1
|
The transcriptional factor GATA-4 negatively regulates Hsp70 transcription in Crassostrea hongkongensis. Mol Biol Rep 2020; 47:7107-7114. [PMID: 32880831 DOI: 10.1007/s11033-020-05778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
To better explore the application potential of heat shock protein Hsp70s in diverse areas including biomonitoring, a further investigation of the details of the regulatory mechanism governing Hsp70 transcription is required. A transcriptional factor ChGATA-4 that displayed affinity to the ChHsp70 promoter of Crassostrea hongkongensis was isolated and identified by DNA affinity purification as well as mass spectrometry analysis. The ChGATA-4 cDNA is 2162 bp in length and the open reading frame encodes a polypeptide containing 482 amino acids with a conserved zinc finger domain. The over-expression of ChGATA-4 significantly inhibited the expression of ChHsp70 promoter in heterologous HEK293T cells. However, the depletion of ChGATA-4 mRNA by RNAi technique resulted in significant increase of ChHsp70 transcription in oyster hemocytes. The RT-PCR results demonstrated that the transcription of both ChHsp70 and ChGATA-4 were induced by heat, Cd, or NP (Nonyl phenol) stress. This suggested a potential correlation between ChHsp70 and ChGATA-4 in the stress-mediated genetic regulatory cascade. This study demonstrated that ChGATA-4 acts in a negative manner in controlling ChHsp70 transcription in C. hongkongensis and promotes to further understand the mechanisms leading Hsp70 transcription.
Collapse
|
2
|
Liu Y, Zhu H, Liu Y, Qu J, Han M, Jin C, Zhang Q, Liu J. Molecular characterization and expression profiles provide new insights into GATA5 functions in tongue sole (Cynoglossus semilaevis). Gene 2019; 708:21-29. [PMID: 31082502 DOI: 10.1016/j.gene.2019.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
GATA5 is a member of the GATA transcription factor family, which serves essential roles in varieties of cellular functions and biological processes. In this study, we have accomplished the molecular cloning, bioinformatic analysis and preliminary function study of C. semilaevis GATA5. The full-length cDNA nucleotide sequence is 1955 bp, with a coding sequence of 1167 bp, which encodes a polypeptide of 388 amino acids. Homology, phylogenetic, gene structure and synteny analysis showed that C. semilaevis GATA5 was highly conserved among vertebrates. Tissue distribution pattern exhibited that C. semilaevis GATA5 was significantly expressed in heart, intestine, liver, kidney and gonad, with a sexual dimorphic feature observed in testis and ovary. Embryonic development expression profiles showed that C. semilaevis GATA5 transcripts increased at the blastula stage, and peaked at the heat-beating period. Strong signals were detected at spermatids of male testis and stage III oocytes of female ovary by ISH. The expression of C. semilaevis GATA5 was regulated by 17α-MT and E2 after hormone stimulation to the ovary. Together, all the results pointed out that GATA5 might play a vital role during gonadal maturation and the reproductive cycle of C. semilaevis. This study lays the foundation for further researches on the sex control breeding in tongue sole.
Collapse
Affiliation(s)
- Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - He Zhu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Chaofan Jin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, Shandong, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, Shandong, China.
| |
Collapse
|
3
|
Yaoita Y, Nakajima K. Developmental gene expression patterns in the brain and liver of Xenopus tropicalis during metamorphosis climax. Genes Cells 2018; 23:998-1008. [PMID: 30294949 DOI: 10.1111/gtc.12647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 11/29/2022]
Abstract
Thyroid hormones (THs) induce metamorphosis in amphibians, causing dynamic changes, whereas mammalian newborns undergo environmental transition from placenta to open air at birth. The similarity between amphibian metamorphosis and the mammalian perinatal periods has been repeatedly discussed. However, a corresponding developmental gene expression analysis has not yet been reported. In this study, we examined the developmental gene expression profiles in the brain and liver of Xenopus tropicalis during metamorphosis climax and compared them to the respective gene expression profiles of newborn rodents. Many upregulated genes identified in the tadpole brain during metamorphosis are also upregulated in the rodent brain during the first three postnatal weeks when the TH surge occurs. The upregulation of some genes in the brain was inhibited in thyroid hormone receptor α (TRα) knockout tadpoles but not in TRβ-knockout tadpoles, implying that brain metamorphosis is mainly mediated by TRα. The expression of some genes was also increased in the liver during metamorphosis climax. Our data suggest that the rodent brain undergoes TH-dependent remodeling during the first three postnatal weeks as observed in X. tropicalis during the larva-to-adult metamorphosis.
Collapse
Affiliation(s)
- Yoshio Yaoita
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
4
|
Abstract
The yolk sac is the first observed site of hematopoiesis during mouse ontogeny. Primitive erythroid cells are the most well-recognized cell lineages produced from this tissue. In addition to primitive erythroid cells, several types of hematopoietic cells are present, including multipotent hematopoietic progenitors. Yolk sac-derived blood cells constitute a transient wave of embryonic and fetal hematopoiesis. However, recent studies have demonstrated that some macrophage and B cell lineages derived from the early yolk sac may persist to adulthood. This review discusses the cellular basis of mouse yolk sac hematopoiesis and its contributions to embryonic and adult hematopoietic systems.
Collapse
Affiliation(s)
- Toshiyuki Yamane
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
5
|
Liao C, Hardison RC, Kennett MJ, Carlson BA, Paulson RF, Prabhu KS. Selenoproteins regulate stress erythroid progenitors and spleen microenvironment during stress erythropoiesis. Blood 2018; 131:2568-2580. [PMID: 29615406 PMCID: PMC5992864 DOI: 10.1182/blood-2017-08-800607] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 03/15/2018] [Indexed: 12/30/2022] Open
Abstract
Micronutrient selenium (Se) plays a key role in redox regulation through its incorporation into selenoproteins as the 21st amino acid selenocysteine (Sec). Because Se deficiency appears to be a cofactor in the anemia associated with chronic inflammatory diseases, we reasoned that selenoproteins may contribute to erythropoietic recovery from anemia, referred to as stress erythropoiesis. Here, we report that loss of selenoproteins through Se deficiency or by mutation of the Sec tRNA (tRNA[Sec]) gene (Trsp) severely impairs stress erythropoiesis at 2 stages. Early stress erythroid progenitors failed to expand and properly differentiate into burst-forming unit-erythroid cells , whereas late-stage erythroid progenitors exhibited a maturation defect that affected the transition of proerythroblasts to basophilic erythroblasts. These defects were, in part, a result of the loss of selenoprotein W (SelenoW), whose expression was reduced at both transcript and protein levels in Se-deficient erythroblasts. Mutation of SelenoW in the bone marrow cells significantly decreased the expansion of stress burst-forming unit-erythroid cell colonies, which recapitulated the phenotypes induced by Se deficiency or mutation of Trsp Similarly, mutation of SelenoW in murine erythroblast (G1E) cell line led to defects in terminal differentiation. In addition to the erythroid defects, the spleens of Se-deficient mice contained fewer red pulp macrophages and exhibited impaired development of erythroblastic island macrophages, which make up the niche supporting erythroblast development. Taken together, these data reveal a critical role of selenoproteins in the expansion and development of stress erythroid progenitors, as well as the erythroid niche during acute anemia recovery.
Collapse
Affiliation(s)
- Chang Liao
- Pathobiology Program
- Department of Veterinary and Biomedical Sciences, and
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA; and
| | | | - Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Robert F Paulson
- Pathobiology Program
- Department of Veterinary and Biomedical Sciences, and
| | - K Sandeep Prabhu
- Pathobiology Program
- Department of Veterinary and Biomedical Sciences, and
| |
Collapse
|
6
|
Plasmodium falciparum malaria skews globin gene expression balance in in-vitro haematopoietic stem cell culture system: Its implications in malaria associated anemia. Exp Parasitol 2018; 185:29-38. [DOI: 10.1016/j.exppara.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/01/2017] [Accepted: 01/02/2018] [Indexed: 01/02/2023]
|
7
|
Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression. Int J Mol Sci 2017; 18:ijms18102167. [PMID: 29039805 PMCID: PMC5666848 DOI: 10.3390/ijms18102167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 11/17/2022] Open
Abstract
Erythroid differentiation is a complex and multistep process during which an adequate supply of iron for hemoglobinization is required. The role of ferritin heavy subunit, in this process, has been mainly attributed to its capacity to maintain iron in a non-toxic form. We propose a new role for ferritin heavy subunit (FHC) in controlling the erythroid commitment of K562 erythro-myeloid cells. FHC knockdown induces a change in the balance of GATA transcription factors and significantly reduces the expression of a repertoire of erythroid-specific genes, including α- and γ-globins, as well as CD71 and CD235a surface markers, in the absence of differentiation stimuli. These molecular changes are also reflected at the morphological level. Moreover, the ability of FHC-silenced K562 cells to respond to the erythroid-specific inducer hemin is almost completely abolished. Interestingly, we found that this new role for FHC is largely mediated via regulation of miR-150, one of the main microRNA implicated in the cell-fate choice of common erythroid/megakaryocytic progenitors. These findings shed further insight into the biological properties of FHCand delineate a role in erythroid differentiation where this protein does not act as a mere iron metabolism-related factor but also as a critical regulator of the expression of genes of central relevance for erythropoiesis.
Collapse
|
8
|
Kumfu S, Fucharoen S, Chattipakorn SC, Chattipakorn N. Cardiac complications in beta-thalassemia: From mice to men. Exp Biol Med (Maywood) 2017; 242:1126-1135. [PMID: 28485683 DOI: 10.1177/1535370217708977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beta-thalassemia is an inherited hemoglobin disorder caused by reduced or absent synthesis of the beta globin chains of hemoglobin. This results in variable outcomes ranging from clinically asymptomatic to severe anemia, which then typically requires regular blood transfusion. These regular blood transfusions can result in an iron overload condition. The iron overload condition can lead to iron accumulation in various organs, especially in the heart, leading to iron overload cardiomyopathy, which is the major cause of mortality in patients with thalassemia. In the past decades, there is no doubt that the use of β-thalassemic mice as a study model to investigate the pathophysiology of iron overload cardiomyopathy and the role of various pharmacological interventions, has shed some light in understanding this serious complication and in improving the associated cardiac dysfunction. In this review, the effects that iron overload has on the hearts of β-thalassemic mice under conditions of iron overload as well as the efficacy of pharmacological interventions to combat these adverse effects on the heart are reviewed and discussed. The in-depth understanding of biomolecular alterations in the heart of these iron overload thalassemic mice will help give guidance for more effective therapeutic approaches in the near future. Impact statement Iron overload cardiomyopathy is a major cause of morbidity and mortality in patients with thalassemia. Since investigation of iron overload cardiomyopathy in thalassemia patients has many limitations, a search for an animal model for this condition has been ongoing for decades. In the past decades, there is no doubt that the use of β-thalassemic mice as a study model to investigate the pathophysiology of iron overload cardiomyopathy and the role of various pharmacological interventions, has shed some light in understanding this serious complication and in improving the associated cardiac dysfunction. In this review, the effects of iron overload on the hearts of β-thalassemic mice under conditions of iron overload as well as the efficacy of pharmacological interventions to combat these adverse effects on the heart are reviewed and discussed.
Collapse
Affiliation(s)
- Sirinart Kumfu
- 1 Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai 50200, Thailand.,2 Faculty of Medicine, Department of Physiology, Cardiac Electrophysiology Unit, Chiang Mai University, Chiang Mai 50200, Thailand.,3 Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suthat Fucharoen
- 4 Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Siriporn C Chattipakorn
- 1 Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai 50200, Thailand.,3 Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand.,5 Faculty of Dentistry, Department of Oral Biology and Diagnostic Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- 1 Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai 50200, Thailand.,2 Faculty of Medicine, Department of Physiology, Cardiac Electrophysiology Unit, Chiang Mai University, Chiang Mai 50200, Thailand.,3 Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity. Biochem J 2016; 473:961-1000. [PMID: 27060105 DOI: 10.1042/bj20151182] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/26/2016] [Indexed: 12/30/2022]
Abstract
The consensuscis-regulatory AP-1 (activator protein-1)-like AREs (antioxidant-response elements) and/or EpREs (electrophile-response elements) allow for differential recruitment of Nrf1 [NF-E2 (nuclear factor-erythroid 2)-related factor 1], Nrf2 and Nrf3, together with each of their heterodimeric partners (e.g. sMaf, c-Jun, JunD or c-Fos), to regulate different sets of cognate genes. Among them, NF-E2 p45 and Nrf3 are subject to tissue-specific expression in haemopoietic and placental cell lineages respectively. By contrast, Nrf1 and Nrf2 are two important transcription factors expressed ubiquitously in various vertebrate tissues and hence may elicit putative combinational or competitive functions. Nevertheless, they have de facto distinct biological activities because knockout of their genes in mice leads to distinguishable phenotypes. Of note, Nrf2 is dispensable during development and growth, albeit it is accepted as a master regulator of antioxidant, detoxification and cytoprotective genes against cellular stress. Relative to the water-soluble Nrf2, less attention has hitherto been drawn to the membrane-bound Nrf1, even though it has been shown to be indispensable for embryonic development and organ integrity. The biological discrepancy between Nrf1 and Nrf2 is determined by differences in both their primary structures and topovectorial subcellular locations, in which they are subjected to distinct post-translational processing so as to mediate differential expression of ARE-driven cytoprotective genes. In the present review, we focus on the molecular and cellular basis for Nrf1 and its isoforms, which together exert its essential functions for maintaining cellular homoeostasis, normal organ development and growth during life processes. Conversely, dysfunction of Nrf1 results in spontaneous development of non-alcoholic steatohepatitis, hepatoma, diabetes and neurodegenerative diseases in animal models.
Collapse
|
10
|
Liu J, Jiang J, Wang Z, He Y, Zhang Q. Origin and evolution of GATA2a and GATA2b in teleosts: insights from tongue sole, Cynoglossus semilaevis. PeerJ 2016; 4:e1790. [PMID: 27019782 PMCID: PMC4806627 DOI: 10.7717/peerj.1790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/20/2016] [Indexed: 12/31/2022] Open
Abstract
Background. Following the two rounds of whole-genome duplication that occurred during deuterostome evolution, a third genome duplication occurred in the lineage of teleost fish and is considered to be responsible for much of the biological diversification within the lineage. GATA2, a member of GATA family of transcription factors, is an important regulator of gene expression in hematopoietic cell in mammals, yet the role of this gene or its putative paralogs in ray-finned fishes remains relatively unknown. Methods. In this study, we attempted to identify GATA2 sequences from the transcriptomes and genomes of multiple teleosts using the bioinformatic tools MrBayes, MEME, and PAML. Following identification, comparative analysis of genome structure, molecular evolution rate, and expression by real-time qPCR were used to predict functional divergence of GATA2 paralogs and their relative transcription in organs of female and male tongue soles (Cynoglossus semilaevis). Results. Two teleost GATA2 genes were identified in the transcriptomes of tongue sole and Japanese flounder (Paralichthysolivaceus). Synteny and phylogenetic analysis confirmed that the two genes likely originated from the teleost-specific genome duplication . Additionally, selection pressure analysis predicted these gene duplicates to have undergone purifying selection and possible divergent new functions. This was supported by differential expression pattern of GATA2a and GATA2b observed in organs of female and male tongue soles. Discussion. Our results indicate that two GATA2 genes originating from the first teleost-specific genome duplication have remained transcriptionally active in some fish species and have likely undergone neofunctionalization. This knowledge provides novel insights into the evolution of the teleost GATA2 genes and constituted important groundwork for further research on the GATA gene family.
Collapse
Affiliation(s)
- Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| | - Jiajun Jiang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| | - Zhongkai Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| |
Collapse
|
11
|
Saliba AN, Alameddine RS, Harb AR, Taher AT. Globin gene regulation for treating β-thalassemias: progress, obstacles and future. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1074071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Gasiorek JJ, Blank V. Regulation and function of the NFE2 transcription factor in hematopoietic and non-hematopoietic cells. Cell Mol Life Sci 2015; 72:2323-35. [PMID: 25721735 PMCID: PMC11114048 DOI: 10.1007/s00018-015-1866-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/27/2015] [Accepted: 02/16/2015] [Indexed: 01/01/2023]
Abstract
The NFE2 transcription factor was identified over 25 years ago. The NFE2 protein forms heterodimers with small MAF proteins, and the resulting complex binds to regulatory elements in a large number of target genes. In contrast to other CNC transcription family members including NFE2L1 (NRF1), NFE2L2 (NRF2) and NFE2L3 (NRF3), which are widely expressed, earlier studies had suggested that the major sites of NFE2 expression are hematopoietic cells. Based on cell culture studies it was proposed that this protein acts as a critical regulator of globin gene expression. However, the knockout mouse model displayed only mild erythroid abnormalities, while the major phenotype was a defect in megakaryocyte biogenesis. Indeed, absence of NFE2 led to severely impaired platelet production. A series of recent data, also summarized here, shed new light on the various functional roles of NFE2 and the regulation of its activity. NFE2 is part of a complex regulatory network, including transcription factors such as GATA1 and RUNX1, controlling megakaryocytic and/or erythroid cell function. Surprisingly, it was recently found that NFE2 also has a role in non-hematopoietic tissues, such as the trophoblast, in which it is also expressed, as well as the bone, opening the door to new research areas for this transcription factor. Additional data showed that NFE2 function is controlled by a series of posttranslational modifications. Important strides have been made with respect to the clinical significance of NFE2, linking this transcription factor to hematological disorders such as polycythemias.
Collapse
Affiliation(s)
- Jadwiga J. Gasiorek
- Lady Davis Institute for Medical Research, McGill University, 3755 Chemin de la Côte Sainte-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Medicine, McGill University, Montreal, QC Canada
| | - Volker Blank
- Lady Davis Institute for Medical Research, McGill University, 3755 Chemin de la Côte Sainte-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Medicine, McGill University, Montreal, QC Canada
- Department of Physiology, McGill University, Montreal, QC Canada
| |
Collapse
|
13
|
Karkashon S, Raghupathy R, Bhatia H, Dutta A, Hess S, Higgs J, Tifft CJ, Little JA. Intermediaries of branched chain amino acid metabolism induce fetal hemoglobin, and repress SOX6 and BCL11A, in definitive erythroid cells. Blood Cells Mol Dis 2015; 55:161-7. [PMID: 26142333 DOI: 10.1016/j.bcmd.2015.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 01/19/2023]
Abstract
High levels of fetal hemoglobin (HbF) can ameliorate human β-globin gene disorders. The short chain fatty acid butyrate is the paradigmatic metabolic intermediary that induces HbF. Inherited disorders of branched-chain amino acid (BCAA) metabolism have been associated with supranormal HbF levels beyond infancy, e.g., propionic acidemia (PA) and methylmalonic acidemia (MMA). We tested intermediaries of BCAA metabolism for their effects on definitive erythropoiesis. Like butyrate, the elevated BCAA intermediaries isovalerate, isobutyrate, and propionate, induce fetal globin gene expression in murine EryD in vitro, are associated with bulk histone H3 hyperacylation, and repress the transcription of key gamma globin regulatory factors, notably BCL11A and SOX6. Metabolic intermediaries that are elevated in Maple Syrup Urine Disease (MSUD) affect none of these processes. Percent HbF and gamma (γ) chain isoforms were also measured in non-anemic, therapeutically optimized subjects with MSUD (Group I, n=6) or with Isovaleric Acidemia (IVA), MMA, or PA (Group II, n=5). Mean HbF was 0.24 ± 0.15% in Group I and 0.87 ± 0.13% in Group II (p=.01); only the Gγ isoform was detected. We conclude that a family of biochemically related intermediaries of branched chain amino acid metabolism induces fetal hemoglobin during definitive erythropoiesis, with mechanisms that mirror those so far identified for butyrate.
Collapse
Affiliation(s)
- Shay Karkashon
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States
| | - Radha Raghupathy
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States
| | - Himanshu Bhatia
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States
| | - Amrita Dutta
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States
| | - Sonja Hess
- California Institute of Technology, Beckman Institute, Proteome Exploration Laboratory, 1200 E California Blvd, MC139-74, Pasadena, CA 91125, United States
| | - Jaimie Higgs
- Division of Genetics and Metabolism, Center for Hospital-based Specialties, Children's National Medical Center, 111 Michigan Ave. N.W., Washington, DC 20010-2970, United States
| | - Cynthia J Tifft
- Division of Genetics and Metabolism, Center for Hospital-based Specialties, Children's National Medical Center, 111 Michigan Ave. N.W., Washington, DC 20010-2970, United States
| | - Jane A Little
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States.
| |
Collapse
|
14
|
Yue F, Zhou Z, Wang L, Wang M, Song L. A conserved zinc finger transcription factor GATA involving in the hemocyte production of scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2014; 39:125-135. [PMID: 24835782 DOI: 10.1016/j.fsi.2014.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/04/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
GATA are a family of transcription factors characterized by their ability to bind to the DNA sequence "GATA", and involved in a myriad of cellular processes. GATA1/2/3 factors are known as the hematopoietic GATA factors, which play dominated roles in regulating hematopoiesis. In the present study, a gene encoding GATA transcription factor (designed as CfGATA) was cloned and characterized from the scallop Chlamys farreri. The full-length cDNA of CfGATA is of 2058 bp encoding a predicted polypeptide of 457 amino acids with two conserved zinc finger domains, which shared high similarity with other reported GATA1/2/3 proteins. The mRNA transcripts of CfGATA showed higher expression in gills, hepatopancreas, hemocytes and heart, and the CfGATA protein expressed in HEK293 cells was found to be localized specifically in the nuclei. The recombinant CfGATA protein (rCfGATA) exhibited strong ability to bind specific WGATAR DNA sequence by electrophoretic mobility shift assay in vitro. After CfGATA gene was silenced by RNA interference, the hemocyte renewal rate and circulating total hemocyte count (THC) decreased significantly, which was 7.85-fold and 19.46-fold lower than that of PBS control, respectively (P < 0.05). After LPS stimulation, the expression level of CfGATA mRNA decreased significantly in the hemocytes of PBS or EGFP dsRNA treated scallops, which was accompanied by the increase of hemocyte renewal rate and the reduced circulating THC at 24 h. In contrast, the hemocyte renewal rate and circulating THC did not change significantly in CfGATA gene interfered scallops after LPS stimulation. These results suggested that CfGATA, as a conserved GATA1/2/3 transcription factor, plays essential roles in regulating hemocyte production of scallop.
Collapse
Affiliation(s)
- Feng Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, Shandong 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, Shandong 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, Shandong 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, Shandong 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, Shandong 266071, China.
| |
Collapse
|
15
|
Inoue T, Kulkeaw K, Muennu K, Tanaka Y, Nakanishi Y, Sugiyama D. Herbal drug ninjin'yoeito accelerates myelopoiesis but not erythropoiesis in vitro. Genes Cells 2014; 19:432-40. [PMID: 24636045 DOI: 10.1111/gtc.12143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/29/2014] [Indexed: 11/29/2022]
Abstract
Some Kampo medicines that are herbal and traditional in Japan have had beneficial effects when given to patients with anemia. However, molecular mechanisms underlying their effects are unclear. To address this question, four Kampo medicines used to treat anemia-ninjin'yoeito (NYT), shimotsuto (SMT), juzentaihoto (JTT), and daibofuto (DBT)-were tested separately using in vitro cultures of mouse bone marrow mononuclear cells. Among them, NYT was most effective in stimulating cell proliferation and up-regulating Myc expression. Flow cytometry analysis indicated that, among hematopoietic components of those cultures, myeloid cells expressing CD45/Mac-1/Gr-1/F4/80 increased in number, but Ter119/CD71 erythroid cells did not. Accordingly, real-time PCR analysis showed up-regulation of the myeloid gene Pu.1, whereas the erythroid genes Gata1 and Klf1 were down-regulated. Overall, these findings provide molecular evidence that NYT accelerates myelopoiesis but not erythropoiesis in vitro.
Collapse
Affiliation(s)
- Tomoko Inoue
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan; Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Identification of KAP-1-associated complexes negatively regulating the Ey and β-major globin genes in the β-globin locus. J Proteomics 2013; 80:132-44. [PMID: 23291531 DOI: 10.1016/j.jprot.2012.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 12/11/2012] [Accepted: 12/22/2012] [Indexed: 10/27/2022]
Abstract
Deregulations of erythroid differentiation may lead to erythroleukemia and other hemoglobinopathies, yet the molecular mechanisms underlying these events are not fully understood. Here, we found that KAP-1-associated complexes contribute to the regulation of the β-globin locus, the key events of erythroid differentiation. We show that RNAi-mediated knockdown of KAP-1 in mouse erythroleukemia (MEL) cells increases expression of the Ey and β-major globin genes during hexamethylenebisacetamide (HMBA) induced differentiation process. This indicates that at least part of KAP-1-associated complexes negatively regulates β-globin gene expression during definitive erythroid differentiation. ChIP-PCR analysis revealed that one or more KAP-1-associated complexes are targeted to the promoter region of the Ey and beta-major globin genes. Since KAP-1 is only a scaffold molecule, there must be some transcriptional regulators allowing its targeted recruitment to the β-globin locus. To further discover these novel regulators, proteins interacting with KAP-1 were isolated by endogenous immunoprecipitation and identified by LC-ESI-MS/MS. Among the proteins identified, MafK and Zfp445 were studied further. We found that KAP-1 may contribute to the repression of Ey and β-major globin gene transcription through recruitment to the promoters of these two genes, mediated by the interaction of KAP-1 with either Zfp445 or MafK, respectively.
Collapse
|
17
|
Fernández-Morales B, Pavón L, Calés C. CDC6 expression is regulated by lineage-specific transcription factor GATA1. Cell Cycle 2012; 11:3055-66. [PMID: 22871742 DOI: 10.4161/cc.21471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
GATA1 is a hematopoietic transcription factor essential for expression of most genes encoding erythro-megakaryocytic proteins, i.e., globins and platelet glycoproteins. A role for GATA1 as a cell proliferation regulator has been proposed, as some of its bona fide targets comprise global regulators, such as c-KIT or c-MYC, or cell cycle factors, i.e., CYCLIN D or p21CIP1. In this study, we describe that GATA1 directly regulates the expression of replication licensing factor CDC6. Using reporter transactivation, electrophoretic mobility shift and chromatin immunoprecipitation assays, we show that GATA1 stimulates CDC6 transcription by binding to a canonical binding site located within a 166bp enhancer region upstream CDC6 promoter. This evolutionary conserved GATA binding site conforms to recently described chromatin occupancy rules, i.e., preferred bases within core WGATAR (TGATAA), 5' and 3' flanking bases (GGTGATAAGG) and distance to the transcription initiation site. We also found adjacent conserved binding sites for ubiquitously expressed transcription factor CP2, needed for GATA activity on CDC6 enhancer. Our results add to the growing evidence for GATA1 acting as a direct transcriptional regulator of the cell cycle machinery, thus linking cell proliferation control and specific gene expression programs during lineage differentiation.
Collapse
Affiliation(s)
- Bárbara Fernández-Morales
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | | | | |
Collapse
|
18
|
Inoue T, Kulkeaw K, Okayama S, Tani K, Sugiyama D. Variation in mesodermal and hematopoietic potential of adult skin-derived induced pluripotent stem cell lines in mice. Stem Cell Rev Rep 2012; 7:958-68. [PMID: 21424235 DOI: 10.1007/s12015-011-9249-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are a promising tool for regenerative medicine. Use of iPSC lines for future hematotherapy will require examination of their hematopoietic potential. Adult skin fibroblast somatic cells constitute a source of iPSCs that can be accessed clinically without ethical issues. Here, we used different methods to compare mesodermal and hematopoietic potential by embryoid body formation of five iPSC lines established from adult mouse tail-tip fibroblasts (TTFs). We observed variation in proliferation and in expression of genes (Brachyury, Tbx1, Gata1, Klf1, Csf1r) and proteins (Flk1, Ter119 and CD45) among TTF-derived lines. 256H18 iPSCs showed highest proliferation and most efficient differentiation into mesodermal and hematopoietic cells, while expression levels of the pluripotency genes Oct3/4, Sox2, Klf4 and Nanog were lowest among lines analyzed. By contrast, the 212B2 line, transduced with c-Myc, showed lowest proliferation and differentiation potential, although expression levels of Oct3/4, Sox2 and Klf4 were highest. Overall, we find that mesodermal and hematopoietic potential varies among iPSCs from an identical tissue source and that c-Myc expression likely underlies these differences.
Collapse
Affiliation(s)
- Tomoko Inoue
- Department of Hematopoietic Stem Cells, SSP Stem Cell Unit, Kyushu University Faculty of Medical Sciences, Station for Collaborative Research 1 4F, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
19
|
Chen W, Gu P, Jiang X, Ruan HB, Li C, Gao X. Protein phosphatase 2A catalytic subunit α (PP2Acα) maintains survival of committed erythroid cells in fetal liver erythropoiesis through the STAT5 pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2333-43. [PMID: 21514445 DOI: 10.1016/j.ajpath.2011.01.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 01/10/2011] [Accepted: 01/28/2011] [Indexed: 11/30/2022]
Abstract
Suppression of programmed cell death is critical for the final maturation of red blood cells and depends largely on the anti-apoptotic effects of EpoR-STAT5-Bcl-x(L) signaling. As the major eukaryotic serine/threonine phosphatase, protein phosphatase 2A (PP2A) regulates multiple cellular processes, including apoptosis. However, whether PP2A plays a role in preventing erythroid cells from undergoing apoptosis remains to be elucidated. We conditionally inactivated the catalytic subunit α of PP2A (PP2Acα), which is the predominant form of PP2Ac, during early embryonic hematopoiesis. Loss of PP2Acα in hematopoietic cells perturbed definitive erythropoiesis characterized by fetal liver atrophy, reduced Ter119(+) cell number, abnormal expression patterns of molecular markers, less colony formation, and a reduction in definitive globin expression. Levels of erythropoiesis-promoting cytokines and initial seeding with hematopoietic progenitors remained unchanged in PP2Acα(TKO) fetal livers. We noted impaired expansion of the fetal erythroid compartment, which was associated with increased apoptosis of committed erythroid cells. Mechanistically, PP2Acα depletion markedly reduced Tyr(694) phosphorylation of STAT5 and expression of Bcl-x(L). Unexpectedly, PP2Acα-deficient embryos did not manifest any early embryonic vascular defects. Collectively, these data provide direct loss-of-function evidence demonstrating the importance of PP2Acα for the survival of committed erythroid cells during fetal liver erythropoiesis.
Collapse
Affiliation(s)
- Weiqian Chen
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
20
|
Huo Y, McConnell SC, Liu S, Zhang T, Yang R, Ren J, Ryan TM. Humanized mouse models of Cooley's anemia: correct fetal-to-adult hemoglobin switching, disease onset, and disease pathology. Ann N Y Acad Sci 2010; 1202:45-51. [PMID: 20712771 PMCID: PMC7791968 DOI: 10.1111/j.1749-6632.2010.05547.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
beta thalassemia major or Cooley's Anemia (CA) has been difficult to model in mice due to their lack of a fetal hemoglobin gene equivalent. This summary describes novel preclinical humanized mouse models of CA that survive on human fetal hemoglobin at birth and are blood-transfusion dependent for life upon completion of their human fetal-to-adult hemoglobin switch after birth. These CA models are the first to recapitulate the temporal onset of the disease in human patients. These novel humanized CA disease models are useful for the study of the regulation of globin gene expression, synthesis, and switching; examining the onset of disease pathology; development of transfusion and iron chelation therapies; induction of fetal hemoglobin synthesis; and the testing of novel genetic and cell-based therapies for the correction of thalassemia.
Collapse
Affiliation(s)
- Yongliang Huo
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nat Rev Genet 2010; 11:583-9. [PMID: 20628351 DOI: 10.1038/nrg2827] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory machinery is focally organized in the interphase nucleus. The information contained in these focal nuclear microenvironments must be inherited during cell division to sustain physiologically responsive gene expression in progeny cells. Recent results suggest that focal mitotic retention of phenotypic transcription factors at promoters together with histone modifications and DNA methylation--a mechanism collectively known as gene bookmarking--is a novel parameter of inherited epigenetic control that sustains cellular identity after mitosis. The epigenetic signatures imposed by bookmarking poise genes for activation or suppression following mitosis. We discuss the implications of phenotypic transcription factor retention on mitotic chromosomes in biological control and disease.
Collapse
|
22
|
Boonkusol D, Dinnyes A, Faisaikarm T, Sangsuwan P, Pratipnatalang N, Sa-Ardrit M, Saikhun K, Svasti S, Vadolas J, Winichagoon P, Fucharoen S, Kitiyanant Y. Effect of human beta-globin bacterial artificial chromosome transgenesis on embryo cryopreservation in mouse models. Reprod Fertil Dev 2010; 22:788-95. [PMID: 20450831 DOI: 10.1071/rd09128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 10/28/2009] [Indexed: 11/23/2022] Open
Abstract
The purpose of the present study was to investigate the efficiency of embryo cryopreservation for four transgenic (TG) thalassaemic mouse strains, which is a key element of the ongoing gene banking efforts for these high-value animals. Heterozygous TG embryos were produced by breeding four lines of TG males to wild-type (WT) females (C57BL/6J). Intact two-cell embryos were cryopreserved by vitrification in straws using 35% ethylene glycol. Survival rates of cryopreserved embryos ranged between 91.1% (102/112) and 93.6% (176/188) without significant differences between the lines. In contrast, the paternal line had a significant effect on the development of these embryos to the blastocyst stage, which ranged from 50.6% (92/182) to 77.5% (79/102). This effect was also noted following embryo transfers, with implantation rates varying from 17.3% (19/110) to 78.1% (35/45). The results demonstrate that the in vivo developmental potential is significantly influenced by TG line and reveal a specific line effect on cryosurvival. All bacterial artificial chromosome transgenic fetuses developed from vitrified-warmed embryos showed expression of the human beta-globin transgene. In conclusion, the present study shows a strong TG line effect on developmental competence following cryopreservation and the vitrification method was successful to bank the human beta-globin TG-expressing mouse strains.
Collapse
Affiliation(s)
- Duangjai Boonkusol
- Department of Biology, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sankaran VG, Xu J, Orkin SH. Advances in the understanding of haemoglobin switching. Br J Haematol 2010; 149:181-94. [PMID: 20201948 DOI: 10.1111/j.1365-2141.2010.08105.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The study of haemoglobin switching has represented a focus in haematology due in large part to the clinical relevance of the fetal to adult haemoglobin switch for developing targeted approaches to ameliorate the severity of the beta-haemoglobinopathies. Additionally, the process by which this switch occurs represents an important paradigm for developmental gene regulation. In this review, we provide an overview of both the embryonic primitive to definitive switch in haemoglobin expression, as well as the fetal to adult switch that is unique to humans and old world monkeys. We discuss the nature of these switches and models of their regulation. The factors that have been suggested to regulate this process are then discussed. With the increased understanding and discovery of molecular regulators of haemoglobin switching, such as BCL11A, new avenues of research may lead ultimately to novel therapeutic, mechanism-based approaches to fetal haemoglobin reactivation in patients.
Collapse
Affiliation(s)
- Vijay G Sankaran
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
24
|
Tsiftsoglou AS, Vizirianakis IS, Strouboulis J. Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life 2009; 61:800-30. [PMID: 19621348 DOI: 10.1002/iub.226] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human erythropoiesis is a complex multistep developmental process that begins at the level of pluripotent hematopoietic stem cells (HSCs) at bone marrow microenvironment (HSCs niche) and terminates with the production of erythrocytes (RBCs). This review covers the basic and contemporary aspects of erythropoiesis. These include the: (a) cell-lineage restricted pathways of differentiation originated from HSCs and going downward toward the blood cell development; (b) model systems employed to study erythropoiesis in culture (erythroleukemia cell lines and embryonic stem cells) and in vivo (knockout animals: avian, mice, zebrafish, and xenopus); (c) key regulators of erythropoiesis (iron, hypoxia, stress, and growth factors); (d) signaling pathways operating at hematopoietic stem cell niche for homeostatic regulation of self renewal (SCF/c-kit receptor, Wnt, Notch, and Hox) and for erythroid differentiation (HIF and EpoR). Furthermore, this review presents the mechanisms through which transcriptional factors (GATA-1, FOG-1, TAL-1/SCL/MO2/Ldb1/E2A, EKLF, Gfi-1b, and BCL11A) and miRNAs regulate gene pattern expression during erythroid differentiation. New insights regarding the transcriptional regulation of alpha- and beta-globin gene clusters were also presented. Emphasis was also given on (i) the developmental program of erythropoiesis, which consists of commitment to terminal erythroid maturation and hemoglobin production, (two closely coordinated events of erythropoieis) and (ii) the capacity of human embryonic and umbilical cord blood (UCB) stem cells to differentiate and produce RBCs in culture with highly selective media. These most recent developments will eventually permit customized red blood cell production needed for transfusion.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | |
Collapse
|
25
|
Short-chain fatty acid-mediated effects on erythropoiesis in primary definitive erythroid cells. Blood 2009; 113:6440-8. [PMID: 19380871 DOI: 10.1182/blood-2008-09-171728] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Short-chain fatty acids (SCFAs; butyrate and propionate) up-regulate embryonic/fetal globin gene expression through unclear mechanisms. In a murine model of definitive erythropoiesis, SCFAs increased embryonic beta-type globin gene expression in primary erythroid fetal liver cells (eFLCs) after 72 hours in culture, from 1.7% (+/- 1.2%) of total beta-globin gene expression at day 0 to 4.9% (+/- 2.2%) in propionate and 5.4% (+/- 3.4%) in butyrate; this effect was greater in butyrate plus insulin/erythropoietin (BIE), at 19.5% (+/- 8.3%) compared with 0.1% (+/- 0.1%) in ins/EPO alone (P < .05). Fetal gamma-globin gene expression was increased in human transgene-containing eFLCs, to 35.9% (+/- 7.0%) in BIE compared with 4.4% (+/- 4.2%) in ins/EPO only (P < .05). Embryonic globin gene expression was detectable in 11 of 15 single eFLCs treated with BIE, but in0 of 15 ins/EPO-only treated cells. Butyrate-treated [65.5% (+/- 9.9%)] and 77.5% (+/- 4.0%) propionate-treated eFLCs were highly differentiated in culture, compared with 21.5% (+/- 3.5%) in ins/EPO (P < .005). Importantly, signaling intermediaries, previously implicated in induced embryonic/fetal globin gene expression (STAT5, p42/44, and p38), were not differentially activated by SCFAs in eFLCs; but increased bulk histone (H3) acetylation was seen in SCFA-treated eFLCs. SCFAs induce embryonic globin gene expression in eFLCS, which are a useful short-term and physiologic primary cell model of embryonic/fetal globin gene induction during definitive erythropoiesis.
Collapse
|
26
|
Abstract
A preclinical humanized mouse model of beta thalassemia major or Cooley anemia (CA) was generated by targeted gene replacement of the mouse adult globin genes in embryonic stem cells. The mouse adult alpha and beta globin genes were replaced with adult human alpha globin genes (alpha2alpha1) and a human fetal to adult hemoglobin (Hb)-switching cassette (gamma(HPFH)deltabeta(0)), respectively. Similar to human infants with CA, fully humanized mice survived postnatally by synthesizing predominantly human fetal Hb, HbF (alpha(2)gamma(2)), with a small amount of human minor adult Hb, HbA2 (alpha(2)delta(2)). Completion of the human fetal to adult Hb switch after birth resulted in severe anemia marked by erythroid hyperplasia, ineffective erythropoiesis, hemolysis, and death. Similar to human patients, CA mice were rescued from lethal anemia by regular blood transfusion. Transfusion corrected the anemia and effectively suppressed the ineffective erythropoiesis, but led to iron overload. This preclinical humanized animal model of CA will be useful for the development of new transfusion and iron chelation regimens, the study of iron homeostasis in disease, and testing of cellular and genetic therapies for the correction of thalassemia.
Collapse
|
27
|
Abstract
Red cells are required not only for adult well-being but also for survival and growth of the mammalian embryo beyond early postimplantation stages of development. The embryo's first "primitive" erythroid cells, derived from a transient wave of committed progenitors, emerge from the yolk sac as immature precursors and differentiate as a semisynchronous cohort in the bloodstream. Surprisingly, this maturational process in the mammalian embryo is characterized by globin gene switching and ultimately by enucleation. The yolk sac also synthesizes a second transient wave of "definitive" erythroid progenitors that enter the bloodstream and seed the liver of the fetus. At the same time, hematopoietic stem cells within the embryo also seed the liver and are the presumed source of long-term erythroid potential. Fetal definitive erythroid precursors mature in macrophage islands within the liver, enucleate, and enter the bloodstream as erythrocytes. Toward the end of gestation, definitive erythropoiesis shifts to its final location, the bone marrow. It has recently been recognized that the yolk sac-derived primitive and fetal definitive erythroid lineages, like their adult definitive erythroid counterpart, are each hierarchically associated with the megakaryocyte lineage. Continued comparative studies of primitive and definitive erythropoiesis in mammalian and nonmammalian embryos will lead to an improved understanding of terminal erythroid maturation and globin gene regulation.
Collapse
Affiliation(s)
- Kathleen McGrath
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
28
|
Wozniak RJ, Bresnick EH. Chapter 3 Epigenetic Control of Complex Loci During Erythropoiesis. Curr Top Dev Biol 2008; 82:55-83. [DOI: 10.1016/s0070-2153(07)00003-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Dai X, Chen Y, Di L, Podd A, Li G, Bunting KD, Hennighausen L, Wen R, Wang D. Stat5 is essential for early B cell development but not for B cell maturation and function. THE JOURNAL OF IMMUNOLOGY 2007; 179:1068-79. [PMID: 17617599 DOI: 10.4049/jimmunol.179.2.1068] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The two closely related Stat5 (Stat5A and Stat5B) proteins are activated by a broad spectrum of cytokines. However, with the complication of the involvement of Stat5A/5B in stem cell function, the role of Stat5A/5B in the development and function of lymphocytes, especially B cells, is not fully understood. In this study, we demonstrated that Stat5A/5B(-/-) fetal liver cells had severe diminution of B cell progenitors but clearly had myeloid progenitors. Consistently, the mutant fetal liver cells could give rise to hemopoietic progenitors and myeloid cells but not B cells beyond pro-B cell progenitors in lethally irradiated wild-type or Jak3(-/-) mice. Deletion of Stat5A/5B in vitro directly impaired IL-7-mediated B cell expansion. Of note, reintroduction of Stat5A back into Stat5A/5B(-/-) fetal liver cells restored their abilities to develop B cells. Importantly, CD19-Cre-mediated deletion of Stat5A/5B in the B cell compartment specifically impaired early B cell development but not late B cell maturation. Moreover, the B cell-specific deletion of Stat5A/5B did not impair splenic B cell survival, proliferation, and Ig production. Taken together, these data demonstrate that Stat5A/5B directly control IL-7-mediated early B cell development but are not required for B cell maturation and Ig production.
Collapse
Affiliation(s)
- Xuezhi Dai
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tanabe O, McPhee D, Kobayashi S, Shen Y, Brandt W, Jiang X, Campbell AD, Chen YT, Chang CS, Yamamoto M, Tanimoto K, Engel JD. Embryonic and fetal beta-globin gene repression by the orphan nuclear receptors, TR2 and TR4. EMBO J 2007; 26:2295-306. [PMID: 17431400 PMCID: PMC1864974 DOI: 10.1038/sj.emboj.7601676] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 03/12/2007] [Indexed: 11/09/2022] Open
Abstract
The TR2 and TR4 orphan nuclear receptors comprise the DNA-binding core of direct repeat erythroid definitive, a protein complex that binds to direct repeat elements in the embryonic and fetal beta-type globin gene promoters. Silencing of both the embryonic and fetal beta-type globin genes is delayed in definitive erythroid cells of Tr2 and Tr4 null mutant mice, whereas in transgenic mice that express dominant-negative TR4 (dnTR4), human embryonic epsilon-globin is activated in primitive and definitive erythroid cells. In contrast, human fetal gamma-globin is activated by dnTR4 only in definitive, but not in primitive, erythroid cells, implicating TR2/TR4 as a stage-selective repressor. Forced expression of wild-type TR2 and TR4 leads to precocious repression of epsilon-globin, but in contrast to induction of gamma-globin in definitive erythroid cells. These temporally specific, gene-selective alterations in epsilon- and gamma-globin gene expression by gain and loss of TR2/TR4 function provide the first genetic evidence for a role for these nuclear receptors in sequential, gene-autonomous silencing of the epsilon- and gamma-globin genes during development, and suggest that their differential utilization controls stage-specific repression of the human epsilon- and gamma-globin genes.
Collapse
Affiliation(s)
- Osamu Tanabe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David McPhee
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shoko Kobayashi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yannan Shen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William Brandt
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Xia Jiang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew D Campbell
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yei-Tsung Chen
- Departments of Pathology, Urology, Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Chawn shang Chang
- Departments of Pathology, Urology, Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Keiji Tanimoto
- Centre for TARA, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA. Tel.: +1 734 615 7509; Fax: +1 734 763 1166; E-mail:
| |
Collapse
|
31
|
Sebzda E, Hibbard C, Sweeney S, Abtahian F, Bezman N, Clemens G, Maltzman JS, Cheng L, Liu F, Turner M, Tybulewicz V, Koretzky GA, Kahn ML. Syk and Slp-76 mutant mice reveal a cell-autonomous hematopoietic cell contribution to vascular development. Dev Cell 2006; 11:349-61. [PMID: 16950126 DOI: 10.1016/j.devcel.2006.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/17/2006] [Accepted: 07/18/2006] [Indexed: 11/25/2022]
Abstract
Developmental studies support a common origin for blood and endothelial cells, while studies of adult angiogenic responses suggest that the hematopoietic system can be a source of endothelial cells later in life. Whether hematopoietic tissue is a source of endothelial cells during normal vascular development is unknown. Mouse embryos lacking the signaling proteins Syk and Slp-76 develop abnormal blood-lymphatic endothelial connections. Here we demonstrate that expression of GFPSlp-76 in a subset of hematopoietic cells rescues this phenotype, and that deficient cells confer focal vascular phenotypes in chimeric embryos consistent with a cell-autonomous mechanism. Endogenous Syk and Slp-76, as well as transgenic GFPSlp-76, are expressed in circulating cells previously proposed to be endothelial precursors, supporting a causal role for these cells. These studies provide genetic evidence for hematopoietic contribution to vascular development and suggest that hematopoietic tissue can provide a source of vascular endothelial progenitor cells throughout life.
Collapse
Affiliation(s)
- Eric Sebzda
- Department of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Matsson H, Davey EJ, Fröjmark AS, Miyake K, Utsugisawa T, Flygare J, Zahou E, Byman I, Landin B, Ronquist G, Karlsson S, Dahl N. Erythropoiesis in the Rps19 disrupted mouse: Analysis of erythropoietin response and biochemical markers for Diamond-Blackfan anemia. Blood Cells Mol Dis 2006; 36:259-64. [PMID: 16458028 DOI: 10.1016/j.bcmd.2005.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
The human ribosomal protein S19 gene (RPS19) is mutated in approximately 20% of patients with Diamond-Blackfan anemia (DBA), a congenital disease with a specific defect in erythropoiesis. The clinical expression of DBA is highly variable, and subclinical phenotypes may be revealed by elevated erythrocyte deaminase (eADA) activity only. In mice, complete loss of Rps19 results in early embryonic lethality whereas Rps19+/- mice are viable and without major abnormalities including the hematopoietic system. We have performed a detailed analysis of the Rps19+/- mice. We estimated the Rps19 levels in hematopoietic tissues and we analyzed erythrocyte deaminase activity and globin isoforms which are used as markers for DBA. The effect of a disrupted Rps19 allele on a different genetic background was investigated as well as the response to erythropoietin (EPO). From our results, we argue that the loss of one Rps19 allele in mice is fully compensated for at the transcriptional level with preservation of erythropoiesis.
Collapse
Affiliation(s)
- H Matsson
- Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yi Z, Cohen-Barak O, Hagiwara N, Kingsley PD, Fuchs DA, Erickson DT, Epner EM, Palis J, Brilliant MH. Sox6 directly silences epsilon globin expression in definitive erythropoiesis. PLoS Genet 2006; 2:e14. [PMID: 16462943 PMCID: PMC1359074 DOI: 10.1371/journal.pgen.0020014] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 12/20/2005] [Indexed: 11/19/2022] Open
Abstract
Sox6 is a member of the Sox transcription factor family that is defined by the conserved high mobility group (HMG) DNA binding domain, first described in the testis determining gene, Sry. Previous studies have suggested that Sox6 plays a role in the development of the central nervous system, cartilage, and muscle. In the Sox6-deficient mouse, p100H, epsilony globin is persistently expressed, and increased numbers of nucleated red cells are present in the fetal circulation. Transfection assays in GM979 (erythroleukemic) cells define a 36-base pair region of the epsilony proximal promoter that is critical for Sox6 mediated repression. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrate that Sox6 acts as a repressor by directly binding to the epsilony promoter. The normal expression of Sox6 in wild-type fetal liver and the ectopic expression of epsilony in p100H homozygous fetal liver demonstrate that Sox6 functions in definitive erythropoiesis. The present study shows that Sox6 is required for silencing of epsilony globin in definitive erythropoiesis and suggests a role for Sox6 in erythroid cell maturation. Thus, Sox6 regulation of epsilony globin might provide a novel therapeutical target in the treatment of hemoglobinopathies such as sickle cell anemia and thalassemia.
Collapse
Affiliation(s)
- Zanhua Yi
- Department of Pediatrics, University of Arizona, College of Medicine, Tucson, Arizona, United States of America
| | - Orit Cohen-Barak
- Department of Pediatrics, University of Arizona, College of Medicine, Tucson, Arizona, United States of America
| | - Nobuko Hagiwara
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California Davis, Davis, California, United States of America
| | - Paul D Kingsley
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Deborah A Fuchs
- Department of Pathology, University of Arizona, College of Medicine, Tucson, Arizona, United States of America
| | - Drew T Erickson
- Department of Pediatrics, University of Arizona, College of Medicine, Tucson, Arizona, United States of America
| | - Elliot M Epner
- Department of Hematology & Oncology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - James Palis
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Murray H Brilliant
- Department of Pediatrics, University of Arizona, College of Medicine, Tucson, Arizona, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Bresnick EH, Johnson KD, Kim SI, Im H. Establishment and regulation of chromatin domains: mechanistic insights from studies of hemoglobin synthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:435-71. [PMID: 16891178 DOI: 10.1016/s0079-6603(06)81011-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Emery H Bresnick
- Department of Pharmacology, University of Wisconsin Medical School, 383 Medical Sciences Center, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
35
|
Kingsley PD, Malik J, Emerson RL, Bushnell TP, McGrath KE, Bloedorn LA, Bulger M, Palis J. "Maturational" globin switching in primary primitive erythroid cells. Blood 2005; 107:1665-72. [PMID: 16263786 PMCID: PMC1895399 DOI: 10.1182/blood-2005-08-3097] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammals have 2 distinct erythroid lineages. The primitive erythroid lineage originates in the yolk sac and generates a cohort of large erythroblasts that terminally differentiate in the bloodstream. The definitive erythroid lineage generates smaller enucleated erythrocytes that become the predominant cell in fetal and postnatal circulation. These lineages also have distinct globin expression patterns. Our studies in primary murine primitive erythroid cells indicate that betaH1 is the predominant beta-globin transcript in the early yolk sac. Thus, unlike the human, murine beta-globin genes are not up-regulated in the order of their chromosomal arrangement. As primitive erythroblasts mature from proerythroblasts to reticulocytes, they undergo a betaH1- to epsilony-globin switch, up-regulate adult beta1- and beta2-globins, and down-regulate zeta-globin. These changes in transcript levels correlate with changes in RNA polymerase II density at their promoters and transcribed regions. Furthermore, the epsilony- and betaH1-globin genes in primitive erythroblasts reside within a single large hyperacetylated domain. These data suggest that this "maturational" betaH1- to epsilony-globin switch is dynamically regulated at the transcriptional level. Globin switching during ontogeny is due not only to the sequential appearance of primitive and definitive lineages but also to changes in globin expression as primitive erythroblasts mature in the bloodstream.
Collapse
Affiliation(s)
- Paul D Kingsley
- Department of Pediatrics, University of Rochester Medical Center, Center for Pediatric Biomedical Research, Box 703, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bonnesen B, Orskov C, Rasmussen S, Holst PJ, Christensen JP, Eriksen KW, Qvortrup K, Odum N, Labuda T. MEK kinase 1 activity is required for definitive erythropoiesis in the mouse fetal liver. Blood 2005; 106:3396-404. [PMID: 16081685 DOI: 10.1182/blood-2005-04-1739] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinase/extracellular signal to regulated kinase (MEK) kinase 1 (MEKK1) is a c-Jun N-terminal kinase (JNK) activating kinase known to be implicated in proinflammatory responses and cell motility. Using mice deficient for MEKK1 kinase activity (Mekk1(DeltaKD)) we show a role for MEKK1 in definitive mouse erythropoiesis. Although Mekk1(DeltaKD) mice are alive and fertile on a 129 x C57/BL6 background, the frequency of Mekk1(DeltaKD) embryos that develop past embryonic day (E) 14.5 is dramatically reduced when backcrossed into the C57/BL6 background. At E13.5, Mekk1(DeltaKD) embryos have normal morphology but are anemic due to failure of definitive erythropoiesis. When Mekk1(DeltaKD) fetal liver cells were transferred to lethally irradiated wild-type hosts, mature red blood cells were generated from the mutant cells, suggesting that MEKK1 functions in a non-cell-autonomous manner. Based on immunohistochemical and hemoglobin chain transcription analysis, we propose that the failure of definitive erythropoiesis is due to a deficiency in enucleation activity caused by insufficient macrophage-mediated nuclear DNA destruction.
Collapse
Affiliation(s)
- Barbara Bonnesen
- Institute of Molecular Biology and Physiology, Department of Immunology, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hadland BK, Huppert SS, Kanungo J, Xue Y, Jiang R, Gridley T, Conlon RA, Cheng AM, Kopan R, Longmore GD. A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 2004; 104:3097-105. [PMID: 15251982 PMCID: PMC5998659 DOI: 10.1182/blood-2004-03-1224] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Notch1 is known to play a critical role in regulating fates in numerous cell types, including those of the hematopoietic lineage. Multiple defects exhibited by Notch1-deficient embryos confound the determination of Notch1 function in early hematopoietic development in vivo. To overcome this limitation, we examined the developmental potential of Notch1(-/-) embryonic stem (ES) cells by in vitro differentiation and by in vivo chimera analysis. Notch1 was found to affect primitive erythropoiesis differentially during ES cell differentiation and in vivo, and this result reflected an important difference in the regulation of Notch1 expression during ES cell differentiation relative to the developing mouse embryo. Notch1 was dispensable for the onset of definitive hematopoiesis both in vitro and in vivo in that Notch1(-/-) definitive progenitors could be detected in differentiating ES cells as well as in the yolk sac and early fetal liver of chimeric mice. Despite the fact that Notch1(-/-) cells can give rise to multiple types of definitive progenitors in early development, Notch1(-/-) cells failed to contribute to long-term definitive hematopoiesis past the early fetal liver stage in the context of a wild-type environment in chimeric mice. Thus, Notch1 is required, in a cell-autonomous manner, for the establishment of long-term, definitive hematopoietic stem cells (HSCs).
Collapse
Affiliation(s)
- Brandon K Hadland
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Though a topic of medical interest for centuries, our understanding of vertebrate hematopoietic or "blood-forming" tissue development has improved greatly only in recent years and given a series of scientific and technical milestones. Key among these observations was the description of procedures that allowed the transplantation of blood-forming activity. Beyond this, other advances include the creation of a variety of knock-out animals (mice and more recently zebrafish), microdissection of embryonic and fetal blood-forming tissues, hematopoietic stem (HSC) and progenitor cell (HPC) colony-forming assays, the discovery of cytokines with defined hematopoietic activities, gene transfer technologies, and the description of lineage-specific surface antigens for the identification and purification of pluripotent and differentiated blood cells. The availability of both murine and human embryonic stem cells (ESC) and the delineation of in vitro systems to direct their differentiation have now been added to this analytical arsenal. Such tools have allowed researchers to interrogate the complex developmental processes behind both primitive (yolk sac or extraembryonic) and definitive (intraembryonic) hematopoietic tissue formation. Using ES cells, we hope to not only gain additional basic insights into hematopoietic development but also to develop platforms for therapeutic use in patients suffering from hematological disease. In this review, we will focus on points of convergence and divergence between murine and human hematopoiesis in vivo and in vitro, and use these observations to evaluate the literature regarding attempts to create hematopoietic tissue from embryonic stem cells, the pitfalls encountered therein, and what challenges remain.
Collapse
Affiliation(s)
- M William Lensch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
39
|
Minko K, Bollerot K, Drevon C, Hallais MF, Jaffredo T. From mesoderm to blood islands: patterns of key molecules during yolk sac erythropoiesis. Gene Expr Patterns 2003; 3:261-72. [PMID: 12799070 DOI: 10.1016/s1567-133x(03)00053-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several identified genes play key roles in the specification of the blood-forming system, from commitment of mesoderm to differentiation of hemopoietic and endothelial cells. We have thoroughly analyzed the expression dynamics of some of these genes during yolk sac erythropoiesis in the chick embryo. The study includes transcription factors which are known to participate in multimeric complexes: GATA-1, -2, SCL/tal-1 and Lmo2 (whose avian orthologue we have cloned), VEGF-R2, a critical regulator of hemopoietic and endothelial commitment, and hemoglobin used as a marker of the last step in erythroid differentiation. Several findings were unexpected. (1) Two distinct patterns were revealed for GATA-2, first: low expression, ubiquitous in all mesodermal cells, as soon as cells ingress through the primitive streak; secondly: high, blood island-specific expression. (2) VEGF-R2 is coexpressed with GATA-2 at the level of the primitive streak. (3) SCL and Lmo2 expression is restricted to presumptive hemangioblasts. (4) The up-regulation of GATA-2 in newly formed blood islands is shortly followed by GATA-1 expression. (5) Lmo2 is up-regulated in blood island angioblasts thus appearing as one of the earliest markers for endothelial cell commitment. VEGF-R2 is down-regulated in hemopoietic cells prior to GATA-2, SCL/tal-1, Lmo2 and GATA-1 in erythroblasts.
Collapse
Affiliation(s)
- K Minko
- Institut d'Embryologie Cellulaire et Moléculaire du CNRS et du Collège de France, 49 bis avenue de la Belle Gabrielle, 94736 Cedex, Nogent s/Marne, France
| | | | | | | | | |
Collapse
|
40
|
Niimi G, Usuda N, Shinzato M, Nagamura Y. A light and electron microscopic study of the mouse visceral yolk sac endodermal cells in the middle and late embryonic periods, showing the possibility of definitive erythropoiesis. Ann Anat 2002; 184:425-9. [PMID: 12392322 DOI: 10.1016/s0940-9602(02)80073-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hematological studies have revealed the importance of the visceral yolk sac (VYS) in the primitive erythropoiesis of mouse embryos at an early stage before day 12. We examined the possibility of the occurrence of extra-embryonic erythropoiesis at a stage later than embryonic day 12 by light and electron microscopic analyses. Surprisingly, a novel structure in the form of erythrocyte-like globules was observed in the VYS endodermal cells. They were consistently present in the VYS endodermal cells from embryonic day 12 until day 18 (birth is day 19), by immunocytochemical and enzyme histochemical analyses. They were immuno-positive for mouse erythrocyte antibody and also positive for the benzidine reaction showing the presence of hemoglobin. The erythrocyte-like globules were shown to be the erythrocytes present in the cytoplasm. These results indicated that erythropoiesis in the VYS endodermal cells continues from the early embryonic stage, as primitive erythropoiesis, until the late stage.
Collapse
Affiliation(s)
- Gen Niimi
- Institute for Comprehensive Medical Science, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | | | |
Collapse
|
41
|
Adelman CA, Chattopadhyay S, Bieker JJ. The BMP/BMPR/Smad pathway directs expression of the erythroid-specific EKLF and GATA1 transcription factors during embryoid body differentiation in serum-free media. Development 2002; 129:539-49. [PMID: 11807044 DOI: 10.1242/dev.129.2.539] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Erythroid cell-specific gene regulation during terminal differentiation is controlled by transcriptional regulators, such as EKLF and GATA1, that themselves exhibit tissue-restricted expression patterns. Their early expression, already in evidence within multipotential hematopoietic cell lines, has made it difficult to determine what extracellular effectors and transduction mechanisms might be directing the onset of their own transcription during embryogenesis. To circumvent this problem, we have taken the novel approach of investigating whether the ability of embryonic stem (ES) cells to mimic early developmental patterns of cellular expression during embryoid body (EB) differentiation can address this issue. We first established conditions whereby EBs could form efficiently in the absence of serum. Surprisingly, in addition to mesoderm, these cells expressed hemangioblast and hematopoietic markers. However, they did not express the committed erythroid markers EKLF and GATA1, nor the terminally differentiated β-like globin markers. Using this system, we determined that EB differentiation in BMP4 was necessary and sufficient to recover EKLF and GATA1 expression and could be further stimulated by the inclusion of VEGF, SCF, erythropoietin and thyroid hormone. EBs were competent to respond to BMP4 only until day 4 of differentiation, which coincides with the normal onset of EKLF expression. The direct involvement of the BMP/Smad pathway in this induction process was further verified by showing that erythroid expression of a dominant negative BMP1B receptor or of the inhibitory Smad6 protein prevented induction of EKLF or GATA1 even in the presence of serum. Although Smad1, Smad5 and Smad8 are all expressed in the EBs, BMP4 induction of EKLF and GATA1 transcription is not immediate. These data implicate the BMP/Smad induction system as being a crucial pathway to direct the onset of EKLF and GATA1 expression during hematopoietic differentiation and demonstrate that EB differentiation can be manipulated to study induction of specific genes that are expressed early within a lineage.
Collapse
Affiliation(s)
- Carrie A Adelman
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
42
|
Abstract
B cell development is a highly regulated process whereby functional peripheral subsets are produced from hematopoietic stem cells, in the fetal liver before birth and in the bone marrow afterward. Here we review progress in understanding some aspects of this process in the mouse bone marrow, focusing on delineation of the earliest stages of commitment, on pre-B cell receptor selection, and B cell tolerance during the immature-to-mature B cell transition. Then we note some of the distinctions in hematopoiesis and pre-B selection between fetal liver and adult bone marrow, drawing a connection from fetal development to B-1/CD5(+) B cells. Finally, focusing on CD5(+) cells, we consider the forces that influence the generation and maintenance of this distinctive peripheral B cell population, enriched for natural autoreactive specificities that are encoded by particular germline V(H)-V(L) combinations.
Collapse
Affiliation(s)
- R R Hardy
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, Pennsylvania 19111, USA.
| | | |
Collapse
|
43
|
Ikonomi P, Noguchi CT, Miller W, Kassahun H, Hardison R, Schechter AN. Levels of GATA-1/GATA-2 transcription factors modulate expression of embryonic and fetal hemoglobins. Gene 2000; 261:277-87. [PMID: 11167015 DOI: 10.1016/s0378-1119(00)00510-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
GATA transcription factors bind the consensus sequence WGATAR, present in the flanking regions of most erythroid specific genes. GATA-1 and GATA-2, coexpressed in erythroid cells, are important for expression of erythroid genes. To elucidate the role of specific GATA transcription factors on globin gene expression, we examined the human alpha- and beta-globin gene clusters for all GATA sites. Conserved GATA sites were found in each of the hypersensitive sites in both beta-and alpha clusters and in proximal regulatory regions of the zeta-, epsilon- and gamma-globin but not the alpha, delta or beta-globin genes. We then tested the effect of increasing levels of GATA-1 and GATA-2 on the expression of endogenous globin genes in human erythroid cells. Increasing GATA-1 levels in K562 cells decreased the levels of epsilon-globin mRNA but had no effect on the levels of expression of gamma, zeta or alpha-globin genes. Increasing GATA-2 levels increased epsilon-globin and gamma-globin transcripts. Increasing levels of GATA-1 also caused a decrease in the expression of endogenous GATA-2, while increased levels of GATA-2 had no effect on GATA-1 mRNA. Our results indicate a differential role of GATA-1 and -2 transcription factors on globin transcripts and suggest a correlation between the conservation of GATA sites in the regulatory regions and the ability of endogenous globin genes to respond to GATA transcription factors. They also suggest that quantitative changes in the levels of GATA-1 or GATA-2 can result in alterations of globin target gene expression and may participate in the ontogenic control of the globin genes.
Collapse
Affiliation(s)
- P Ikonomi
- Laboratory of Chemical Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Building 10, Room 9N-307, 10 Center Drive, MSC 1822, MD, Bethesda 20892-1822, USA
| | | | | | | | | | | |
Collapse
|
44
|
Tamura K, Sudo T, Senftleben U, Dadak AM, Johnson R, Karin M. Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 2000; 102:221-31. [PMID: 10943842 DOI: 10.1016/s0092-8674(00)00027-1] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activity of the p38alpha MAP kinase is stimulated by various stresses and hematopoietic growth factors. A role for p38alpha in mouse development and physiology was investigated by targeted disruption of the p38alpha locus. Whereas some p38alpha(-/-) embryos die between embryonic days 11.5 and 12.5, those that develop past this stage have normal morphology but are anemic owing to failed definitive erythropoiesis, caused by diminished erythropoietin (Epo) gene expression. As p38alpha-deficient hematopoietic stem cells reconstitute lethally irradiated hosts, p38alpha function is not required downstream of Epo receptor. Inhibition of p38 activity also interferes with stabilization of Epo mRNA in human hepatoma cells undergoing hypoxic stress. The p38alpha MAP kinase plays a critical role linking developmental and stress-induced erythropoiesis through regulation of Epo expression.
Collapse
Affiliation(s)
- K Tamura
- Department of Pharmacology, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | |
Collapse
|
45
|
Beau C, Rauch M, Joulin V, Jégou B, Guerrier D. GATA-1 is a potential repressor of anti-Müllerian hormone expression during the establishment of puberty in the mouse. Mol Reprod Dev 2000; 56:124-38. [PMID: 10813843 DOI: 10.1002/(sici)1098-2795(200006)56:2<124::aid-mrd2>3.0.co;2-j] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Anti-Müllerian hormone (AMH), also known as Müllerian inhibiting substance (MIS), is one of the earliest and best-known markers of Sertoli cell differentiation and is expressed until around puberty. The present study is aimed at the better understanding of the molecular pathways involved in testicular development and establishment of adult functions with regards to AMH regulation. We found, within the mouse AMH promoter, putative GATA motifs (A/T)GATA(A/G), known to be specifically bound by members of the GATA transcription factor family. We then carried out RNase protection assays and immunohistochemical techniques aimed at comparing precisely the chronological expression patterns of AMH and GATA-1, this latter being expressed in the testis after birth. Using both approaches we found an inverse and close relationship between AMH and GATA-1 mRNA and protein expression during the pre-pubertal period. These results allowed us to define a transitory 4-5-day period, starting from 3 dpp when both proteins are heterogeneously expressed in Sertoli cells and showed that the appearance of GATA-1 is associated with the decrease of AMH expression in these cells. Furthermore DNA-protein interaction in in vitro studies showed first that GATA-1 binds with various affinities on sites found in the AMH promoter and second that the proximity of the two strongest affinity sites leads to a synergistic binding effect. Altogether, the present study suggests that GATA-1 participates in AMH gene repression during the pre-pubertal period.
Collapse
Affiliation(s)
- C Beau
- GERM/INSERM U. 435, Université de Rennes 1, Rennes, Bretagne, France
| | | | | | | | | |
Collapse
|
46
|
Sargent TG, DuBois CC, Buller AM, Lloyd JA. The roles of 5'-HS2, 5'-HS3, and the gamma-globin TATA, CACCC, and stage selector elements in suppression of beta-globin expression in early development. J Biol Chem 1999; 274:11229-36. [PMID: 10196210 DOI: 10.1074/jbc.274.16.11229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of HS2 and HS3 from the human beta-globin locus control region and of the TATA, CACCC, and stage selector elements of the gamma-globin promoter, in competitive inhibition of beta-globin gene expression in early development, were tested using stable transfections of HEL and K562 cells. Cells with an HS3gamma beta construct demonstrate that HS3 exhibits enhancing activity, but compared with HS2, this site participates less consistently in the inhibition of embryonic/fetal beta-globin expression. In cells with HS3HS2gamma beta constructs, the two HS sites act in concert to more effectively enhance gamma-globin gene expression and to drive stage-specific expression of the gamma- and beta-globin genes. A gamma-globin gene with a -161 promoter can competitively inhibit beta-globin gene expression. HS3HS2gamma beta constructs were used to determine the effects of gamma-globin promoter mutations within this region on competition. The CACCC and TATA elements, but not the stage selector element, inhibit inappropriate embryonic/fetal stage expression of the beta-globin gene. The mutation in the gamma-globin TATA element results in the use of two major alternative transcription start sites. The data suggest that proteins binding to the gamma-globin CACCC and TATA elements interact with those binding to HS2 and/or HS3 to preclude beta-globin transcription in early development.
Collapse
Affiliation(s)
- T G Sargent
- Department of Human Genetics, Medical College of Virginia of Virginia Commonwealth University, Richmond, Virginia 23298-0033, USA
| | | | | | | |
Collapse
|
47
|
Expression of 4-Integrin Defines the Earliest Precursor of Hematopoietic Cell Lineage Diverged From Endothelial Cells. Blood 1999. [DOI: 10.1182/blood.v93.4.1168.404k12_1168_1177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Embryonic stem cells can differentiate in vitro into hematopoietic cells through two intermediate stages; the first being FLK1+ E-cadherin− proximal lateral mesoderm and the second being CD45− VE-cadherin+endothelial cells. To further dissect the CD45−VE-cadherin+ cells, we have examined distribution of 4-integrin on this cell population, because 4-integrin is the molecule expressed on hematopoietic stem cells. During culture of FLK1+ E-cadherin− cells, CD45− VE-cadherin+4-integrin− cells differentiate first, followed by 4-integrin+ cells appearing in both CD45− VE-cadherin+ and CD45−VE-cadherin− cell populations. In the CD45−VE-cadherin+ cell population, 4-integrin+ subset but not 4-integrin− subset had the potential to differentiate to hematopoietic lineage cells, whereas endothelial cell progenitors were present in both subsets. The CD45−VE-cadherin− 4-integrin+ cells also showed hematopoietic potential. Reverse transcription-polymerase chain reaction analyses showed that differential expression of the Gata2 and Myb genes correlated with the potential of the 4-integrin+ cells to give rise to hematopoietic cell differentiation. Hematopoietic CD45−VE-cadherin+ 4-integrin+ cells were also present in the yolk sac and embryonic body proper of 9.5 day postcoitum mouse embryos. Our results suggest that the expression of 4-integrin is a marker of the earliest precursor of hematopoietic cell lineage that was diverged from endothelial progenitors.
Collapse
|
48
|
Expression of 4-Integrin Defines the Earliest Precursor of Hematopoietic Cell Lineage Diverged From Endothelial Cells. Blood 1999. [DOI: 10.1182/blood.v93.4.1168] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Embryonic stem cells can differentiate in vitro into hematopoietic cells through two intermediate stages; the first being FLK1+ E-cadherin− proximal lateral mesoderm and the second being CD45− VE-cadherin+endothelial cells. To further dissect the CD45−VE-cadherin+ cells, we have examined distribution of 4-integrin on this cell population, because 4-integrin is the molecule expressed on hematopoietic stem cells. During culture of FLK1+ E-cadherin− cells, CD45− VE-cadherin+4-integrin− cells differentiate first, followed by 4-integrin+ cells appearing in both CD45− VE-cadherin+ and CD45−VE-cadherin− cell populations. In the CD45−VE-cadherin+ cell population, 4-integrin+ subset but not 4-integrin− subset had the potential to differentiate to hematopoietic lineage cells, whereas endothelial cell progenitors were present in both subsets. The CD45−VE-cadherin− 4-integrin+ cells also showed hematopoietic potential. Reverse transcription-polymerase chain reaction analyses showed that differential expression of the Gata2 and Myb genes correlated with the potential of the 4-integrin+ cells to give rise to hematopoietic cell differentiation. Hematopoietic CD45−VE-cadherin+ 4-integrin+ cells were also present in the yolk sac and embryonic body proper of 9.5 day postcoitum mouse embryos. Our results suggest that the expression of 4-integrin is a marker of the earliest precursor of hematopoietic cell lineage that was diverged from endothelial progenitors.
Collapse
|
49
|
Coinduction of Embryonic and Adult-Type Globin mRNAs by Sodium Butyrate and Trichostatin A in Two Murine Interleukin-3–Dependent Bone Marrow–Derived Cell Lines. Blood 1998. [DOI: 10.1182/blood.v92.11.4383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractUsing an RNase protection assay, globin mRNA species expressed in clones derived from Ba/F3 and B6SUtA cells transfected with the erythropoietin receptor (EpoR) and selected with erythropoietin (Epo) were compared with globin mRNA species induced in corresponding parental cells by sodium butyrate (SB) and trichostatin A (TSA). βMajor/βminor- and -1/-2–globin mRNAs were the major species, with trace amounts of ɛ-globin mRNA, formed in Epo-stimulated EpoR+ Ba/F3 clones, whereas SB and TSA allowed expression of all species of globin mRNAs, ie, ɛ, βh1, βmajor/βminor, ζ, and -1/-2, in parental Ba/F3 cells. In contrast, ɛ- and -1/-2–globin mRNAs were the major species present in Epo-stimulated EpoR+ B6SUtA clones, whereas SB and TSA activated ɛ-, βh1-, βS/βT-, and -1/-2–globin genes in parental B6SUtA cells; ζ-globin mRNA was not detected in SB- and TSA-treated B6SUtA cells. Because TSA is a specific inhibitor of histone deacetylase, the mimicry of action exhibited by SB and TSA suggests that the effects of SB are mediated through its ability to inhibit histone deacetylase and that histone deacetylase is an integral part of the repression of globin genes in these interleukin-3–dependent cells. Efficient coinduction of embryonic and adult types of globin mRNA in bone marrow cell lines derived from adult mice indicates that adult hematopoietic precursors possess an embryonic nature. These cell lines are useful models to study the mechanism(s) of developmental globin gene switching.
Collapse
|
50
|
Coinduction of Embryonic and Adult-Type Globin mRNAs by Sodium Butyrate and Trichostatin A in Two Murine Interleukin-3–Dependent Bone Marrow–Derived Cell Lines. Blood 1998. [DOI: 10.1182/blood.v92.11.4383.423k18_4383_4393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using an RNase protection assay, globin mRNA species expressed in clones derived from Ba/F3 and B6SUtA cells transfected with the erythropoietin receptor (EpoR) and selected with erythropoietin (Epo) were compared with globin mRNA species induced in corresponding parental cells by sodium butyrate (SB) and trichostatin A (TSA). βMajor/βminor- and -1/-2–globin mRNAs were the major species, with trace amounts of ɛ-globin mRNA, formed in Epo-stimulated EpoR+ Ba/F3 clones, whereas SB and TSA allowed expression of all species of globin mRNAs, ie, ɛ, βh1, βmajor/βminor, ζ, and -1/-2, in parental Ba/F3 cells. In contrast, ɛ- and -1/-2–globin mRNAs were the major species present in Epo-stimulated EpoR+ B6SUtA clones, whereas SB and TSA activated ɛ-, βh1-, βS/βT-, and -1/-2–globin genes in parental B6SUtA cells; ζ-globin mRNA was not detected in SB- and TSA-treated B6SUtA cells. Because TSA is a specific inhibitor of histone deacetylase, the mimicry of action exhibited by SB and TSA suggests that the effects of SB are mediated through its ability to inhibit histone deacetylase and that histone deacetylase is an integral part of the repression of globin genes in these interleukin-3–dependent cells. Efficient coinduction of embryonic and adult types of globin mRNA in bone marrow cell lines derived from adult mice indicates that adult hematopoietic precursors possess an embryonic nature. These cell lines are useful models to study the mechanism(s) of developmental globin gene switching.
Collapse
|