1
|
Song G, Feng G, Li Q, Peng J, Ge W, Long Y, Cui Z. Transcriptomic Characterization of Key Factors and Signaling Pathways for the Regeneration of Partially Hepatectomized Liver in Zebrafish. Int J Mol Sci 2024; 25:7212. [PMID: 39000319 PMCID: PMC11241411 DOI: 10.3390/ijms25137212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Liver regeneration induced by partial hepatectomy (PHx) has attracted intensive research interests due to the great significance for liver resection and transplantation. The zebrafish (Danio rerio) is an excellent model to study liver regeneration. In the fish subjected to PHx (the tip of the ventral lobe was resected), the lost liver mass could be fully regenerated in seven days. However, the regulatory mechanisms underlying the liver regeneration remain largely unknown. In this study, gene expression profiles during the regeneration of PHx-treated liver were explored by RNA sequencing (RNA-seq). The genes responsive to the injury of PHx treatment were identified and classified into different clusters based on the expression profiles. Representative gene ontology (GO) enrichments for the early responsive genes included hormone activity, ribosome biogenesis and rRNA processing, etc., while the late responsive genes were enriched in biological processes such as glutathione metabolic process, antioxidant activity and cellular detoxification. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments were also identified for the differentially expressed genes (DEGs) between the time-series samples and the sham controls. The proteasome was overrepresented by the up-regulated genes at all of the sampling time points. Inhibiting proteasome activity by the application of MG132 to the fish enhanced the expression of Pcna (proliferating cell nuclear antigen), an indicator of hepatocyte proliferation after PHx. Our data provide novel insights into the molecular mechanisms underlying the regeneration of PHx-treated liver.
Collapse
Affiliation(s)
- Guili Song
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guohui Feng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Yong Long
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zongbin Cui
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
2
|
Dong L, Cheng Z, Liu F, Yu X, Han Z, Luo Y, Xu H, Chen R, Huang C, Yu J, Liang P. Dynamic changes in liver volume calculated using a three-dimensional visualization system after microwave ablation of hepatocellular carcinomas. Med Phys 2022; 49:4613-4621. [PMID: 35366342 DOI: 10.1002/mp.15641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/22/2022] [Accepted: 03/31/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES To investigate the changes in liver volume and function after microwave ablation (MWA) of hepatocellular carcinomas (HCCs). MATERIALS AND METHODS We retrospectively analyzed 76 patients with 106 nodules who underwent MWA for HCCs ≤5 cm between January 2015 and September 2017. Liver and ablation volumes were calculated using a three-dimensional visualization system on MRI. Multiple regression analysis was used to estimate the association between the ablation volume and liver volume changes. Deformable image registration (DIR) was performed to confirm the influence of liver volume changes on curative effect evaluation after ablation. RESULTS The initial liver and tumor volumes were 1262.1±259.91 cm3 (range: 864.9∼1966.8) and 2.5 cm3 (interquartile range [IQR]: 1.3∼8.8), respectively. Compared to the initial liver volumes, the entire live volume (ELV) increased by 10.1%±8.93% (range: -4.9%∼46.68%) on the 3rd day after ablation. Subsequently, it recovered to initial level at the 3rd month and maintained its level during the 1-year follow-up. The median total ablation volume was 34.9 cm3 (IQR: 20.4∼65.4) on the 3rd day after ablation, which decreased by 71.2% (IQR: 57.4%∼78.1%) one year after ablation. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (T-Bil) peaked within 3 days after MWA and recovered to normal within 1 month. The ablation volume proportion of the ELV was an independent risk factor for the increase in the ELV and AST, ALT, and T-Bil levels within 3 days after ablation. When DIR was conducted to fuse ablation zone and tumor, the reshaped tumor volumes were enlarged by 40% because of the increase in ELV. CONCLUSIONS MWA of HCCs based on the Milan criteria could induce temporary increases in ELV and RLV within 3 days after ablation, but both parameters recovered to initial levels 3 months after ablation. This indicates that MWA of early-stage HCCs would not lead to liver volume loss and could potentially protect liver function. The liver cannot be treated as an incompressible organ after ablation, and the appropriate deformation constraint should be designed for DIR to evaluate ablation margin accurately. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Linan Dong
- Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Zhigang Cheng
- Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Fangyi Liu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Xiaoling Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Zhiyu Han
- Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Yanchun Luo
- Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Hongli Xu
- Research Center of Medical Big Data, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Rendong Chen
- School of Mathematical Sciences, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang, 310007, China
| | - Chongfei Huang
- School of Mathematical Sciences, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang, 310007, China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| |
Collapse
|
3
|
Choi JH, Park S, Kim GD, Kim JY, Jun JH, Bae SH, Baik SK, Hwang SG, Kim GJ. Increased Phosphatase of Regenerating Liver-1 by Placental Stem Cells Promotes Hepatic Regeneration in a Bile-Duct-Ligated Rat Model. Cells 2021; 10:cells10102530. [PMID: 34685509 PMCID: PMC8533985 DOI: 10.3390/cells10102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Phosphatase of regenerating liver-1 (PRL-1) controls various cellular processes and liver regeneration. However, the roles of PRL-1 in liver regeneration induced by chorionic-plate-derived mesenchymal stem cells (CP-MSCs) transplantation remain unknown. Here, we found that increased PRL-1 expression by CP-MSC transplantation enhanced liver regeneration in a bile duct ligation (BDL) rat model by promoting the migration and proliferation of hepatocytes. Engrafted CP-MSCs promoted liver function via enhanced hepatocyte proliferation through increased PRL-1 expression in vivo and in vitro. Moreover, higher increased expression of PRL-1 regulated CP-MSC migration into BDL-injured rat liver through enhancement of migration-related signals by increasing Rho family proteins. The dual effects of PRL-1 on proliferation of hepatocytes and migration of CP-MSCs were substantially reduced when PRL-1 was silenced with siRNA-PRL-1 treatment. These findings suggest that PRL-1 may serve as a multifunctional enhancer for therapeutic applications of CP-MSC transplantation.
Collapse
Affiliation(s)
- Jong Ho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si 25457, Korea;
| | - Sohae Park
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
| | - Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Changwon-si 51767, Korea;
| | - Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
| | - Ji Hye Jun
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
| | - Si Hyun Bae
- Department of Internal Medicine, Catholic University Medical College, Seoul 03312, Korea;
| | - Soon Koo Baik
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Seong-Gyu Hwang
- CHA Bundang Medical Center, Department of Internal Medicine, Division of Gastroenterology, CHA University School of Medicine, Seongnam-si 13496, Korea;
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
- Correspondence: ; Tel.: +82-31-881-7145
| |
Collapse
|
4
|
Liu C, Zhong W, Xia L, Fang C, Liu H, Liu X. A retrospective cohort study of clinical value of PRL-3 in stage III human colorectal cancer. Medicine (Baltimore) 2021; 100:e25658. [PMID: 33907129 PMCID: PMC8084011 DOI: 10.1097/md.0000000000025658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/20/2021] [Accepted: 04/04/2021] [Indexed: 12/09/2022] Open
Abstract
ABSTRACT The aim of this study was to investigate the expression of phosphatase of regenerating live-3 (PRL-3) in human stage III colorectal cancer (CRC) and to evaluate its correlation with metachronous liver metastasis (MLM) and prognosis.The retrospective cohort study included 116 stage III CRC primary tumors and 60 normal colorectal tissues. PRL-3 expression was measured by immunohistochemistry. We investigated the correlation of PRL-3 with clinicopathologic features by the chi-square test. The association of PRL-3 expression with MLM was assessed by binary logistic regression. Overall survival (OS) and disease-free survival (DFS) between patients with positive PRL-3 expression and those with negative PRL-3 expression were compared by the Kaplan-Meier method and Cox proportional hazards regression model.We found that 32.8% of stage III CRC primary tumors were PRL-3 positive, and 15.0% of normal colorectal epithelia showed high PRL-3 expression (P = .012). Seventeen tumors (47.2%) among 36 cases that developed MLM were PRL-3 positive, and only 21 tumors (26.3%) in the 80 cases that did not develop MLM had positive PRL-3 expression (P = .026). PRL-3 expression was associated with MLM (P = .028). Patients with positive expression of PRL-3 showed a significantly shorter OS (40.32 ± 3.97 vs 53.96 ± 2.77 months, P = .009) and DFS (34.97 ± 4.30 vs 44.48 ± 2.89 months, P = .036). A multivariate analysis indicated that PRL-3 expression was an independent unfavorable prognostic factor for OS (P = .007).Our study suggested that high PRL-3 expression is an independent risk factor for MLM and poor prognosis. PRL-3 is expected to be a promising biomarker for predicting the incidence of MLM and prognosis in patients with stage III CRC.
Collapse
|
5
|
Bhat M, Pasini E, Baciu C, Angeli M, Humar A, Macparland S, Feld J, McGilvray I. The basis of liver regeneration: A systems biology approach. Ann Hepatol 2020; 18:422-428. [PMID: 31047847 DOI: 10.1016/j.aohep.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/18/2018] [Accepted: 07/01/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Liver regeneration is a normal response to liver injury. The aim of this study was to determine the molecular basis of liver regeneration, through an integrative analysis of high-throughput gene expression datasets. METHODS We identified and curated datasets pertaining to liver regeneration from the Gene Expression Omnibus, where regenerating liver tissue was compared to healthy liver samples. The key dysregulated genes and pathways were identified using Ingenuity Pathway Analysis software. There were three eligible datasets in total. RESULTS In the early phase after hepatectomy, inflammatory pathways such as Nrf2 oxidative stress-mediated response and cytokine signaling were significantly upregulated. At peak regeneration, we discovered that cell cycle genes were predominantly expressed to promote cell proliferation. Using the Betweenness centrality algorithm, we discovered that Jun is the key central gene in liver regeneration. Calcineurin inhibitors may inhibit liver regeneration, based on predictive modeling. CONCLUSION There is a paucity of human literature in defining the molecular mechanisms of liver regeneration along a time continuum. Nonetheless, using an integrative computational analysis approach to the available high-throughput data, we determine that the oxidative stress response and cytokine signaling are key early after hepatectomy, whereas cell cycle control is important at peak regeneration. The transcription factor Jun is central to liver regeneration and a potential therapeutic target. Future studies of regeneration in humans along a time continuum are needed to better define the underlying mechanisms, and ultimately enhance care of patients with acute and chronic liver failure while awaiting transplant.
Collapse
Affiliation(s)
- Mamatha Bhat
- Multi Organ Transplant Program, University Health Network, Toronto, Canada; Division of Gastroenterology and Hepatology, University Health Network and University of Toronto, Toronto, Canada.
| | - Elisa Pasini
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Cristina Baciu
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Marc Angeli
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Atul Humar
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Sonya Macparland
- Multi Organ Transplant Program, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Jordan Feld
- Division of Gastroenterology and Hepatology, University Health Network and University of Toronto, Toronto, Canada; Toronto Centre for Liver Disease, University of Toronto, Ontario, Canada
| | - Ian McGilvray
- Multi Organ Transplant Program, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| |
Collapse
|
6
|
Abstract
Cholesterol is an important component of lipids in animal membranes. All living cells can synthesize cholesterol, but the amount of synthesis is not sufficient, and therefore cholesterol synthesized in the liver is delivered to extrahepatic tissues as a form of LDL. The liver is a primary organ to not only synthesize but also catabolize cholesterol into bile acids, which ends up to excrete with the feces. The synthetic and catabolic pathways are precisely regulated under the negative-feedback control system under the transcriptional regulation driven by several transcription factors such as the sterol regulatory element-binding proteins (SREBPs), the liver x receptor, and the farnesoid x receptor. This review summarizes various findings including our recent discoveries in the molecular mechanism of activation of SREBP that is involved in the regulation of hepatic cholesterol biosynthesis, and a novel function of the metabolic end product of cholesterol, bile acids, in skeletal muscles.
Collapse
Affiliation(s)
- Ryuichiro Sato
- Department of Applied Biological Chemistry, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
7
|
Abstract
The phosphatase of regenerating liver (PRL) family, also known as protein tyrosine phosphatase 4A (PTP4A), are dual-specificity phosphatases with largely unknown cellular functions. However, accumulating evidence indicates that PRLs are oncogenic across a broad variety of human cancers. PRLs are highly expressed in advanced tumors and metastases compared to early stage cancers or matched healthy tissue, and high expression of PRLs often correlates with poor patient prognosis. Consequentially, PRLs have been considered potential therapeutic targets in cancer. Persistent efforts have been made to define their role and mechanism in cancer progression and to create specific PRL inhibitors for basic research and drug development. However, targeting PRLs with small molecules remains challenging due to the highly conserved active site of protein tyrosine phosphatases and a high degree of sequence similarity between the PRL protein families. Here, we review the current PRL inhibitors, including the strategies used for their identification, their biological efficacy, potency, and selectivity, with a special focus on how PRL structure can inform future efforts to develop specific PRL inhibitors.
Collapse
Affiliation(s)
- Min Wei
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Jessica S Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
8
|
Hardy S, Kostantin E, Hatzihristidis T, Zolotarov Y, Uetani N, Tremblay ML. Physiological and oncogenic roles of thePRLphosphatases. FEBS J 2018; 285:3886-3908. [DOI: 10.1111/febs.14503] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Elie Kostantin
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Teri Hatzihristidis
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| | - Yevgen Zolotarov
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Noriko Uetani
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| |
Collapse
|
9
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
10
|
Liu LZ, He YZ, Dong PP, Ma LJ, Wang ZC, Liu XY, Duan M, Yang LX, Shi JY, Zhou J, Fan J, Gao Q, Wang XY. Protein tyrosine phosphatase PTP4A1 promotes proliferation and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma via the PI3K/AKT pathway. Oncotarget 2018; 7:75210-75220. [PMID: 27655691 PMCID: PMC5342735 DOI: 10.18632/oncotarget.12116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022] Open
Abstract
The protein tyrosine phosphatase PTP4A1 is a key molecule that activates tyrosine phosphorylation, which is important for cancer progression and metastasis. However, the clinical implications and biological function of PTP4A1 in intrahepatic cholangiocarcinoma (ICC) remains unknown. Here, we showed that PTP4A1 was frequently overexpressed in ICC versus adjacent non-tumor tissues. This overexpression significantly correlated with aggressive tumor characteristics like the presence of lymph node metastasis and advanced tumor stages. Survival analysis further indicated that high PTP4A1 expression was significantly and independently associated with worse survival and increased recurrence in ICC patients. Moreover, through forced overexpression and knock-down of PTPT4A1, we demonstrated that PTP4A1 could significantly promote ICC cells proliferation, colony formation, migration, and invasion in vitro, and markedly enhance tumor progression in vivo. Mechanistically, PTP4A1 was involved in PI3K/AKT signaling and its downstream molecules, such as phosphorylation level of GSK3β and up-regulation of CyclinD1, in ICC cells to promote proliferation. Importantly, PTP4A1 induced ICC cells invasion was through activating PI3K/AKT signaling controlled epithelial-mesenchymal transition (EMT) process by up-regulating Zeb1 and Snail. Thus, PTP4A1 may serve as a potential oncogene that was a valuable prognostic biomarker and therapeutic target for ICC.
Collapse
Affiliation(s)
- Long-Zi Liu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, P. R. China
| | - Yi-Zhou He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R, China
| | - Ping-Ping Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032, P. R. China
| | - Li-Jie Ma
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, P. R. China
| | - Zhi-Chao Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, P. R. China
| | - Xin-Yang Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Meng Duan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, P. R. China
| | - Liu-Xiao Yang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, P. R. China
| | - Jie-Yi Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, P. R. China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, P. R. China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, P. R. China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, P. R. China
| | - Xiao-Ying Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
11
|
Abstract
Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.
Collapse
Affiliation(s)
- Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryuichiro Sato
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
12
|
Brown MS, Radhakrishnan A, Goldstein JL. Retrospective on Cholesterol Homeostasis: The Central Role of Scap. Annu Rev Biochem 2017; 87:783-807. [PMID: 28841344 DOI: 10.1146/annurev-biochem-062917-011852] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Scap is a polytopic membrane protein that functions as a molecular machine to control the cholesterol content of membranes in mammalian cells. In the 21 years since our laboratory discovered Scap, we have learned how it binds sterol regulatory element-binding proteins (SREBPs) and transports them from the endoplasmic reticulum (ER) to the Golgi for proteolytic processing. Proteolysis releases the SREBP transcription factor domains, which enter the nucleus to promote cholesterol synthesis and uptake. When cholesterol in ER membranes exceeds a threshold, the sterol binds to Scap, triggering several conformational changes that prevent the Scap-SREBP complex from leaving the ER. As a result, SREBPs are no longer processed, cholesterol synthesis and uptake are repressed, and cholesterol homeostasis is restored. This review focuses on the four domains of Scap that undergo concerted conformational changes in response to cholesterol binding. The data provide a molecular mechanism for the control of lipids in cell membranes.
Collapse
Affiliation(s)
- Michael S Brown
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ;
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ;
| | - Joseph L Goldstein
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ;
| |
Collapse
|
13
|
Michalopoulos GK. Hepatostat: Liver regeneration and normal liver tissue maintenance. Hepatology 2017; 65:1384-1392. [PMID: 27997988 DOI: 10.1002/hep.28988] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022]
Abstract
In contrast to all other organs, liver-to-body-weight ratio needs to be maintained always at 100% of what is required for body homeostasis. Adjustment of liver size to 100% of what is required for homeostasis has been called "hepatostat." Removal of a portion of any other organ is followed with local regeneration of a limited degree, but it never attempts to reach 100% of the original size. The complex mechanisms involved in this uniquely hepatic process encompass a variety of regenerative pathways that are specific to different types of injury. The most studied form of liver regeneration (LR) is that occurring after loss of hepatocytes in a single acute injury, such as rodent LR after two-thirds partial hepatectomy or administration of damaging chemicals (CCl4 , acetaminophen, etc.). Alternative regenerative pathways become activated when normal regeneration is thwarted and trigger the appearance of "progenitor" cells. Chronic loss of hepatocytes is associated with regenerative efforts characterized by continual hepatocyte proliferation and often has adverse consequences (development of cirrhosis or liver cancer). Even though a very few hepatocytes proliferate at any given time in normal liver, the mechanisms involved in the maintenance of liver weight by this slow process in the absence of liver injury are not as well understood. (Hepatology 2017;65:1384-1392).
Collapse
|
14
|
Gari HH, DeGala GD, Lucia MS, Lambert JR. Loss of the oncogenic phosphatase PRL-3 promotes a TNF-R1 feedback loop that mediates triple-negative breast cancer growth. Oncogenesis 2016; 5:e255. [PMID: 27526109 PMCID: PMC5007826 DOI: 10.1038/oncsis.2016.50] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/14/2022] Open
Abstract
Stimulating tumor cell senescence and apoptosis are proven methods for therapeutically combating cancer. However, senescence and apoptosis are conventionally viewed as parallel, not sequential, processes. We have discovered that the metastasis-promoting phosphatase, PRL-3, is transcriptionally regulated by the NF-ĸB pathway in triple-negative breast cancer (TNBC) cells, and that PRL-3 knockdown elicits an autocrine tumor necrosis factor receptor 1 (TNF-R1) feedback loop that results in TNBC cell senescence followed by apoptosis. Knockdown of PRL-3 leads to rapid G1 cell cycle arrest and induction of a strong TNFα cytokine response that promotes a period of cellular senescence through TNF-R1-mediated activation of NF-ĸB. Senescent PRL-3 knockdown cells subsequently underwent apoptosis as a result of increased TNF-R1 signaling through the TNFα-associated extrinsic death pathway, shunting signaling away from the NF-ĸB cascade. These data suggest that TNF-R1 signaling dynamically re-programs after PRL-3 knockdown, from sustaining cell senescence through NF-ĸB to promoting apoptosis through TNF-R1 internalization and caspase-8 activation. The molecular mechanisms that determine the survival–death balance of TNF-R1 signaling are poorly understood, despite the fact that TNF-R1 has been extensively studied. Our results describe PRL-3 knockdown as a novel survival–death balance modifier of the TNF-R1 pathway, and show that senescent TNBC tumor cells can be sensitized to undergo apoptosis in a sequential manner.
Collapse
Affiliation(s)
- H H Gari
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - G D DeGala
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M S Lucia
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J R Lambert
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
15
|
Jin S, Wang K, Xu K, Xu J, Sun J, Chu Z, Lin D, Koeffler PH, Wang J, Yin D. Oncogenic function and prognostic significance of protein tyrosine phosphatase PRL-1 in hepatocellular carcinoma. Oncotarget 2015; 5:3685-96. [PMID: 25003523 PMCID: PMC4116513 DOI: 10.18632/oncotarget.1986] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Our SNP-Chip data demonstrated 7/60 (12%) hepatocellular carcinoma (HCC) patients had PRL-1 copy number amplification. However, its biological functions and signaling pathways in HCC are deficient. Here, we investigated its oncogenic function and prognostic significance in HCC. PRL-1 protein levels were examined in 167 HCC samples by immunohistochemisty (IHC). The relationship of PRL-1 expression and clinicopathological features was assessed by correlation, Kaplan-Meier and Cox regression analyses. The oncogenic function of PRL-1 in HCC cells and its underlying mechanism were investigated by ectopic overexpression and knockdown model. PRL-1 levels in primary HCC and metastatic intravascular cancer thrombus were also determined by IHC. PRL-1 levels were frequently elevated in HCC tissues (81%), and elevated expression of PRL-1 was significantly associated with more aggressive phenotype and poorer prognosis in HCC patients (p<0.05). Ectopic overexpression of PRL-1 markedly enhanced HCC cells migration and invasion. Furthermore, the oncogenic functions of PRL-1 were mediated by PI3K/AKT/GSK3β signaling pathway through inhibiting E-cadherin expression. Finally, PRL-1 protein levels in metastatic cancer thrombus were higher than that in primary HCC tissues (p<0.05). These data highlight the oncogenic function of PRL-1 in HCC invasion and metastasis implicating PRL-1 as a potential prognostic marker as well as therapeutic target in HCC.
Collapse
Affiliation(s)
- Shaowen Jin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
Hatzihristidis T, Desai N, Hutchins AP, Meng TC, Tremblay ML, Miranda-Saavedra D. A Drosophila-centric view of protein tyrosine phosphatases. FEBS Lett 2015; 589:951-66. [PMID: 25771859 DOI: 10.1016/j.febslet.2015.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/30/2022]
Abstract
Most of our knowledge on protein tyrosine phosphatases (PTPs) is derived from human pathologies and mouse knockout models. These models largely correlate well with human disease phenotypes, but can be ambiguous due to compensatory mechanisms introduced by paralogous genes. Here we present the analysis of the PTP complement of the fruit fly and the complementary view that PTP studies in Drosophila will accelerate our understanding of PTPs in physiological and pathological conditions. With only 44 PTP genes, Drosophila represents a streamlined version of the human complement. Our integrated analysis places the Drosophila PTPs into evolutionary and functional contexts, thereby providing a platform for the exploitation of the fly for PTP research and the transfer of knowledge onto other model systems.
Collapse
Affiliation(s)
- Teri Hatzihristidis
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nikita Desai
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Andrew P Hutchins
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tzu-Ching Meng
- Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Michel L Tremblay
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Diego Miranda-Saavedra
- World Premier International (WPI) Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan; Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, 28049 Madrid, Spain; IE Business School, IE University, María de Molina 31 bis, 28006 Madrid, Spain.
| |
Collapse
|
17
|
Jeong K, Kwon H, Lee J, Jang D, Pak Y. Insulin-response epigenetic activation of Egr-1 and JunB genes at the nuclear periphery by A-type lamin-associated pY19-Caveolin-2 in the inner nuclear membrane. Nucleic Acids Res 2015; 43:3114-27. [PMID: 25753664 PMCID: PMC4381080 DOI: 10.1093/nar/gkv181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/20/2015] [Indexed: 11/15/2022] Open
Abstract
Insulin controls transcription to sustain its physiologic effects for the organism to adapt to environmental changes added to genetic predisposition. Nevertheless, insulin-induced transcriptional regulation by epigenetic factors and in defined nuclear territory remains elusive. Here we show that inner nuclear membrane (INM)-integrated caveolin-2 (Cav-2) regulates insulin-response epigenetic activation of Egr-1 and JunB genes at the nuclear periphery. INM-targeted pY19-Cav-2 in response to insulin associates specifically with the A-type lamin, disengages the repressed Egr-1 and JunB promoters from lamin A/C through disassembly of H3K9me3, and facilitates assembly of H3K9ac, H3K18ac and H3K27ac by recruitment of GCN5 and p300 and the subsequent enrichment of RNA polymerase II (Pol II) on the promoters at the nuclear periphery. Our findings show that Cav-2 is an epigenetic regulator of histone H3 modifications, and provide novel mechanisms of insulin-response epigenetic activation at the nuclear periphery.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Biochemistry, Division of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea
| | - Hayeong Kwon
- Department of Biochemistry, Division of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea
| | - Jaewoong Lee
- Department of Biochemistry, Division of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea
| | - Donghwan Jang
- Department of Biochemistry, Division of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea
| | - Yunbae Pak
- Department of Biochemistry, Division of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea
| |
Collapse
|
18
|
Campbell AM, Zhang ZY. Phosphatase of regenerating liver: a novel target for cancer therapy. Expert Opin Ther Targets 2014; 18:555-69. [PMID: 24579927 DOI: 10.1517/14728222.2014.892926] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Phosphatases of regenerating livers (PRLs) are novel oncogenes that interact with many well-established cell signaling pathways that are misregulated in cancer, and are known to drive cancer metastasis when overexpressed. AREAS COVERED This review covers basic information of the discovery and characteristics of the PRL family. We also report findings on the role of PRL in cancer, cell functions and cell signaling. Furthermore, PRL's suitability as a novel drug target is discussed along with current methods being developed to facilitate PRL inhibition. EXPERT OPINION PRLs show great potential as novel drug targets for anticancer therapeutics. Studies indicate that PRL can perturb major cancer pathways such as Src/ERK1/2 and PTEN/PI3K/Akt. Upregulation of PRLs has also been shown to drive cancer metastasis. However, in order to fully realize its therapeutic potential, a deeper understanding of the function of PRL in normal tissue and in cancer must be obtained. Novel and integrated biochemical, chemical, biological, and genetic approaches will be needed to identify PRL substrate(s) and to provide proof-of-concept data on the druggability of the PRL phosphatases.
Collapse
Affiliation(s)
- Amanda M Campbell
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology , John D. Van Nuys Medical Science Building, Room 4053A, 635 Barnhill Drive, Indianapolis, IN 46202-5126 , USA
| | | |
Collapse
|
19
|
Abstract
Liver regeneration is perhaps the most studied example of compensatory growth aimed to replace loss of tissue in an organ. Hepatocytes, the main functional cells of the liver, manage to proliferate to restore mass and to simultaneously deliver all functions hepatic functions necessary to maintain body homeostasis. They are the first cells to respond to regenerative stimuli triggered by mitogenic growth factor receptors MET (the hepatocyte growth factor receptor] and epidermal growth factor receptor and complemented by auxiliary mitogenic signals induced by other cytokines. Termination of liver regeneration is a complex process affected by integrin mediated signaling and it restores the organ to its original mass as determined by the needs of the body (hepatostat function). When hepatocytes cannot proliferate, progenitor cells derived from the biliary epithelium transdifferentiate to restore the hepatocyte compartment. In a reverse situation, hepatocytes can also transdifferentiate to restore the biliary compartment. Several hormones and xenobiotics alter the hepatostat directly and induce an increase in liver to body weight ratio (augmentative hepatomegaly). The complex challenges of the liver toward body homeostasis are thus always preserved by complex but unfailing responses involving orchestrated signaling and affecting growth and differentiation of all hepatic cell types.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
20
|
Dumaual CM, Steere BA, Walls CD, Wang M, Zhang ZY, Randall SK. Integrated analysis of global mRNA and protein expression data in HEK293 cells overexpressing PRL-1. PLoS One 2013; 8:e72977. [PMID: 24019887 PMCID: PMC3760866 DOI: 10.1371/journal.pone.0072977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/17/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The protein tyrosine phosphatase PRL-1 represents a putative oncogene with wide-ranging cellular effects. Overexpression of PRL-1 can promote cell proliferation, survival, migration, invasion, and metastasis, but the underlying mechanisms by which it influences these processes remain poorly understood. METHODOLOGY To increase our comprehension of PRL-1 mediated signaling events, we employed transcriptional profiling (DNA microarray) and proteomics (mass spectrometry) to perform a thorough characterization of the global molecular changes in gene expression that occur in response to stable PRL-1 overexpression in a relevant model system (HEK293). PRINCIPAL FINDINGS Overexpression of PRL-1 led to several significant changes in the mRNA and protein expression profiles of HEK293 cells. The differentially expressed gene set was highly enriched in genes involved in cytoskeletal remodeling, integrin-mediated cell-matrix adhesion, and RNA recognition and splicing. In particular, members of the Rho signaling pathway and molecules that converge on this pathway were heavily influenced by PRL-1 overexpression, supporting observations from previous studies that link PRL-1 to the Rho GTPase signaling network. In addition, several genes not previously associated with PRL-1 were found to be significantly altered by its expression. Most notable among these were Filamin A, RhoGDIα, SPARC, hnRNPH2, and PRDX2. CONCLUSIONS AND SIGNIFICANCE This systems-level approach sheds new light on the molecular networks underlying PRL-1 action and presents several novel directions for future, hypothesis-based studies.
Collapse
Affiliation(s)
- Carmen M. Dumaual
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Boyd A. Steere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Chad D. Walls
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stephen K. Randall
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
21
|
|
22
|
Kim NW, Chu CW, Ahn TS, Kim CJ, Jung DJ, Son MW, Bae SH, Lee MS, Kim CH, Baek MJ. Correlation between Liver Metastases and the Level of PRL-3 mRNA Expression in Patients with Primary Colorectal Cancer. JOURNAL OF THE KOREAN SOCIETY OF COLOPROCTOLOGY 2011; 27:231-6. [PMID: 22102972 PMCID: PMC3218126 DOI: 10.3393/jksc.2011.27.5.231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/26/2011] [Indexed: 11/10/2022]
Abstract
Purpose Phosphatase of regenerating liver-3 (PRL-3) has been associated with metastasis promotion. However, clinical applications of this association have not yet been clearly demonstrated. In this study, we evaluated the relation of PRL-3 mRNA level in primary colorectal cancer to the corresponding stage and to other clinicopathologic factors. Methods Two hundred forty-five patients with histologically-proven colorectal cancer underwent surgery between January 2004 and December 2006. RNA was extracted and cDNA was prepared by using reverse transcription. Quantification of PRL-3 was done using a real-time polymerase chain reaction. Results Eighty-six cases with well-preserved specimens were enrolled: 53 males and 33 females. The mean age was 63.4 years. According to tumour node metastasis (TNM) stage of the American Joint Committee on Cancer (AJCC), stage I was 11 cases, stage II was 38 cases, stage III was 23 cases, and stage IV was 14 cases. Among stage IV cases, one case was combined with liver and lung metastases, and one case was combined with liver metastases and peritoneal dissemination. The remaining stage IV patients were combined with only liver metastases. There was a significant correlation in PRL-3 mRNA expression between primary colorectal cancer and corresponding tumor stage. PRL-3 mRNA expression was increased in the liver metastases cases. Lymphatic and vascular invasion were significantly related with PRL-3 mRNA levels. Conclusion Advanced stage prediction may be obtained by measuring the level of PRL-3 mRNA expression in primary colorectal cancer. Especially, the risk of liver metastases may be predicted by measuring the level of PRL-3 mRNA expression in primary colorectal cancer. Further study is required to confirm these preliminary results.
Collapse
Affiliation(s)
- Nam Won Kim
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
HMG-CoA reductase (HMGR), a highly conserved, membrane-bound enzyme, catalyzes a rate-limiting step in sterol and isoprenoid biosynthesis and is the primary target of hypocholesterolemic drug therapy. HMGR activity is tightly regulated to ensure maintenance of lipid homeostasis, disruption of which is a major cause of human morbidity and mortality. HMGR regulation takes place at the levels of transcription, translation, post-translational modification and degradation. In this review, we discuss regulation of mammalian, Saccharomyces cerevisiae and Schizosaccharomyces pombe HMGR and highlight recent advances in the field. We find that the general features of HMGR regulation, including a requirement for the HMGR-binding protein Insig, are remarkably conserved between mammals and ascomycetous fungi, including S. cerevisiae and S. pombe. However the specific details by which this regulation occurs differ in surprising ways, revealing the broad evolutionary themes underlying both HMGR regulation and Insig function.
Collapse
|
24
|
Roth Flach RJ, Bennett AM. Mitogen-activated protein kinase phosphatase-1 - a potential therapeutic target in metabolic disease. Expert Opin Ther Targets 2011; 14:1323-32. [PMID: 21058921 DOI: 10.1517/14728222.2010.528395] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE OF THE FIELD Metabolic disease, which is associated with obesity and cardiovascular disease, is a worldwide epidemic. There continues to be a tremendous effort towards the development of therapies to curtail obesity and its associated pathophysiological sequelae. MAPKs have been implicated in metabolic disease suggesting that these enzymes, and those that regulate them, can potentially serve as therapeutic targets to combat this disease. The MAPK phosphatase-1 (MKP-1) mediates the dephosphorylation and inactivation of MAPKs in insulin-responsive tissues. Therefore, the actions of MKP-1 may play an important role in the maintenance of metabolic homeostasis. AREAS COVERED IN THIS REVIEW The functional effects of MKP-1 in MAPK regulation with emphasis on its role in physiological and pathophysiological signaling functions that have been elucidated through the use of mouse genetics. WHAT THE READER WILL GAIN The reader will learn that MAPK inactivation through the effects of MKP-1 is essential for the maintenance of metabolic homeostasis. We will convey the idea that MKP-1 acts as a critical signaling node in MAPK-mediated regulation of cell signaling and metabolism. TAKE HOME MESSAGE Pharmacological inactivation of MKP-1 may be of therapeutic value in the treatment of obesity and possibly other metabolic disorders.
Collapse
Affiliation(s)
- Rachel J Roth Flach
- Yale University School of Medicine, Department of Pharmacology and Program in Integrative Cell Signaling and Neurobiology of Metabolism, New Haven, CT 06520-8066, USA
| | | |
Collapse
|
25
|
Al-Aidaroos AQO, Zeng Q. PRL-3 phosphatase and cancer metastasis. J Cell Biochem 2011; 111:1087-98. [PMID: 21053359 DOI: 10.1002/jcb.22913] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The deregulated expression of members of the phosphatase of regenerating liver (PRL) family has been implicated in the metastatic progression of multiple human cancers. Importantly, PRL-1 and PRL-3 both possess the capacity to drive key steps in metastatic progression. Yet, little is known about the regulation and oncogenic mechanisms of this emerging class of dual-specificity phosphatases. This prospect article details the involvement of PRLs in the metastatic cascade, the regulatory mechanisms controlling PRL expression, and recent efforts in the characterization of PRL-modulated pathways and substrates using biochemical and high-throughput approaches. Current advances and future prospects in anti-cancer therapy targeting this family are also discussed.
Collapse
Affiliation(s)
- Abdul Qader O Al-Aidaroos
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore 138648, Republic of Singapore
| | | |
Collapse
|
26
|
Expression and clinical role of protein of regenerating liver (PRL) phosphatases in ovarian carcinoma. Int J Mol Sci 2011; 12:1133-45. [PMID: 21541048 PMCID: PMC3083695 DOI: 10.3390/ijms12021133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/26/2011] [Accepted: 02/07/2011] [Indexed: 02/04/2023] Open
Abstract
The present study analyzed the expression and clinical role of the protein of regenerating liver (PRL) phosphatase family in ovarian carcinoma. PRL1-3 mRNA expression was studied in 184 tumors (100 effusions, 57 primary carcinomas, 27 solid metastases) using RT-PCR. PRL-3 protein expression was analyzed in 157 tumors by Western blotting. PRL-1 mRNA levels were significantly higher in effusions compared to solid tumors (p < 0.001), and both PRL-1 and PRL-2 were overexpressed in pleural compared to peritoneal effusions (p = 0.001). PRL-3 protein expression was significantly higher in primary diagnosis pre-chemotherapy compared to post-chemotherapy disease recurrence effusions (p = 0.003). PRL-1 mRNA expression in effusions correlated with longer overall survival (p = 0.032), and higher levels of both PRL-1 and PRL-2 mRNA correlated with longer overall survival for patients with pre-chemotherapy effusions (p = 0.022 and p = 0.02, respectively). Analysis of the effect of laminin on PRL-3 expression in ovarian carcinoma cells in vitro showed dose-dependent PRL-3 expression in response to exogenous laminin, mediated by Phospholipase D. In contrast to previous studies associating PRL-3 with poor outcome, our data show that PRL-3 expression has no clinical role in ovarian carcinoma, whereas PRL-1 and PRL-2 expression is associated with longer survival, suggesting that PRL phosphatases may be markers of improved outcome in this cancer.
Collapse
|
27
|
|
28
|
PRL-2 increases Epo and IL-3 responses in hematopoietic cells. Blood Cells Mol Dis 2010; 44:209-14. [PMID: 20226699 DOI: 10.1016/j.bcmd.2010.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/05/2010] [Accepted: 02/07/2010] [Indexed: 11/20/2022]
Abstract
Dual specificity protein tyrosine phosphatase PRL-2 is overexpressed in pediatric acute myeloid leukemia (AML) and is located at human chromosome 1p35, a region often rearranged or amplified in malignant lymphoma and B-cell chronic lymphocytic leukemia (B-CLL). Little is known of the significance of PRL-2 expression in hematopoietic malignancies. Herein we demonstrated that ectopic expression of PRL-2 in murine pre-B-cell line Baf3ER and mouse bone marrow cells induced key features associated with malignant progression and metastasis. PRL-2-transfected Baf3ER cells had augmented growth responses to hematopoietic growth factors Epo or IL-3 with shortened cell cycle, reduced requirement (5x) for Epo in cell survival, increased cell migration (3x), reduced cell adhesion (5x), and conversion to an immature cell morphology in association with increased expression (3x) of stem cell marker Bmi-1. When transduced into mouse bone marrow cells, PRL-2 increased Epo-induced colony formation (4x) and gave rise to larger colonies. These observations provide evidences implicating PRL-2 as a pathogenic molecule in hematopoietic malignancies and suggest its potential as a novel therapeutic target.
Collapse
|
29
|
Xu Y, Zhu M, Zhang S, Liu H, Li T, Qin C. Expression and Prognostic Value of PRL-3 in Human Intrahepatic Cholangiocarcinoma. Pathol Oncol Res 2009; 16:169-75. [DOI: 10.1007/s12253-009-9200-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 08/12/2009] [Indexed: 12/28/2022]
|
30
|
Cho IJ, Sung DK, Kang KW, Kim SG. Oltipraz promotion of liver regeneration after partial hepatectomy: The role of PI3-kinase-dependent C/EBPbeta and cyclin E regulation. Arch Pharm Res 2009; 32:625-35. [PMID: 19407981 DOI: 10.1007/s12272-009-1419-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 03/31/2009] [Accepted: 03/31/2009] [Indexed: 12/17/2022]
Abstract
Oltipraz, a representative cancer chemopreventive agent, regenerates cirrhotic liver via CCAAT/enhancer binding protein beta (C/EBPbeta). This study examined the effect of oltipraz on liver regeneration after partial hepatectomy (PH) and explored the role of phosphatidylinositol 3-kinase (PI3K) pathway responsible in liver regeneration. Oltipraz treatment (30 mg/kg/day, for 3 days) promoted liver regeneration in PH rats, but did not increase hepatocyte growth factor production. Subcellular fractionation and electrophoretic mobility shift assays showed that oltipraz treatment increased C/EBPbeta-DNA binding activity in the liver of sham control rats and further enhanced PH-mediated nuclear translocation of C/EBPbeta. The expression of cyclin E and the activity of cyclin E-dependent kinase were both enhanced by oltipraz treatment of PH rats. The signaling pathway that controls C/EBPbeta and cyclin E were studied in H4IIE cells, a rat-derived hepatocyte cell line. Oltipraz potentiated the nuclear accumulation of C/ EBPbeta and C/EBPbeta-DNA binding activity in cells incubated in a medium containing serum. PI3K and its downstream kinase, p70S6 kinase, were both required for C/EBPbeta-dependent induction of cyclin E by oltipraz, as shown by chemical inhibition and plasmid transfection experiments. The results of this study demonstrate that oltipraz treatment enhances liver regeneration after PH, which involves activation of C/EBPbeta and C/EBPbeta-dependent cyclin E expression via the PI3K-p70S6 kinase pathway.
Collapse
Affiliation(s)
- Il Je Cho
- Innovative Drug Research Center for Metabolic and Inflammatory Disease, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742, Korea
| | | | | | | |
Collapse
|
31
|
Miyazaki K, Inoue S, Yamada K, Watanabe M, Liu Q, Watanabe T, Adachi MT, Tanaka Y, Kitajima S. Differential usage of alternate promoters of the human stress response gene ATF3 in stress response and cancer cells. Nucleic Acids Res 2009; 37:1438-51. [PMID: 19136462 PMCID: PMC2655689 DOI: 10.1093/nar/gkn1082] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/15/2008] [Accepted: 12/24/2008] [Indexed: 01/12/2023] Open
Abstract
Stress response gene ATF3 plays a pleiotropic role in determining cell fate in response to mitogenic or stress stimuli. An alternate promoter of the human ATF3 gene (designated P1 in this study) has recently been reported, which is located approximately 43.5 kb upstream of the previously reported P2 promoter. We showed here that the P1 promoter is highly conserved between human and mouse and is functional in response to various stimuli, whereas the P1 promoter was dominantly induced by serum and the P2 promoter was more efficiently activated in response to TGF-beta and oncogenic HRAS. The P1 promoter contains multiple transcriptional start sites, and the different 5'-UTRs markedly affected their translation in response to stress. In human prostate and Hodgkin Reed-Sternberg cancer cells with elevated expression of ATF3, the P1 promoter was constitutively activated and its chromatin structure was modified into active configuration. The differential usage of alternate promoters of the ATF3 gene at both transcriptional and translational level and the modification of chromatin structure may provide a novel mechanism for expressing ATF3 in determining cell fate during stress response and cancer.
Collapse
Affiliation(s)
- Keisuke Miyazaki
- Department of Biochemical Genetics, Medical Research Institute and Laboratory of Genome Structure and Regulation, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, 113-8510 and Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Shoko Inoue
- Department of Biochemical Genetics, Medical Research Institute and Laboratory of Genome Structure and Regulation, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, 113-8510 and Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Kazuhiko Yamada
- Department of Biochemical Genetics, Medical Research Institute and Laboratory of Genome Structure and Regulation, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, 113-8510 and Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Masashi Watanabe
- Department of Biochemical Genetics, Medical Research Institute and Laboratory of Genome Structure and Regulation, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, 113-8510 and Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Qin Liu
- Department of Biochemical Genetics, Medical Research Institute and Laboratory of Genome Structure and Regulation, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, 113-8510 and Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Toshiki Watanabe
- Department of Biochemical Genetics, Medical Research Institute and Laboratory of Genome Structure and Regulation, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, 113-8510 and Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Mimi Tamamori Adachi
- Department of Biochemical Genetics, Medical Research Institute and Laboratory of Genome Structure and Regulation, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, 113-8510 and Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Yujiro Tanaka
- Department of Biochemical Genetics, Medical Research Institute and Laboratory of Genome Structure and Regulation, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, 113-8510 and Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Shigetaka Kitajima
- Department of Biochemical Genetics, Medical Research Institute and Laboratory of Genome Structure and Regulation, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, 113-8510 and Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| |
Collapse
|
32
|
PRL-3 is essentially overexpressed in primary colorectal tumours and associates with tumour aggressiveness. Br J Cancer 2008; 99:1718-25. [PMID: 19002188 PMCID: PMC2584959 DOI: 10.1038/sj.bjc.6604747] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphatase PRL-3 has been involved in different types of cancer, especially in metastases from colorectal carcinoma (CRC). In this study, we explored both isoforms of PRL-3 as a biomarker to predict the recurrence of stage IIIB-C CRC. Overexpression of PRL-3 was investigated in primary human colorectal tumours (n=20) and hepatic metastases (n=36) xenografted in nude mice, samples characterised by absence of human non-tumoral cells, showing a high degree of expression in metastases (P=0.001). In 27 cases of matched normal colonic mucosa/primary tumour/hepatic metastases, PRL-3 overexpression occurs in primary tumours vs normal mucosa (P=0.001) and in hepatic metastases vs primary tumours (P=0.045). Besides, our results in a series of 80 stage IIIB-C CRC primary tumours showed that high levels of PRL-3 were an independent predictor of metastasis (P<0.0001; OR: 9.791) in multivariate analysis of a binary logistic regression and that PRL-3 expression tightly correlates with parameters of bad outcome. Moreover, PRL-3 expression associated with poor outcome in univariate (P<0.0001) and multivariate Cox models (hazard ratio: 3.322, 95%, confidence interval: 1.405–7.852, P=0.006). In conclusion, PRL-3 is a good marker of aggressiveness of locally advanced CRS and a promising predictor of distant metastases. Nevertheless, for prognosis purposes, it is imperative to validate the cutoff value of PRL-3 expression in a larger and consecutive series and adjuvant setting.
Collapse
|
33
|
Kawai M, Jin M, Nishimura J, Dewa Y, Saegusa Y, Matsumoto S, Taniai E, Shibutani M, Mitsumori K. Hepatocarcinogenic Susceptibility of Fenofibrate and Its Possible Mechanism of Carcinogenicity in a Two-Stage Hepatocarcinogenesis Model of rasH2 Mice. Toxicol Pathol 2008; 36:950-7. [DOI: 10.1177/0192623308327118] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fenofibrate (FF) has previously been shown to induce hepatocellular neoplasia in a conventional mouse bioassay (NDA 1993), but there has been no report to examine the carcinogenic susceptibility of rasH2 mice to this chemical. In the present study, male rasH2 mice were subjected to a two-thirds partial hepatectomy (PH), followed by an N-diethylnitrosamine (DEN) initiation twenty-four hours after PH, and given a diet containing 0, 1200, or 2400 ppm FF for seven weeks. The incidences of preneoplastic foci were significantly increased in mice from the FF-treated groups. Immunohistochemistry revealed that significant increases in proliferating cell nuclear antigen (PCNA)-positive cells and cytokeratin 8/18 positive foci were observed in FF-treated groups. In addition, the transgene and several downstream molecules such as c- myc, c- jun, activating transcription factor 3 (ATF3), and cyclin D1 were overexpressed in these groups. These results suggest that the hepatocarcinogenic activity of rasH2 mice to FF can be detected in this hepatocarcinogenesis model and that up-regulation of genes for the ras/MAPK pathway and cell cycle was probably involved in the hepatocarcinogenic mechanism of rasH2 mice.
Collapse
Affiliation(s)
- Masaomi Kawai
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Department of Applied Biological Science, United Graduate School of Agricultural Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Jihei Nishimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Yasuaki Dewa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Yukie Saegusa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Sayaka Matsumoto
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Eriko Taniai
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kunitoshi Mitsumori
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
34
|
Abstract
Aberrant protein tyrosine phosphorylation resulting from the altered activity of protein tyrosine phosphatases (PTPs) is increasingly being implicated in the genesis and progression of human cancer. Accumulating evidence indicates that the dysregulated expression of members of the phosphatase of regenerating liver (PRL) subgroup of PTPs is linked to these processes. Enhanced expression of the PRLs, notably PRL-1 and PRL-3, promotes the acquisition of cellular properties that confer tumorigenic and metastatic abilities. Up-regulation of PRL-3 is associated with the progression and eventual metastasis of several types of human cancer. Indeed, PRL-3 shows promise as a biomarker and prognostic indicator in colorectal, breast, and gastric cancers. However, the substrates and molecular mechanisms of action of the PRLs have remained elusive. Recent findings indicate that PRLs may function in regulating cell adhesion structures to effect epithelial-mesenchymal transition. The identification of PRL substrates is key to understanding their roles in cancer progression and exploiting their potential as exciting new therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Darrell C Bessette
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
35
|
Wang H, Peiris TH, Mowery A, Le Lay J, Gao Y, Greenbaum LE. CCAAT/enhancer binding protein-beta is a transcriptional regulator of peroxisome-proliferator-activated receptor-gamma coactivator-1alpha in the regenerating liver. Mol Endocrinol 2008; 22:1596-605. [PMID: 18467525 DOI: 10.1210/me.2007-0388] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transcriptional coactivator peroxisome-proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) is induced in the liver in response to fasting and coordinates the activation of targets necessary for increasing energy production for gluconeogenesis and ketogenesis. After partial hepatectomy, the liver must restore its mass while maintaining metabolic homeostasis to ensure survival. Here we report that PGC-1alpha is rapidly and dramatically induced after hepatectomy, with an amplitude of induction that exceeds the fasting response. Maximal activation of PGC-1alpha after hepatectomy is dependent on the basic leucine zipper transcription factor, CCAAT/enhancer binding protein-beta (C/EBPbeta), a critical factor in hepatocyte proliferation. We demonstrate in vivo C/EBPbeta binding to C/EBP and cAMP response element sites in the PGC-1alpha promoter and show that the C/EBP site is essential for PGC-1alpha activation. Expression of the PGC-1alpha target, carnitine palmitoyl transferase 1a, the rate-limiting enzyme in fatty acid beta-oxidation, and of long-chain acyl-coenzyme A dehydrogenase, an enzyme involved in beta-oxidation of long chain fatty acids, was significantly reduced in C/EBPbeta(-/-) livers after hepatectomy. These findings identify C/EBPbeta as a direct activator of PGC-1alpha in the regenerating liver. The demonstration of a functional link between C/EBPbeta and PGC-1alpha activation provides a likely mechanism for how upstream signaling pathways in the regenerating liver can enable the adaptation to the changed metabolic status.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
36
|
Raghow R, Yellaturu C, Deng X, Park EA, Elam MB. SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab 2008; 19:65-73. [PMID: 18291668 DOI: 10.1016/j.tem.2007.10.009] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/22/2007] [Accepted: 10/29/2007] [Indexed: 12/14/2022]
Abstract
The uptake, biosynthesis and metabolism of cholesterol and other lipids are exquisitely regulated by feedback and feed-forward pathways in organisms ranging from Caenorhabditis elegans to humans. As endoplasmic reticulum (ER) membrane-embedded transcription factors that are activated in the Golgi apparatus, sterol regulatory element-binding proteins (SREBPs) are central to the intracellular surveillance of lipid catabolism and de novo biogenesis. The biosynthesis of SREBP proteins, their migration from the ER to the Golgi compartment, intra-membrane proteolysis, nuclear translocation and trans-activation potential are tightly controlled in vivo. Here we summarize recent studies elucidating the transcriptional and post-transcriptional regulation of SREBP-1c through nutrition and the action of hormones, particularly insulin, and the resulting implications for dyslipidemia of obesity, metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Rajendra Raghow
- Department of Pharmacology, University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
37
|
Zhao Y, Chan MY, Zhou S, Heng CK. Effects of atherogenic diet and atorvastatin treatment on gene expression profiles in the C57BL/6J mouse liver. Gene Expr 2008; 14:149-158. [PMID: 18590051 PMCID: PMC6042009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study investigated the early and long-term effects of atherogenic diet on hepatic gene expression, and the restorative effects of atorvastatin in treating hypercholesterolemia. Two groups of female C57BL/6J mice were fed standard chow or atherogenic diet for 1-week early phase study and two other groups for 10 weeks. The fifth group had daily 10 mg/kg atorvastatin injections for 3 weeks from week 8 of the atherogenic diet. Gene expression profiling was carried out with Affymetrix GeneChips. One-week atherogenic diet elevated 38 and inhibited 127 gene expressions, while 10-week atherogenic diet elevated 165 and inhibited 281 genes by more than twofold. Atorvastatin could restore 78.2% and 68%, respectively, of the genes to normal levels. Genes in the Insig (insulin-induced gene)-SREBP (sterol regulatory element binding proteins) pathway were mostly inhibited by atherogenic diet at week 1 but elevated at week 10. Of these, 65.2% were restored by atorvastatin. In conclusion, lipid homeostatic mechanism coped well with short-term atherogenic diet. However, when such a diet was prolonged, the mechanism was no longer effective but entered into a pathological state in which lipogenic genes, especially those in the Insig-SREBP pathway, were upregulated. Atorvastatin could restore changes in the Insig-SREBP pathway that were induced by the atherogenic diet.
Collapse
Affiliation(s)
- Yulan Zhao
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mei-Yen Chan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shuli Zhou
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
38
|
Martini C, Pallottini V. Cholesterol: from feeding to gene regulation. GENES & NUTRITION 2007; 2:181-93. [PMID: 18850174 PMCID: PMC2474947 DOI: 10.1007/s12263-007-0049-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 11/16/2006] [Indexed: 01/20/2023]
Abstract
We present here a brief description of the path that cholesterol covers from its intestinal absorption to its effects exerted on gene regulation. In particular, the relationship between cholesterol and the protein complexes involved in the intricate gene regulation mechanism implicated in cholesterol homeostasis will be discussed. In addition, a new target role for the pharmacological interventions of one of these factors, the insulin-induced gene (Insig) protein, will be introduced.
Collapse
Affiliation(s)
- C. Martini
- Department of Biology, University of Rome “Roma Tre”, Viale Marconi, 446, 00146 Rome, Italy
| | - V. Pallottini
- Department of Biology, University of Rome “Roma Tre”, Viale Marconi, 446, 00146 Rome, Italy
| |
Collapse
|
39
|
Wang Y, Li ZF, He J, Li YL, Zhu GB, Zhang LH, Li YL. Expression of the human phosphatases of regenerating liver (PRLs) in colonic adenocarcinoma and its correlation with lymph node metastasis. Int J Colorectal Dis 2007; 22:1179-84. [PMID: 17440740 DOI: 10.1007/s00384-007-0303-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2007] [Indexed: 02/04/2023]
Abstract
BACKGROUND Human phosphatases of regenerating liver (PRLs) can induce cell growth, differentiation, and malignant transformation. In this study, we used specific polyclonal antibodies against PRLs to investigate their expression in colonic adenocarcinomas and its correlation with patient gender, age, tumor differentiation, localization, invasion, and metastasis. MATERIALS AND METHODS The polyclonal antibodies against PRL-1, PRL-2, and PRL-3 were produced and purified. The expression of PRLs in human colorectal carcinoma cell lines (SW480 and SW620) was examined by Western blotting. We also examined their expression in normal and pathologic tissues from the human colon. The tissues included 49 primary colonic adenocarcinomas, 14 cases with lymph node metastases, 15 colonic adenomas, and 12 normal colon samples. Hematoxylin and eosin staining, immunohistochemistry, and semiquantitative morphological analysis were used to evaluate the sections. RESULTS PRLs were widely expressed in SW480 and SW620. PRL-1, PRL-2, and PRL-3 were expressed, respectively, in 16, 10, and 16% of primary colonic adenocarcinomas. In contrast, PRLs were strongly expressed in all lymph node metastases. There were no significant correlations between the expression of PRLs and patient gender, age, tumor differentiation, depth of invasion, or localization of tumor within the different sections of the colon. PRLs were not expressed in normal colon tissues or in colonic adenomas. PRLs were mainly expressed in the cytoplasm and at the cytoplasmic membranes of the colonic adenocarcinoma cells as well as in the endothelial cells and the surrounding smooth muscle cells of larger vessels in the lymph node metastases. CONCLUSION Colonic adenocarcinoma cells have the ability to produce PRLs, which may relate to the lymph node metastasis of colonic adenocarcinoma.
Collapse
Affiliation(s)
- Ying Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Cho KN, Sukhthankar M, Lee SH, Yoon JH, Baek SJ. Green tea catechin (-)-epicatechin gallate induces tumour suppressor protein ATF3 via EGR-1 activation. Eur J Cancer 2007; 43:2404-12. [PMID: 17764926 PMCID: PMC2174270 DOI: 10.1016/j.ejca.2007.07.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/12/2007] [Accepted: 07/20/2007] [Indexed: 01/03/2023]
Abstract
Epicatechin gallate (ECG) is the third major catechin component in green tea, but it shows strong biological activity in some aspects, including apoptosis, cell growth inhibition, and membrane transport system in various cells. We previously reported that ECG induces activating transcription factor 3 (ATF3), which is involved in pro-apoptosis in HCT-116 cells. In this report, we present a molecular mechanism by which ECG induces ATF3 expression at the transcriptional level. We found that Sp3 contributed to the basal expression of the ATF3 gene, whereas EGR-1 played an important role in ECG-induced ATF3 expression in HCT-116 cells, as assessed by EMSA and co-transfection experiments. These results suggested that EGR-1, a tumour suppressor protein, could substantiate ECG's role of ATF3 expression in human colorectal cancer cells. We also found that pro-oxidant activity of ECG contributed to ECG-induced ATF3 expression.
Collapse
Affiliation(s)
- Kyou-Nam Cho
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | - Mugdha Sukhthankar
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | - Seong-Ho Lee
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Korea
| | - Seung Joon Baek
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
- * Corresponding author: Tel.: +1 865 974 8216; fax: +1 865 974 5616. E-mail: (S.J. Baek)
| |
Collapse
|
41
|
Bessette DC, Wong PCW, Pallen CJ. PRL-3: a metastasis-associated phosphatase in search of a function. Cells Tissues Organs 2007; 185:232-6. [PMID: 17587829 DOI: 10.1159/000101324] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The molecular and cellular events involved in cancer progression and metastasis remain much less well-defined than those involved in oncogenesis, despite the fact that cell metastasis is the major factor in cancer mortality. Thus, the discovery that the expression of a protein tyrosine phosphatase, protein of regenerating liver-3 (PRL-3), is upregulated in colon cancer metastases provided an exciting indication that the altered regulation of specific protein tyrosine phosphorylation events and signaling pathways might characterize these metastatic cells and/or be key in promoting the tumor-to-metastasis transition in this, and perhaps other, cancers of epithelial origin. However, the cellular substrate(s) of PRL-3 has not been identified, and little is known of PRL-3-mediated cellular signaling pathways. This review illustrates the significance of PRL-3 in promoting metastasis and the importance of determining the endogenous role of PRL-3.
Collapse
Affiliation(s)
- Darrell C Bessette
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
42
|
Miskad UA, Semba S, Kato H, Matsukawa Y, Kodama Y, Mizuuchi E, Maeda N, Yanagihara K, Yokozaki H. High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: an in situ hybridization study. Virchows Arch 2007; 450:303-10. [PMID: 17235563 DOI: 10.1007/s00428-006-0361-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 11/26/2006] [Accepted: 12/19/2006] [Indexed: 12/29/2022]
Abstract
Phosphatase of regenerating liver (PRL)-3, encoding a 22-kD low molecular weight tyrosine phosphatase, has been reported to be associated with metastasis of colorectal carcinoma. We assessed the levels of PRL-3 mRNA expression to know whether its up-regulation was involved in progression and metastasis of gastric carcinoma. Levels of PRL-3 expression in 94 human gastric adenocarcinomas and 54 matched lymph node metastases were detected by in situ hybridization and compared with clinicopathological characteristics including prognosis. High PRL-3 expression was detected in 36.2% of primary gastric carcinoma (with nodal metastasis, 55.6%; without nodal metastasis, 10%; P < 0.001) and in 74.1% of lymph node metastases. The incidence of high PRL-3 expression in lymph node metastasis was significantly higher than in primary tumors (P < 0.044). Moreover, high expression of PRL-3 was closely associated with tumor size, lymphatic invasion, venous invasion, extent of lymph node metastasis, and tumor stage. These results suggest that high PRL-3 expression may participate in the progression and metastasis of gastric carcinoma. PRL-3 might be a novel molecular marker for aggressive gastric cancer.
Collapse
Affiliation(s)
- U A Miskad
- Division of Surgical Pathology, Department of Biomedical Informatics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fujino M, Kawasaki M, Adachi K, Li XK. Differential-display analysis of gene expression in livers from normal and partially hepatectomized mice. Transplant Proc 2007; 38:2701-4. [PMID: 17098044 DOI: 10.1016/j.transproceed.2006.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Partial hepatectomy, resulting in the removal of approximately 70% of the liver, is widely utilized for studies of liver growth in experimental animals. The regenerative response is proportional to the amount of liver removed. Knowing when and where genes are expressed provides a strong clue as to its biological role. The RNA differential-display (DD) technique facilitates monitoring the differential expression of a large number of activated or suppressed genes under various biological conditions. To reveal mechanisms of liver regeneration, we performed a comparative analysis of gene expression during liver regeneration using DD. We sacrificed male Balb/c mice, aged 10 to 12 weeks, at 0, 24, 48, and 72 hours, and 1 and 2 weeks after PHx. The livers were weighed, and the amount of glutamic-oxaloacetate transaminase in serum measured. We extracted the total RNA from frozen liver tissue and confirmed the RNA quality using a lab-chip system. DD analysis was performed essentially as described by Liang and Pardee. Semiquantitative reverse-transcription polymerase chain reaction was performed to confirm the results of DD analysis. Of the 56 fragments that exhibited changed expression levels during PHx, 39 were cloned and sequenced. There were 31 known genes, 13 unknown genes, and 9 expressed-sequence tags. These results indicated that DD is a powerful approach for monitoring molecular events in the regenerating liver.
Collapse
Affiliation(s)
- M Fujino
- Laboratory of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | |
Collapse
|
44
|
Krapivner S, Chernogubova E, Ericsson M, Ahlbeck-Glader C, Hamsten A, van 't Hooft FM. Human evidence for the involvement of insulin-induced gene 1 in the regulation of plasma glucose concentration. Diabetologia 2007; 50:94-102. [PMID: 17106696 DOI: 10.1007/s00125-006-0479-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 08/14/2006] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS Insulin-induced gene 1 (INSIG1) is a protein that blocks proteolytic activation of sterol regulatory element-binding proteins (SREBPs), transcription factors that activate genes regulating cholesterol and fatty acid metabolism and possibly genes involved in glucose homeostasis. In search of genetic regulation of these processes we examined human INSIG1 for common polymorphisms and analysed their associations with biochemical parameters related to lipid and glucose metabolism. METHODS Associations between common polymorphisms in INSIG1 and several biochemical parameters were analysed in a group of 618 healthy, 50-year-old men. A replication analysis was performed in a cohort of 472 healthy, middle-aged men. The impact of one promoter polymorphism on oral glucose tolerance was analysed in a subset of 181 subjects. Small interfering RNA (siRNA) inhibition was used to test the significance of INSIG1 for gene expression in human Huh7 hepatoma cells. RESULTS A potentially functional polymorphism, a C to T substitution at position -169, was discovered in a highly conserved section of the promoter. Significant relationships between the -169C>T polymorphism and plasma glucose concentration were found in two cohorts of healthy, middle-aged men (p < 0.01 and p < 0.02, respectively). The -169T allele was associated with significantly lower post-load plasma glucose concentrations. A significant (p = 0.02) reduction in expression of phosphoenolpyruvate carboxykinase (PCK2) was observed following siRNA inhibition of INSIG1 in human Huh7 hepatoma cells. CONCLUSIONS/INTERPRETATION Population studies demonstrate that INSIG1 plays a role in glucose homeostasis. Experiments with siRNA suggest that this action of INSIG1 is related to SREBP-mediated regulation of PCK2.
Collapse
MESH Headings
- Adult
- Animals
- Base Sequence
- Blood Glucose/genetics
- Blood Glucose/metabolism
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cohort Studies
- Homeostasis/physiology
- Humans
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Middle Aged
- Molecular Sequence Data
- Polymorphism, Genetic/genetics
- Polymorphism, Genetic/physiology
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
Collapse
Affiliation(s)
- S Krapivner
- Atherosclerosis Research Unit, King Gustaf V Research Institute, Karolinska University Hospital, 17176, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Dumaual CM, Sandusky GE, Crowell PL, Randall SK. Cellular localization of PRL-1 and PRL-2 gene expression in normal adult human tissues. J Histochem Cytochem 2006; 54:1401-12. [PMID: 16957164 PMCID: PMC3958126 DOI: 10.1369/jhc.6a7019.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent evidence suggests that the PRL-1 and -2 phosphatases may be multifunctional enzymes with diverse roles in a variety of tissue and cell types. Northern blotting has previously shown widespread expression of both transcripts; however, little is known about the cell type-specific expression of either gene, especially in human tissues. Therefore, we investigated expression patterns for PRL-1 and -2 genes in multiple normal, adult human tissues using in situ hybridization. Although both transcripts were ubiquitously expressed, they exhibited strikingly different patterns of expression. PRL-2 was expressed heavily in almost every tissue and cell type examined, whereas PRL-1 expression levels varied considerably both between tissue types and between individuals. Widespread expression of PRL-1 and -2 in multiple organ systems suggests an important functional role for these enzymes in normal tissue homeostasis. In addition, the variable patterns of expression for these genes may provide distinct activities in each tissue or cell type.
Collapse
Affiliation(s)
- Carmen M Dumaual
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA.
| | | | | | | |
Collapse
|
46
|
Radke I, Götte M, Kersting C, Mattsson B, Kiesel L, Wülfing P. Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer. Br J Cancer 2006; 95:347-54. [PMID: 16832410 PMCID: PMC2360632 DOI: 10.1038/sj.bjc.6603261] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to investigate the expression of the protein tyrosine phosphatases (PTP) PRL-1, PRL-2, and PRL-3 in human breast cancer and to evaluate its clinical and prognostic significance. PRL-PTP mRNA expression was examined in malignant (n=7) and nonmalignant (n=7) cryoconserved breast tissue samples as well as in eight breast cancer cell lines by RT–PCR. Furthermore, protein expression of PRL-3 was analysed semiquantitatively by immunohistochemistry in ductal breast carcinoma in situ (n=135) and invasive breast cancer (n=147) by use of tissue microarray technology (TMA). In 24 lymph node-positive patients we selected the corresponding lymph node metastases for analysis of PRL-3 expression, and a validation set (n=99) of invasive breast cancer samples was examined. Staining results were correlated with clinicopathological parameters and long-term follow-up. PRL-3 mRNA expression was significantly higher in malignant compared to benign breast tissue. For PRL-1 and PRL-2 expression no significant differences were observed. Staining of TMAs showed PRL-3 expression in 85.9% ductal carcinoma in situ and 75.5% invasive breast carcinomas. Analysis of survival parameters revealed a shorter disease-free survival (DFS) in patients with PRL-3-positive carcinomas, and in particular a significantly shorter DFS in nodal-positive patients with PRL-3 overexpressing tumours as compared to PRL-3-negative breast carcinomas (66±7 months (95% CI, 52–80) vs 97±9 months (95% CI, 79–115); P=0.032). Moreover, we found a more frequent expression of PRL-3 in lymph node metastases as compared to the primary tumours (91.7 vs 66.7%; P=0.033). Our results suggest that PRL-3 might serve as a novel prognostic factor in breast cancer, which may help to predict an adverse disease outcome.
Collapse
Affiliation(s)
- I Radke
- Department of Obstetrics and Gynaecology, University of Münster, Albert-Schweitzer-Str. 33, D-48149 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Wu JJ, Roth RJ, Anderson EJ, Hong EG, Lee MK, Choi CS, Neufer PD, Shulman GI, Kim JK, Bennett AM. Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab 2006; 4:61-73. [PMID: 16814733 DOI: 10.1016/j.cmet.2006.05.010] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 04/07/2006] [Accepted: 05/18/2006] [Indexed: 12/31/2022]
Abstract
The mitogen-activated protein kinases (MAPK) play critical roles in the pathogenesis of diabetes and obesity. The MAPKs are inactivated by MAPK phosphatases (MKPs) either in the cytosol or nucleus. Here we show that mice lacking the nuclear-localized MKP, MKP-1 (mkp-1(-/-)), have enhanced Erk, p38 MAPK and c-Jun NH(2)-terminal kinase (JNK) activities in insulin-responsive tissues as compared with wild-type mice. Although JNK promotes insulin resistance, mkp-1(-/-) mice exhibited unimpaired insulin-mediated signaling and glucose homeostasis. We reconciled these results by demonstrating that in mkp-1(-/-) mice, JNK activity was increased in the nucleus, but not the cytosol. Significantly, mkp-1(-/-) mice are resistant to diet-induced obesity due to enhanced energy expenditure, but succumb to glucose intolerance on a high fat diet. These results suggest that nuclear regulation of the MAPKs by MKP-1 is essential for the management of metabolic homeostasis in a manner that is spatially uncoupled from the cytosolic actions of the MAPKs.
Collapse
Affiliation(s)
- J Julie Wu
- Department of Pharmacology, Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Cholesterol is an essential component of animal cell membranes, and its concentration is tightly controlled by a feedback system that operates at transcriptional and posttranscriptional levels. Here, we discuss recent advances that explain how cells employ an ensemble of membrane-embedded proteins to monitor sterol concentrations and adjust sterol synthesis and uptake.
Collapse
Affiliation(s)
- Joseph L Goldstein
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | |
Collapse
|
49
|
Dinić S, Bogojević D, Petrović M, Poznanović G, Ivanovic-Matić S, Mihailović M. C/EBP alpha and C/EBP beta regulate haptoglobin gene expression during rat liver development and the acute-phase response. Mol Biol Rep 2006; 32:141-7. [PMID: 16172914 DOI: 10.1007/s11033-005-0750-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
The participation of C/EBP alpha and C/EBP beta in the transcriptional regulation of the haptoglobin (Hp) gene throughout liver development and the acute-phase (AP) response was examined. Western immunoblot analysis revealed that the relative concentrations of C/EBP alpha and C/EBP beta increased during differentiation in two nuclear protein fractions - the nuclear extract and nuclear matrix. The AP reaction was accompanied by a decrease of the relative concentration of C/EBP alpha and an increase of C/EBP beta during development in both protein fractions. Using Western analysis after DNA-affinity chromatography it was observed that a 45 kDa C/EBP alpha isoform displayed a binding affinity towards the Hp gene hormone responsive element (HRE) in both pre- and postnatal livers. In the course of the AP response DNA binding of the 45 kDa isoform was detected only in the adult, when its binding affinity decreased. The 35 kDa C/EBP beta isoform exhibited a binding affinity towards the Hp HRE after the second week from birth, whereas the AP response promoted an enhanced binding of 35 kDa isoform after the first postnatal week. These results indicate that Hp gene transcription is regulated by C/EBP alpha during normal liver development, whereas C/EBP beta is involved in the AP regulation during the later phase of differentiation and in the adult.
Collapse
Affiliation(s)
- Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research, Despot Stefan Blvd 142, Belgrade 11060, Serbia and Montenegro
| | | | | | | | | | | |
Collapse
|
50
|
DeAngelis RA, Markiewski MM, Taub R, Lambris JD. A high-fat diet impairs liver regeneration in C57BL/6 mice through overexpression of the NF-kappaB inhibitor, IkappaBalpha. Hepatology 2005; 42:1148-57. [PMID: 16231352 DOI: 10.1002/hep.20879] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the growing incidence of obesity, knowledge of how this condition, as well as associated steatosis, affects liver regeneration remains scarce. Many previous studies have used models of steatohepatitis or obesity induced by genetic alterations. In contrast, our studies on liver regeneration have focused on the effects of obesity resulting solely from high amounts of fat in the diet. This model more closely reflects the detrimental effects of dietary habits responsible for increased morbidity due to obesity and its complications in well-developed Western societies. Impairment of liver regeneration was observed after partial hepatectomy in mice fed a high-fat diet. Fatty livers were more susceptible to posthepatectomy damage and failure. The underlying molecular mechanism was associated with increased inhibitor of nuclear factor-kappa B alpha (IkappaBalpha) expression, which inhibited nuclear factor-kappa B (NF-kappaB) activation and induction of its target genes, cyclin D1 and Bcl-xL, increasing sensitivity to apoptosis initiated by elevated tumor necrosis factor-alpha. In addition, since mice fed with a high-fat diet have higher leptin levels caused by increased adiposity, our work supports the hypothesis that the impairment of regeneration previously seen in genetically obese mice indeed results from liver steatosis rather than the disruption of leptin signaling. In conclusion, high fat in the diet impairs liver regeneration and predisposes steatotic livers to increased injury through IkappaBalpha overexpression and subsequent NF-kappaB inhibition.
Collapse
Affiliation(s)
- Robert A DeAngelis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|