1
|
Grunwald HA, Weitzel AJ, Cooper KL. Applications of and considerations for using CRISPR-Cas9-mediated gene conversion systems in rodents. Nat Protoc 2022; 17:3-14. [PMID: 34949863 DOI: 10.1038/s41596-021-00646-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/13/2021] [Indexed: 01/23/2023]
Abstract
Genetic elements that are inherited at super-Mendelian frequencies could be used in a 'gene drive' to spread an allele to high prevalence in a population with the goal of eliminating invasive species or disease vectors. We recently demonstrated that the gene conversion mechanism underlying a CRISPR-Cas9-mediated gene drive is feasible in mice. Although substantial technical hurdles remain, overcoming these could lead to strategies that might decrease the spread of rodent-borne Lyme disease or eliminate invasive populations of mice and rats that devastate island ecology. Perhaps more immediately achievable at moderate gene conversion efficiency, applications in a laboratory setting could produce complex genotypes that reduce the time and cost in both dollars and animal lives compared with Mendelian inheritance strategies. Here, we discuss what we have learned from early efforts to achieve CRISPR-Cas9-mediated gene conversion, potential for broader applications in the laboratory, current limitations, and plans for optimizing this potentially powerful technology.
Collapse
Affiliation(s)
- Hannah A Grunwald
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Alexander J Weitzel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Cho JH, Ju WS, Seo SY, Kim BH, Kim JS, Kim JG, Park SJ, Choo YK. The Potential Role of Human NME1 in Neuronal Differentiation of Porcine Mesenchymal Stem Cells: Application of NB-hNME1 as a Human NME1 Suppressor. Int J Mol Sci 2021; 22:ijms222212194. [PMID: 34830075 PMCID: PMC8619003 DOI: 10.3390/ijms222212194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.
Collapse
Affiliation(s)
- Jin Hyoung Cho
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- GreenBio Corp. Central Research, 201-19, Bubaljungand-ro, Bubal-eup, Icheon-si 17321, Korea
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
| | - Sang Young Seo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Bo Hyun Kim
- CHA Fertility Center Bundang, 59, Yatap-ro, Bundang-gu, Seongnam-si 13496, Korea;
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology, 181, Ipsin-gil, Jeongeup-si 56216, Korea;
| | - Jong-Geol Kim
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
- Correspondence: ; Tel.: +82-63-850-6087; Fax: +82-63-857-8837
| |
Collapse
|
3
|
The Genetic Basis of Reporter Mouse Strains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33834450 DOI: 10.1007/978-981-33-6064-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Genetically engineered mouse (GEM) models have been revolutionizing the biomedical studies on deciphering the physiological roles of genes in vivo. In addition to deactivating a gene in mice, diverse strategies have been created to monitor gene expressions and molecular dynamics of specific proteins in vivo. Although gene targeting in mouse embryonic stem (ES) cells was essential for the precise engineering of the mouse genome over almost three decades, this process is a time-consuming, expensive, and laborious one. These days, new technologies that directly apply engineered endonucleases, such as zinc-finger nucleases (ZFNs), Transcription Activator-Like Effector (TALE) Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, into the mouse zygotes are enabling us to rapidly replace conventional gene targeting in mouse ES cells. In this chapter, we will describe the principles of reporter mouse strains and the recent advances in generating them using engineered endonucleases.
Collapse
|
4
|
Abstract
The mouse is one of the most widely used model organisms for genetic study. The tools available to alter the mouse genome have developed over the preceding decades from forward screens to gene targeting in stem cells to the recent influx of CRISPR approaches. In this review, we first consider the history of mice in genetic study, the development of classic approaches to genome modification, and how such approaches have been used and improved in recent years. We then turn to the recent surge of nuclease-mediated techniques and how they are changing the field of mouse genetics. Finally, we survey common classes of alleles used in mice and discuss how they might be engineered using different methods.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
5
|
Adenoviral Vectors Meet Gene Editing: A Rising Partnership for the Genomic Engineering of Human Stem Cells and Their Progeny. Cells 2020; 9:cells9040953. [PMID: 32295080 PMCID: PMC7226970 DOI: 10.3390/cells9040953] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Gene editing permits changing specific DNA sequences within the vast genomes of human cells. Stem cells are particularly attractive targets for gene editing interventions as their self-renewal and differentiation capabilities consent studying cellular differentiation processes, screening small-molecule drugs, modeling human disorders, and testing regenerative medicines. To integrate gene editing and stem cell technologies, there is a critical need for achieving efficient delivery of the necessary molecular tools in the form of programmable DNA-targeting enzymes and/or exogenous nucleic acid templates. Moreover, the impact that the delivery agents themselves have on the performance and precision of gene editing procedures is yet another critical parameter to consider. Viral vectors consisting of recombinant replication-defective viruses are under intense investigation for bringing about efficient gene-editing tool delivery and precise gene-editing in human cells. In this review, we focus on the growing role that adenoviral vectors are playing in the targeted genetic manipulation of human stem cells, progenitor cells, and their differentiated progenies in the context of in vitro and ex vivo protocols. As preamble, we provide an overview on the main gene editing principles and adenoviral vector platforms and end by discussing the possibilities ahead resulting from leveraging adenoviral vector, gene editing, and stem cell technologies.
Collapse
|
6
|
Tan L, Hu Y, Li Y, Yang L, Cai X, Liu W, He J, Wu Y, Liu T, Wang N, Yang Y, Adelstein RS, Wang A. Investigation of the molecular biology underlying the pronounced high gene targeting frequency at the Myh9 gene locus in mouse embryonic stem cells. PLoS One 2020; 15:e0230126. [PMID: 32226034 PMCID: PMC7105122 DOI: 10.1371/journal.pone.0230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/23/2020] [Indexed: 11/21/2022] Open
Abstract
The generation of genetically modified mouse models derived from gene targeting (GT) in mouse embryonic stem (ES) cells (mESCs) has greatly advanced both basic and clinical research. Our previous finding that gene targeting at the Myh9 exon2 site in mESCs has a pronounced high homologous recombination (HR) efficiency (>90%) has facilitated the generation of a series of nonmuscle myosin II (NM II) related mouse models. Furthermore, the Myh9 gene locus has been well demonstrated to be a new safe harbor for site-specific insertion of other exogenous genes. In the current study, we intend to investigate the molecular biology underlying for this high HR efficiency from other aspects. Our results confirmed some previously characterized properties and revealed some unreported observations: 1) The comparison and analysis of the targeting events occurring at the Myh9 and several widely used loci for targeting transgenesis, including ColA1, HPRT, ROSA26, and the sequences utilized for generating these targeting constructs, indicated that a total length about 6 kb with approximate 50% GC-content of the 5’ and 3’ homologous arms, may facilitate a better performance in terms of GT efficiency. 2) Despite increasing the length of the homologous arms, shifting the targeting site from the Myh9 exon2, to intron2, or exon3 led to a gradually reduced GT frequency (91.7, 71.8 and 50.0%, respectively). This finding provides the first evidence that the HR frequency may also be associated with the targeting site even in the same locus. Meanwhile, the decreased trend of the GT efficiency at these targeting sites was consistent with the reduced percentage of simple sequence repeat (SSR) and short interspersed nuclear elements (SINEs) in the sequences for generating the targeting constructs, suggesting the potential effects of these DNA elements on GT efficiency; 3) Our series of targeting experiments and analyses with truncated 5’ and 3’ arms at the Myh9 exon2 site demonstrated that GT efficiency positively correlates with the total length of the homologous arms (R = 0.7256, p<0.01), confirmed that a 2:1 ratio of the length, a 50% GC-content and the higher amount of SINEs for the 5’ and 3’ arms may benefit for appreciable GT frequency. Though more investigations are required, the Myh9 gene locus appears to be an ideal location for identifying HR-related cis and trans factors, which in turn provide mechanistic insights and also facilitate the practical application of gene editing.
Collapse
Affiliation(s)
- Lei Tan
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yi Hu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yalan Li
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Lingchen Yang
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wei Liu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Jiayi He
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Yingxin Wu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Tanbin Liu
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
| | - Naidong Wang
- Laboratory of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Yi Yang
- Laboratory of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, China
| | - Robert S. Adelstein
- Laboratory of Molecular Cardiology (LMC), NHLBI/NIH, Bethesda, MD, United States of America
| | - Aibing Wang
- Laboratory of Animal Disease Prevention & Control and Animal Model, The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, China
- Laboratory of Molecular Cardiology (LMC), NHLBI/NIH, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
7
|
Chen X, Tasca F, Wang Q, Liu J, Janssen JM, Brescia MD, Bellin M, Szuhai K, Kenrick J, Frock RL, Gonçalves MAFV. Expanding the editable genome and CRISPR-Cas9 versatility using DNA cutting-free gene targeting based on in trans paired nicking. Nucleic Acids Res 2020; 48:974-995. [PMID: 31799604 PMCID: PMC6954423 DOI: 10.1093/nar/gkz1121] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Genome editing typically involves recombination between donor nucleic acids and acceptor genomic sequences subjected to double-stranded DNA breaks (DSBs) made by programmable nucleases (e.g. CRISPR-Cas9). Yet, nucleases yield off-target mutations and, most pervasively, unpredictable target allele disruptions. Remarkably, to date, the untoward phenotypic consequences of disrupting allelic and non-allelic (e.g. pseudogene) sequences have received scant scrutiny and, crucially, remain to be addressed. Here, we demonstrate that gene-edited cells can lose fitness as a result of DSBs at allelic and non-allelic target sites and report that simultaneous single-stranded DNA break formation at donor and acceptor DNA by CRISPR-Cas9 nickases (in trans paired nicking) mostly overcomes such disruptive genotype-phenotype associations. Moreover, in trans paired nicking gene editing can efficiently and precisely add large DNA segments into essential and multiple-copy genomic sites. As shown herein by genotyping assays and high-throughput genome-wide sequencing of DNA translocations, this is achieved while circumventing most allelic and non-allelic mutations and chromosomal rearrangements characteristic of nuclease-dependent procedures. Our work demonstrates that in trans paired nicking retains target protein dosages in gene-edited cell populations and expands gene editing to chromosomal tracts previously not possible to modify seamlessly due to their recurrence in the genome or essentiality for cell function.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Francesca Tasca
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Qian Wang
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jin Liu
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Josephine M Janssen
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Marcella D Brescia
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Milena Bellin
- Leiden University Medical Center, Department of Anatomy and Embryology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Karoly Szuhai
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Josefin Kenrick
- Stanford University School of Medicine, Division of Radiation and Cancer Biology, Department of Radiation Oncology, 269 Campus Dr. Stanford, CA 94305, USA
| | - Richard L Frock
- Stanford University School of Medicine, Division of Radiation and Cancer Biology, Department of Radiation Oncology, 269 Campus Dr. Stanford, CA 94305, USA
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| |
Collapse
|
8
|
Irony-Tur Sinai M, Salamon A, Stanleigh N, Goldberg T, Weiss A, Wang YH, Kerem B. AT-dinucleotide rich sequences drive fragile site formation. Nucleic Acids Res 2019; 47:9685-9695. [PMID: 31410468 PMCID: PMC6765107 DOI: 10.1093/nar/gkz689] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/18/2019] [Accepted: 08/04/2019] [Indexed: 12/29/2022] Open
Abstract
Common fragile sites (CFSs) are genomic regions prone to breakage under replication stress conditions recurrently rearranged in cancer. Many CFSs are enriched with AT-dinucleotide rich sequences (AT-DRSs) which have the potential to form stable secondary structures upon unwinding the double helix during DNA replication. These stable structures can potentially perturb DNA replication progression, leading to genomic instability. Using site-specific targeting system, we show that targeted integration of a 3.4 kb AT-DRS derived from the human CFS FRA16C into a chromosomally stable region within the human genome is able to drive fragile site formation under conditions of replication stress. Analysis of >1300 X chromosomes integrated with the 3.4 kb AT-DRS revealed recurrent gaps and breaks at the integration site. DNA sequences derived from the integrated AT-DRS showed in vitro a significantly increased tendency to fold into branched secondary structures, supporting the predicted mechanism of instability. Our findings clearly indicate that intrinsic DNA features, such as complexed repeated sequence motifs, predispose the human genome to chromosomal instability.
Collapse
Affiliation(s)
- Michal Irony-Tur Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Anita Salamon
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 229080733, USA
| | - Noemie Stanleigh
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Tchelet Goldberg
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Aryeh Weiss
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 229080733, USA
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| |
Collapse
|
9
|
Yamamoto Y, Gerbi SA. Making ends meet: targeted integration of DNA fragments by genome editing. Chromosoma 2018; 127:405-420. [PMID: 30003320 PMCID: PMC6330168 DOI: 10.1007/s00412-018-0677-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/27/2022]
Abstract
Targeted insertion of large pieces of DNA is an important goal of genetic engineering. However, this goal has been elusive since classical methods for homology-directed repair are inefficient and often not feasible in many systems. Recent advances are described here that enable site-specific genomic insertion of relatively large DNA with much improved efficiency. Using the preferred repair pathway in the cell of nonhomologous end-joining, DNA of up to several kb could be introduced with remarkably good precision by the methods of HITI and ObLiGaRe with an efficiency up to 30-40%. Recent advances utilizing homology-directed repair (methods of PITCh; short homology arms including ssODN; 2H2OP) have significantly increased the efficiency for DNA insertion, often to 40-50% or even more depending on the method and length of DNA. The remaining challenges of integration precision and off-target site insertions are summarized. Overall, current advances provide major steps forward for site-specific insertion of large DNA into genomes from a broad range of cells and organisms.
Collapse
Affiliation(s)
- Yutaka Yamamoto
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Sidney Frank Hall room 260, 185 Meeting Street, Providence, RI, 02912, USA
| | - Susan A Gerbi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Sidney Frank Hall room 260, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
10
|
Miao K, Zhang X, Su SM, Zeng J, Huang Z, Chan UI, Xu X, Deng CX. Optimizing CRISPR/Cas9 technology for precise correction of the Fgfr3-G374R mutation in achondroplasia in mice. J Biol Chem 2018; 294:1142-1151. [PMID: 30487289 DOI: 10.1074/jbc.ra118.006496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
CRISPR/Cas9 is a powerful technology widely used for genome editing, with the potential to be used for correcting a wide variety of deleterious disease-causing mutations. However, the technique tends to generate more indels (insertions and deletions) than precise modifications at the target sites, which might not resolve the mutation and could instead exacerbate the initial genetic disruption. We sought to develop an improved protocol for CRISPR/Cas9 that would correct mutations without unintended consequences. As a case study, we focused on achondroplasia, a common genetic form of dwarfism defined by missense mutation in the Fgfr3 gene that results in glycine to arginine substitution at position 374 in mice in fibroblast growth factor receptor 3 (Fgfr3-G374R), which corresponds to G380R in humans. First, we designed a GFP reporter system that can evaluate the cutting efficiency and specificity of single guide RNAs (sgRNAs). Using the sgRNA selected based on our GFP reporter system, we conducted targeted therapy of achondroplasia in mice. We found that we achieved higher frequency of precise correction of the Fgfr3-G374R mutation using Cas9 protein rather than Cas9 mRNA. We further demonstrated that targeting oligos of 100 and 200 nucleotides precisely corrected the mutation at equal efficiency. We showed that our strategy completely suppressed phenotypes of achondroplasia and whole genome sequencing detected no off-target effects. These data indicate that improved protocols can enable the precise CRISPR/Cas9-mediated correction of individual mutations with high fidelity.
Collapse
Affiliation(s)
- Kai Miao
- Cancer Center, Faculty of Health Sciences, Macau SAR; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR
| | - Xin Zhang
- Cancer Center, Faculty of Health Sciences, Macau SAR; Transgenic and Knockout Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Sek Man Su
- Cancer Center, Faculty of Health Sciences, Macau SAR; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR
| | - Jianming Zeng
- Cancer Center, Faculty of Health Sciences, Macau SAR; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR
| | - Zebin Huang
- Cancer Center, Faculty of Health Sciences, Macau SAR; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR
| | - Un In Chan
- Cancer Center, Faculty of Health Sciences, Macau SAR; Transgenic and Knockout Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaoling Xu
- Cancer Center, Faculty of Health Sciences, Macau SAR; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR; Transgenic and Knockout Core, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, Macau SAR; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR.
| |
Collapse
|
11
|
Zhou D, Tan L, Li J, Liu T, Hu Y, Li Y, Kawamoto S, Liu C, Guo S, Wang A. Identification of Homologous Recombination Events in Mouse Embryonic Stem Cells Using Southern Blotting and Polymerase Chain Reaction. J Vis Exp 2018. [PMID: 30531726 DOI: 10.3791/58467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Relative to the issues of off-target effects and the difficulty of inserting a long DNA fragment in the application of designer nucleases for genome editing, embryonic stem (ES) cell-based gene-targeting technology does not have these shortcomings and is widely used to modify animal/mouse genome ranging from large deletions/insertions to single nucleotide substitutions. Notably, identifying the relatively few homologous recombination (HR) events necessary to obtain desired ES clones is a key step, which demands accurate and reliable methods. Southern blotting and/or conventional PCR are often utilized for this purpose. Here, we describe the detailed procedures of using those two methods to identify HR events that occurred in mouse ES cells in which the endogenous Myh9 gene is intended to be disrupted and replaced by cDNAs encoding other nonmuscle myosin heavy chain IIs (NMHC IIs). The whole procedure of Southern blotting includes the construction of targeting vector(s), electroporation, drug selection, the expansion and storage of ES cells/clones, the preparation, digestion, and blotting of genomic DNA (gDNA), the hybridization and washing of probe(s), and a final step of autoradiography on the X-ray films. PCR can be performed directly with prepared and diluted gDNA. To obtain ideal results, the probes and restriction enzyme (RE) cutting sites for Southern blotting and the primers for PCR should be carefully planned. Though the execution of Southern blotting is time-consuming and labor-intensive and PCR results have false positives, the correct identification by Southern blotting and the rapid screening by PCR allow the sole or combined application of these methods described in this paper to be widely used and consulted by most labs in the identification of genotypes of ES cells and genetically modified animals.
Collapse
Affiliation(s)
- Dan Zhou
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU); Department of Pathology, Georgetown University Medical School
| | - Lei Tan
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU)
| | - Jian Li
- College of Food Science and Technology, Hunan Agricultural University (HUNAU)
| | - Tanbin Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU)
| | - Yi Hu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU)
| | - Yalan Li
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU)
| | - Sachiyo Kawamoto
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH)
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH)
| | - Shiyin Guo
- College of Food Science and Technology, Hunan Agricultural University (HUNAU);
| | - Aibing Wang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU);
| |
Collapse
|
12
|
Delgado Caceres M, Pfeifer CG, Docheva D. Understanding Tendons: Lessons from Transgenic Mouse Models. Stem Cells Dev 2018; 27:1161-1174. [PMID: 29978741 PMCID: PMC6121181 DOI: 10.1089/scd.2018.0121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022] Open
Abstract
Tendons and ligaments are connective tissues that have been comparatively less studied than muscle and cartilage/bone, even though they are crucial for proper function of the musculoskeletal system. In tendon biology, considerable progress has been made in identifying tendon-specific genes (Scleraxis, Mohawk, and Tenomodulin) in the past decade. However, besides tendon function and the knowledge of a small number of important players in tendon biology, neither the ontogeny of the tenogenic lineage nor signaling cascades have been fully understood. This results in major drawbacks in treatment and repair options following tendon degeneration. In this review, we have systematically evaluated publications describing tendon-related genes, which were studied in depth and characterized by using knockout technologies and the subsequently generated transgenic mouse models (Tg) (knockout mice, KO). We report in a tabular manner, that from a total of 24 tendon-related genes, in 22 of the respective knockout mouse models, phenotypic changes were detected. Additionally, in some of the models it was described at which developmental stages these changes appeared and progressed. To summarize, only loss of Scleraxis and TGFβ signaling led to severe tendon developmental phenotypes, while mice deficient for various proteoglycans, Mohawk, EGR1 and 2, and Tenomodulin presented mild phenotypes. These data suggest that the tendon developmental system is well organized, orchestrated, and backed up; this is even more evident among the members of the proteoglycan family, where the compensatory effects are much clearer. In future, it will be of great importance to discover additional master tendon transcription factors and the genes that play crucial roles in tendon development. This would improve our understanding of the genetic makeup of tendons, and will increase the chances of generating tendon-specific drugs to advance overall treatment strategies.
Collapse
Affiliation(s)
- Manuel Delgado Caceres
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Christian G. Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
13
|
Kondrashov A, Duc Hoang M, Smith JGW, Bhagwan JR, Duncan G, Mosqueira D, Munoz MB, Vo NTN, Denning C. Simplified Footprint-Free Cas9/CRISPR Editing of Cardiac-Associated Genes in Human Pluripotent Stem Cells. Stem Cells Dev 2018; 27:391-404. [PMID: 29402189 PMCID: PMC5882176 DOI: 10.1089/scd.2017.0268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Modeling disease with human pluripotent stem cells (hPSCs) is hindered because the impact on cell phenotype from genetic variability between individuals can be greater than from the pathogenic mutation. While “footprint-free” Cas9/CRISPR editing solves this issue, existing approaches are inefficient or lengthy. In this study, a simplified PiggyBac strategy shortened hPSC editing by 2 weeks and required one round of clonal expansion and genotyping rather than two, with similar efficiencies to the longer conventional process. Success was shown across four cardiac-associated loci (ADRB2, GRK5, RYR2, and ACTC1) by genomic cleavage and editing efficiencies of 8%–93% and 8%–67%, respectively, including mono- and/or biallelic events. Pluripotency was retained, as was differentiation into high-purity cardiomyocytes (CMs; 88%–99%). Using the GRK5 isogenic lines as an exemplar, chronic stimulation with the β-adrenoceptor agonist, isoprenaline, reduced beat rate in hPSC-CMs expressing GRK5-Q41 but not GRK5-L41; this was reversed by the β-blocker, propranolol. This shortened, footprint-free approach will be useful for mechanistic studies.
Collapse
Affiliation(s)
- Alexander Kondrashov
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Minh Duc Hoang
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - James G W Smith
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Jamie R Bhagwan
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Gary Duncan
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Diogo Mosqueira
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Maria Barbadillo Munoz
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Nguyen T N Vo
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Chris Denning
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| |
Collapse
|
14
|
Baker O, Tsurkan S, Fu J, Klink B, Rump A, Obst M, Kranz A, Schröck E, Anastassiadis K, Stewart AF. The contribution of homology arms to nuclease-assisted genome engineering. Nucleic Acids Res 2017; 45:8105-8115. [PMID: 28582546 PMCID: PMC5570031 DOI: 10.1093/nar/gkx497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/30/2017] [Indexed: 01/29/2023] Open
Abstract
Designer nucleases like CRISPR/Cas9 enable fluent site-directed damage or small mutations in many genomes. Strategies for their use to achieve more complex tasks like regional exchanges for gene humanization or the establishment of conditional alleles are still emerging. To optimize Cas9-assisted targeting, we measured the relationship between targeting frequency and homology length in targeting constructs using a hypoxanthine-guanine phosphoribosyl-transferase assay in mouse embryonic stem cells. Targeting frequency with supercoiled plasmids improved steeply up to 2 kb total homology and continued to increase with even longer homology arms, thereby implying that Cas9-assisted targeting efficiencies can be improved using homology arms of 1 kb or greater. To humanize the Kmt2d gene, we built a hybrid mouse/human targeting construct in a bacterial artificial chromosome by recombineering. To simplify the possible outcomes, we employed a single Cas9 cleavage strategy and best achieved the intended 42 kb regional exchange with a targeting construct including a very long homology arm to recombine ∼42 kb away from the cleavage site. We recommend the use of long homology arm targeting constructs for accurate and efficient complex genome engineering, particularly when combined with the simplifying advantages of using just one Cas9 cleavage at the genome target site.
Collapse
Affiliation(s)
- Oliver Baker
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany.,Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - Sarah Tsurkan
- Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - Jun Fu
- Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany.,Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Andreas Rump
- Institute for Clinical Genetics, Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Mandy Obst
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany.,Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - Andrea Kranz
- Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - A Francis Stewart
- Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| |
Collapse
|
15
|
Ako AE, Perroud PF, Innocent J, Demko V, Olsen OA, Johansen W. An intragenic mutagenesis strategy in Physcomitrella patens to preserve intron splicing. Sci Rep 2017; 7:5111. [PMID: 28698618 PMCID: PMC5505980 DOI: 10.1038/s41598-017-05309-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/26/2017] [Indexed: 12/27/2022] Open
Abstract
Gene targeting is a powerful reverse genetics technique for site-specific genome modification. Intrinsic homologous recombination in the moss Physcomitrella patens permits highly effective gene targeting, a characteristic that makes this organism a valuable model for functional genetics. Functional characterization of domains located within a multi-domain protein depends on the ability to generate mutants harboring genetic modifications at internal gene positions while maintaining the reading-frames of the flanking exons. In this study, we designed and evaluated different gene targeting constructs for targeted gene manipulation of sequences corresponding to internal domains of the DEFECTIVE KERNEL1 protein in Physcomitrella patens. Our results show that gene targeting-associated mutagenesis of introns can have adverse effects on splicing, corrupting the normal reading frame of the transcript. We show that successful genetic modification of internal sequences of multi-exon genes depends on gene-targeting strategies which insert the selection marker cassette into the 5' end of the intron and preserve the nucleotide sequence of the targeted intron.
Collapse
Affiliation(s)
- Ako Eugene Ako
- Inland Norway University of Applied Sciences, Holsetgata 31, N-2318, Hamar, Norway
| | - Pierre-François Perroud
- Philipps University Marburg, Plant Cell Biology II, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Joseph Innocent
- Inland Norway University of Applied Sciences, Holsetgata 31, N-2318, Hamar, Norway
| | - Viktor Demko
- Norwegian University of Life Sciences, P.O. Box 5003, N-1432, As, Norway
| | - Odd-Arne Olsen
- Norwegian University of Life Sciences, P.O. Box 5003, N-1432, As, Norway.
| | - Wenche Johansen
- Inland Norway University of Applied Sciences, Holsetgata 31, N-2318, Hamar, Norway.
| |
Collapse
|
16
|
Raveux A, Vandormael-Pournin S, Cohen-Tannoudji M. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci Rep 2017; 7:42661. [PMID: 28209967 PMCID: PMC5314402 DOI: 10.1038/srep42661] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/12/2017] [Indexed: 12/26/2022] Open
Abstract
Microinjection of the CRISPR/Cas9 system in zygotes is an efficient and comparatively fast method to generate genetically modified mice. So far, only few knock-in mice have been generated using this approach, and because no systematic study has been performed, parameters controlling the efficacy of CRISPR/Cas9-mediated targeted insertion are not fully established. Here, we evaluated the effect of several parameters on knock-in efficiency changing only one variable at a time. We found that knock-in efficiency was dependent on injected Cas9 mRNA and single-guide RNA concentrations and that cytoplasmic injection resulted in more genotypic complexity compared to pronuclear injection. Our results also indicated that injection into the pronucleus compared to the cytoplasm is preferable to generate knock-in alleles with an oligonucleotide or a circular plasmid. Finally, we showed that Cas9D10A nickase variant was less efficient than wild-type Cas9 for generating knock-in alleles and caused a higher rate of mosaicism. Thus, our study provides valuable information that will help to improve the future production of precise genetic modifications in mice.
Collapse
Affiliation(s)
- Aurélien Raveux
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015 Paris
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015 Paris
| | - Michel Cohen-Tannoudji
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015 Paris
| |
Collapse
|
17
|
May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells. Cells 2017; 6:cells6010005. [PMID: 28178187 PMCID: PMC5371870 DOI: 10.3390/cells6010005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/16/2022] Open
Abstract
In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods.
Collapse
|
18
|
Tasan I, Jain S, Zhao H. Use of genome-editing tools to treat sickle cell disease. Hum Genet 2016; 135:1011-28. [PMID: 27250347 PMCID: PMC5002234 DOI: 10.1007/s00439-016-1688-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/11/2016] [Indexed: 12/26/2022]
Abstract
Recent advances in genome-editing techniques have made it possible to modify any desired DNA sequence by employing programmable nucleases. These next-generation genome-modifying tools are the ideal candidates for therapeutic applications, especially for the treatment of genetic disorders like sickle cell disease (SCD). SCD is an inheritable monogenic disorder which is caused by a point mutation in the β-globin gene. Substantial success has been achieved in the development of supportive therapeutic strategies for SCD, but unfortunately there is still a lack of long-term universal cure. The only existing curative treatment is based on allogeneic stem cell transplantation from healthy donors; however, this treatment is applicable to a limited number of patients only. Hence, a universally applicable therapy is highly desirable. In this review, we will discuss the three programmable nucleases that are commonly used for genome-editing purposes: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). We will continue by exemplifying uses of these methods to correct the sickle cell mutation. Additionally, we will present induction of fetal globin expression as an alternative approach to cure sickle cell disease. We will conclude by comparing the three methods and explaining the concerns about their use in therapy.
Collapse
Affiliation(s)
- Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Surbhi Jain
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
19
|
CRISPR-Cas9 enables conditional mutagenesis of challenging loci. Sci Rep 2016; 6:32326. [PMID: 27580957 PMCID: PMC5007477 DOI: 10.1038/srep32326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 08/05/2016] [Indexed: 11/08/2022] Open
Abstract
The International Knockout Mouse Consortium (IKMC) has produced a genome-wide collection of 15,000 isogenic targeting vectors for conditional mutagenesis in C57BL/6N mice. Although most of the vectors have been used successfully in murine embryonic stem (ES) cells, there remain a set of nearly two thousand genes that have failed to target even after several attempts. Recent attention has turned to the use of new genome editing technology for the generation of mutant alleles in mice. Here, we demonstrate how Cas9-assisted targeting can be combined with the IKMC targeting vector resource to generate conditional alleles in genes that have previously eluded targeting using conventional methods.
Collapse
|
20
|
Turan S, Farruggio AP, Srifa W, Day JW, Calos MP. Precise Correction of Disease Mutations in Induced Pluripotent Stem Cells Derived From Patients With Limb Girdle Muscular Dystrophy. MOLECULAR THERAPY : THE JOURNAL OF THE AMERICAN SOCIETY OF GENE THERAPY 2016. [PMID: 26916285 DOI: 10.1038/mt.2016.40.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Limb girdle muscular dystrophies types 2B (LGMD2B) and 2D (LGMD2D) are degenerative muscle diseases caused by mutations in the dysferlin and alpha-sarcoglycan genes, respectively. Using patient-derived induced pluripotent stem cells (iPSC), we corrected the dysferlin nonsense mutation c.5713C>T; p.R1905X and the most common alpha-sarcoglycan mutation, missense c.229C>T; p.R77C, by single-stranded oligonucleotide-mediated gene editing, using the CRISPR/Cas9 gene-editing system to enhance the frequency of homology-directed repair. We demonstrated seamless, allele-specific correction at efficiencies of 0.7-1.5%. As an alternative, we also carried out precise gene addition strategies for correction of the LGMD2B iPSC by integration of wild-type dysferlin cDNA into the H11 safe harbor locus on chromosome 22, using dual integrase cassette exchange (DICE) or TALEN-assisted homologous recombination for insertion precise (THRIP). These methods employed TALENs and homologous recombination, and DICE also utilized site-specific recombinases. With DICE and THRIP, we obtained targeting efficiencies after selection of ~20%. We purified iPSC corrected by all methods and verified rescue of appropriate levels of dysferlin and alpha-sarcoglycan protein expression and correct localization, as shown by immunoblot and immunocytochemistry. In summary, we demonstrate for the first time precise correction of LGMD iPSC and validation of expression, opening the possibility of cell therapy utilizing these corrected iPSC.
Collapse
Affiliation(s)
- Soeren Turan
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Alfonso P Farruggio
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Waracharee Srifa
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - John W Day
- Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Michele P Calos
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
21
|
Turan S, Farruggio AP, Srifa W, Day JW, Calos MP. Precise Correction of Disease Mutations in Induced Pluripotent Stem Cells Derived From Patients With Limb Girdle Muscular Dystrophy. Mol Ther 2016; 24:685-96. [PMID: 26916285 DOI: 10.1038/mt.2016.40] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/09/2016] [Indexed: 12/22/2022] Open
Abstract
Limb girdle muscular dystrophies types 2B (LGMD2B) and 2D (LGMD2D) are degenerative muscle diseases caused by mutations in the dysferlin and alpha-sarcoglycan genes, respectively. Using patient-derived induced pluripotent stem cells (iPSC), we corrected the dysferlin nonsense mutation c.5713C>T; p.R1905X and the most common alpha-sarcoglycan mutation, missense c.229C>T; p.R77C, by single-stranded oligonucleotide-mediated gene editing, using the CRISPR/Cas9 gene-editing system to enhance the frequency of homology-directed repair. We demonstrated seamless, allele-specific correction at efficiencies of 0.7-1.5%. As an alternative, we also carried out precise gene addition strategies for correction of the LGMD2B iPSC by integration of wild-type dysferlin cDNA into the H11 safe harbor locus on chromosome 22, using dual integrase cassette exchange (DICE) or TALEN-assisted homologous recombination for insertion precise (THRIP). These methods employed TALENs and homologous recombination, and DICE also utilized site-specific recombinases. With DICE and THRIP, we obtained targeting efficiencies after selection of ~20%. We purified iPSC corrected by all methods and verified rescue of appropriate levels of dysferlin and alpha-sarcoglycan protein expression and correct localization, as shown by immunoblot and immunocytochemistry. In summary, we demonstrate for the first time precise correction of LGMD iPSC and validation of expression, opening the possibility of cell therapy utilizing these corrected iPSC.
Collapse
Affiliation(s)
- Soeren Turan
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Alfonso P Farruggio
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Waracharee Srifa
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - John W Day
- Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Michele P Calos
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
22
|
Lee S, Pallerla SR, Kim S, Shaffer B, Simerly CR, Richard Chaillet J, Barak Y. Esrrb-Cre excises loxP-flanked alleles in early four-cell embryos. Genesis 2015; 54:53-61. [PMID: 26663459 DOI: 10.1002/dvg.22912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 11/06/2022]
Abstract
Among transgenic mice with ubiquitous Cre recombinase activity, all strains to date excise loxP-flanked (floxed) alleles either at or before the zygote stage or at nondescript stages of development. This manuscript describes a new mouse strain, in which Cre recombinase, integrated into the Esrrb locus, efficiently excises floxed alleles in pre-implantation embryos at the onset of the four-cell stage. By enabling inactivation of genes only after the embryo has undergone two cleavages, this strain should facilitate in vivo studies of genes with essential gametic or zygotic functions. In addition, this study describes a new, highly pluripotent hybrid C57BL/6J x 129S1/SvImJ mouse embryonic stem cell line, HYB12, in which this knockin and additional targeted alleles have been generated.
Collapse
Affiliation(s)
- Sungeun Lee
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Ave., Pittsburgh, PA 15213
| | - Srinivas R Pallerla
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Ave., Pittsburgh, PA 15213
| | - Suyeon Kim
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Ave., Pittsburgh, PA 15213
| | - Benjamin Shaffer
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Ave., Pittsburgh, PA 15213
| | - Calvin R Simerly
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Ave., Pittsburgh, PA 15213
| | - J Richard Chaillet
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Ave., Pittsburgh, PA 15213
| | - Yaacov Barak
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Ave., Pittsburgh, PA 15213
| |
Collapse
|
23
|
Byrne SM, Church GM. Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells. ACTA ACUST UNITED AC 2015; 35:5A.8.1-5A.8.22. [PMID: 26949444 DOI: 10.1002/9780470151808.sc05a08s35] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion/replacement efficiencies from 0.5-10% without any further selection or enrichment steps. We also describe how to design and assess optimal sgRNA target sites and donor targeting vectors; cloning individual iPSC by single cell FACS sorting, and genotyping successfully edited cells.
Collapse
Affiliation(s)
- Susan M Byrne
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Gravells P, Ahrabi S, Vangala RK, Tomita K, Brash JT, Brustle LA, Chung C, Hong JM, Kaloudi A, Humphrey TC, Porter ACG. Use of the HPRT gene to study nuclease-induced DNA double-strand break repair. Hum Mol Genet 2015; 24:7097-110. [PMID: 26423459 PMCID: PMC4654060 DOI: 10.1093/hmg/ddv409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/23/2015] [Indexed: 12/17/2022] Open
Abstract
Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.
Collapse
Affiliation(s)
- Polly Gravells
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Sara Ahrabi
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Rajani K Vangala
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Kazunori Tomita
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - James T Brash
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Lena A Brustle
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Christopher Chung
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Julia M Hong
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Aikaterini Kaloudi
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Timothy C Humphrey
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Andrew C G Porter
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| |
Collapse
|
25
|
Gratz SJ, Rubinstein CD, Harrison MM, Wildonger J, O'Connor-Giles KM. CRISPR-Cas9 Genome Editing in Drosophila. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2015; 111:31.2.1-31.2.20. [PMID: 26131852 PMCID: PMC4506758 DOI: 10.1002/0471142727.mb3102s111] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The CRISPR-Cas9 system has transformed genome engineering of model organisms from possible to practical. CRISPR-Cas9 can be readily programmed to generate sequence-specific double-strand breaks that disrupt targeted loci when repaired by error-prone non-homologous end joining (NHEJ) or to catalyze precise genome modification through homology-directed repair (HDR). Here we describe a streamlined approach for rapid and highly efficient engineering of the Drosophila genome via CRISPR-Cas9-mediated HDR. In this approach, transgenic flies expressing Cas9 are injected with plasmids to express guide RNAs (gRNAs) and positively marked donor templates. We detail target-site selection; gRNA plasmid generation; donor template design and construction; and the generation, identification, and molecular confirmation of engineered lines. We also present alternative approaches and highlight key considerations for experimental design. The approach outlined here can be used to rapidly and reliably generate a variety of engineered modifications, including genomic deletions and replacements, precise sequence edits, and incorporation of protein tags.
Collapse
Affiliation(s)
- Scott J Gratz
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - C Dustin Rubinstein
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jill Wildonger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kate M O'Connor-Giles
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin
- Corresponding author: Kate M. O'Connor-Giles
| |
Collapse
|
26
|
Xu K, Stewart AF, Porter AC. Stimulation of oligonucleotide-directed gene correction by Redβ expression and MSH2 depletion in human HT1080 cells. Mol Cells 2015; 38:33-9. [PMID: 25431426 PMCID: PMC4314130 DOI: 10.14348/molcells.2015.2163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 01/30/2023] Open
Abstract
The correction of disease-causing mutations by single-strand oligonucleotide-templated DNA repair (ssOR) is an attractive approach to gene therapy, but major improvements in ssOR efficiency and consistency are needed. The mechanism of ssOR is poorly understood but may involve annealing of oligonucleotides to transiently exposed single-stranded regions in the target duplex. In bacteria and yeast it has been shown that ssOR is promoted by expression of Redβ, a single-strand DNA annealing protein from bacteriophage lambda. Here we show that Redβ expression is well tolerated in a human cell line where it consistently promotes ssOR. By use of short interfering RNA, we also show that ssOR is stimulated by the transient depletion of the endogenous DNA mismatch repair protein MSH2. Furthermore, we find that the effects of Redβ expression and MSH2 depletion on ssOR can be combined with a degree of cooperativity. These results suggest that oligonucleotide annealing and mismatch recognition are distinct but interdependent events in ssOR that can be usefully modulated in gene correction strategies.
Collapse
Affiliation(s)
- Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052,
China
- Gene Targeting Group, Department of Hematology, Faculty of Medicine, Imperial College London, London W12 0NN,
UK
| | - A. Francis Stewart
- Genomics, Bio Innovations Zentrum, Technische Universitaet Dresden, 01307 Dresden,
Germany
| | - Andrew C.G. Porter
- Gene Targeting Group, Department of Hematology, Faculty of Medicine, Imperial College London, London W12 0NN,
UK
| |
Collapse
|
27
|
Abstract
Molecular scissors (MS), incl. Zinc Finger Nucleases (ZFN), Transcription-activator like endoncleases (TALENS) and meganucleases possess long recognition sites and are thus capable of cutting DNA in a very specific manner. These molecular scissors mediate targeted genetic alterations by enhancing the DNA mutation rate via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination based gene targeting, MS can increase the targeting rate 10,000-fold, and gene disruption via mutagenic DNA repair is stimulated at a similar frequency. The successful application of different MS has been shown in different organisms, including insects, amphibians, plants, nematodes, and mammals, including humans. Recently, another novel class of molecular scissors was described that uses RNAs to target a specific genomic site. The CRISPR/Cas9 system is capable of targeting even multiple genomic sites in one shot and thus could be superior to ZFNs or TALEN, especially by its easy design. MS can be successfully employed for improving the understanding of complex physiological systems, producing transgenic animals, incl. creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on molecular scissors, their underlying mechanism and focuses on new opportunities for generating genetically modified farm animals.
Collapse
|
28
|
Byrne SM, Ortiz L, Mali P, Aach J, Church GM. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 2014; 43:e21. [PMID: 25414332 PMCID: PMC4330342 DOI: 10.1093/nar/gku1246] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sequence-specific nucleases such as TALEN and the CRISPR/Cas9 system have so far been used to disrupt, correct or insert transgenes at precise locations in mammalian genomes. We demonstrate efficient ‘knock-in’ targeted replacement of multi-kilobase genes in human induced pluripotent stem cells (iPSC). Using a model system replacing endogenous human genes with their mouse counterpart, we performed a comprehensive study of targeting vector design parameters for homologous recombination. A 2.7 kilobase (kb) homozygous gene replacement was achieved in up to 11% of iPSC without selection. The optimal homology arm length was around 2 kb, with homology length being especially critical on the arm not adjacent to the cut site. Homologous sequence inside the cut sites was detrimental to targeting efficiency, consistent with a synthesis-dependent strand annealing (SDSA) mechanism. Using two nuclease sites, we observed a high degree of gene excisions and inversions, which sometimes occurred more frequently than indel mutations. While homozygous deletions of 86 kb were achieved with up to 8% frequency, deletion frequencies were not solely a function of nuclease activity and deletion size. Our results analyzing the optimal parameters for targeting vector design will inform future gene targeting efforts involving multi-kilobase gene segments, particularly in human iPSC.
Collapse
Affiliation(s)
- Susan M Byrne
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Luis Ortiz
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Prashant Mali
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - John Aach
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
29
|
Gilles AF, Averof M. Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. EvoDevo 2014; 5:43. [PMID: 25699168 PMCID: PMC4332929 DOI: 10.1186/2041-9139-5-43] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/03/2014] [Indexed: 12/26/2022] Open
Abstract
Developmental biology, as all experimental science, is empowered by technological advances. The availability of genetic tools in some species - designated as model organisms - has driven their use as major platforms for understanding development, physiology and behavior. Extending these tools to a wider range of species determines whether (and how) we can experimentally approach developmental diversity and evolution. During the last two decades, comparative developmental biology (evo-devo) was marked by the introduction of gene knockdown and deep sequencing technologies that are applicable to a wide range of species. These approaches allowed us to test the developmental role of specific genes in diverse species, to study biological processes that are not accessible in established models and, in some cases, to conduct genome-wide screens that overcome the limitations of the candidate gene approach. The recent discovery of CRISPR/Cas as a means of precise alterations into the genome promises to revolutionize developmental genetics. In this review we describe the development of gene editing tools, from zinc-finger nucleases to TALENs and CRISPR, and examine their application in gene targeting, their limitations and the opportunities they present for evo-devo. We outline their use in gene knock-out and knock-in approaches, and in manipulating gene functions by directing molecular effectors to specific sites in the genome. The ease-of-use and efficiency of CRISPR in diverse species provide an opportunity to close the technology gap that exists between established model organisms and emerging genetically-tractable species.
Collapse
Affiliation(s)
- Anna F Gilles
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, 69364 France ; BMIC graduate programme and Université Claude Bernard - Lyon 1, Lyon, France
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, 69364 France ; Centre National de la Recherche Scientifique (CNRS), Lyon, France
| |
Collapse
|
30
|
Shao Y, Guan Y, Wang L, Qiu Z, Liu M, Chen Y, Wu L, Li Y, Ma X, Liu M, Li D. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat Protoc 2014; 9:2493-512. [PMID: 25255092 DOI: 10.1038/nprot.2014.171] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Conventional embryonic stem cell (ESC)-based gene targeting, zinc-finger nuclease (ZFN) and transcription activator-like effector nuclease (TALEN) technologies are powerful strategies for the generation of genetically modified animals. Recently, the CRISPR/Cas system has emerged as an efficient and convenient alternative to these approaches. We have used the CRISPR/Cas system to generate rat strains that carry mutations in multiple genes through direct injection of RNAs into one-cell embryos, demonstrating the high efficiency of Cas9-mediated gene editing in rats for simultaneous generation of compound gene mutant models. Here we describe a stepwise procedure for the generation of knockout and knock-in rats. This protocol provides guidelines for the selection of genomic targets, synthesis of guide RNAs, design and construction of homologous recombination (HR) template vectors, embryo microinjection, and detection of mutations and insertions in founders or their progeny. The procedure from target design to identification of founders can take as little as 6 weeks, of which <10 d is actual hands-on working time.
Collapse
Affiliation(s)
- Yanjiao Shao
- 1] Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. [2]
| | - Yuting Guan
- 1] Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. [2]
| | - Liren Wang
- 1] Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. [2]
| | - Zhongwei Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meizhen Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuting Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lijuan Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yongmei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xueyun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- 1] Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. [2] Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
31
|
Carroll D, Beumer KJ. Genome engineering with TALENs and ZFNs: repair pathways and donor design. Methods 2014; 69:137-41. [PMID: 24704173 PMCID: PMC4175112 DOI: 10.1016/j.ymeth.2014.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/05/2014] [Accepted: 03/24/2014] [Indexed: 01/19/2023] Open
Abstract
Genome engineering with targetable nucleases depends on cellular pathways of DNA repair after target cleavage. Knowledge of how those pathways work, their requirements and their active factors, can guide experimental design and improve outcomes. While many aspects of both homologous recombination (HR) and nonhomologous end joining (NHEJ) are shared by a broad range of cells and organisms, some features are specific to individual situations. This article reviews the influence of repair mechanisms on the results of gene targeting experiments, with an emphasis on lessons learned from experiments with Drosophila.
Collapse
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA.
| | - Kelly J Beumer
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| |
Collapse
|
32
|
Kan Y, Ruis B, Lin S, Hendrickson EA. The mechanism of gene targeting in human somatic cells. PLoS Genet 2014; 10:e1004251. [PMID: 24699519 PMCID: PMC3974634 DOI: 10.1371/journal.pgen.1004251] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/03/2014] [Indexed: 12/24/2022] Open
Abstract
Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells. Gene targeting is important for basic research and clinical applications. In the laboratory, gene targeting is used to knockout genes so that loss-of-function phenotypes can be assessed. In the clinic, gene targeting is the gold standard to which most gene therapy approaches aspire. One of the most promising tools for gene targeting in humans is recombinant adeno-associated virus (rAAV). The mechanism by which rAAV performs gene targeting has, however, remained obscure. Here, we surprisingly demonstrate that the normally single-stranded rAAV performs gene targeting via double-stranded intermediates, which are mechanistically indistinguishable from standard plasmid-mediated gene targeting. Moreover, we establish the double-strand break (DSB) repair model as the paradigm to describe human gene targeting, and delineate the dynamics of crossovers in this model. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted such that the chromosome becomes the “attacker” instead of the “attackee”. Finally, we confirm that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations advance our understanding of the mechanism of human gene targeting and should readily lend themselves to developing improvements to existing methodologies.
Collapse
Affiliation(s)
- Yinan Kan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Brian Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Sherry Lin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eric A. Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
33
|
Kautschitsch S, Andersen L, Hammerschmid S, Rülicke T. Rapid identification of targeted transgene integrations in ES cells by fluorescence detection. Transgenic Res 2014; 23:469-75. [PMID: 24482264 DOI: 10.1007/s11248-014-9782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
The generation of transgenic animals with a gain-of-function mutation is commonly achieved by procedures based on random DNA integration. The resulting transgenic founder lines are unique, not reproducible and have variable expression patterns. In contrast, the targeted integration of transgenes into a predetermined neutral genomic position solves most of the inadequacies of random integration methods. However, homologous recombination (HR) in mouse embryonic stem cells (ESCs) currently requires careful design of the targeting vector and a laborious procedure to identify clones with the correct insertion event. Here, we introduce a feasible strategy that employs a heterozygous double fluorescent reporter ESC line for simple identification of a knock-in HR event via detection of endogenous fluorescence expression. Following positive selection using antibiotics, the system offers a second selection step to identify targeted clones by the loss of one of two fluorescence reporters in lieu of the time consuming Southern blotting and PCR analysis routinely applied in conventional targeting experiments. Moreover, the method allows for the simple detection of chimerism (negating the need for appropriate coat colour combinations) and enables the early detection of germline transmission by fluorescence reporter expression in F1 neonates.
Collapse
Affiliation(s)
- Susanna Kautschitsch
- Institute of Laboratory Animal Science, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | | | | | | |
Collapse
|
34
|
Deyle DR, Li LB, Ren G, Russell DW. The effects of polymorphisms on human gene targeting. Nucleic Acids Res 2013; 42:3119-24. [PMID: 24371280 PMCID: PMC3950700 DOI: 10.1093/nar/gkt1303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
DNA mismatches that occur between vector homology arms and chromosomal target sequences reduce gene targeting frequencies in several species; however, this has not been reported in human cells. Here we demonstrate that even a single mismatched base pair can significantly decrease human gene targeting frequencies. In addition, we show that homology arm polymorphisms can be used to direct allele-specific targeting or to improve unfavorable vector designs that introduce deletions.
Collapse
Affiliation(s)
- David R Deyle
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | | | | | | |
Collapse
|
35
|
Wefers B, Panda SK, Ortiz O, Brandl C, Hensler S, Hansen J, Wurst W, Kühn R. Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA. Nat Protoc 2013; 8:2355-79. [PMID: 24177293 DOI: 10.1038/nprot.2013.142] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetically engineered mice are instrumental for the analysis of mammalian gene function in health and disease. As classical gene targeting, which is performed in embryonic stem (ES) cell cultures and generates chimeric mice, is a time-consuming and labor-intensive procedure, we recently used transcription activator-like (TAL) effector nucleases (TALENs) for mutagenesis of the mouse genome directly in one-cell embryos. Here we describe a stepwise protocol for the generation of knock-in and knockout mice, including the selection of TALEN-binding sites, the design and construction of TALEN coding regions and of mutagenic oligodeoxynucleotides (ODNs) and targeting vectors, mRNA production, embryo microinjection and the identification of modified alleles in founder mutants and their progeny. After a setup time of 2-3 weeks of hands-on work for TALEN construction, investigators can obtain first founder mutants for genes of choice within 7 weeks after embryo microinjections.
Collapse
Affiliation(s)
- Benedikt Wefers
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Andréasson C, Schick AJ, Pfeiffer SM, Sarov M, Stewart F, Wurst W, Schick JA. Direct cloning of isogenic murine DNA in yeast and relevance of isogenicity for targeting in embryonic stem cells. PLoS One 2013; 8:e74207. [PMID: 24058528 PMCID: PMC3772885 DOI: 10.1371/journal.pone.0074207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/30/2013] [Indexed: 12/25/2022] Open
Abstract
Efficient gene targeting in embryonic stem cells requires that modifying DNA sequences are identical to those in the targeted chromosomal locus. Yet, there is a paucity of isogenic genomic clones for human cell lines and PCR amplification cannot be used in many mutation-sensitive applications. Here, we describe a novel method for the direct cloning of genomic DNA into a targeting vector, pRTVIR, using oligonucleotide-directed homologous recombination in yeast. We demonstrate the applicability of the method by constructing functional targeting vectors for mammalian genes Uhrf1 and Gfap. Whereas the isogenic targeting of the gene Uhrf1 showed a substantial increase in targeting efficiency compared to non-isogenic DNA in mouse E14 cells, E14-derived DNA performed better than the isogenic DNA in JM8 cells for both Uhrf1 and Gfap. Analysis of 70 C57BL/6-derived targeting vectors electroporated in JM8 and E14 cell lines in parallel showed a clear dependence on isogenicity for targeting, but for three genes isogenic DNA was found to be inhibitory. In summary, this study provides a straightforward methodological approach for the direct generation of isogenic gene targeting vectors.
Collapse
Affiliation(s)
- Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna J. Schick
- Physiologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | - Susanne M. Pfeiffer
- Institute of Developmental Genetics, Helmholtz Zentrum Munich, Munich-Neuherberg, Germany
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Mihail Sarov
- The TransgeneOme Project Group, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Francis Stewart
- Genomics, BioInnovationZentrum, Technische Universität Dresden, Dresden, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum Munich, Munich-Neuherberg, Germany
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Joel A. Schick
- Institute of Developmental Genetics, Helmholtz Zentrum Munich, Munich-Neuherberg, Germany
- Technische Universität München, Freising-Weihenstephan, Germany
- * E-mail:
| |
Collapse
|
37
|
Hauschild-Quintern J, Petersen B, Cost GJ, Niemann H. Gene knockout and knockin by zinc-finger nucleases: current status and perspectives. Cell Mol Life Sci 2013; 70:2969-83. [PMID: 23161061 PMCID: PMC11113862 DOI: 10.1007/s00018-012-1204-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 12/01/2022]
Abstract
Zinc-finger nucleases (ZFNs) are engineered site-specific DNA cleavage enzymes that may be designed to recognize long target sites and thus cut DNA with high specificity. ZFNs mediate permanent and targeted genetic alteration via induction of a double-strand break at a specific genomic site. Compared to conventional homology-based gene targeting, ZFNs can increase the targeting rate by up to 100,000-fold; gene disruption via mutagenic DNA repair is similarly efficient. The utility of ZFNs has been shown in many organisms, including insects, amphibians, plants, nematodes, and several mammals, including humans. This broad range of tractable species renders ZFNs a useful tool for improving the understanding of complex physiological systems, to produce transgenic animals, cell lines, and plants, and to treat human disease.
Collapse
Affiliation(s)
- J. Hauschild-Quintern
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Hoeltystrasse 10, 31535 Neustadt a. Rbge., Germany
| | - B. Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Hoeltystrasse 10, 31535 Neustadt a. Rbge., Germany
| | - G. J. Cost
- Sangamo BioSciences, 501 Canal Blvd., Richmond, CA 94804 USA
| | - H. Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Hoeltystrasse 10, 31535 Neustadt a. Rbge., Germany
- Rebirth, Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
38
|
Normal DNA methylation dynamics in DICER1-deficient mouse embryonic stem cells. PLoS Genet 2012; 8:e1002919. [PMID: 22969435 PMCID: PMC3435250 DOI: 10.1371/journal.pgen.1002919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Reduced DNA methylation has been reported in DICER1-deficient mouse ES cells. Reductions seen at pericentric satellite repeats have suggested that siRNAs are required for the proper assembly of heterochromatin. More recent studies have postulated that the reduced methylation is an indirect effect: the loss of Mir290 cluster miRNAs leads to upregulation of the transcriptional repressor RBL2 that targets the downregulation of DNA methyltransferase (Dnmt) genes. However, the observations have been inconsistent. We surmised that the inconsistency could be related to cell line “age,” given that DNA methylation is lost progressively with passage in DNMT-deficient ES cells. We therefore subjected Dicer1−/− ES cells to two experimental regimes to rigorously test the level of functional DNMT activity. First, we cultured them for a prolonged period. If DNMT activity was reduced, further losses of methylation would occur. Second, we measured their DNMT activity in a rebound DNA methylation assay: DNA methylation was stripped from Cre/loxP conditionally mutant Dicer1 ES cells using a shRNA targeting Dnmt1 mRNA. Cre expression then converted these cells to Dicer1−/−, allowing for DNMT1 recovery and forcing the cells to remethylate in the absence of RNAi. In both cases, we found functional DNMT activity to be normal. Finally, we also show that the level of RBL2 protein is not at excess levels in Dicer1−/− ES cells as has been assumed. These studies reveal that reduced functional DNMT activity is not a salient feature of DICER1-deficient ES cells. We suggest that the reduced DNA methylation sometimes observed in these cells could be due to stochastic alterations in DNA methylation patterns that could offer growth or survival advantages in culture, or to the dysregulation of pathways acting in opposition to the DNMT pathway. In mammalian cells, DNA methylation is required for the maintenance of genome stability. Recent studies have shown that the genome-wide levels of DNA methylation can be reduced in DICER1-deficient mouse embryonic stem (ES) cells, suggesting that the activity of DNA methylating enzymes (DNMTs) may be regulated by small RNA molecules. The enzyme DICER1 catalyses the production of these small RNAs that serve as sequence-specific guides for modifying chromatin or transcription. However, these observations of defective DNA methylation have been inconsistent. We surmised that this inconsistency could be due to cell line “age,” because it can take many cell divisions before reduced DNMT activity may result in loss of DNA methylation. To test this idea, we rigorously assayed the functional level of DNMT activity in DICER1-deficient ES cells. First, we tested their ability to maintain DNA methylation over prolonged culture. Second, we tested their ability to rebound in DNA methylation after first stripping it from the genome. In both cases functional DNMT activity was entirely normal. We suggest that losses of DNA methylation sometimes seen in DICER1-deficient ES cells is stochastic and could involve cell line adaptation.
Collapse
|
39
|
Yu Q, Tian Q, Lin J, Zhang Q, Zhu L, Yang Q. Construction and function of mammary gland specific goat GH expression vector. Mol Biol Rep 2012; 39:8373-8. [PMID: 22699876 DOI: 10.1007/s11033-012-1687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
The objective of this study was to construct a mammary gland specific gene targeting vector (pLG), which could help the exogenous goat growth hormone (GH) cDNA being integrated into the beta-casein locus of goats and improve the milk production of goat. We cloned the 5' and 3' regulatory sequences of goat's beta-casein gene as homologous arms and inserted them into the Not I/Xho I and Sal I/Cla I multiple clone sites (MCS) of pLoxp II vector respectively, then inserted the GH cDNA into the Xho I MCS of pLoxp II vector and finally got the gene targeting vector pLG. The expression of GH in Bcap-37 cells transfected with plasmid pLG (14.52 ng/mL) was two times higher than that of cells untreated (7.10 ng/mL). While the GH expression of goats injected with plasmid pLG (7.54 ng/mL) was higher than goats untreated or injected with normal saline (6.64 and 6.78 ng/mL). We successfully constructed the mammary gland specific beta-casein gene targeting vector pLG exhibiting bioactivity of transcription and expression of GH both in vitro and in vivo.
Collapse
Affiliation(s)
- Qinghua Yu
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing 210095, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Mata JF, Lopes T, Gardner R, Jansen LET. A rapid FACS-based strategy to isolate human gene knockin and knockout clones. PLoS One 2012; 7:e32646. [PMID: 22393430 PMCID: PMC3290580 DOI: 10.1371/journal.pone.0032646] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/28/2012] [Indexed: 11/18/2022] Open
Abstract
Gene targeting protocols for mammalian cells remain inefficient and labor intensive. Here we describe FASTarget, a rapid, fluorescent cell sorting based strategy to isolate rare gene targeting events in human somatic cells. A fluorescent protein is used as a means for direct selection of targeted clones obviating the need for selection and outgrowth of drug resistant clones. Importantly, the use of a promoter-less, ATG-less construct greatly facilitates the recovery of correctly targeted cells. Using this method we report successful gene targeting in up to 94% of recovered human somatic cell clones. We create functional EYFP-tagged knockin clones in both transformed and non-transformed human somatic cell lines providing a valuable tool for mammalian cell biology. We further demonstrate the use of this technology to create gene knockouts. Using this generally applicable strategy we can recover gene targeted clones within approximately one month from DNA construct delivery to obtaining targeted monoclonal cell lines.
Collapse
Affiliation(s)
- João F. Mata
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Telma Lopes
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
41
|
Leavitt AD, Hamlett I. Homologous recombination in human embryonic stem cells: a tool for advancing cell therapy and understanding and treating human disease. Clin Transl Sci 2011; 4:298-305. [PMID: 21884519 DOI: 10.1111/j.1752-8062.2011.00281.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human embryonic stem cells (hESCs) hold great promise for ushering in an era of novel cell therapies to treat a wide range of rare and common diseases, yet they also provide an unprecedented opportunity for basic research to yield clinical benefit. HESCs can be used to better understand human development, to model human diseases, to understand the contribution of specific mutations to the pathogenesis of disease, and to develop human cell-based screening systems to identify novel therapeutic agents and evaluate potential toxicity of therapeutic agents under development. Such basic research will benefit greatly from efficient methods to perform targeted gene modification, an area of hESC investigation that is currently in its infancy. Moreover, the reality of hESC-based cellular therapies will require improved methods for generating the specific cells of interest, and reporter cell lines generated through targeted gene modifications are expected to play an important role in developing optimal cell-specific differentiation protocols. Herein, we review the current status of homologous recombination in hESCs, a gene targeting technique that is sure to continue to improve, and to play an important role in realizing the maximal human benefit from hESCs.
Collapse
Affiliation(s)
- Andrew D Leavitt
- Laboratory Medicine, University of California, San Francisco, California, USA.
| | | |
Collapse
|
42
|
Barakat TS, Rentmeester E, Sleutels F, Grootegoed JA, Gribnau J. Precise BAC targeting of genetically polymorphic mouse ES cells. Nucleic Acids Res 2011; 39:e121. [PMID: 21737430 PMCID: PMC3185440 DOI: 10.1093/nar/gkr550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The use of bacterial artificial chromosomes (BACs) provides a consistent and high targeting efficiency of homologous recombination in embryonic stem (ES) cells, facilitated by long stretches of sequence homology. Here, we introduce a BAC targeting method which employs restriction fragment length polymorphisms (RFLPs) in targeted polymorphic C57BL/6/Cast/Ei F1 mouse ES cell lines to identify properly targeted ES cell clones. We demonstrate that knockout alleles can be generated either by targeting of an RFLP located in the open reading frame thereby disrupting the RFLP and ablating gene function, or by introduction of a transcription stop cassette that prematurely stops transcription of an RFLP located downstream of the stop cassette. With both methods we have generated Rnf12 heterozygous knockout ES cells, which were identified by allele specific PCR using genomic DNA or cDNA as a template. Our results indicate that this novel strategy is efficient and precise, by combining a high targeting efficiency with a convenient PCR based readout and reliable detection of correct targeting events.
Collapse
Affiliation(s)
- Tahsin Stefan Barakat
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
A conditional knockout resource for the genome-wide study of mouse gene function. Nature 2011; 474:337-42. [PMID: 21677750 DOI: 10.1038/nature10163] [Citation(s) in RCA: 1324] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 04/27/2011] [Indexed: 02/07/2023]
Abstract
Gene targeting in embryonic stem cells has become the principal technology for manipulation of the mouse genome, offering unrivalled accuracy in allele design and access to conditional mutagenesis. To bring these advantages to the wider research community, large-scale mouse knockout programmes are producing a permanent resource of targeted mutations in all protein-coding genes. Here we report the establishment of a high-throughput gene-targeting pipeline for the generation of reporter-tagged, conditional alleles. Computational allele design, 96-well modular vector construction and high-efficiency gene-targeting strategies have been combined to mutate genes on an unprecedented scale. So far, more than 12,000 vectors and 9,000 conditional targeted alleles have been produced in highly germline-competent C57BL/6N embryonic stem cells. High-throughput genome engineering highlighted by this study is broadly applicable to rat and human stem cells and provides a foundation for future genome-wide efforts aimed at deciphering the function of all genes encoded by the mammalian genome.
Collapse
|
44
|
Abstract
Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types, with targeting frequencies ranging from 10(-5) to 10(-2) per infected cell. These targeting frequencies are 1-4 logs higher than those obtained by conventional transfection or electroporation approaches. A wide variety of different types of mutations can be introduced into chromosomal loci with high fidelity and without genotoxicity. Here we provide a detailed protocol for gene targeting in human cells with AAV vectors. We describe methods for vector design, stock preparation and titration. Optimized transduction protocols are provided for human pluripotent stem cells, mesenchymal stem cells, fibroblasts and transformed cell lines, as well as a method for identifying targeted clones by Southern blots. This protocol (from vector design through a single round of targeting and screening) can be completed in ∼10 weeks; each subsequent round of targeting and screening should take an additional 7 weeks.
Collapse
Affiliation(s)
- Iram F Khan
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
45
|
Mamo S, Kobolak J, Borbíró I, Bíró T, Bock I, Dinnyes A. Gene targeting and Calcium handling efficiencies in mouse embryonic stem cell lines. World J Stem Cells 2010; 2:127-40. [PMID: 21607130 PMCID: PMC3097933 DOI: 10.4252/wjsc.v2.i6.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To compare gene targeting efficiencies, expression profiles, and Ca(2+) handling potentials in two widely used mouse embryonic stem cell lines. METHODS The two widely used mouse embryonic stem cell lines, R1 and HM-1, were cultured and maintained on Mitomycin C treated mouse embryonic fibroblast feeder cell layers, following standard culture procedures. Cells were incubated with primary and secondary antibodies before fluorescence activated cell sorting analysis to compare known pluripotency markers. Moreover, cells were harvested by trypsinization and transfected with a kinase-inactive murine Tyk2 targeting construct, following the BioRad and Amaxa transfection procedures. Subsequently, the cells were cultured and neomycin-resistant cells were picked after 13 d of selection. Surviving clones were screened twice by polymerase chain reaction (PCR) and finally confirmed by Southern blot analysis before comparison. Global gene expression profiles of more than 20 400 probes were also compared and significantly regulated genes were confirmed by real time PCR analysis. Calcium handling potentials of these cell lines were also compared using various agonists. RESULTS We found significant differences in transfection efficiencies of the two cell lines (91% ± 6.1% vs 75% ± 4.2%, P = 0.01). Differences in the targeting efficiencies were also significant whether the Amaxa or BioRad platforms were used for comparison. We did not observe significant differences in the levels of many known pluripotency markers. However, our genome-wide expression analysis using more than 20 400 spotted cDNA arrays identified 55 differentially regulated transcripts (P < 0.05) implicated in various important biological processes, including binding molecular functions (particularly Ca(2+) binding roles). Subsequently, we measured Ca(2+) signals in these cell lines in response to various calcium agonists, both in high and low Ca(2+) solutions, and found significant differences (P < 0.05) in the regulation of Ca(2+) homeostasis between the investigated cell lines. Then we further compared the detection and expression of various membrane and intracellular Ca(2+) receptors and similarly found significant (P < 0.05) variations in a number of calcium receptors between these cell lines. CONCLUSION Results of this study emphasize the importance of considering intrinsic cellular variations, during selection of cell lines for experiments and interpretations of experimental results.
Collapse
Affiliation(s)
- Solomon Mamo
- Solomon Mamo, Julianna Kobolak, Andras Dinnyes, Genetic Reprogramming Group, Agricultural Biotechnology Center, Szent-Gyorgyi Albert ut. 4, H-2100 Gödöllő, Hungary
| | | | | | | | | | | |
Collapse
|
46
|
Narsinh KH, Wu JC. Gene correction in human embryonic and induced pluripotent stem cells: promises and challenges ahead. Mol Ther 2010; 18:1061-3. [PMID: 20514030 DOI: 10.1038/mt.2010.92] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Kazim H Narsinh
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
47
|
Fischer Y, Ganic E, Ameri J, Xian X, Johannesson M, Semb H. NANOG reporter cell lines generated by gene targeting in human embryonic stem cells. PLoS One 2010; 5. [PMID: 20824089 PMCID: PMC2932718 DOI: 10.1371/journal.pone.0012533] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/10/2010] [Indexed: 12/12/2022] Open
Abstract
Background Pluripotency and self-renewal of human embryonic stem cells (hESCs) is mediated by a complex interplay between extra- and intracellular signaling pathways, which regulate the expression of pluripotency-specific transcription factors. The homeodomain transcription factor NANOG plays a central role in maintaining hESC pluripotency, but the precise role and regulation of NANOG are not well defined. Methodology/Principal Findings To facilitate the study of NANOG expression and regulation in viable hESC cultures, we generated fluorescent NANOG reporter cell lines by gene targeting in hESCs. In these reporter lines, the fluorescent reporter gene was co-expressed with endogenous NANOG and responded to experimental induction or repression of the NANOG promoter with appropriate changes in expression levels. Furthermore, NANOG reporter lines facilitated the separation of hESC populations based on NANOG expression levels and their subsequent characterization. Gene expression arrays on isolated hESC subpopulations revealed genes with differential expression in NANOGhigh and NANOGlow hESCs, providing candidates for NANOG downstream targets hESCs. Conclusion/Significance The newly derived NANOG reporter hESC lines present novel tools to visualize NANOG expression in viable hESCs. In future applications, these reporter lines can be used to elucidate the function and regulation of NANOG in pluripotent hESCs.
Collapse
Affiliation(s)
| | - Elvira Ganic
- Stem Cell Center, University of Lund, Lund, Sweden
| | | | - Xiaojie Xian
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Martina Johannesson
- Department of Stem Cell Biology, Hagedorn Research Institute, Gentofte, Denmark
| | - Henrik Semb
- Stem Cell Center, University of Lund, Lund, Sweden
- * E-mail:
| |
Collapse
|
48
|
Orlando SJ, Santiago Y, DeKelver RC, Freyvert Y, Boydston EA, Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J, Miller JC, Holmes MC, Gregory PD, Urnov FD, Cost GJ. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res 2010; 38:e152. [PMID: 20530528 PMCID: PMC2926620 DOI: 10.1093/nar/gkq512] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously demonstrated high-frequency, targeted DNA addition mediated by the homology-directed DNA repair pathway. This method uses a zinc-finger nuclease (ZFN) to create a site-specific double-strand break (DSB) that facilitates copying of genetic information into the chromosome from an exogenous donor molecule. Such donors typically contain two approximately 750 bp regions of chromosomal sequence required for homology-directed DNA repair. Here, we demonstrate that easily-generated linear donors with extremely short (50 bp) homology regions drive transgene integration into 5-10% of chromosomes. Moreover, we measure the overhangs produced by ZFN cleavage and find that oligonucleotide donors with single-stranded 5' overhangs complementary to those made by ZFNs are efficiently ligated in vivo to the DSB. Greater than 10% of all chromosomes directly incorporate this exogenous DNA via a process that is dependent upon and guided by complementary 5' overhangs on the donor DNA. Finally, we extend this non-homologous end-joining (NHEJ)-based technique by directly inserting donor DNA comprising recombinase sites into large deletions created by the simultaneous action of two separate ZFN pairs. Up to 50% of deletions contained a donor insertion. Targeted DNA addition via NHEJ complements our homology-directed targeted integration approaches, adding versatility to the manipulation of mammalian genomes.
Collapse
|
49
|
Hall B, Limaye A, Kulkarni AB. Overview: generation of gene knockout mice. ACTA ACUST UNITED AC 2009; Chapter 19:Unit 19.12 19.12.1-17. [PMID: 19731224 DOI: 10.1002/0471143030.cb1912s44] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The technique of gene targeting allows for the introduction of engineered genetic mutations into a mouse at a determined genomic locus. The process of generating mouse models with targeted mutations was developed through both the discovery of homologous recombination and the isolation of murine embryonic stem cells (ES cells). Homologous recombination is a DNA repair mechanism that is employed in gene targeting to insert a designed mutation into the homologous genetic locus. Targeted homologous recombination can be performed in murine ES cells through electroporation of a targeting construct. These ES cells are totipotent and, when injected into a mouse blastocyst, they can differentiate into all cell types of a chimeric mouse. A chimeric mouse harboring cells derived from the targeted ES cell clone can then generate a whole mouse containing the desired targeted mutation. The initial step for the generation of a mouse with a targeted mutation is the construction of an efficient targeting vector that will be introduced into the ES cells.
Collapse
Affiliation(s)
- Bradford Hall
- Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
50
|
A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair. BMC Biotechnol 2009; 9:35. [PMID: 19379497 PMCID: PMC2676283 DOI: 10.1186/1472-6750-9-35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 04/20/2009] [Indexed: 12/14/2022] Open
Abstract
Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1). Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments.
Collapse
|