1
|
Zeng X, Lee HK, Wang C, Achikeh P, Liu C, Hennighausen L. The interdependence of mammary-specific super-enhancers and their native promoters facilitates gene activation during pregnancy. Exp Mol Med 2020; 52:682-690. [PMID: 32321991 PMCID: PMC7210877 DOI: 10.1038/s12276-020-0425-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 11/09/2022] Open
Abstract
Lineage-specific genetic programs rely on cell-restricted super-enhancers, which are platforms for high-density transcription factor occupation. It is not known whether super-enhancers synergize specifically with their native promoters or provide autonomous and independent regulatory platforms. Here, we investigated the ability of the mammary Wap super-enhancer to activate the promoter of the juxtaposed and ubiquitously expressed Tbrg4 gene in the mouse mammary gland. The Wap super-enhancer was fused, alone or in combination with the Wap promoter, to the Tbrg4 gene. While the super-enhancer increased the expression of the Tbrg4 promoter five-fold, the combination of the super-enhancer and promoter resulted in 80-fold gene upregulation, demonstrating lineage-specific promoter-enhancer synergy. Employing ChIP-seq profiling to determine transcription factor binding and identify activating histone marks, we uncovered a chromatin platform that enables the high-level expression of the native promoter-enhancer but not the heterologous promoter. Taken together, our data reveal that lineage-specific enhancer-promoter synergy is critical for mammary gene regulation during pregnancy and lactation.
Collapse
Affiliation(s)
- Xianke Zeng
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Precious Achikeh
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Derksen PWB, Braumuller TM, van der Burg E, Hornsveld M, Mesman E, Wesseling J, Krimpenfort P, Jonkers J. Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice. Dis Model Mech 2011; 4:347-58. [PMID: 21282721 PMCID: PMC3097456 DOI: 10.1242/dmm.006395] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most common malignancy in women of the Western world. Even though a large percentage of breast cancer patients show pathological complete remission after standard treatment regimes, approximately 30-40% are non-responsive and ultimately develop metastatic disease. To generate a good preclinical model of invasive breast cancer, we have taken a tissue-specific approach to somatically inactivate p53 and E-cadherin, the cardinal cell-cell adhesion receptor that is strongly associated with tumor invasiveness. In breast cancer, E-cadherin is found mutated or otherwise functionally silenced in invasive lobular carcinoma (ILC), which accounts for 10-15% of all breast cancers. We show that mammary-specific stochastic inactivation of conditional E-cadherin and p53 results in impaired mammary gland function during pregnancy through the induction of anoikis resistance of mammary epithelium, resulting in loss of epithelial organization and a dysfunctional mammary gland. Moreover, combined inactivation of E-cadherin and p53 induced lactation-independent development of invasive and metastatic mammary carcinomas, which showed strong resemblance to human pleomorphic ILC. Dissemination patterns of mouse ILC mimic the human malignancy, showing metastasis to the gastrointestinal tract, peritoneum, lung, lymph nodes and bone. Our results confirm that loss of E-cadherin contributes to both mammary tumor initiation and metastasis, and establish a preclinical mouse model of human ILC that can be used for the development of novel intervention strategies to treat invasive breast cancer.
Collapse
Affiliation(s)
- Patrick W B Derksen
- Division of Molecular Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Kerr D, Furth P, Powell A, Wall R. Expression of gene‐gun injected plasmid DNA in the ovine mammary gland and in lymph nodes draining the injection site. Anim Biotechnol 2009. [DOI: 10.1080/10495399609525846] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Montazer-Torbati MB, Hue-Beauvais C, Droineau S, Ballester M, Coant N, Aujean E, Petitbarat M, Rijnkels M, Devinoy E. Epigenetic modifications and chromatin loop organization explain the different expression profiles of the Tbrg4, WAP and Ramp3 genes. Exp Cell Res 2008; 314:975-87. [PMID: 18255060 DOI: 10.1016/j.yexcr.2008.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 11/24/2007] [Accepted: 01/06/2008] [Indexed: 02/07/2023]
Abstract
Whey Acidic Protein (WAP) gene expression is specific to the mammary gland and regulated by lactogenic hormones to peak during lactation. It differs markedly from the more constitutive expression of the two flanking genes, Ramp3 and Tbrg4. Our results show that the tight regulation of WAP gene expression parallels variations in the chromatin structure and DNA methylation profile throughout the Ramp3-WAP-Tbrg4 locus. Three Matrix Attachment Regions (MAR) have been predicted in this locus. Two of them are located between regions exhibiting open and closed chromatin structures in the liver. The third, located around the transcription start site of the Tbrg4 gene, interacts with topoisomerase II in HC11 mouse mammary cells, and in these cells anchors the chromatin loop to the nuclear matrix. Furthermore, if lactogenic hormones are present in these cells, the chromatin loop surrounding the WAP gene is more tightly attached to the nuclear structure, as observed after a high salt treatment of the nuclei and the formation of nuclear halos. Taken together, our results point to a combination of several epigenetic events that may explain the differential expression pattern of the WAP locus in relation to tissue and developmental stages.
Collapse
|
5
|
Kim JW, Roberts C, Maruyama Y, Berg S, Roper S, Chaudhari N. Faithful Expression of GFP from the PLCβ2 Promoter in a Functional Class of Taste Receptor Cells. Chem Senses 2006; 31:213-9. [PMID: 16394244 DOI: 10.1093/chemse/bjj021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phospholipase C-type beta2 (PLCbeta2) is expressed in a subset of cells within mammalian taste buds. This enzyme is involved in the transduction of sweet, bitter, and umami stimuli and thus is believed to be a marker for gustatory sensory receptor cells. We have developed transgenic mice expressing green fluorescent protein (GFP) under the control of the PLCbeta2 promoter to enable one to identify these cells and record their physiological activity in living preparations. Expression of GFP (especially in lines with more than one copy integrated) is strong enough to be detected in intact tissue preparations using epifluorescence microscopy. By immunohistochemistry, we confirmed that the overwhelming majority of cells expressing GFP are those that endogenously express PLCbeta2. Expression of the GFP transgene in circumvallate papillae occurs at about the same time during development as endogenous PLCbeta2 expression. When loaded with a calcium-sensitive dye in situ, GFP-positive taste cells produce typical Ca2+ responses to a taste stimulus, the bitter compound cycloheximide. These PLCbeta2 promoter-GFP transgenic lines promise to be useful for studying taste transduction, sensory signal processing, and taste bud development.
Collapse
Affiliation(s)
- Joung Woul Kim
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine (RMSB 4040), 1600 NW 10th Avenue, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
6
|
Reichenstein M, German T, Barash I. BLG-e1 - a novel regulatory element in the distal region of the beta-lactoglobulin gene promoter. FEBS Lett 2005; 579:2097-104. [PMID: 15811325 DOI: 10.1016/j.febslet.2005.02.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Revised: 02/16/2005] [Accepted: 02/20/2005] [Indexed: 10/25/2022]
Abstract
beta-Lactoglobulin (BLG) is a major ruminant milk protein. A regulatory element, termed BLG-e1, was defined in the distal region of the ovine BLG gene promoter. This 299-bp element lacks the established cis-regulatory sequences that affect milk-protein gene expression. Nevertheless, it alters the binding of downstream BLG sequences to histone H4 and the sensitivity of the histone-DNA complexes to trichostatin A treatment. In mammary cells cultured under favorable lactogenic conditions, BLG-e1 acts as a potent, position-independent silencer of BLG/luciferase expression, and similarly affects the promoter activity of the mouse whey acidic protein gene. Intragenic sequences upstream of BLG exon 2 reverse the silencing effect of BLG-e1 in vitro and in transgenic mice.
Collapse
Affiliation(s)
- Moshe Reichenstein
- Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan 50250, Israel
| | | | | |
Collapse
|
7
|
Sohn BH, Chang HG, Kang HS, Yoon H, Bae YS, Lee KK, Kim SJ. High level expression of the bioactive human interleukin-10 in milk of transgenic mice. J Biotechnol 2003; 103:11-9. [PMID: 12770500 DOI: 10.1016/s0168-1656(03)00072-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human interleukin-10 (hIL-10) has wide spectrum of anti-inflammatory activities and has shown a potential to be used for treatment of inflammatory or immune illness. In this study, transgenic mice that over-express human interleukin-10 (IL-10) in their milk were generated using a bovine beta-casein/human IL-10 hybrid gene. After cloning of the IL-10 gene, a 22 kb hybrid gene was constructed by linking a 10 kb promoter sequence of the bovine beta-casein gene to the cloned 12 kb IL-10 gene. In six of the eight transgenic mice, the transgene RNA was expressed only in the mammary gland and in the other two mice, it was also slightly expressed in the lung. The highest human IL-10 level in milk was 1620 microg x ml(-1). Notably, transgenes in all the eight transgenic mice were expressed regardless of the integration site even though no correlation was shown between the copy numbers of the transgene and expression level. These results suggest that the genomic sequence of the human IL-10 gene can induce the IL-10 expression at high levels under the control of the bovine beta-casein promoter.
Collapse
Affiliation(s)
- Bo Hwa Sohn
- Department of Biological Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Tepera SB, McCrea PD, Rosen JM. A beta-catenin survival signal is required for normal lobular development in the mammary gland. J Cell Sci 2003; 116:1137-49. [PMID: 12584256 DOI: 10.1242/jcs.00334] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Wnt (wingless) family of secreted glycoproteins initiates a signalling pathway implicated in the regulation of both normal mouse mammary gland development and tumorigenesis. Multiple Wnt signals ultimately converge on the multifunctional protein beta-catenin to activate the transcription of target genes. Although beta-catenin plays a crucial role in canonical Wnt signalling, it also functions in epithelial cell-cell adhesion at the adherens junctions. This study was designed to isolate beta-catenin's signalling function from its role in adherence during mouse mammary gland development. A transgenic dominant-negative beta-catenin chimera (beta-eng), which retains normal protein-binding properties of wild-type beta-catenin but lacks its C-terminal signalling domain, was expressed preferentially in the mammary gland. Thus, beta-eng inhibits the signalling capacity of endogenous beta-catenin, while preserving normal cell-cell adhesion properties. Analysis of the mammary gland in transgenic mice revealed a severe inhibition of lobuloalveolar development and a failure of the mice to nurse their young. Expression of beta-eng resulted in an induction of apoptosis both in transgenic mice and in retrovirally transduced HC11 cells. Thus, endogenous beta-catenin expression appears to be required to provide a survival signal in mammary epithelial cells, which can be suppressed by transgenic expression of beta-eng. Comparison of the timing of transgene expression with the transgenic phenotype suggested a model in which beta-catenin's survival signal is required in lobular progenitors that later differentiate into lobuloalveolar clusters. This study illustrates the importance of beta-catenin signalling in mammary lobuloalveolar development.
Collapse
Affiliation(s)
- Stacey B Tepera
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
9
|
Abstract
Locus control regions (LCRs) are operationally defined by their ability to enhance the expression of linked genes to physiological levels in a tissue-specific and copy number-dependent manner at ectopic chromatin sites. Although their composition and locations relative to their cognate genes are different, LCRs have been described in a broad spectrum of mammalian gene systems, suggesting that they play an important role in the control of eukaryotic gene expression. The discovery of the LCR in the beta-globin locus and the characterization of LCRs in other loci reinforces the concept that developmental and cell lineage-specific regulation of gene expression relies not on gene-proximal elements such as promoters, enhancers, and silencers exclusively, but also on long-range interactions of various cis regulatory elements and dynamic chromatin alterations.
Collapse
Affiliation(s)
- Qiliang Li
- Division of Medical Genetics, Department of Genome Sciences, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
10
|
Brill S, Zvibel I, Halpern Z, Oren R. The role of fetal and adult hepatocyte extracellular matrix in the regulation of tissue-specific gene expression in fetal and adult hepatocytes. Eur J Cell Biol 2002; 81:43-50. [PMID: 11893078 DOI: 10.1078/0171-9335-00200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We explored the effect of extracellular matrix (ECM) produced by fetal and adult hepatocytes on tissue-specific gene expression and proliferation of fetal and adult hepatocytes. Adult hepatocytes ECM strongly induced expression of both albumin and HNF-4 in adult hepatocytes. In contrast, fibroblast ECM reduced the expression of mRNAs for albumin and alpha-fetoprotein in fetal hepatocytes. Adult hepatocytes ECM also increased the activity of liver-specific enzymes of adult hepatocytes (DPP IV and glucose-6-phosphatase) in both fetal and adult hepatocytes, while fetal hepatocyte-derived ECM increased activity of the fetal hepatocyte enzyme GGT in fetal hepatocytes. Fibroblast ECM was inhibitory for the activity of all enzymes assayed. Removal of heparin chains from the various matrices by pretreatment of the ECM with heparinase resulted in reduction of glucose-6-phosphatase and DPP IV in adult hepatocytes. Removal of chondroitin sulfate chains from fetal hepatocyte-derived ECM resulted in loss of induction of GGT in the fetal cells. Fetal hepatocytes proliferated best on adult hepatocyte-derived ECM. Adult hepatocytes showed only modest proliferation on both fetal and adult hepatocytes ECM and their growth was inhibited by fibroblast ECM. In conclusion, adult hepatocyte ECM better supports the expression of adult genes, whereas fetal hepatocyte ECM induced expression of fetal genes. Fibroblast derived-ECM was inhibitory for both proliferation and tissue-specific gene expression in fetal and adult hepatocytes. The data support a role for heparan sulfate being the active element in adult ECM, and chondroitin sulfate being the active element in fetal ECM.
Collapse
Affiliation(s)
- Shlomo Brill
- Liver Research Group, Gastroenterology Institute, Tel Aviv Sourasky Medical Center, Israel.
| | | | | | | |
Collapse
|
11
|
Galanis E, Vile R, Russell SJ. Delivery systems intended for in vivo gene therapy of cancer: targeting and replication competent viral vectors. Crit Rev Oncol Hematol 2001; 38:177-92. [PMID: 11369253 DOI: 10.1016/s1040-8428(01)00103-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cancer gene therapy represents one of the most rapidly evolving areas in pre-clinical and clinical cancer research. Application of gene transfer techniques in clinical trials has made increasingly obvious that several issues will need to be addressed prior to meaningful incorporation of gene therapy in the care of cancer patients. Two of the most important problems to overcome are lack of selectivity of the existing vectors and low efficiency of gene transfer. This review focuses on use of targeting and replication competent vectors in order to overcome these obstacles. Targeted gene therapy of malignancies can be achieved through vector targeting or transcriptional targeting and can improve the therapeutic index of gene transfer by preventing damage of normal tissues, an important requirement if systemic gene delivery is contemplated. Replication competent viral vectors can improve the efficiency of gene transfer. Provisionally replicating viruses can also improve the therapeutic index by targeting toxicity to tumor cells. A variety of provisionally replicating viruses, such as the attenuated adenovirus ONYX-015, the adenovirus CN706 that selectively replicates in prostate cancer cells, the double mutant herpes simplex virus G207, the human reovirus, and the Newcastle disease virus are currently in clinical trials. Early clinical results and limitations in the application of these vectors are discussed.
Collapse
Affiliation(s)
- E Galanis
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
12
|
Abstract
The beta-globin locus control region (LCR) is the founding member of a novel class of cis-acting regulatory elements that confer high level, tissue-specific, site-of-integration-independent, copy number-dependent expression on linked transgenes located in ectopic chromatin sites. Knowledge from beta-globin and other LCR studies has shed light on our understanding of the long-range interaction between enhancers and promoters, the relationship between chromatin conformation and transcriptional regulation, and the developmental regulation of multiple gene loci. After over a decade of investigation and discovery, we take a retrospective look at the beta-globin LCR and other LCRs, summarize their properties and review models of LCR function.
Collapse
Affiliation(s)
- Q Li
- Division of Medical Genetics, Mail Box 357720, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
13
|
Wall R. Biotechnology for the production of modified and innovative animal products: transgenic livestock bioreactors. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0301-6226(99)00030-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Barash I, Faerman A, Richenstein M, Kari R, Damary GM, Shani M, Bissell MJ. In vivo and in vitro expression of human serum albumin genomic sequences in mammary epithelial cells with beta-lactoglobulin and whey acidic protein promoters. Mol Reprod Dev 1999; 52:241-52. [PMID: 10206655 DOI: 10.1002/(sici)1098-2795(199903)52:3<241::aid-mrd1>3.0.co;2-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression pattern of human serum albumin (HSA) in transgenic mice carrying various HSA genomic sequences driven either by the mouse whey acidic protein (WAP) or the sheep beta-lactoglobulin (BLG) promoters, was compared. The pattern of HSA expression in both WAP/HSA and BLG/HSA transgenic lines was copy number independent, and the major site of ectopic expression was the skeletal muscle. Although an equal proportion of expressors was determined in both sets of mice (approximately 25% secreting >0.1 mg/ml), the highest level of HSA secreted into the milk in the WAP/HSA transgenic lines was one order of magnitude lower than in the BLG/HSA lines. Despite this difference, the HSA expression patterns in the mammary gland were similar and consisted of two levels of variegated expression. Studies using mammary explant cultures revealed a comparable responsiveness to the lactogenic hormones insulin, hydrocortisone, and prolactin, although the WAP/HSA gene constructs were more sensitive to the hydrocortisone effect than were the BLG/HSA vectors. When HSA vectors were stably transfected into the mouse mammary cell line CID-9, they displayed a hierarchy of expression, dependent upon the specific complement of HSA introns included. Nevertheless, the expression of HSA in four out of five WAP/HSA constructs was similar to their BLG/HSA counterparts. This construct-dependent, and promoter-independent, hierarchy was also found following transfection into the newly established Golda-1 ovine mammary epithelial cell line.
Collapse
Affiliation(s)
- I Barash
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | | | |
Collapse
|
15
|
Jänne J, Alhonen L, Hyttinen JM, Peura T, Tolvanen M, Korhonen VP. Transgenic bioreactors. BIOTECHNOLOGY ANNUAL REVIEW 1999; 4:55-74. [PMID: 9890138 DOI: 10.1016/s1387-2656(08)70067-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Since the generation of the first transgenic mice in 1980, transgene technology has also been successfully applied to large farm animals. Although this technology can be employed to improve certain production traits of livestock, this approach has not been very successful so far owing to unwanted effects encountered in the production animals. However, by using tissue-specific targeting of the transgene expression, it is possible to produce heterologous proteins in the extracellular space of large transgenic farm animals. Even though some recombinant proteins, such as human hemoglobin, have been produced in the blood of transgenic pigs, in the majority of the cases mammary gland targeted expression of the transgene has been employed. Using production genes driven by regulatory sequences of milk protein genes a number of valuable therapeutic proteins have been produced in the milk of transgenic bioreactors, ranging from rabbits to dairy cattle. Unlike bacterial fermentors, the mammary gland of transgenic bioreactors appear to carry out proper postsynthetic modifications of human proteins required for full biological activity. In comparison with mammalian cell bioreactors, transgenic livestock with mammary gland targeted expression seems to be able to produce valuable human therapeutic proteins at very low cost. Although not one transgenically produced therapeutic protein is yet on the market, the first such proteins have recently entered or even completed clinical trials required for their approval.
Collapse
Affiliation(s)
- J Jänne
- A.I. Virtanen Institute, University of Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
16
|
Lubon H. Transgenic animal bioreactors in biotechnology and production of blood proteins. BIOTECHNOLOGY ANNUAL REVIEW 1999; 4:1-54. [PMID: 9890137 DOI: 10.1016/s1387-2656(08)70066-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The regulatory elements of genes used to target the tissue-specific expression of heterologous human proteins have been studied in vitro and in transgenic mice. Hybrid genes exhibiting the desired performance have been introduced into large animals. Complex proteins like protein C, factor IX, factor VIII, fibrinogen and hemoglobin, in addition to simpler proteins like alpha 1-antitrypsin, antithrombin III, albumin and tissue plasminogen activator have been produced in transgenic livestock. The amount of functional protein secreted when the transgene is expressed at high levels may be limited by the required posttranslational modifications in host tissues. This can be overcome by engineering the transgenic bioreactor to express the appropriate modifying enzymes. Genetically engineered livestock are thus rapidly becoming a choice for the production of recombinant human blood proteins.
Collapse
Affiliation(s)
- H Lubon
- Plasma Derivatives Department, American Red Cross, Rockville, Maryland, USA.
| |
Collapse
|
17
|
Kioussis D, Festenstein R. Locus control regions: overcoming heterochromatin-induced gene inactivation in mammals. Curr Opin Genet Dev 1997; 7:614-9. [PMID: 9388777 DOI: 10.1016/s0959-437x(97)80008-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Differentiation of specific cell types during the development of mammals requires the selective silencing or activation of tissue-specific genes. Locus control regions (LCRs) are gene regulatory elements that act in cis to ensure that active transcriptional units are established in all cells of a given cell lineage. Over the past year, it has become clear that this process takes place at the level of chromatin remodelling, and that LCRs ensure that this decision is made by both alleles in every cell. Studies on LCRs and analysis of gene expression in transgenic mice at the single cell level has revealed that the breakdown in LCR function accompanying the deletion of specific sequences results in a phenomenon known as position effect variegation, described in detail in yeast and Drosophila. Thus, when located in close proximity to heterochromatin a transgene linked to a disabled LCR is randomly silenced in a proportion of cells. This finding implies that all subregions within an LCR are necessary to ensure the establishment of an open chromatin configuration of a gene even when the latter is located in a highly heterochromatic region.
Collapse
Affiliation(s)
- D Kioussis
- National Institute for Medical Research, Division of Molecular Immunology, London, UK.
| | | |
Collapse
|
18
|
Abstract
Amid the explosion of fundamental knowledge generated from transgenic animal models, a small group of scientists has been producing transgenic livestock with goals of improving animal production efficiency and generating new products. The ability to modify mammary-specific genes provides an opportunity to pursue several distinctly different avenues of research. The objective of the emerging gene "pharming" industry is to produce pharmaceuticals for treating human diseases. It is argued that mammary glands are an ideal site for producing complex bioactive proteins that can be cost effectively harvested and purified. Consequently, during the past decade, approximately a dozen companies have been created to capture the US market for pharmaceuticals produced from transgenic bioreactors estimated at $3 billion annually. Several products produced in this way are now in human clinical trials. Another research direction, which has been widely discussed but has received less attention in the laboratory, is genetic engineering of the bovine mammary gland to alter the composition of milk destined for human consumption. Proposals include increasing or altering endogenous proteins, decreasing fat, and altering milk composition to resemble that of human milk. Initial studies using transgenic mice to investigate the feasibility of enhancing manufacturing properties of milk have been encouraging. The potential profitability of gene "pharming" seems clear, as do the benefits of transgenic cows producing milk that has been optimized for food products. To take full advantage of enhanced milk, it may be desirable to restructure the method by which dairy producers are compensated. However, the cost of producing functional transgenic cattle will remain a severe limitation to realizing the potential of transgenic cattle until inefficiencies of transgenic technology are overcome. These inefficiencies include low rates of gene integration, poor embryo survival, and unpredictable transgene behavior.
Collapse
Affiliation(s)
- R J Wall
- Gene Evaluation and Mapping Laboratory, USDA-ARS-Livestock and Poultry Science Institute, Beltsville, MD 20705, USA
| | | | | |
Collapse
|
19
|
Ibáñez E, Folch JM, Vidal F, Coll A, Santaló J, Egozcue J, Sánchez A. Expression of caprine beta-lactoglobulin in the milk of transgenic mice. Transgenic Res 1997; 6:69-74. [PMID: 9032979 DOI: 10.1023/a:1018409217315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A 14.5 kb-long transgene containing the complete caprine beta-lactoglobulin gene transcription unit as well as 6.1 kb and 3.7 kb of the 5'- and 3'-flanking regions, respectively, was microinjected into pronuclear stage mouse embryos. Four lines of transgenic mice were obtained, three of them expressing the transgene in their mammary glands during lactation. Western blot analysis of caprine beta-lactoglobulin in the milk of hemizygous transgenic animals demonstrated the presence of the exogenous protein at concentrations up to 0.5 mg ml-1 of mouse milk.
Collapse
Affiliation(s)
- E Ibáñez
- Departament de Biologia Cellular i Fisiologia, Facultat de Ciències, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Walther W, Stein U. Targeted vectors for gene therapy of cancer and retroviral infections. Mol Biotechnol 1996; 6:267-86. [PMID: 9067974 DOI: 10.1007/bf02761707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gene therapy has developed to a technology which rapidly moved from the laboratory bench to the bedside in the clinic. This implies safe, efficient and targeted gene transfer systems for suitable application to the patient. Beside the development of such gene transfer vectors of viral or nonviral origin, improvement of cell type specific and inducible gene expression is pivotal for successful gene therapy leading to targeted gene action. Numerous gene therapy approaches for treatment of cancer and retroviral infections utilize cell type specific and/or regulatable promoter and enhancer sequences for the selective expression of therapeutic genes in the desired cell populations and tissues. In this article the recent developments and the potential of expression targeting are reviewed for gene therapy approaches of cancer and retroviral infections.
Collapse
Affiliation(s)
- W Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin
| | | |
Collapse
|
21
|
Lee TH, Baik MG, Im WB, Lee CS, Han YM, Kim SJ, Lee KK, Choi YJ. Effects of EHS matrix on expression of transgenes in HCII cells. In Vitro Cell Dev Biol Anim 1996; 32:454-6. [PMID: 8889597 DOI: 10.1007/bf02723045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Walther W, Stein U. Cell type specific and inducible promoters for vectors in gene therapy as an approach for cell targeting. J Mol Med (Berl) 1996; 74:379-92. [PMID: 8841950 DOI: 10.1007/bf00210632] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gene therapy is used to correct genetic defects or to deliver new therapeutic functions to the target cells. Viral vectors are employed mainly as a gene delivery system. A great variety of viral expression systems have been developed and assessed for their ability to transfer genes into somatic cells. In particular, retroviral and adenoviral mediated gene transfer have been extensively studied and improved. Preclinical and clinical studies covering a large range of genetic disorders are currently underway to solve basic issues dealing with gene transfer efficiencies, regulation of gene expression, and potential risks of the use of viral vectors. The majority of clinical gene therapy trials that employ viral vectors perform exvivo gene transfer into target cells. The main issue in potential clinical application of gene therapy is the need for increased gene transfer efficiency and target specificity associated with regulated gene expression at therapeutically relevant levels in vivo. Gene regulatory elements, such as promoters and enhancers, possess cell type specific activities and can be activated by certain induction factors (e.g., hormones, growth factors, cytokines, cytostatics, irradiation, heat shock) via responsive elements. A controlled and restricted expression of these genes can be achieved using such regulatory elements as internal promoters to drive the expression of therapeutic genes in viral vector constructs. In addition to high level and efficient gene expression, minimizing or excluding inappropriate gene expression in surrounding nontarget cells is of great importance for numerous gene therapeutic approaches. This contribution furnishes insight into the field of cell type specific promoter and enhancer systems which have been used for targeted and inducible expression of therapeutic genes in certain genetic disorders, viral infections, and malignancies. We also discuss promoters that represent attractive candidates for the construction of viral vectors.
Collapse
Affiliation(s)
- W Walther
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
23
|
Barash I, Nathan M, Kari R, Ilan N, Shani M, Hurwitz DR. Elements within the beta-lactoglobulin gene inhibit expression of human serum albumin cDNA and minigenes in transfected cells but rescue their expression in the mammary gland of transgenic mice. Nucleic Acids Res 1996; 24:602-10. [PMID: 8604300 PMCID: PMC145689 DOI: 10.1093/nar/24.4.602] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two new beta-lactoglobulin (BLG)/human serum albumin (HSA) hybrid gene vectors were constructed and tested for expression in COS-7 cells and in transgenic mice. The HSA sequences were inserted between the second and sixth BLG exons. Transient transfection experiments with these vectors as well as a series of additional vectors with either the BLG 5'- or 3'- intragenic sequences revealed that sequences within BLG exon 1/intron 1/exon 2 abrogated BLG- directed HSA expression in vitro, regardless of the presence of HSA introns or the origin of the 3' polyadenylation signal. In contrast, the same BLG expression cassette enabled the efficient expression of HSA cDNA or minigene in the mammary gland of transgenic mice with subsequent secretion of the corresponding protein into the milk of 56 and 82%, respectively of the mouse strains at levels up to 0.3 mg/ml. Previous attempts to express HSA cDNA inserted into exon 1 of the BLG gene had failed [Shani,M., Barash,I., Nathan,M., Ricca,G., Searfoss,G.H., Dekel,I., Faerman,A., Givol,D. and Hurwitz,D.R. (1992) Transgenic Res. 1, 195- 208]. The new BLG expression cassette conferred more stringent tissue specific expression than previously described BLG/HSA constructs [Barash,I, Faerman,A., Ratovitsky,T, Puzis,R., Nathan,M., Hurwitz,D.R. and Shani, M. (1994) Transgenic Res. 3, 141-151]. However, it was not able to insulate the transgenes from the surrounding host DNA sequences and did not result in copy number dependent expression in transgenics. Together, the in vitro and in vivo results suggest both positive and negative regulatory elements within the BLG intragenic sequences evaluated. The new BLG construct represents an extremely valuable vector for the efficient expression of cDNAs in the mammary gland of transgenic animals.
Collapse
Affiliation(s)
- I Barash
- Institute of Animal Science, Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Yarus S, Hadsell D, Rosen JM. Engineering transgenes for use in the mammary gland. GENETIC ENGINEERING 1996; 18:57-81. [PMID: 8785127 DOI: 10.1007/978-1-4899-1766-9_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S Yarus
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
26
|
Wei Y, Yarus S, Greenberg NM, Whitsett J, Rosen JM. Production of human surfactant protein C in milk of transgenic mice. Transgenic Res 1995; 4:232-40. [PMID: 7655513 DOI: 10.1007/bf01969116] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Respiratory distress syndrome (RDS), caused by lack of pulmonary surfactant, affects 65 000 infants annually in the USA. Surfactant replacement therapy reduces the morbidity and mortality associated with RDS. Human surfactant protein C (SP-C) is an important component of pulmonary surfactant. To produce human SP-C, a construct using the rat whey acidic protein (WAP) promoter and 3' untranslated regions to target expression of the human SP-C gene to the mammary gland of transgenic mice was created. WAP/SP-C mRNA expression was detected in all transgenic lines analysed. SP-C was expressed in a copy-number-dependent and integration-site-independent fashion, with levels of expression ranging from 0.01% to 36.0% of the endogenous mouse WAP mRNA, and WAP/SP-C mRNA expression levels were greater than those of of the endogenous mouse lung SP-C mRNA. Expression at the RNA level was specific to the mammary gland and paralleled the endogenous WAP expression pattern during mammary gland development. Expression and secretion of the SP-C protein in the lactating mammary gland was demonstrated by western blots performed on whole milk using an anti-SP-C polyclonal antibody. Immunoreactive proteins of MW 22 and 12-14 kDa appeared only in transgenic milk. The 22 kDa protein represents the proprotein, and the 12-14 kDa is a processed form of SP-C.
Collapse
Affiliation(s)
- Y Wei
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
27
|
Petitclerc D, Attal J, Théron MC, Bearzotti M, Bolifraud P, Kann G, Stinnakre MG, Pointu H, Puissant C, Houdebine LM. The effect of various introns and transcription terminators on the efficiency of expression vectors in various cultured cell lines and in the mammary gland of transgenic mice. J Biotechnol 1995; 40:169-78. [PMID: 7632393 DOI: 10.1016/0168-1656(95)00047-t] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Various combinations of promoters, introns and transcription terminators were used to drive the expression of bovine growth hormone (bGH) cDNA in different cell types. In constructs containing the human cytomegalovirus (hCMV) promoter and the SV40 late genes terminator, the intron from SV40 genes (VP1) was much more efficient, than the intron from the early genes (t). The synthetic intron SIS generated by the association of an adenovirus splice donor and an immunoglobulin G splice acceptor showed the highest activity. The respective potency of these introns was similar in several mammalian (CHO, HC11 and COS) and fish (TO2 and EPC) cells. The rabbit whey acidic protein (WAP) gene promoter was highly efficient to drive the expression of bGH gene in the HC11 mammary cell lines. In contrast, the bGH cDNA under the control of the same promoter was much less efficiently expressed when the SV40 VP1 intron and transcription terminator were used. The rabbit WAP gene and the human GH gene terminators did not or only moderately enhanced the expression of the construct WAP bGH cDNA. Introduction of a promoter sequence from the mouse mammary tumor virus (MMTV) LTR in the VP1 intron increased very significantly the expression of the WAP bGH cDNA. Although several of these vectors showed high potency when expressed stably in HC11 cells, all of them were only moderately efficient in transgenic mice. These data indicate that the VP1 and the SIS introns may be used to express foreign cDNAs with good efficiency in different cell types. The addition of an enhancer within an intron may still reinforce its efficiency. However, transfection experiments, even when stable expression is carried out, are poorly predictive of the potential efficiency of a vector in transgenic animals.
Collapse
Affiliation(s)
- D Petitclerc
- Agriculture et Agro-Alimentaire Canada, Est Lennoxville, Quebec
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Krnacik MJ, Li S, Liao J, Rosen JM. Position-independent expression of whey acidic protein transgenes. J Biol Chem 1995; 270:11119-29. [PMID: 7744742 DOI: 10.1074/jbc.270.19.11119] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The expression of a 3-kilobase genomic rat whey acidic protein (WAP) clone (-949/+2020) in transgenic mice has been demonstrated previously to be copy number-dependent and independent of the site of integration (Dale, T., Krnacik, M. J., Schmidhauser, C., Yang, C. Q.-L., Bissell, M. J., and Rosen, J. M. (1992) Mol. Cell. Biol. 12, 905-914). The present study demonstrated that position-independent expression of the rat WAP -949/+2020 transgene was dependent on transgene spacing. Position-independent expression also was inhibited by an internal replacement of 49 base pair within the conserved GC-rich 3'-untranslated region (3'-UTR) with an identically sized nonspecific DNA sequence. Using electrophoretic mobility shift assays, nuclear factors isolated from mouse and human cells were shown to associate specifically with the rWAP 3'-UTR DNA, but not with the 3'-UTR containing the internal replacement or specific point mutations. Since a single copy of the 3'-UTR inserted 5' of the promoter could not rescue the 3'-UTR deletion, the 3'-UTR element does not appear to be functioning as either a classic enhancer or insulator element. However, the level of expression of rWAP transgenes was correlated with transgene association with the chromosomal scaffold in vivo.
Collapse
Affiliation(s)
- M J Krnacik
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
29
|
Drohan WN, Zhang DW, Paleyanda RK, Chang R, Wroble M, Velander W, Lubon H. Inefficient processing of human protein C in the mouse mammary gland. Transgenic Res 1994; 3:355-64. [PMID: 8000432 DOI: 10.1007/bf01976767] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vitamin K-dependent plasma protein, human Protein C (HPC) has been expressed in transgenic mice, using a 4.2 kb mouse whey acidic protein (WAP) promoter, 9.0 kb HPC gene and 0.4 kb 3' flanking sequences. Expression was mammary gland-specific and the recombinant human Protein C (rHPC) was detected in milk at concentrations of 0.1 to 0.7 mg ml-1. SDS-PAGE revealed that the single, heavy and light chains of rHPC migrated with increased electrophoretic mobility, as compared to HPC. Enzymatic deglycosylation showed that these molecular weight disparities are in part due to differential glycosylation. The substantial increase observed in the amount of single chain protein, as well as the presence of the propeptide attached to 20-30% of rHPC, suggest that mouse mammary epithelial cells are not capable of efficient proteolytic processing of rHPC. The Km of purified rHPC for the S-2366 synthetic substrate was similar to that of plasma-derived HPC, while the specific activity was about 42-77%. Amino acid sequence analyses and low anticoagulant activity of purified rHPC suggest that gamma-carboxylation of rHPC is insufficient. These results show that proteolytic processing and gamma-carboxylation can be limiting events in the overexpression of fully biologically active rHPC in the mouse mammary gland.
Collapse
Affiliation(s)
- W N Drohan
- Holland Laboratory, American Red Cross, Rockville, MD 20855
| | | | | | | | | | | | | |
Collapse
|
30
|
Hurwitz DR, Nathan M, Barash I, Ilan N, Shani M. Specific combinations of human serum albumin introns direct high level expression of albumin in transfected COS cells and in the milk of transgenic mice. Transgenic Res 1994; 3:365-75. [PMID: 8000433 DOI: 10.1007/bf01976768] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new series of expression vectors, each comprised of the beta-lactoglobulin (BLG) promoter driving one of a variety of human serum albumin (HSA) minigenes or the entire gene, were evaluated for their ability to direct expression of HSA in vitro in COS tissue culture cells and into the milk of transgenic mice. Vectors directed a hierarchy of expression levels in vitro, dependent upon the specific complement of HSA introns included. HSA introns acted in a synergistic manner. In addition, minigenes comprised of specific subsets of introns were more efficacious than the entire HSA gene with all of its introns. Transgenic mice expressed as much as 10 mg ml-1 of HSA in their milk. Vectors comprised of specific intron subsets directed levels at 1 mg ml-1 or greater in the milk of 20% of generated transgenics. A statistical correlation between the expression level trend in vitro with the trend of expression in vivo (% which express) at detectable levels (p = 0.0015) and at the level of greater than 0.1 mg ml-1 (p = 0.0156) was demonstrated. A weak correlation existed (p = 0.0526) at in vivo levels of 1 mg ml-1 or greater. These new vectors are expected to direct the production of high levels of HSA in the milk of a large percentage of generated transgenic dairy animals.
Collapse
Affiliation(s)
- D R Hurwitz
- Rhône-Poulenc Rorer Central Research, Collegeville, PA 19426
| | | | | | | | | |
Collapse
|
31
|
Kolb AF, Günzburg WH, Albang R, Brem G, Erfle V, Salmons B. Negative regulatory element in the mammary specific whey acidic protein promoter. J Cell Biochem 1994; 56:245-61. [PMID: 7829586 DOI: 10.1002/jcb.240560219] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Expression of the whey acidic protein (WAP) gene is tightly regulated in a tissue and developmental stage specific manner, in that the WAP gene is exclusively expressed in the mammary gland during pregnancy and lactation. Using both deletion and competition analyses, evidence is provided for the existence of a negative regulatory element (NRE) in the WAP promoter located between -413 and -93 with respect to the WAP transcriptional initiation site. This NRE dramatically decreases transcription from linked heterologous promoter-reporter gene constructs. The activity of NRE requires WAP promoter sequences that are 230 bp apart since subfragments of the NRE fail to inhibit transcription of adjoining reporter genes. Nuclear extracts from different cell types, in which the WAP gene is not active, contain a protein or complex that specifically interacts with the entire NRE but not with subfragments of it. The contact points between this protein (NRE binding factor [NBF]) and the NRE element have been partially determined. Mutation of the implicated nucleotides severely reduces the ability of NBF to bind, and such mutated promoter fragments fail to alleviate transcriptional repression in competition experiments. This suggests that NBF binding to the NRE is at least in part responsible for the negative regulation of the WAP promoter. Since NBF is not detectable in the lactating mammary gland, where the WAP gene is expressed, we speculate that it may be a determinant of the expression spectrum of the WAP gene.
Collapse
Affiliation(s)
- A F Kolb
- Lehrstuhl für Molekulare Tierzucht, Ludwig-Maximilians Universität, München, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Romagnolo D, DiAugustine RP. Transgenic approaches for modifying the mammary gland to produce therapeutic proteins. ENVIRONMENTAL HEALTH PERSPECTIVES 1994; 102:846-851. [PMID: 9644191 PMCID: PMC1567344 DOI: 10.1289/ehp.94102846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bioengineering of the mammary gland to produce proteins of therapeutic and industrial value is the result of extensive investigation of the physiology of the mammary gland and the ability to generate transgenic animals. Targeting the expression of heterologous proteins to mammary tissue requires a thorough understanding of the biochemical events that coordinate growth and differentiation of the mammary gland and of the hormonal and developmental regulation of expression of milk protein genes. The characterization of mammary-specific promoter regions in milk protein genes and knowledge of the mechanisms that confer integration site-independent expression of transgenes have significantly contributed to modifying the mammary gland to produce heterologous proteins of therapeutic interest. The generation of large transgenic farm animals provides the opportunity for large-scale production of proteins in milk that have a therapeutic value but are naturally present at low concentrations in biological fluids. Transgenic mammary epithelial cells offer a versatile research model in biomedical, environmental health, and neonatal toxicology research.
Collapse
Affiliation(s)
- D Romagnolo
- Laboratory of Biochemical Risk Analysis, National Institute of Environmental and Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
33
|
Larsen HJ, Brodersen CH, Hjorth JP. High-level salivary gland expression in transgenic mice. Transgenic Res 1994; 3:311-6. [PMID: 7951333 DOI: 10.1007/bf01973591] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A 7.1 kb mini-gene construct containing cloned DNA from the murine parotid secretory protein (PSP) gene with 6.2 kb of the promoter, has previously been shown to direct specific mRNA expression to the salivary glands in transgenic mice. However, the level of transgene expression in the parotid gland was only a few percent of the endogenous level. This indicated that elements necessary for high-level expression are still to be found. In this study, we have searched for such regulatory elements in additional flanking regions by using a 25 kb cloned Pspb fragment containing the complete structural gene, 11.4 kb of 5'-flanking sequence, and 2.5 kb 3'-flanking sequence as a transgene. To distinguish the expression of the transgene from that of the endogenous gene, we took advantage of an allelic difference, using an oligonucleotide that recognized the mRNA from Pspb and the transgene but not that from the other allele, Pspa. The expression of the transgene was examined in animals homozygous for Pspa. Three independent integrations all exhibited a level of parotid-gland-specific expression that corresponded to that of the endogenous gene. Thus, sequences responsible for this high-level PSP mRNA expression are situated within the genomic DNA of the transgene.
Collapse
Affiliation(s)
- H J Larsen
- Department of Molecular Biology, University of Aarhus, Denmark
| | | | | |
Collapse
|
34
|
|
35
|
Affiliation(s)
- R D Burgoyne
- Physiological Laboratory, University of Liverpool, U.K
| | | |
Collapse
|
36
|
Jänne J, Hyttinen JM, Peura T, Tolvanen M, Alhonen L, Sinervirta R, Halmekytö M. Transgenic bioreactors. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:859-70. [PMID: 8063010 DOI: 10.1016/0020-711x(94)90078-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. Although many human therapeutic proteins are currently produced in microbial fermentors using recombinant DNA techniques, it is obvious that microbial processing is not suitable for a large number of bioactive proteins owing to the inability of bacteria to carry out postsynthetic modification reactions required for full biological activity. 2. This disadvantage does not apply to animal cell bioreactors that can generate biologically fully active entities, yet the use of large-scale animal cell cultures for production purposes is prohibitively expensive. 3. With the advent of transgenic technology, the production of valuable human pharmaceuticals in large farm animals (pig, sheep, goat and dairy cattle) has become more and more attractive as a high-quantity, low-cost alternative. By employing targeted gene transfer, e.g. using mammary gland-specific regulatory sequences fused with the desired production genes, it is possible to govern the expression to occur exclusively in the mammary gland and hence the gene product is being ultimately secreted in the milk. 4. While reviewing the remarkable progress in this field that has even led to commercial exploitations, we will outline in somewhat greater detail our strategy for the use of dairy cattle as a bioreactor for valuable proteins of pharmaceutical interest.
Collapse
Affiliation(s)
- J Jänne
- Department of Biochemistry & Biotechnology, University of Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Different systems are being studied and used to prepare recombinant proteins for pharmaceutical use. The blood, and still more the milk, from transgenic animals appear a very attractive source of pharmaceuticals. The cells from these animals are expected to produce well-matured proteins in potentially huge amounts. Several problems remain before this process becomes used in a large scale. Gene transfer remains a difficult and costly task for farm animals. The vectors carrying the genes coding for the proteins of interest are of unpredictable efficiency. Improvement of these vectors includes the choice of efficient promoters, introns and transcription terminators, the addition of matrix attached regions (MAR) and specialized chromatin sequences (SCS) to enhance the expression of the transgenes and to insulate them from the chromatin environment. Mice are routinely used to evaluate the gene constructs to be transferred into larger animals. Mice can also be utilized to prepare amounts as high as a few hundred mg of recombinant proteins from their milk. Rabbit appears adequate for amounts not higher than 1 kg per year. For larger quantities, goat, sheep, pig and cow are required. No recombinant proteins extracted from the blood or milk of transgenic animals are yet on the market. The relatively slow but real progress to improving the efficiency of this process inclines to be reasonably optimistic. Predictive reports suggest that 10% of the recombinant proteins, corresponding to a 100 million dollars annual market, will be prepared from the milk of transgenic animals by the end of the century.
Collapse
Affiliation(s)
- L M Houdebine
- Unité de Différenciation Cellulaire, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| |
Collapse
|
38
|
Barash I, Faerman A, Ratovitsky T, Puzis R, Nathan M, Hurwitz DR, Shani M. Ectopic expression of beta-lactoglobulin/human serum albumin fusion genes in transgenic mice: hormonal regulation and in situ localization. Transgenic Res 1994; 3:141-51. [PMID: 8025593 DOI: 10.1007/bf01973981] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We produced transgenic mice carrying the native sheep beta-lactoglobulin (BLG) or fusion genes composed of the BLG promoter and human serum albumin (HSA) minigenes. BLG was expressed exclusively in the mammary glands of the virgin and lactating transgenic mice evaluated. In contrast, transgenic females carrying the BLG/HSA fusion constructs also expressed the HSA RNA ectopically in skeletal muscle, kidney, brain, spleen, salivary gland and skin. Ectopic expression of HSA RNA was detected only in strains that express the transgene in the mammary gland. There was no obvious correlation between the level of the HSA RNA expressed in the mammary gland and that found ectopically. In three transgenic strains analysed, the expression of HSA RNA in kidney and skeletal muscle increased during pregnancy and lactation, whereas in the brain HSA expression decreased during lactation in one of the strains. HSA protein was synthesized in skeletal muscle and skin of strain #23 and its level was higher in lactating mice compared with virgin mice. Expression of HSA was also analysed in males and was found to be more stringently controlled than in females of the same strains. In situ hybridization analyses localized the expressed transgene in the skin, kidney, brain and salivary glands of various transgenic strains. Distinct strain-specific and cell-type specific HSA expression patterns were observed in the skin. This is in contrast to the exclusive expression of the HSA transgene in epithelial cells surrounding the alveoli of the mammary gland. Taken together, these results suggest that the absence of sufficient mammary-specific regulatory elements in the BLG promoter sequences and/or the juxtaposition of the BLG promoter with the HSA coding sequences leads to novel tissue- and cell-specific expression in ectopic tissues of transgenic mice.
Collapse
Affiliation(s)
- I Barash
- Institute of Animal Science, Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | | | |
Collapse
|
39
|
Li S, Rosen J. Distal regulatory elements required for rat whey acidic protein gene expression in transgenic mice. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36779-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
|
41
|
Ninomiya T, Hirabayashi M, Sagara J, Yuki A. Functions of milk protein gene 5' flanking regions on human growth hormone gene. Mol Reprod Dev 1994; 37:276-83. [PMID: 8185932 DOI: 10.1002/mrd.1080370306] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fragments containing 5' flanking regions of four bovine milk protein genes--alpha lactalbumin (b alpha LA), alpha S1 casein (b alpha S1CN), beta casein (b beta CN), kappa casein (b kappa CN)--and mouse whey acidic protein (mWAP) gene were prepared by PCR and ligated to human growth hormone (hGH) gene. These recombinant DNAs were microinjected into rat embryos to produce transgenic rats, and the functions of the 5' regions to direct secretion of hGH in the milk were tested. Although milk was obtained only in 5 of 19 mWAP/hGH rat lines, more than two-thirds of the rats carrying the other four DNAs produced milk. More than 80% of the lactated rats carrying b alpha LA/, b beta CN/, and mWAP/hGH, and 33% of the lactated b alpha S1CN/hGH rats secreted detectable amounts of hGH (> 0.05 microgram/ml) in the milk. In some rats, the hGH concentrations in the milk were comparable to or more than that of the corresponding milk protein in bovine milk. The ranges of hGH concentrations in the milk of b alpha LA/, b beta CN/, b alpha S1CN/, and mWAP/hGH rats were 1.13-4,360 micrograms/ml, 0.11-10,900 micrograms/ml, 86.8-6,480 micrograms/ml, and 6.87-151 micrograms/ml, respectively. HGH was also detected in the sera of these rats, and some abnormalities of growth and reproduction were observed. All but one virgin mWAP/hGH rat secreted up to 0.0722 microgram/ml of hGH in the serum, and more than half of them showed abnormal fat accumulations at their abdomen.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Ninomiya
- YS New Technology Institute, Tochigi, Japan
| | | | | | | |
Collapse
|
42
|
Devinoy E, Thépot D, Stinnakre MG, Fontaine ML, Grabowski H, Puissant C, Pavirani A, Houdebine LM. High level production of human growth hormone in the milk of transgenic mice: the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland. Transgenic Res 1994; 3:79-89. [PMID: 8193641 DOI: 10.1007/bf01974085] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The 5' flanking region (6.3 kb) of the rabbit WAP (rWAP) gene possesses important regulatory elements. This region was linked to the human growth hormone (hGH) structural gene in order to target transgene expression to the mammary gland. Thirteen lines of transgenic mice were produced. Milk could be collected from six lines of transgenic mice. In five of them, hGH was present in the milk at high concentrations ranging from 4 to 22 mg ml-1. hGH produced by the mammary gland comigrated with hGH of human origin. It was biologically active, and through its prolactin-like activity induced lactogenesis when introduced into mammary culture media. Two of these mouse lines were studied further. hGH mRNA was only detected in the mammary gland during lactation. In the seven other transgenic lines, hGH was present in the blood of cyclic females. The prolactin-like effect of hGH in these mice probably induced female sterility, and milk could therefore not be obtained. In two lines studied in more detail, the mammary gland was the main organ producing hGH, even in cyclic mice. Low ectopic expression was detected in other organs which varied from one line to the other. This was probably due to the influence on the transgene of the site of integration into the mouse genome. In the 13 lines studied, high mammary-specific hGH expression was not correlated to the transgene copy number. The rWAP-hGH construct thus did not behave as an independent unit of transcription. However, it can be concluded that the 6.3 kb flanking region of the rWAP gene contains regulatory elements responsible for the strong mammary-specific expression of hGH transgene, and that it is a good candidate to control high levels of foreign protein gene expression in the mammary gland of lactating transgenic animals.
Collapse
Affiliation(s)
- E Devinoy
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Extracellular matrix (ECM) induces and maintains the differentiation of epithelial cells, not by totally altering their state of differentiation, but by activating overt differentiation. Recent studies of cultured mammary cells provide an elegant molecular analysis of this kind of progressive cell differentiation. Other studies show that ECM can not only activate and enhance a differentiated state, but can even alter it in bringing about transformation of epithelium to mesenchyme.
Collapse
Affiliation(s)
- E D Hay
- Harvard Medical School, Boston
| |
Collapse
|
44
|
Abstract
Interspecies comparisons of cDNA and mosaic milk protein genes have confirmed their high rate of evolution, but the overall gene organization has been conserved. The three Ca-sensitive casein genes, which share common motifs in the promoter region and contain similar sequences that encode signal peptide and multiple phosphorylation sites, probably derived from a common ancestor. alpha s1- and alpha s2-casein genes, divided into many small exons, undergo complex splicing, and the deleted caseins arise from exon skipping. The four bovine casein genes are clustered on 200 kb of chromosome 6. alpha-Lactalbumin and beta-lactoglobulin pseudogenes occur in ruminants. Study of the expression of native and modified milk protein genes in mammary cell lines and transgenic animals and DNA footprinting have shown the occurrence of important regulatory motifs in the proximal 5' flanking region, including one recognized by a specific mammary nuclear factor. Good stage- and tissue-specific expression has been obtained in transgenic animals with milk protein genes having less than a 3-kb 5' flanking region. Better knowledge of both the structure and function of milk protein genes, which has already allowed the use of powerful techniques for the rapid identification of alleles, offers the potential for the genetic modification of milk composition.
Collapse
Affiliation(s)
- J C Mercier
- Laboratoire de Génétique Biochimique, Institut National de la Recherche Agronomique, Centre de Recherches de Jouy-en-Josas, France
| | | |
Collapse
|
45
|
Abstract
Retroviral vectors are one of the most promising vehicles for the delivery of therapeutic genes in human gene therapy protocols. Retroviral-mediated gene transfer currently being used in human clinical trials is based upon ex vivo transduction of target cells. The ability to target the delivery and expression of therapeutic genes in vivo using retroviral vectors is a prerequisite for widespread and routine use in the clinic and will be of great importance for the safe and successful treatment of certain genetic disorders as well as tumors and viral infections. A number of approaches have been taken to develop retroviral vectors that are able to target particular cell types both at the level of the transduction event and at the level of expression. Using various combinations of the restrictive features reviewed in this article, it should be possible to achieve definitive targeting of genes transduced by retroviral vectors.
Collapse
Affiliation(s)
- B Salmons
- Lehrstuhl für Molekulare Tierzucht, Ludwig-Maximilians Universität, Munich, Germany
| | | |
Collapse
|
46
|
Houdebine LM. [Expression of recombinant proteins in the milk of transgenic animals]. REVUE FRANCAISE DE TRANSFUSION ET D'HEMOBIOLOGIE : BULLETIN DE LA SOCIETE NATIONALE DE TRANSFUSION SANGUINE 1993; 36:49-72. [PMID: 8476491 DOI: 10.1016/s1140-4639(05)80168-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The bulky production of recombinant proteins can be achieved by procaryotes or eucaryotes cells. Cells from higher eucaryotes may be required when proteins have to be modified post-transcriptionally (glycosylation phosphorylation, cleavage, folding...). Cells from higher vertebrates in culture are used to prepare proteins like human factor VIII and erythropoietin. The use of transgenic organism has been suggested to reach the same goal. Indeed a whole living organism allows a very potent amplification, the number of cells involved in the biosynthesis of the recombinant proteins being very numerous and in the best metabolic conditions. Biological fluids (blood, milk, insect hemolymph, egg white...) and possibly organs from transgenic animals are a priori the best sources of recombinant proteins. Blood is abundant and it is a by-product of slaughter house. Its composition is relatively complex and the circulating recombinant proteins may heavily alter health of animals. Milk is very abundant, its composition is relatively simple, it is poor in proteolytic enzymes and it can be collected easily. Hemolymph from insects is relatively scarce. Egg white will be a possible source of recombinant proteins, when transgenesis has become more accessible in birds. Organs from transgenic animals should be solicited only when a particular cell type is required for the biosynthesis of the recombinant proteins. Milk appears therefore, presently, as the best source of recombinant proteins from transgenic animals. About 15 public and private laboratories try to use these techniques. They consist in preparing vectors containing regulatory regions of one of the milk proteins genes and the coding part (cDNA or gene) of the corresponding proteins to be produced. The transfer of these gene constructs to mouse, rabbit, sheep, goat, pig, shows that these techniques are indeed very promising. A single protein, human alpha 1-antitrypsin produced in milk of transgenic sheep, has presently reached the preparation at an industrial scale. This method has two theoretical limitations: 1) some of the proteins secreted in milk may be not matured as their native counterparts. Experiments carried out so far (about 20 proteins has been produced at an experimental scale) indicate that the mammary cell is able to achieve glycosylation in a correct way; 2) a significant proportion of the recombinant proteins migrate from the alveolar compartment of the mammary gland to blood circulation and they can alter health of lactating animals.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L M Houdebine
- Unité de Différenciation Cellulaire, Institut National de la Recherche Agronomique, Jouy-en-Josas
| |
Collapse
|
47
|
Abstract
Regardless of the field of application, the raison d'etre of transgenic animals is to study gene regulation and function. With increasing frequency, mammalian genes are being isolated with no concomitant knowledge of their function. The human genome mapping initiative will undoubtedly produce a cornucopia of such genes. While the merit of taking a transgenic route to study genes of unknown function is axiomatic, the choices of strategies for gene regulation in vivo may not be fully appreciated. This review will address two main points: first, the targeted and regulated expression of genes, and second, the structural and functional ablation of genes.
Collapse
Affiliation(s)
- C A Kappel
- Laboratory of Virology, Jerome H. Holland Laboratory, Rockville, MD 20855
| | | | | | | |
Collapse
|
48
|
Abstract
It is possible to convert milk glands of transgenic animals into bioreactors producing heterologous proteins such as scarce human pharmaceuticals. To predictably and successfully engineer the milk gland, we will need a thorough understanding of its physiology. Expression studies in transgenic animals have located mammary specific and hormone inducible transcription elements in the promoter/upstream regions of milk protein genes, and transfection studies in cell lines or primary cells have identified constitutive and hormone inducible elements. Most importantly, it appears that in addition to individual promoter based transcription elements structural features of milk protein chromosomal loci may contribute to the tight developmental and hormonal regulation. I will discuss milk protein gene regulation with emphasis on regulatory differences between genes and species, and the possibility that transcription elements function only properly within genetically defined chromatin domains. Novel strategies to build mammary expression vectors and to test their functionality without pursuing the standard transgenic route will be presented. Finally, I will discuss homologous recombination with the goal to target milk protein genes. Only through the domestication of milk protein genes will we be able to use their full potential in the mammary bioreactor.
Collapse
Affiliation(s)
- L Hennighausen
- Laboratory of Biochemistry and Metabolism, NIDDK, NIH, Bethesda, Maryland 20982
| |
Collapse
|
49
|
Bischoff R, Degryse E, Perraud F, Dalemans W, Ali-Hadji D, Thépot D, Devinoy E, Houdebine LM, Pavirani A. A 17.6 kbp region located upstream of the rabbit WAP gene directs high level expression of a functional human protein variant in transgenic mouse milk. FEBS Lett 1992; 305:265-8. [PMID: 1299629 DOI: 10.1016/0014-5793(92)80683-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have investigated whether DNA regions present in the rabbit whey acidic protein (WAP) promoter/5' flanking sequence could potentially confer, in vivo, high level expression of reporter genes. Transgenic mice were generated expressing a variant of human alpha 1-antitrypsin, which has inhibitory activity against plasma kallikrein under the control of a 17.6 kbp DNA fragment located upstream of the rabbit WAP gene. Up to 10 mg/ml of active and correctly processed recombinant protein were detected in mouse milk, thus suggesting that the far upstream DNA sequences from the rabbit WAP gene might be useful for engineering efficient protein production in the mammary glands of transgenic animals.
Collapse
|
50
|
Greenberg NM, Wolfe J, Rosen JM. Casein gene expression: from transfection to transgenics. Cancer Treat Res 1991; 61:379-97. [PMID: 1360241 DOI: 10.1007/978-1-4615-3500-3_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
|