signaling in macrophages plays pro- and anti-inflammatory functions in vivo and in vitro, with the outcome depending on the stimulus, output, kinetics, or mode of kinase inhibition (genetic vs. pharmacologic). Different pharmacologic inhibitors of p38 exhibit opposing effects, with second-generation inhibitors acting more specifically but inhibiting anti-inflammatory functions. Functionally, we show that the anti-inflammatory functions of p38α in macrophages are critically dependent on production of IL-10. Accordingly, in the absence of IL-10, inhibition of p38α signaling in macrophages is protective in a spontaneous model of colitis. Taken together, our results shed light on the limited clinical efficacy of drugs targeting p38 and suggest that their therapeutic efficacy can be significantly enhanced by simultaneous modulation of p38-dependent anti-inflammatory mediators, such as IL-10.
Collapse
Affiliation(s)
- Abbas Raza
- Division of Immunobiology, Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Jessica W Crothers
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont, USA; and
| | - Mahalia M McGill
- Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Gary M Mawe
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Cory Teuscher
- Division of Immunobiology, Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont, USA.,Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont, USA; and
| | - Dimitry N Krementsov
- Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
16
|
Tang T, Scambler TE, Smallie T, Cunliffe HE, Ross EA, Rosner DR, O'Neil JD, Clark AR. Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin E 2, dual specificity phosphatase 1 and tristetraprolin. Sci Rep 2017; 7:4350. [PMID: 28659609 PMCID: PMC5489520 DOI: 10.1038/s41598-017-04100-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/09/2017] [Indexed: 01/02/2023] Open
Abstract
In many different cell types, pro-inflammatory agonists induce the expression of cyclooxygenase 2 (COX-2), an enzyme that catalyzes rate-limiting steps in the conversion of arachidonic acid to a variety of lipid signaling molecules, including prostaglandin E2 (PGE2). PGE2 has key roles in many early inflammatory events, such as the changes of vascular function that promote or facilitate leukocyte recruitment to sites of inflammation. Depending on context, it also exerts many important anti-inflammatory effects, for example increasing the expression of the anti-inflammatory cytokine interleukin 10 (IL-10), and decreasing that of the pro-inflammatory cytokine tumor necrosis factor (TNF). The tight control of both biosynthesis of, and cellular responses to, PGE2 are critical for the precise orchestration of the initiation and resolution of inflammatory responses. Here we describe evidence of a negative feedback loop, in which PGE2 augments the expression of dual specificity phosphatase 1, impairs the activity of mitogen-activated protein kinase p38, increases the activity of the mRNA-destabilizing factor tristetraprolin, and thereby inhibits the expression of COX-2. The same feedback mechanism contributes to PGE2-mediated suppression of TNF release. Engagement of the DUSP1-TTP regulatory axis by PGE2 is likely to contribute to the switch between initiation and resolution phases of inflammation.
Collapse
Affiliation(s)
- Tina Tang
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Thomas E Scambler
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Tim Smallie
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Helen E Cunliffe
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Ewan A Ross
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Dalya R Rosner
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - John D O'Neil
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK.
| |
Collapse
|
17
|
Moraes JG, Mendonça LG, Silva PR, Scanavez AA, Galvão KN, Ballou MA, Worku M, Chebel RC. Effects of intrauterine infusion of Escherichia coli lipopolysaccharide on uterine mRNA gene expression and peripheral polymorphonuclear leukocytes in Jersey cows diagnosed with purulent vaginal discharge. J Dairy Sci 2017; 100:4784-4796. [DOI: 10.3168/jds.2016-11643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 02/02/2017] [Indexed: 12/23/2022]
|
18
|
Torres-Pérez JV, Sántha P, Varga A, Szucs P, Sousa-Valente J, Gaal B, Sivadó M, Andreou AP, Beattie S, Nagy B, Matesz K, C Arthur JS, Jancsó G, Nagy I. Phosphorylated Histone 3 at Serine 10 Identifies Activated Spinal Neurons and Contributes to the Development of Tissue Injury-Associated Pain. Sci Rep 2017; 7:41221. [PMID: 28120884 PMCID: PMC5264160 DOI: 10.1038/srep41221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/16/2016] [Indexed: 12/30/2022] Open
Abstract
Transcriptional changes in superficial spinal dorsal horn neurons (SSDHN) are essential in the development and maintenance of prolonged pain. Epigenetic mechanisms including post-translational modifications in histones are pivotal in regulating transcription. Here, we report that phosphorylation of serine 10 (S10) in histone 3 (H3) specifically occurs in a group of rat SSDHN following the activation of nociceptive primary sensory neurons by burn injury, capsaicin application or sustained electrical activation of nociceptive primary sensory nerve fibres. In contrast, brief thermal or mechanical nociceptive stimuli, which fail to induce tissue injury or inflammation, do not produce the same effect. Blocking N-methyl-D-aspartate receptors or activation of extracellular signal-regulated kinases 1 and 2, or blocking or deleting the mitogen- and stress-activated kinases 1 and 2 (MSK1/2), which phosphorylate S10 in H3, inhibit up-regulation in phosphorylated S10 in H3 (p-S10H3) as well as fos transcription, a down-stream effect of p-S10H3. Deleting MSK1/2 also inhibits the development of carrageenan-induced inflammatory heat hyperalgesia in mice. We propose that p-S10H3 is a novel marker for nociceptive processing in SSDHN with high relevance to transcriptional changes and the development of prolonged pain.
Collapse
Affiliation(s)
- Jose Vicente Torres-Pérez
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, SW10 9NH, United Kingdom
| | - Péter Sántha
- Department of Physiology, University of Szeged, Szeged, H-6720, Hungary
| | - Angelika Varga
- MTA-DE-NAP B-Pain Control Research Group, University of Debrecen, Debrecen, H-4012, Hungary
| | - Peter Szucs
- MTA-DE-NAP B-Pain Control Research Group, University of Debrecen, Debrecen, H-4012, Hungary.,Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, H-4012, Hungary
| | - Joao Sousa-Valente
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, SW10 9NH, United Kingdom
| | - Botond Gaal
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, H-4012, Hungary
| | - Miklós Sivadó
- MTA-DE-NAP B-Pain Control Research Group, University of Debrecen, Debrecen, H-4012, Hungary.,Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, H-4012, Hungary
| | - Anna P Andreou
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, SW10 9NH, United Kingdom
| | - Sara Beattie
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, SW10 9NH, United Kingdom
| | - Bence Nagy
- The Ipswich Hospital, Ipswich, IP4 5PD, United Kingdom
| | - Klara Matesz
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, H-4012, Hungary
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, Szeged, H-6720, Hungary
| | - Istvan Nagy
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, SW10 9NH, United Kingdom
| |
Collapse
|
19
|
Beta Interferon Production Is Regulated by p38 Mitogen-Activated Protein Kinase in Macrophages via both MSK1/2- and Tristetraprolin-Dependent Pathways. Mol Cell Biol 2016; 37:MCB.00454-16. [PMID: 27795299 PMCID: PMC5192081 DOI: 10.1128/mcb.00454-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023] Open
Abstract
Autocrine or paracrine signaling by beta interferon (IFN-β) is essential for many of the responses of macrophages to pathogen-associated molecular patterns. This feedback loop contributes to pathological responses to infectious agents and is therefore tightly regulated. We demonstrate here that macrophage expression of IFN-β is negatively regulated by mitogen- and stress-activated kinases 1 and 2 (MSK1/2). Lipopolysaccharide (LPS)-induced expression of IFN-β was elevated in both MSK1/2 knockout mice and macrophages. Although MSK1 and -2 promote the expression of the anti-inflammatory cytokine interleukin 10, it did not strongly contribute to the ability of MSKs to regulate IFN-β expression. Instead, MSK1 and -2 inhibit IFN-β expression via the induction of dual-specificity phosphatase 1 (DUSP1), which dephosphorylates and inactivates the mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK). Prolonged LPS-induced activation of p38 and JNK, phosphorylation of downstream transcription factors, and overexpression of IFN-β mRNA and protein were similar in MSK1/2 and DUSP1 knockout macrophages. Two distinct mechanisms were implicated in the overexpression of IFN-β: first, JNK-mediated activation of c-jun, which binds to the IFN-β promoter, and second, p38-mediated inactivation of the mRNA-destabilizing factor tristetraprolin, which we show is able to target the IFN-β mRNA.
Collapse
|
20
|
TLR Signalling Pathways Diverge in Their Ability to Induce PGE2. Mediators Inflamm 2016; 2016:5678046. [PMID: 27630451 PMCID: PMC5007370 DOI: 10.1155/2016/5678046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/17/2016] [Indexed: 12/25/2022] Open
Abstract
PGE2 is a lipid mediator abundantly produced in inflamed tissues that exerts relevant immunoregulatory functions. Dendritic cells (DCs) are key players in the onset and shaping of the inflammatory and immune responses and, as such, are well known PGE2 targets. By contrast, the precise role of human DCs in the production of PGE2 is poorly characterized. Here, we asked whether different ligands of Toll-like receptors (TLRs), a relevant family of pathogen-sensing receptors, could induce PGE2 in human DCs. The only active ligands were LPS (TLR4 ligand) and R848 (TLR7-8 ligand) although all TLRs, but TLR9, were expressed and functional. While investigating the molecular mechanisms hindering the release of PGE2, our experiments highlighted so far oversight differences in TLR signalling pathways in terms of MAPK and NF-κB activation. In addition, we identified that the PGE2-limiting checkpoint downstream TLR3, TLR5, and TLR7 was a defect in COX2 induction, while TLR1/2 and TLR2/6 failed to mobilize arachidonic acid, the substrate for the COX2 enzyme. Finally, we demonstrated the in vivo expression of PGE2 by myeloid CD11c+ cells, documenting a role for DCs in the production of PGE2 in human inflamed tissues.
Collapse
|
21
|
McGuire VA, Ruiz-Zorrilla Diez T, Emmerich CH, Strickson S, Ritorto MS, Sutavani RV, Weiβ A, Houslay KF, Knebel A, Meakin PJ, Phair IR, Ashford MLJ, Trost M, Arthur JSC. Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation. Sci Rep 2016; 6:31159. [PMID: 27498693 PMCID: PMC4976367 DOI: 10.1038/srep31159] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/15/2016] [Indexed: 12/24/2022] Open
Abstract
Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity.
Collapse
Affiliation(s)
- Victoria A McGuire
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Tamara Ruiz-Zorrilla Diez
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, CEU San Pablo University, Urbanización Montepríncipe, 28668 Madrid, Spain
| | - Christoph H Emmerich
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Sam Strickson
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Maria Stella Ritorto
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Ruhcha V Sutavani
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Anne Weiβ
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Kirsty F Houslay
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Paul J Meakin
- Cardiovascular and Diabetes Medicine, Medical Research Institute, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Iain R Phair
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Michael L J Ashford
- Cardiovascular and Diabetes Medicine, Medical Research Institute, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - J Simon C Arthur
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| |
Collapse
|
22
|
miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy. Nat Commun 2016; 7:12076. [PMID: 27350436 PMCID: PMC4931323 DOI: 10.1038/ncomms12076] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/26/2016] [Indexed: 01/15/2023] Open
Abstract
How the kidney responds to the metabolic cues from the environment remains a central question in kidney research. This question is particularly relevant to the pathogenesis of diabetic nephropathy (DN) in which evidence suggests that metabolic events in podocytes regulate chromatin structure. Here, we show that miR-93 is a critical metabolic/epigenetic switch in the diabetic milieu linking the metabolic state to chromatin remodelling. Mice with inducible overexpression of a miR-93 transgene exclusively in podocytes exhibit significant improvements in key features of DN. We identify miR-93 as a regulator of nucleosomal dynamics in podocytes. miR-93 has a critical role in chromatin reorganization and progression of DN by modulating its target Msk2, a histone kinase, and its substrate H3S10. These findings implicate a central role for miR-93 in high glucose-induced chromatin remodelling in the kidney, and provide evidence for a previously unrecognized role for Msk2 as a target for DN therapy. Podocyte injury is central to kidney dysfunction in diabetic nephropathy. Here the authors show that Msk2 is a target of miR-93 and this interaction mediates pathogenic chromatin remodelling in diabetic nephropathy.
Collapse
|
23
|
Reyskens KMSE, Arthur JSC. Emerging Roles of the Mitogen and Stress Activated Kinases MSK1 and MSK2. Front Cell Dev Biol 2016; 4:56. [PMID: 27376065 PMCID: PMC4901046 DOI: 10.3389/fcell.2016.00056] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/30/2016] [Indexed: 01/17/2023] Open
Abstract
Mitogen- and stress-activated kinases (MSK) 1 and 2 are nuclear proteins activated downstream of the ERK1/2 or p38 MAPK pathways. MSKs phosphorylate multiple substrates, including CREB and Histone H3, and their major role is the regulation of specific subsets of Immediate Early genes (IEG). While MSKs are expressed in multiple tissues, their levels are high in immune and neuronal cells and it is in these systems most is known about their function. In immunity, MSKs have predominantly anti-inflammatory roles and help regulate production of the anti-inflammatory cytokine IL-10. In the CNS they are implicated in neuronal proliferation and synaptic plasticity. In this review we will focus on recent advances in understanding the roles of MSKs in the innate immune system and neuronal function.
Collapse
Affiliation(s)
- Kathleen M S E Reyskens
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee Dundee, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee Dundee, UK
| |
Collapse
|
24
|
Mendis M, Leclerc E, Simsek S. Arabinoxylan hydrolyzates as immunomodulators in lipopolysaccharide-induced RAW264.7 macrophages. Food Funct 2016; 7:3039-45. [DOI: 10.1039/c6fo00500d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The immunomodulatory effects of arabinoxylan (AX) have been demonstrated before. However, these effects could be structure driven. Thus, we indicate the relationship between fine structural details and immunomodulatory properties of AX.
Collapse
Affiliation(s)
- Mihiri Mendis
- North Dakota State University
- Department of Plant Sciences
- Cereal Science Graduate Program
- Fargo
- USA
| | - Estelle Leclerc
- North Dakota State University
- Department of Pharmaceutical Sciences
- College of Health Professions
- Fargo
- USA
| | - Senay Simsek
- North Dakota State University
- Department of Plant Sciences
- Cereal Science Graduate Program
- Fargo
- USA
| |
Collapse
|
25
|
Bourgoin SG, Hui W. Role of mitogen- and stress-activated kinases in inflammatory arthritis. World J Pharmacol 2015; 4:265-273. [DOI: 10.5497/wjp.v4.i4.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic lipid mediator that promotes motility, survival, and the synthesis of chemokines/cytokines in human fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis. LPA activates several proteins within the mitogen activated protein (MAP) kinase signaling network, including extracellular signal-regulated kinases (ERK) 1/2 and p38 MAP kinase (MAPK). Upon docking to mitogen- and stress-activated kinases (MSKs), ERK1/2 and p38 MAPK phosphorylate serine and threonine residues within its C-terminal domain and cause autophosphorylation of MSKs. Activated MSKs can then directly phosphorylate cAMP response element-binding protein (CREB) at Ser133 in FLS. Phosphorylation of CREB by MSKs is essential for the production of pro-inflammatory and anti-inflammatory cytokines. However, other downstream effectors of MSK1/2 such as nuclear factor-kappa B, histone H3, and high mobility group nucleosome binding domain 1 may also regulate gene expression in immune cells involved in disease pathogenesis. MSKs are master regulators of cell function that integrate signals induced by growth factors, pro-inflammatory cytokines, and cellular stresses, as well as those induced by LPA.
Collapse
|
26
|
Lang E, Bissinger R, Fajol A, Salker MS, Singh Y, Zelenak C, Ghashghaeinia M, Gu S, Jilani K, Lupescu A, Reyskens KMSE, Ackermann TF, Föller M, Schleicher E, Sheffield WP, Arthur JSC, Lang F, Qadri SM. Accelerated apoptotic death and in vivo turnover of erythrocytes in mice lacking functional mitogen- and stress-activated kinase MSK1/2. Sci Rep 2015; 5:17316. [PMID: 26611568 PMCID: PMC4661433 DOI: 10.1038/srep17316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/28/2015] [Indexed: 12/25/2022] Open
Abstract
The mitogen- and stress-activated kinase MSK1/2 plays a decisive role in apoptosis. In analogy to apoptosis of nucleated cells, suicidal erythrocyte death called eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine (PS) externalization. Here, we explored whether MSK1/2 participates in the regulation of eryptosis. To this end, erythrocytes were isolated from mice lacking functional MSK1/2 (msk−/−) and corresponding wild-type mice (msk+/+). Blood count, hematocrit, hemoglobin concentration and mean erythrocyte volume were similar in both msk−/− and msk+/+ mice, but reticulocyte count was significantly increased in msk−/− mice. Cell membrane PS exposure was similar in untreated msk−/− and msk+/+ erythrocytes, but was enhanced by pathophysiological cell stressors ex vivo such as hyperosmotic shock or energy depletion to significantly higher levels in msk−/− erythrocytes than in msk+/+ erythrocytes. Cell shrinkage following hyperosmotic shock and energy depletion, as well as hemolysis following decrease of extracellular osmolarity was more pronounced in msk−/− erythrocytes. The in vivo clearance of autologously-infused CFSE-labeled erythrocytes from circulating blood was faster in msk−/− mice. The spleens from msk−/− mice contained a significantly greater number of PS-exposing erythrocytes than spleens from msk+/+ mice. The present observations point to accelerated eryptosis and subsequent clearance of erythrocytes leading to enhanced erythrocyte turnover in MSK1/2-deficient mice.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Rosi Bissinger
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Abul Fajol
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Madhuri S Salker
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Yogesh Singh
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Christine Zelenak
- Charité Medical University Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mehrdad Ghashghaeinia
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Shuchen Gu
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.,Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kashif Jilani
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.,Department of Biochemistry, University of Agriculture, 38040 Faisalabad, Pakistan
| | - Adrian Lupescu
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Kathleen M S E Reyskens
- MRC Phosphorylation Unit, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.,Division of Cell Signaling and Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Teresa F Ackermann
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Michael Föller
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.,nstitute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120 Halle (Saale), Germany
| | - Erwin Schleicher
- Department of Internal Medicine, University of Tübingen, Otfried-Müller-Straβe 10, 72076 Tübingen, Germany
| | - William P Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada.,Centre for Innovation, Canadian Blood Services, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada
| | - J Simon C Arthur
- MRC Phosphorylation Unit, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.,Division of Cell Signaling and Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Syed M Qadri
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.,Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada.,Centre for Innovation, Canadian Blood Services, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada
| |
Collapse
|
27
|
Song H, Fang X, Wen M, Yu F, Gao K, Sun C, Wang Z. Role of MK2 signaling pathway in the chronic compression of cervical spinal cord. Am J Transl Res 2015; 7:2355-2363. [PMID: 26807183 PMCID: PMC4697715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE In this study, chronic compression of cervical spinal cord was introduced into twy/twy mice and the role of MK2 signaling pathway was investigated in this disease. METHODS twy/twy mice aged 6-24 weeks were used and the inflammatory response in the cervical spinal cord was observed. The Institute of Cancer Research (ICR) mice were used as controls. MK2 inhibitor (PF-3644022, 30 mg/kg) was administered intragastrically to twy/twy mice. The motor behavior was firstly observed in these three groups by Catwalk gait analysis. And the cervical spinal cord between C2 and C3 of vertebral segments was analyzed by MRI and Western blot assay. RESULTS The stride length of paws and interlimb coordination reduced in twy/twy mice. However, at 4 weeks after PF-3644022 treatment, a marked improvement was observed in the motor function. The expressions of inflammation related factors (such as IL-1β, NF-κB, TNF-α, MK2 and p-MK2) and apoptosis related proteins (such as cleaved caspase-8 and bax/bcl-2) in the spinal cord of twy/twy mice significantly increased as compared to controls, but 4-week treatment with PF-3644022 markedly reduced the expressions of these factors and apoptotic proteins in the cervical spinal cord. CONCLUSION MK2 signaling pathway is involved in the chronic compression induced inflammation of the cervical spinal cord. Thus, to inhibit the MK2 pathway may used to improve the outcome and prevent the deterioration of neurological dysfunction.
Collapse
Affiliation(s)
- Hongxing Song
- Department of Orthopaedics Surgery, Beijing Shijitan Hospital, Capital Medical University, The Ninth Clinical Medical College of Peking UniversityBeijing 100038, China
| | - Xiutong Fang
- Department of Orthopaedics Surgery, Beijing Shijitan Hospital, Capital Medical University, The Ninth Clinical Medical College of Peking UniversityBeijing 100038, China
| | - Mingjie Wen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical UniversityBeijing 100069, China
| | - Fang Yu
- Department of Orthopaedics Surgery, Beijing Shijitan Hospital, Capital Medical University, The Ninth Clinical Medical College of Peking UniversityBeijing 100038, China
| | - Kai Gao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing, 100021, China
| | - Chenli Sun
- Department of Orthopaedics Surgery, Beijing Shijitan Hospital, Capital Medical University, The Ninth Clinical Medical College of Peking UniversityBeijing 100038, China
| | - Zhenwei Wang
- Department of Orthopaedics Surgery, Beijing Shijitan Hospital, Capital Medical University, The Ninth Clinical Medical College of Peking UniversityBeijing 100038, China
| |
Collapse
|
28
|
Wada S, Matsushita Y, Tazawa H, Aoi W, Naito Y, Higashi A, Ohshima H, Yoshikawa T. Loss of p53 in stromal fibroblasts enhances tumor cell proliferation through nitric-oxide-mediated cyclooxygenase 2 activation. Free Radic Res 2015; 49:269-78. [PMID: 25511472 DOI: 10.3109/10715762.2014.997230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Overexpression of cyclooxygenase 2 (COX-2) by stromal fibroblasts plays a critical role in the early stage of carcinogenesis. COX-2 expression is thought to be positively or negatively regulated by inflammatory chemical mediators or tumor suppressors. In this study, the contributions of inducible nitric oxide synthase (iNOS) and p53 to COX-2 expression were examined using mouse embryonic fibroblasts (MEFs) from wild-type, p53-deficient, iNOS-deficient, and p53/iNOS-deficient mice. These MEFs were treated with 1 μg/mL of lipopolysaccharide and 100 IU/mL of interferon gamma for up to 72 h. iNOS and COX-2 expression were analyzed by Western blotting. iNOS was induced earlier (16 h) in p53-deficient MEFs than in wild-type MEFs (48 h). Elevated expression of COX-2 was sustained for a longer duration in the p53-deficient MEFs. In contrast, COX-2 expression was reduced earlier in the iNOS-deficient MEFs. Addition of an exogenous NO donor (0.8 mM of S-nitroso-l-glutathione) to the iNOS-deficient MEFs augmented COX-2 expression. Co-culture with stimulated p53-deficient MEFs promoted cell proliferation of mouse rectal polyploid carcinoma CMT93 cells, but treatment with a COX-2-specific inhibitor counteracted this effect. These results suggest that loss of function of the p53 gene in stromal fibroblasts enhances COX-2 expression by enhancing iNOS expression and the resultant production of NO, contributing to the promotion of tumor growth.
Collapse
Affiliation(s)
- S Wada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Shimogamo , Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Saeki T, Inui H, Fujioka S, Fukuda S, Nomura A, Nakamura Y, Park EY, Sato K, Kanamoto R. Staurosporine synergistically potentiates the deoxycholate-mediated induction of COX-2 expression. Physiol Rep 2014; 2:2/8/e12143. [PMID: 25168879 PMCID: PMC4246598 DOI: 10.14814/phy2.12143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer is a major cause of cancer‐related death in western countries, and thus there is an urgent need to elucidate the mechanism of colorectal tumorigenesis. A diet that is rich in fat increases the risk of colorectal tumorigenesis. Bile acids, which are secreted in response to the ingestion of fat, have been shown to increase the risk of colorectal tumors. The expression of cyclooxygenase (COX)‐2, an inducible isozyme of cyclooxygenase, is induced by bile acids and correlates with the incidence and progression of cancers. In this study, we investigated the signal transduction pathways involved in the bile‐acid‐mediated induction of COX‐2 expression. We found that staurosporine (sts), a potent protein kinase C (PKC) inhibitor, synergistically potentiated the deoxycholate‐mediated induction of COX‐2 expression. Sts did not increase the stabilization of COX‐2 mRNA. The sts‐ and deoxycholate‐mediated synergistic induction of COX‐2 expression was suppressed by a membrane‐permeable Ca2+ chelator, a phosphoinositide 3‐kinase inhibitor, a nuclear factor‐κB pathway inhibitor, and inhibitors of canonical and stress‐inducible mitogen‐activated protein kinase pathways. Inhibition was also observed using PKC inhibitors, suggesting the involvement of certain PKC isozymes (η, θ, ι, ζ, or μ). Our results indicate that sts exerts its potentiating effects via the phosphorylation of p38. However, the effects of anisomycin did not mimic those of sts, indicating that although p38 activation is required, it does not enhance deoxycholate‐induced COX‐2 expression. We conclude that staurosporine synergistically enhances deoxycholate‐induced COX‐2 expression in RCM‐1 colon cancer cells. e12143 The expression of COX‐2, an inducible isozyme of cyclooxygenase, correlates with the incidence and progression of cancers, and bile acids have been shown to induce COX‐2 expression. We investigated the signal transduction pathways involved in the bile‐acid‐mediated induction of COX‐2 expression, and we found that staurosporine, a potent PKC inhibitor, synergistically potentiated the deoxycholate‐mediated induction of COX‐2 expression. Staurosporine exerted its potentiating effects via the phosphorylation of p38, and the involvement of certain PKC isozymes was suggested.
Collapse
Affiliation(s)
- Tohru Saeki
- Laboratory of Molecular Nutrition, Kyoto Prefectural University, Kyoto, Japan
| | - Haruka Inui
- Laboratory of Molecular Nutrition, Kyoto Prefectural University, Kyoto, Japan
| | - Saya Fujioka
- Laboratory of Molecular Nutrition, Kyoto Prefectural University, Kyoto, Japan
| | - Suguru Fukuda
- Laboratory of Molecular Nutrition, Kyoto Prefectural University, Kyoto, Japan
| | - Ayumi Nomura
- Laboratory of Molecular Nutrition, Kyoto Prefectural University, Kyoto, Japan
| | - Yasushi Nakamura
- Laboratory of Food Science, Kyoto Prefectural University, Kyoto, Japan
| | - Eun Young Park
- Laboratory of Food Science, Kyoto Prefectural University, Kyoto, Japan
| | - Kenji Sato
- Laboratory of Food Science, Kyoto Prefectural University, Kyoto, Japan
| | - Ryuhei Kanamoto
- Laboratory of Molecular Nutrition, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
30
|
Perez DA, Vago JP, Athayde RM, Reis AC, Teixeira MM, Sousa LP, Pinho V. Switching off key signaling survival molecules to switch on the resolution of inflammation. Mediators Inflamm 2014; 2014:829851. [PMID: 25136148 PMCID: PMC4127222 DOI: 10.1155/2014/829851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/02/2014] [Accepted: 07/01/2014] [Indexed: 01/07/2023] Open
Abstract
Inflammation is a physiological response of the immune system to injury or infection but may become chronic. In general, inflammation is self-limiting and resolves by activating a termination program named resolution of inflammation. It has been argued that unresolved inflammation may be the basis of a variety of chronic inflammatory diseases. Resolution of inflammation is an active process that is fine-tuned by the production of proresolving mediators and the shutdown of intracellular signaling molecules associated with cytokine production and leukocyte survival. Apoptosis of leukocytes (especially granulocytes) is a key element in the resolution of inflammation and several signaling molecules are thought to be involved in this process. Here, we explore key signaling molecules and some mediators that are crucial regulators of leukocyte survival in vivo and that may be targeted for therapeutic purposes in the context of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Denise Alves Perez
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Juliana Priscila Vago
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
- Laboratório de Sinalização inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Rayssa Maciel Athayde
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Alesandra Corte Reis
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Mauro Martins Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Lirlândia Pires Sousa
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
- Laboratório de Sinalização inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Vanessa Pinho
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
31
|
Verbeek RE, Siersema PD, Ten Kate FJ, Fluiter K, Souza RF, Vleggaar FP, Bus P, van Baal JWPM. Toll-like receptor 4 activation in Barrett's esophagus results in a strong increase in COX-2 expression. J Gastroenterol 2014; 49:1121-34. [PMID: 23955118 DOI: 10.1007/s00535-013-0862-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/19/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Barrett's esophagus (BE) is known to progress to esophageal adenocarcinoma in a setting of chronic inflammation. Toll-like receptor (TLR) 4 has been linked to inflammation-associated carcinogenesis. We aimed to determine the expression and functional activity of TLR4 in the esophagus and whether TLR4 activation in BE could promote carcinogenesis by inducing COX-2 expression. METHODS TLR4 expression in esophageal adenocarcinoma, BE, duodenum, reflux esophagitis and normal squamous esophagus biopsies was assessed using real-time PCR and validated by in situ hybridization and immunohistochemistry. Ex vivo cultures of BE, duodenum and normal squamous esophagus biopsies and a BE cell line (BAR-T) were stimulated with the TLR4 agonist lipopolysaccharide (LPS). To evaluate the effect of TLR4 activation, NF-κB activation, IL8 secretion and expression and COX-2 expression were determined. RESULTS TLR4 expression was significantly increased in esophageal adenocarcinoma, BE, duodenum and reflux esophagitis compared to normal squamous esophagus. LPS stimulation resulted in NF-κB activation and a dose-dependent increase of IL8 secretion and mRNA expression. The induction of IL8 was more evident in BE compared to normal squamous esophagus. Upon LPS stimulation, COX-2 expression increased significantly in ex vivo cultured BE biopsies, which was observed in both epithelium and lamina propria cells. However, no effect was found in duodenum and normal squamous esophagus biopsies. CONCLUSION TLR4 activation in BE results in a strong increase in COX-2 and may contribute to malignant transformation.
Collapse
Affiliation(s)
- Romy E Verbeek
- Department of Gastroenterology and Hepatology (F02.618), University Medical Center Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
32
|
CREB phosphorylation at Ser133 regulates transcription via distinct mechanisms downstream of cAMP and MAPK signalling. Biochem J 2014; 458:469-79. [PMID: 24438093 DOI: 10.1042/bj20131115] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CREB (cAMP-response-element-binding protein) is an important transcription factor for the activation of a number of immediate early genes. CREB is phosphorylated on Ser133 by PKA (protein kinase A), promoting the recruitment of the co-activator proteins CBP (CREB-binding protein) and p300; this has been proposed to increase the transcription of CREB-dependent genes. CREB is also phosphorylated on Ser133 by MSK1/2 (mitogen- and stress-activated kinase 1/2) in cells in response to the activation of MAPK (mitogen-activated protein kinase) signalling; however, the relevance of this to gene transcription has been controversial. To resolve this problem, we created a mouse with a Ser133 to alanine residue mutation in the endogenous Creb gene. Unlike the total CREB knockout, which is perinatally lethal, these mice were viable, but born at less than the expected Mendelian frequency on a C57Bl/6 background. Using embryonic fibroblasts from the S133A-knockin mice we show in the present study that Ser133 phosphorylation downstream of PKA is required for CBP/p300 recruitment. The requirement of Ser133 phosphorylation for the PKA-mediated induction of CREB-dependent genes was, however, promoter-specific. Furthermore, we show that in cells the phosphorylation of CREB on Ser133 by MSKs does not promote strong recruitment of CBP or p300. Despite this, MSK-mediated CREB phosphorylation is critical for the induction of CREB-dependent genes downstream of MAPK signalling.
Collapse
|
33
|
Sanz-Garcia C, Nagy LE, Lasunción MA, Fernandez M, Alemany S. Cot/tpl2 participates in the activation of macrophages by adiponectin. J Leukoc Biol 2014; 95:917-30. [PMID: 24532642 DOI: 10.1189/jlb.0913486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Whereas the main function of APN is to enhance insulin activity, it is also involved in modulating the macrophage phenotype. Here, we demonstrate that at physiological concentrations, APN activates Erk1/2 via the IKKβ-p105/NF-κΒ1-Cot/tpl2 intracellular signal transduction cassette in macrophages. In peritoneal macrophages stimulated with APN, Cot/tpl2 influences the ability to phagocytose beads. However, Cot/tpl2 did not modulate the known capacity of APN to decrease lipid content in peritoneal macrophages in response to treatment with oxLDL or acLDL. A microarray analysis of gene-expression profiles in BMDMs exposed to APN revealed that APN modulated the expression of ∼3300 genes; the most significantly affected biological functions were the inflammatory and the infectious disease responses. qRT-PCR analysis of WT and Cot/tpl2 KO macrophages stimulated with APN for 0, 3, and 18 h revealed that Cot/tpl2 participated in the up-regulation of APN target inflammatory mediators included in the cytokine-cytokine receptor interaction pathway (KEGG ID 4060). In accordance with these data, macrophages stimulated with APN increased secretion of cytokines and chemokines, including IL-1β, IL-1α, TNF-α, IL-10, IL-12, IL-6, and CCL2. Moreover, Cot/tpl2 also played an important role in the production of these inflammatory mediators upon stimulation of macrophages with APN. It has been reported that different types of signals that stimulate TLRs, IL-1R, TNFR, FcγR, and proteinase-activated receptor-1 activate Cot/tpl2. Here, we demonstrate that APN is a new signal that activates the IKKβ-p105/NF-κΒ1-Cot/tpl2-MKK1/2-Erk1/2 axis in macrophages. Furthermore, this signaling cassette modulates the biological functions triggered by APN in macrophages.
Collapse
Affiliation(s)
- Carlos Sanz-Garcia
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura E Nagy
- Pathobiology and Gastroenterology, Cleveland Clinic, Cleveland, Ohio, USA; and
| | - Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, and Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Margarita Fernandez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Susana Alemany
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain;
| |
Collapse
|
34
|
Phosphorylation of mitogen- and stress-activated protein kinase-1 in astrocytic inflammation: a possible role in inhibiting production of inflammatory cytokines. PLoS One 2013; 8:e81747. [PMID: 24349124 PMCID: PMC3859508 DOI: 10.1371/journal.pone.0081747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 10/16/2013] [Indexed: 11/24/2022] Open
Abstract
Purpose It is generally accepted that inflammation has a role in the progression of many central nervous system (CNS) diseases, although the mechanisms through which this occurs remain unclear. Among mitogen-activated protein kinase (MAPK) targets, mitogen- and stress-activated protein kinase (MSK1) has been thought to be involved in the pathology of inflammatory gene expression. In this study, the roles of MSK1 activation in neuroinflammation were investigated. Methods The bacterial lipopolysaccharide (LPS)-induced brain injury model was performed on Sprague-Dawley rats. The dynamic expression changes and the cellular location of p-MSK1 in the brain cortex were detected by Western blot and immunofluorescence staining. The synthesis of inflammatory cytokines in astrocytes was detected by enzyme-linked immunosorbent assay (ELISA). Results Phosphorylated MSK1 (p-MSK1 Thr-581) was induced significantly after intracerebral injection of LPS into the lateral ventricles of the rat brain. Specific upregulation of p-MSK1 in astrocytes was also observed in inflamed cerebral cortex. At 1 day after LPS stimulation, iNOS, TNFα expression, and the astrocyte marker glial fibrillary acidic protein (GFAP) were increased significantly. Also, in vitro studies indicated that the upregulation of p-MSK1 (Thr-581) may be involved in the subsequent astrocyte inflammatory process, following LPS challenge. Using an enzyme-linked immunosorbent assay (ELISA), it was confirmed that treatment with LPS in primary astrocytes stimulated the synthesis of inflammatory cytokines, through MAPKs signaling pathways. In cultured primary astrocytes, both knock-down of total MSK1 by small interfering RNAs (siRNA) or specific mutation of Thr-581 resulted in higher production of certain cytokines, such as TNFα and IL-6. Conclusions Collectively, these results suggest that MSK1 phosphorylation is associated with the regulation of LPS-induced brain injury and possibly acts as a negative regulator of inflammation.
Collapse
|
35
|
Rodríguez M, Domingo E, Municio C, Alvarez Y, Hugo E, Fernández N, Sánchez Crespo M. Polarization of the innate immune response by prostaglandin E2: a puzzle of receptors and signals. Mol Pharmacol 2013; 85:187-97. [PMID: 24170779 DOI: 10.1124/mol.113.089573] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Eicosanoids tailor the innate immune response by supporting local inflammation and exhibiting immunomodulatory properties. Prostaglandin (PG) E2 is the most abundant eicosanoid in the inflammatory milieu due to the robust production elicited by pathogen-associated molecular patterns on cells of the innate immune system. The different functions and cell distribution of E prostanoid receptors explain the difficulty encountered thus far to delineate the actual role of PGE2 in the immune response. The biosynthesis of eicosanoids includes as the first step the Ca(2+)- and kinase-dependent activation of the cytosolic phospholipase A2, which releases arachidonic acid from membrane phospholipids, and later events depending on the transcriptional regulation of the enzymes of the cyclooxygenase routes, where PGE2 is the most relevant product. Acting in an autocrine/paracrine manner in macrophages, PGE2 induces a regulatory phenotype including the expression of interleukin (IL)-10, sphingosine kinase 1, and the tumor necrosis factor family molecule LIGHT. PGE2 also stabilizes the suppressive function of myeloid-derived suppressor cells, inhibits the release of IL-12 p70 by macrophages and dendritic cells, and may enhance the production of IL-23. PGE2 is a central component of the inflammasome-dependent induction of the eicosanoid storm that leads to massive loss of intravascular fluid, increases the mortality rate associated with coinfection by Candida ssp. and bacteria, and inhibits fungal phagocytosis. These effects have important consequences for the outcome of infections and the polarization of the immune response into the T helper cell types 2 and 17 and can be a clue to develop pharmacological tools to address infectious, autoimmune, and autoinflammatory diseases.
Collapse
Affiliation(s)
- Mario Rodríguez
- Department of Biochemistry and Molecular Biology, University of Valladolid, Valladolid, Spain (M.R., N.F.); and Institute of Biology and Molecular Genetics, Spanish National Research Council, Valladolid, Spain (E.D., C.M., Y.A., E.H., M.S.C.)
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Following pathogen infection or tissue damage, the stimulation of pattern recognition receptors on the cell surface and in the cytoplasm of innate immune cells activates members of each of the major mitogen-activated protein kinase (MAPK) subfamilies--the extracellular signal-regulated kinase (ERK), p38 and Jun N-terminal kinase (JNK) subfamilies. In conjunction with the activation of nuclear factor-κB and interferon-regulatory factor transcription factors, MAPK activation induces the expression of multiple genes that together regulate the inflammatory response. In this Review, we discuss our current knowledge about the regulation and the function of MAPKs in innate immunity, as well as the importance of negative feedback loops in limiting MAPK activity to prevent host tissue damage. We also examine how pathogens have evolved complex mechanisms to manipulate MAPK activation to increase their virulence. Finally, we consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases.
Collapse
|
37
|
Pattison MJ, MacKenzie KF, Elcombe SE, Arthur JSC. IFNβ autocrine feedback is required to sustain TLR induced production of MCP-1 in macrophages. FEBS Lett 2013; 587:1496-503. [PMID: 23542035 PMCID: PMC3655261 DOI: 10.1016/j.febslet.2013.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/22/2013] [Accepted: 03/13/2013] [Indexed: 12/23/2022]
Abstract
MCP-1 mRNA levels and protein secretion in macrophages are induced by TLR activation. In response to LPS, the initial induction of MCP-1 mRNA is IFNβ independent. The sustained production of MCP-1 by LPS requires an IFNβ mediated feedback loop. The sustained production of MCP-1 by poly IC also requires IFNβ.
Chemokines, including MCP-1, are crucial to mounting an effective immune response due to their ability to recruit other immune cells. We show that sustained LPS or poly(I:C)-stimulated MCP-1 production requires an IFNβ-mediated feedback loop. Consistent with this, exogenous IFNβ was able to induce MCP-1 transcription in the absence of other stimuli. Blocking IFNβ signaling with Ruxolitinib, a JAK inhibitor, inhibited MCP-1 transcription. The MCP-1 promoter contains potential STAT binding sites and we demonstrate that STAT1 is recruited upon IFNβ stimulation. Furthermore we find that IL-10 knockout increases MCP-1 production in response to LPS, which may reflect an ability of IL-10 to repress IFNβ production. Overall, these results show the importance of the balance between IFNβ and IL-10 in the regulation of MCP-1.
Collapse
Affiliation(s)
- Michael J Pattison
- MRC Protein Phosphorylation Unit, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | | | | | | |
Collapse
|