1
|
Waldron R, Rodriguez MDLAB, Williams JM, Ning Z, Ahmed A, Lindsay A, Moore T. JRK binds satellite III DNA and is necessary for the heat shock response. Cell Biol Int 2024; 48:1212-1222. [PMID: 38946594 DOI: 10.1002/cbin.12216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
JRK is a DNA-binding protein of the pogo superfamily of transposons, which includes the well-known centromere binding protein B (CENP-B). Jrk null mice exhibit epilepsy, and growth and reproductive disorders, consistent with its relatively high expression in the brain and reproductive tissues. Human JRK DNA variants and gene expression levels are implicated in cancers and neuropsychiatric disorders. JRK protein modulates β-catenin-TCF activity but little is known of its cellular functions. Based on its homology to CENP-B, we determined whether JRK binds centromeric or other satellite DNAs. We show that human JRK binds satellite III DNA, which is abundant at the chromosome 9q12 juxtacentromeric region and on Yq12, both sites of nuclear stress body assembly. Human JRK-GFP overexpressed in HeLa cells strongly localises to 9q12. Using an anti-JRK antiserum we show that endogenous JRK co-localises with a subset of centromeres in non-stressed cells, and with heat shock factor 1 following heat shock. Knockdown of JRK in HeLa cells proportionately reduces heat shock protein gene expression in heat-shocked cells. A role for JRK in regulating the heat shock response is consistent with the mouse Jrk null phenotype and suggests that human JRK may act as a modifier of diseases with a cellular stress component.
Collapse
Affiliation(s)
- Rosalie Waldron
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - John M Williams
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Zhenfei Ning
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Abrar Ahmed
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew Lindsay
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Kang MG, Kim HR, Lee HY, Kwak C, Koh H, Kang BH, Roe JS, Rhee HW. Mitochondrial Thermogenesis Can Trigger Heat Shock Response in the Nucleus. ACS CENTRAL SCIENCE 2024; 10:1231-1241. [PMID: 38947196 PMCID: PMC11212142 DOI: 10.1021/acscentsci.3c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024]
Abstract
Mitochondrial thermogenesis is a process in which heat is generated by mitochondrial respiration. In living organisms, the thermogenic mechanisms that maintain body temperature have been studied extensively in fat cells with little knowledge on how mitochondrial heat may act beyond energy expenditure. Here, we highlight that the exothermic oxygen reduction reaction (ΔH f° = -286 kJ/mol) is the main source of the protonophore-induced mitochondrial thermogenesis, and this heat is conducted to other cellular organelles, including the nucleus. As a result, mitochondrial heat that reached the nucleus initiated the classical heat shock response, including the formation of nuclear stress granules and the localization of heat shock factor 1 (HSF1) to chromatin. Consequently, activated HSF1 increases the level of gene expression associated with the response to thermal stress in mammalian cells. Our results illustrate heat generated within the cells as a potential source of mitochondria-nucleus communication and expand our understanding of the biological functions of mitochondria in cell physiology.
Collapse
Affiliation(s)
- Myeong-Gyun Kang
- Department
of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hwa-Ryeon Kim
- Department
of Biochemistry, Yonsei University, Seoul 03722, Korea
| | - Hee Yong Lee
- Department
of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Chulhwan Kwak
- Department
of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyewon Koh
- Department
of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Byoung Heon Kang
- Department
of Biological Sciences, Ulsan National Institute
of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jae-Seok Roe
- Department
of Biochemistry, Yonsei University, Seoul 03722, Korea
| | - Hyun-Woo Rhee
- Department
of Chemistry, Seoul National University, Seoul 08826, Korea
- School
of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
4
|
Kinetic principles underlying pioneer function of GAGA transcription factor in live cells. Nat Struct Mol Biol 2022; 29:665-676. [PMID: 35835866 PMCID: PMC10177624 DOI: 10.1038/s41594-022-00800-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
How pioneer factors interface with chromatin to promote accessibility for transcription control is poorly understood in vivo. Here, we directly visualize chromatin association by the prototypical GAGA pioneer factor (GAF) in live Drosophila hemocytes. Single-particle tracking reveals that most GAF is chromatin bound, with a stable-binding fraction showing nucleosome-like confinement residing on chromatin for more than 2 min, far longer than the dynamic range of most transcription factors. These kinetic properties require the full complement of GAF's DNA-binding, multimerization and intrinsically disordered domains, and are autonomous from recruited chromatin remodelers NURF and PBAP, whose activities primarily benefit GAF's neighbors such as Heat Shock Factor. Evaluation of GAF kinetics together with its endogenous abundance indicates that, despite on-off dynamics, GAF constitutively and fully occupies major chromatin targets, thereby providing a temporal mechanism that sustains open chromatin for transcriptional responses to homeostatic, environmental and developmental signals.
Collapse
|
5
|
Hormetic Heat Shock Enhances Autophagy through HSF1 in Retinal Pigment Epithelium Cells. Cells 2022; 11:cells11111778. [PMID: 35681472 PMCID: PMC9179435 DOI: 10.3390/cells11111778] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/18/2023] Open
Abstract
To maintain homeostasis, cells have evolved stress-response pathways to cope with exogenous and endogenous stress factors. Diverse stresses at high doses may be detrimental, albeit low doses of stress, known as hormesis, can be beneficial. Upon exposure to stress, such as temperature rise, the conventional heat shock response (HSR) regulated by the heat shock transcription factor 1 (HSF1) facilitates refolding of misfolded proteins with the help of heat shock proteins (HSPs). However, the role and molecular mechanisms underlying the beneficial effects of HSR with other clearance processes, such as autophagy, remain poorly understood. In this study, human ARPE-19 cells, an in vitro model of retinal pigment epithelium, were treated with hormetic heat shock (HHS) and the autophagy expression profile was examined using quantitative PCR (qPCR), immunoblotting, immunoprecipitation, and immunofluorescence. We demonstrate that HHS enhances the expression of fundamental autophagy-associated genes in ARPE-19 cells through the activation of HSF1. HHS transiently increases the level of SQSTM1 and LC3B-II and activates autophagy. These findings reveal a role for autophagic HSF1-regulated functions and demonstrate the contribution of autophagy to hormesis in the HSR by improving proteostasis.
Collapse
|
6
|
Jin J, Liu Y, Liang X, Pei Y, Wan F, Guo J. Regulatory Mechanism of Transcription Factor AhHsf Modulates AhHsp70 Transcriptional Expression Enhancing Heat Tolerance in Agasicles hygrophila (Coleoptera: Chrysomelidae). Int J Mol Sci 2022; 23:ijms23063210. [PMID: 35328631 PMCID: PMC8955217 DOI: 10.3390/ijms23063210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022] Open
Abstract
Agasicles hygrophila is a classical biological agent used to control alligator weed (Alternanthera philoxeroides). Previous research has indicated that the heat shock factor (HSF) is involved in regulating the transcriptional expression of Hsp70 in response to heat resistance in A. hygrophila. However, the regulatory mechanism by which AhHsf regulates the expression of AhHsp70 remains largely unknown. Here, we identified and cloned a 944 bp AhHsp70 promoter (AhHsp70p) region from A. hygrophila. Subsequent bioinformatics analysis revealed that the AhHsp70p sequence contains multiple functional elements and has a common TATA box approximately 30 bp upstream of the transcription start site, with transcription commencing at a purine base approximately 137 bp upstream of ATG. Promoter deletion analyses revealed that the sequence from -944 to -744 bp was the core regulatory region. A dual-luciferase reporter assay indicated that overexpressed AhHsf significantly enhanced the activity of AhHsp70p. Furthermore, qPCR showed that AhHsp70 expression increased with time in Spodoptera frugiperda (Sf9) cells, and AhHsf overexpression significantly upregulated AhHsp70 expression in vitro. Characterization of the upstream regulatory mechanisms demonstrated that AhHsf binds to upstream cis-acting elements in the promoter region of AhHsp70 from -944 to -744 bp to activate the AhHSF-AhHSP pathway at the transcriptional level to protect A. hygrophila from high temperature damage. Furthermore, we proposed a molecular model of AhHsf modulation of AhHsp70 transcription following heat shock in A. hygrophila. The findings of this study suggest that enhancing the heat tolerance of A. hygrophila by modulating the upstream pathways of the Hsp family can improve the biocontrol of A. philoxeroides.
Collapse
Affiliation(s)
- Jisu Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (Y.L.); (X.L.); (Y.P.); (F.W.)
| | - Yiran Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (Y.L.); (X.L.); (Y.P.); (F.W.)
| | - Xiaocui Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (Y.L.); (X.L.); (Y.P.); (F.W.)
| | - Yiming Pei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (Y.L.); (X.L.); (Y.P.); (F.W.)
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (Y.L.); (X.L.); (Y.P.); (F.W.)
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (Y.L.); (X.L.); (Y.P.); (F.W.)
- Correspondence:
| |
Collapse
|
7
|
Transcriptome Analysis of Insulin Signaling-Associated Transcription Factors in C. elegans Reveal Their Genome-Wide Target Genes Specificity and Complexity. Int J Mol Sci 2021; 22:ijms222212462. [PMID: 34830338 PMCID: PMC8618238 DOI: 10.3390/ijms222212462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Insulin/IGF-1-like signaling (IIS) plays a crucial, conserved role in development, growth, reproduction, stress tolerance, and longevity. In Caenorhabditis elegans, the enhanced longevity under reduced insulin signaling (rIIS) is primarily regulated by the transcription factors (TFs) DAF-16/FOXO, SKN-1/Nrf-1, and HSF1/HSF-1. The specific and coordinated regulation of gene expression by these TFs under rIIS has not been comprehensively elucidated. Here, using RNA-sequencing analysis, we report a systematic study of the complexity of TF-dependent target gene interactions during rIIS under analogous genetic and experimental conditions. We found that DAF-16 regulates only a fraction of the C. elegans transcriptome but controls a large set of genes under rIIS; SKN-1 and HSF-1 show the opposite trend. Both of the latter TFs function as activators and repressors to a similar extent, while DAF-16 is predominantly an activator. For expression of the genes commonly regulated by TFs under rIIS conditions, DAF-16 is the principal determining factor, dominating over the other two TFs, irrespective of whether they activate or repress these genes. The functional annotations and regulatory networks presented in this study provide novel insights into the complexity of the gene regulatory networks downstream of the IIS pathway that controls diverse phenotypes, including longevity.
Collapse
|
8
|
The Role of Human Satellite III (1q12) Copy Number Variation in the Adaptive Response during Aging, Stress, and Pathology: A Pendulum Model. Genes (Basel) 2021; 12:genes12101524. [PMID: 34680920 PMCID: PMC8535310 DOI: 10.3390/genes12101524] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
The pericentric satellite III (SatIII or Sat3) and II tandem repeats recently appeared to be transcribed under stress conditions, and the transcripts were shown to play an essential role in the universal stress response. In this paper, we review the role of human-specific SatIII copy number variation (CNV) in normal stress response, aging and pathology, with a focus on 1q12 loci. We postulate a close link between transcription of SatII/III repeats and their CNV. The accrued body of data suggests a hypothetical universal mechanism, which provides for SatIII copy gain during the stress response, alongside with another, more hypothetical reverse mechanism that might reduce the mean SatIII copy number, likely via the selection of cells with excessively large 1q12 loci. Both mechanisms, working alternatively like swings of the pendulum, may ensure the balance of SatIII copy numbers and optimum stress resistance. This model is verified on the most recent data on SatIII CNV in pathology and therapy, aging, senescence and response to genotoxic stress in vitro.
Collapse
|
9
|
Pesonen L, Svartsjö S, Bäck V, de Thonel A, Mezger V, Sabéran-Djoneidi D, Roos-Mattjus P. Gambogic acid and gambogenic acid induce a thiol-dependent heat shock response and disrupt the interaction between HSP90 and HSF1 or HSF2. Cell Stress Chaperones 2021; 26:819-833. [PMID: 34331200 PMCID: PMC8492855 DOI: 10.1007/s12192-021-01222-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer cells rely on heat shock proteins (HSPs) for growth and survival. Especially HSP90 has multiple client proteins and plays a critical role in malignant transformation, and therefore different types of HSP90 inhibitors are being developed. The bioactive natural compound gambogic acid (GB) is a prenylated xanthone with antitumor activity, and it has been proposed to function as an HSP90 inhibitor. However, there are contradicting reports whether GB induces a heat shock response (HSR), which is cytoprotective for cancer cells and therefore a potentially problematic feature for an anticancer drug. In this study, we show that GB and a structurally related compound, called gambogenic acid (GBA), induce a robust HSR, in a thiol-dependent manner. Using heat shock factor 1 (HSF1) or HSF2 knockout cells, we show that the GB or GBA-induced HSR is HSF1-dependent. Intriguingly, using closed form ATP-bound HSP90 mutants that can be co-precipitated with HSF1, a known facilitator of cancer, we show that also endogenous HSF2 co-precipitates with HSP90. GB and GBA treatment disrupt the interaction between HSP90 and HSF1 and HSP90 and HSF2. Our study implies that these compounds should be used cautiously if developed for cancer therapies, since GB and its derivative GBA are strong inducers of the HSR, in multiple cell types, by involving the dissociation of a HSP90-HSF1/HSF2 complex.
Collapse
Affiliation(s)
- Linda Pesonen
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland
| | - Sally Svartsjö
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland
| | - Viktor Bäck
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland
| | - Aurélie de Thonel
- Université de Paris, UMR7216 Épigénétique et Destin Cellulaire, CNRS, F-75013, Paris, France
| | - Valérie Mezger
- Université de Paris, UMR7216 Épigénétique et Destin Cellulaire, CNRS, F-75013, Paris, France
| | - Délara Sabéran-Djoneidi
- Université de Paris, UMR7216 Épigénétique et Destin Cellulaire, CNRS, F-75013, Paris, France
| | - Pia Roos-Mattjus
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Artillerigatan 6, 20520, Åbo/Turku, Finland.
| |
Collapse
|
10
|
Brown CW, Chhoy P, Mukhopadhyay D, Karner ER, Mercurio AM. Targeting prominin2 transcription to overcome ferroptosis resistance in cancer. EMBO Mol Med 2021; 13:e13792. [PMID: 34223704 PMCID: PMC8350900 DOI: 10.15252/emmm.202013792] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
Understanding how cancer cells resist ferroptosis is a significant problem that impacts ongoing efforts to stimulate ferroptosis as a therapeutic strategy. We reported that prominin2 is induced by ferroptotic stimuli and functions to resist ferroptotic death. Although this finding has significant implications for therapy, specific prominin2 inhibitors are not available. We rationalized that the mechanism by which prominin2 expression is induced by ferroptotic stress could be targeted, expanding the range of options to overcome ferroptosis resistance. Here, we show that that 4-hydroxynonenal (4HNE), a specific lipid metabolite formed from the products of lipid peroxidation stimulates PROM2 transcription by a mechanism that involves p38 MAP kinase-mediated activation of HSF1 and HSF1-dependent transcription of PROM2. HSF1 inhibitors sensitize a wide variety of resistant cancer cells to drugs that induce ferroptosis. Importantly, the combination of a ferroptosis-inducing drug and an HSF1 inhibitor causes the cytostasis of established tumors in mice, although neither treatment alone is effective. These data reveal a novel approach for the therapeutic induction of ferroptosis in cancer.
Collapse
Affiliation(s)
- Caitlin W Brown
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Peter Chhoy
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Dimpi Mukhopadhyay
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Emmet R Karner
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| |
Collapse
|
11
|
Kim SS, Shin KS. Transcription Factor HSF1 Suppresses the Expression of Surfactant Protein D in Cells Infected with Aspergillus fumigatus. Pathogens 2021; 10:pathogens10060709. [PMID: 34204112 PMCID: PMC8229574 DOI: 10.3390/pathogens10060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Aspergillosis is a life-threatening disease in patients with compromised immune systems. The process of fungal invasion is an important step during host cell infection. We investigated the transcription factor and promoter region of SFTPD, which is activated during the infection process in conidia-treated cells. To investigate the promoter activity of SFTPD in fungal-infected cells, we cloned various lengths of the promoter region (−1000 to +1) of SFTPD and examined its activity in A549 cells treated with Aspergillus fumigatus conidia. We determined the location within the promoter region of SFTPD that exhibits a response to conidia infection. AliBaba 2.1 software was used to predict the transcription factor involved as well as the binding sites in the SFTPD promoter region. The results of a decoy assay show that the HSF1 transcription factor is sufficient to decrease the SFTPD expression. Using chromatin immunoprecipitation, we confirmed that HSF1 directly binds to the selected sequence, which is located in the response region (−142 to −134 bp). These findings suggest that inhibiting the binding of HSF1 to the promoter region of SFTPD is an important step to prevent conidia infection.
Collapse
Affiliation(s)
- Sung-Su Kim
- Department of Biomedical Laboratory Science, Daejeon University, Daejeon 34520, Korea
- Correspondence: (S.-S.K.); (K.-S.S.); Tel.: +82-42-280-2903 (S.-S.K.); +82-42-280-2439 (K.-S.S.); Fax: +82-42-280-2904 (S.-S.K.); +82-42-280-2608 (K.-S.S.)
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Korea
- Correspondence: (S.-S.K.); (K.-S.S.); Tel.: +82-42-280-2903 (S.-S.K.); +82-42-280-2439 (K.-S.S.); Fax: +82-42-280-2904 (S.-S.K.); +82-42-280-2608 (K.-S.S.)
| |
Collapse
|
12
|
ArcRNAs and the formation of nuclear bodies. Mamm Genome 2021; 33:382-401. [PMID: 34085114 DOI: 10.1007/s00335-021-09881-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 01/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) have long been collectively and passively defined as transcripts that do not encode proteins. However, extensive functional studies performed over the last decade have enabled the classification of lncRNAs into multiple categories according to their functions and/or molecular properties. Architectual RNAs (arcRNAs) are a group of lncRNAs that serve as architectural components of submicron-scale cellular bodies or nonmembranous organelles, which are composed of specific sets of proteins and nucleic acids involved in particular molecular processes. In this review, we focus on arcRNAs that function in the nucleus, which provide a structural basis for the formation of nuclear bodies, nonmembranous organelles in the cell nucleus. We will summarize the current list of arcRNAs and proteins associated with classic and more recently discovered nuclear bodies and discuss general rules that govern the formation of nuclear bodies, emphasizing weak multivalent interactions mediated by innately flexible biomolecules.
Collapse
|
13
|
Kanne J, Hussong M, Isensee J, Muñoz-López Á, Wolffgramm J, Heß F, Grimm C, Bessonov S, Meder L, Wang J, Reinhardt HC, Odenthal M, Hucho T, Büttner R, Summerer D, Schweiger MR. Pericentromeric Satellite III transcripts induce etoposide resistance. Cell Death Dis 2021; 12:530. [PMID: 34031359 PMCID: PMC8144429 DOI: 10.1038/s41419-021-03810-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
Non-coding RNA from pericentromeric satellite repeats are involved in stress-dependent splicing processes, maintenance of heterochromatin, and are required to protect genome stability. Here we show that the long non-coding satellite III RNA (SatIII) generates resistance against the topoisomerase IIa (TOP2A) inhibitor etoposide in lung cancer. Because heat shock conditions (HS) protect cells against the toxicity of etoposide, and SatIII is significantly induced under HS, we hypothesized that the protective effect could be traced back to SatIII. Using genome methylation profiles of patient-derived xenograft mouse models we show that the epigenetic modification of the SatIII DNA locus and the resulting SatIII expression predict chemotherapy resistance. In response to stress, SatIII recruits TOP2A to nuclear stress bodies, which protects TOP2A from a complex formation with etoposide and results in decreased DNA damage after treatment. We show that BRD4 inhibitors reduce the expression of SatIII, restoring etoposide sensitivity.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Cell Cycle Proteins/antagonists & inhibitors
- Centromere/genetics
- Centromere/metabolism
- DNA Methylation/physiology
- DNA Topoisomerases, Type II/drug effects
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Etoposide/therapeutic use
- Gene Expression Regulation, Neoplastic/drug effects
- HEK293 Cells
- HeLa Cells
- Humans
- Male
- Mice, Inbred NOD
- Mice, SCID
- Poly-ADP-Ribose Binding Proteins/drug effects
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/physiology
- Transcription Factors/antagonists & inhibitors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Julian Kanne
- Institute for Translational Epigenetics, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michelle Hussong
- Institute for Translational Epigenetics, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Jörg Isensee
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, University Hospital Cologne, Faculty of Medicine, University Cologne, Cologne, Germany
| | - Álvaro Muñoz-López
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Jan Wolffgramm
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Felix Heß
- Institute for Translational Epigenetics, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Rheinische Fachhochschule Cologne, Cologne, Germany
| | - Christina Grimm
- Institute for Translational Epigenetics, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sergey Bessonov
- Institute for Translational Epigenetics, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Lydia Meder
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Jie Wang
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Pathology, University Hospital of Cologne, Medical Faculty, Cologne, Germany
| | - H Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK partner site Essen), Essen, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Pathology, University Hospital of Cologne, Medical Faculty, Cologne, Germany
- Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, University Hospital Cologne, Faculty of Medicine, University Cologne, Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital of Cologne, Medical Faculty, Cologne, Germany
| | - Daniel Summerer
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Michal R Schweiger
- Institute for Translational Epigenetics, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Inhibition of HSF1 and SAFB Granule Formation Enhances Apoptosis Induced by Heat Stress. Int J Mol Sci 2021; 22:ijms22094982. [PMID: 34067147 PMCID: PMC8124827 DOI: 10.3390/ijms22094982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Stress resistance mechanisms include upregulation of heat shock proteins (HSPs) and formation of granules. Stress-induced granules are classified into stress granules and nuclear stress bodies (nSBs). The present study examined the involvement of nSB formation in thermal resistance. We used chemical compounds that inhibit heat shock transcription factor 1 (HSF1) and scaffold attachment factor B (SAFB) granule formation and determined their effect on granule formation and HSP expression in HeLa cells. We found that formation of HSF1 and SAFB granules was inhibited by 2,5-hexanediol. We also found that suppression of HSF1 and SAFB granule formation enhanced heat stress-induced apoptosis. In addition, the upregulation of HSP27 and HSP70 during heat stress recovery was suppressed by 2,5-hexanediol. Our results suggested that the formation of HSF1 and SAFB granules was likely to be involved in the upregulation of HSP27 and HSP70 during heat stress recovery. Thus, the formation of HSF1 and SAFB granules was involved in thermal resistance.
Collapse
|
15
|
Fabri JHTM, Rocha MC, Fernandes CM, Persinoti GF, Ries LNA, da Cunha AF, Goldman GH, Del Poeta M, Malavazi I. The Heat Shock Transcription Factor HsfA Is Essential for Thermotolerance and Regulates Cell Wall Integrity in Aspergillus fumigatus. Front Microbiol 2021; 12:656548. [PMID: 33897671 PMCID: PMC8062887 DOI: 10.3389/fmicb.2021.656548] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
The deleterious effects of human-induced climate change have long been predicted. However, the imminent emergence and spread of new diseases, including fungal infections through the rise of thermotolerant strains, is still neglected, despite being a potential consequence of global warming. Thermotolerance is a remarkable virulence attribute of the mold Aspergillus fumigatus. Under high-temperature stress, opportunistic fungal pathogens deploy an adaptive mechanism known as heat shock (HS) response controlled by heat shock transcription factors (HSFs). In eukaryotes, HSFs regulate the expression of several heat shock proteins (HSPs), such as the chaperone Hsp90, which is part of the cellular program for heat adaptation and a direct target of HSFs. We recently observed that the perturbation in cell wall integrity (CWI) causes concomitant susceptibility to elevated temperatures in A. fumigatus, although the mechanisms underpinning the HS response and CWI cross talking are not elucidated. Here, we aim at further deciphering the interplay between HS and CWI. Our results show that cell wall ultrastructure is severely modified when A. fumigatus is exposed to HS. We identify the transcription factor HsfA as essential for A. fumigatus viability, thermotolerance, and CWI. Indeed, HS and cell wall stress trigger the coordinated expression of both hsfA and hsp90. Furthermore, the CWI signaling pathway components PkcA and MpkA were shown to be important for HsfA and Hsp90 expression in the A. fumigatus biofilms. Lastly, RNA-sequencing confirmed that hsfA regulates the expression of genes related to the HS response, cell wall biosynthesis and remodeling, and lipid homeostasis. Our studies collectively demonstrate the connection between the HS and the CWI pathway, with HsfA playing a crucial role in this cross-pathway regulation, reinforcing the importance of the cell wall in A. fumigatus thermophily.
Collapse
Affiliation(s)
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Gabriela Felix Persinoti
- Laboratório Nacional de Biorrenováveis (LNBR), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | | | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States
- Veterans Administration Medical Center, Northport, NY, United States
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
16
|
Jurivich DA, Manocha GD, Trivedi R, Lizakowski M, Rakoczy S, Brown-Borg H. Multifactorial Attenuation of the Murine Heat Shock Response With Age. J Gerontol A Biol Sci Med Sci 2021; 75:1846-1852. [PMID: 31612204 DOI: 10.1093/gerona/glz204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 01/08/2023] Open
Abstract
Age-dependent perturbation of the cellular stress response affects proteostasis and other key functions relevant to cellular action and survival. Central to age-related changes in the stress response is loss of heat shock factor 1 (HSF1)-DNA binding and transactivation properties. This report elucidates how age alters different checkpoints of HSF1 activation related to posttranslational modification and protein interactions. When comparing liver extracts from middle aged (12 M) and old (24 M) mice, significant differences are found in HSF1 phosphorylation and acetylation. HSF1 protein levels and messenger RNA decline with age, but its protein levels are stress-inducible and exempt from age-dependent changes. This surprising adaptive change in the stress response has additional implications for aging and chronic physiological stress that might explain an age-dependent dichotomy of HSF1 protein levels that are low in neurodegeneration and elevated in cancer.
Collapse
Affiliation(s)
- Donald A Jurivich
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Gunjan D Manocha
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Rachana Trivedi
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Mary Lizakowski
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Sharlene Rakoczy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Holly Brown-Borg
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| |
Collapse
|
17
|
Tabuchi Y, Hasegawa H, Suzuki N, Furusawa Y, Hirano T, Nagaoka R, Hirayama J, Hoshi N, Mochizuki T. Genetic response to low‑intensity ultrasound on mouse ST2 bone marrow stromal cells. Mol Med Rep 2021; 23:173. [PMID: 33398373 PMCID: PMC7821223 DOI: 10.3892/mmr.2020.11812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/27/2020] [Indexed: 11/05/2022] Open
Abstract
Although low‑intensity ultrasound (LIUS) is a clinically established procedure, the early cellular effect of LIUS on a genetic level has not yet been studied. The current study investigated the early response genes elicited by LIUS in bone marrow stromal cells (BMSCs) using global‑scale microarrays and computational gene expression analysis tools. Mouse ST2 BMSCs were treated with LIUS [ISATA, 25 mW/cm2 for 20 min with a frequency of 1.11 MHz in a pulsed‑wave mode (0.2‑s burst sine waves repeated at 1 kHz)], then cultured for 0.5, 1 and 3 h at 37˚C. The time course of changes in gene expression was evaluated using GeneChip® high‑density oligonucleotide microarrays and Ingenuity® Pathway Analysis tools. The results were verified by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). A single exposure of LIUS did not affect cell morphology, cell growth or alkaline phosphatase activity. However, 61 upregulated and 103 downregulated genes were identified from 0.5 to 3 h after LIUS treatment. Two significant gene networks, labeled E and H, were identified from the upregulated genes, while a third network, labeled T, was identified from the downregulated genes. Gene network E or H containing the immediate‑early genes FBJ osteosarcoma oncogene and early growth response 1 or the heat shock proteins heat shock protein 1a/b was associated mainly with the biological functions of bone physiology and protein folding or apoptosis, respectively. Gene network T containing transcription factors fos‑like antigen 1 and serum response factor was also associated with the biological functions of the gene expression. RT‑qPCR indicated that the expression of several genes in the gene networks E and H were elevated in LIUS‑treated cells. LIUS was demonstrated to induce gene expression after short application in mouse ST2 BMSCs. The results of the present study provide a basis for the elucidation of the detailed molecular mechanisms underlying the cellular effects of LIUS.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Hideyuki Hasegawa
- Graduate School of Science and Engineering, University of Toyama, Toyama 930‑8555, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927‑0553, Japan
| | - Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Tetsushi Hirano
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Ryo Nagaoka
- Graduate School of Science and Engineering, University of Toyama, Toyama 930‑8555, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu 923‑0961, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe 657‑8501, Japan
| | | |
Collapse
|
18
|
Schuster S, Heuten E, Velic A, Admard J, Synofzik M, Ossowski S, Macek B, Hauser S, Schöls L. CHIP mutations affect the heat shock response differently in human fibroblasts and iPSC-derived neurons. Dis Model Mech 2020; 13:13/10/dmm045096. [PMID: 33097556 PMCID: PMC7578354 DOI: 10.1242/dmm.045096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023] Open
Abstract
C-terminus of HSC70-interacting protein (CHIP) encoded by the gene STUB1 is a co-chaperone and E3 ligase that acts as a key regulator of cellular protein homeostasis. Mutations in STUB1 cause autosomal recessive spinocerebellar ataxia type 16 (SCAR16) with widespread neurodegeneration manifesting as spastic-ataxic gait disorder, dementia and epilepsy. CHIP-/- mice display severe cerebellar atrophy, show high perinatal lethality and impaired heat stress tolerance. To decipher the pathomechanism underlying SCAR16, we investigated the heat shock response (HSR) in primary fibroblasts of three SCAR16 patients. We found impaired HSR induction and recovery compared to healthy controls. HSPA1A/B transcript levels (coding for HSP70) were reduced upon heat shock but HSP70 remained higher upon recovery in patient- compared to control-fibroblasts. As SCAR16 primarily affects the central nervous system we next investigated the HSR in cortical neurons (CNs) derived from induced pluripotent stem cells of SCAR16 patients. We found CNs of patients and controls to be surprisingly resistant to heat stress with high basal levels of HSP70 compared to fibroblasts. Although heat stress resulted in strong transcript level increases of many HSPs, this did not translate into higher HSP70 protein levels upon heat shock, independent of STUB1 mutations. Furthermore, STUB1(-/-) neurons generated by CRISPR/Cas9-mediated genome editing from an isogenic healthy control line showed a similar HSR to patients. Proteomic analysis of CNs showed dysfunctional protein (re)folding and higher basal oxidative stress levels in patients. Our results question the role of impaired HSR in SCAR16 neuropathology and highlight the need for careful selection of proper cell types for modeling human diseases.
Collapse
Affiliation(s)
- S Schuster
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - E Heuten
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - A Velic
- Proteome Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - J Admard
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - M Synofzik
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - S Ossowski
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - B Macek
- Proteome Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - S Hauser
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany .,Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - L Schöls
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany .,Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| |
Collapse
|
19
|
Jin J, Li Y, Zhou Z, Zhang H, Guo J, Wan F. Heat Shock Factor Is Involved in Regulating the Transcriptional Expression of Two Potential Hsps ( AhHsp70 and AhsHsp21) and Its Role in Heat Shock Response of Agasicles hygrophila. Front Physiol 2020; 11:562204. [PMID: 33041860 PMCID: PMC7522579 DOI: 10.3389/fphys.2020.562204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/25/2020] [Indexed: 01/14/2023] Open
Abstract
Heat shock proteins are molecular chaperones that are involved in numerous normal cellular processes and stress responses, and heat shock factors are transcriptional activators of heat shock proteins. Heat shock factors and heat shock proteins are coordinated in various biological processes. The regulatory function of heat shock factors in the expression of genes encoding heat shock proteins (Hsps) has been documented in some model insects, however, the role of transcription factors in modulating Hsps in other insects is still limited. In this study, one heat shock factor gene (AhHsf) was isolated and its two potential target genes (AhHsp70 and AhsHsp21) were confirmed from Agasicles hygrophila. AhHsf sequence analysis indicated that it belongs to the Hsfs gene family. RT-qPCR showed that expression levels of heat shock factors and of two heat shock proteins significantly increased under heat stress. Injection with double-stranded Hsf RNA in freshly emerged adult beetles significantly inhibited expression of AhHsp70 and AhsHsp21, shortened the adult survival, drastically reduced egg production, and ultimately led to a decrease in fecundity. RNA interference (RNAi)-mediated suppression of AhHsp70 or AhsHsp21 expression also significantly affected expression of AhHsf. Our findings revealed a potential transcriptional function of AhHsf to regulate expression of AhHsp70 and AhsHsp21, which may play a key role in A. hygrophila thermotolerance. Our results improve our understanding of the molecular mechanisms of the AhHsf - AhHsps signaling pathway in A. hygrophila.
Collapse
Affiliation(s)
- Jisu Jin
- College of Plant Protection, Hunan Agricultural University, Changsha, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youzhi Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- College of Plant Protection, Hunan Agricultural University, Changsha, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Abstract
Sustaining a healthy proteome is a lifelong challenge for each individual cell of an organism. However, protein homeostasis or proteostasis is constantly jeopardized since damaged proteins accumulate under proteotoxic stress that originates from ever-changing metabolic, environmental, and pathological conditions. Proteostasis is achieved via a conserved network of quality control pathways that orchestrate the biogenesis of correctly folded proteins, prevent proteins from misfolding, and remove potentially harmful proteins by selective degradation. Nevertheless, the proteostasis network has a limited capacity and its collapse deteriorates cellular functionality and organismal viability, causing metabolic, oncological, or neurodegenerative disorders. While cell-autonomous quality control mechanisms have been described intensely, recent work on Caenorhabditis elegans has demonstrated the systemic coordination of proteostasis between distinct tissues of an organism. These findings indicate the existence of intricately balanced proteostasis networks important for integration and maintenance of the organismal proteome, opening a new door to define novel therapeutic targets for protein aggregation diseases. Here, we provide an overview of individual protein quality control pathways and the systemic coordination between central proteostatic nodes. We further provide insights into the dynamic regulation of cellular and organismal proteostasis mechanisms that integrate environmental and metabolic changes. The use of C. elegans as a model has pioneered our understanding of conserved quality control mechanisms important to safeguard the organismal proteome in health and disease.
Collapse
Affiliation(s)
- Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany and
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC), the Hebrew University School of Medicine, Jerusalem 91120, Israel
| |
Collapse
|
21
|
Kmiecik SW, Le Breton L, Mayer MP. Feedback regulation of heat shock factor 1 (Hsf1) activity by Hsp70-mediated trimer unzipping and dissociation from DNA. EMBO J 2020; 39:e104096. [PMID: 32490574 PMCID: PMC7360973 DOI: 10.15252/embj.2019104096] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 12/23/2022] Open
Abstract
The heat shock response is a universal transcriptional response to proteotoxic stress orchestrated by heat shock transcription factor Hsf1 in all eukaryotic cells. Despite over 40 years of intense research, the mechanism of Hsf1 activity regulation remains poorly understood at the molecular level. In metazoa, Hsf1 trimerizes upon heat shock through a leucine‐zipper domain and binds to DNA. How Hsf1 is dislodged from DNA and monomerized remained enigmatic. Here, using purified proteins, we demonstrate that unmodified trimeric Hsf1 is dissociated from DNA in vitro by Hsc70 and DnaJB1. Hsc70 binds to multiple sites in Hsf1 with different affinities. Hsf1 trimers are monomerized by successive cycles of entropic pulling, unzipping the triple leucine‐zipper. Starting this unzipping at several protomers of the Hsf1 trimer results in faster monomerization. This process directly monitors the concentration of Hsc70 and DnaJB1. During heat shock adaptation, Hsc70 first binds to a high‐affinity site in the transactivation domain, leading to partial attenuation of the response, and subsequently, at higher concentrations, Hsc70 removes Hsf1 from DNA to restore the resting state.
Collapse
Affiliation(s)
- Szymon W Kmiecik
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| | - Laura Le Breton
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| |
Collapse
|
22
|
Katiyar A, Fujimoto M, Tan K, Kurashima A, Srivastava P, Okada M, Takii R, Nakai A. HSF1 is required for induction of mitochondrial chaperones during the mitochondrial unfolded protein response. FEBS Open Bio 2020; 10:1135-1148. [PMID: 32302062 PMCID: PMC7262932 DOI: 10.1002/2211-5463.12863] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 01/09/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt ) is characterized by the transcriptional induction of mitochondrial chaperone and protease genes in response to impaired mitochondrial proteostasis and is regulated by ATF5 and CHOP in mammalian cells. However, the detailed mechanisms underlying the UPRmt are currently unclear. Here, we show that HSF1 is required for activation of mitochondrial chaperone genes, including HSP60, HSP10, and mtHSP70, in mouse embryonic fibroblasts during inhibition of matrix chaperone TRAP1, protease Lon, or electron transfer complex 1 activity. HSF1 bound constitutively to mitochondrial chaperone gene promoters, and we observed that its occupancy was remarkably enhanced at different levels during the UPRmt . Furthermore, HSF1 supported the maintenance of mitochondrial function under the same conditions. These results demonstrate that HSF1 is required for induction of mitochondrial chaperones during the UPRmt , and thus, it may be one of the guardians of mitochondrial function under conditions of impaired mitochondrial proteostasis.
Collapse
Affiliation(s)
- Arpit Katiyar
- Department of Biochemistry and Molecular BiologyYamaguchi University School of MedicineUbeJapan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular BiologyYamaguchi University School of MedicineUbeJapan
| | - Ke Tan
- Department of Biochemistry and Molecular BiologyYamaguchi University School of MedicineUbeJapan
- Present address:
Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei ProvinceCollege of Life SciencesHebei Normal UniversityShijiazhuangHebei050024China
| | - Ai Kurashima
- Department of Biochemistry and Molecular BiologyYamaguchi University School of MedicineUbeJapan
| | - Pratibha Srivastava
- Department of Biochemistry and Molecular BiologyYamaguchi University School of MedicineUbeJapan
| | - Mariko Okada
- Department of Biochemistry and Molecular BiologyYamaguchi University School of MedicineUbeJapan
| | - Ryosuke Takii
- Department of Biochemistry and Molecular BiologyYamaguchi University School of MedicineUbeJapan
| | - Akira Nakai
- Department of Biochemistry and Molecular BiologyYamaguchi University School of MedicineUbeJapan
| |
Collapse
|
23
|
Sunnetci Silistre E, Erbas O. The Ameliorative Effects of Ascorbic Acid on Critical Illness Polyneuropathy in Rodent Sepsis Model. J Pediatr Intensive Care 2020; 9:265-270. [PMID: 33133742 DOI: 10.1055/s-0040-1710587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022] Open
Abstract
Although the exact pathophysiology of critical illness polyneuropathy (CIP) is still unknown, there are several hypotheses, some of which are increased inflammation and oxidative stress. We used rodent sepsis model in which we induced sepsis through cecal ligation followed by cecal puncture. We then administered ascorbic acid (AA) and evaluated outcomes. The levels of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), interleukins (IL)-6 in the plasma, and heat shock protein-70 (HSP-70) levels in the sciatic nerve were measured, and also electromyography analyses were performed. While plasma MDA, TNF-α, and IL-6 levels were decreased significantly with AA treatment, sciatic nerve levels of HSP-70 were significantly elevated in the AA group. A significant increase in compound muscle action potential (CMAP) amplitude and a significant decrease in CMAP latency were detected in the AA group. We observed healing effects of AA on a rat model of CIP and these effects seem to be related to its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
| | - Oytun Erbas
- Department of Physiology, Bilim University Medical Faculty, Istanbul, Turkey
| |
Collapse
|
24
|
Puustinen MC, Sistonen L. Molecular Mechanisms of Heat Shock Factors in Cancer. Cells 2020; 9:cells9051202. [PMID: 32408596 PMCID: PMC7290425 DOI: 10.3390/cells9051202] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Malignant transformation is accompanied by alterations in the key cellular pathways that regulate development, metabolism, proliferation and motility as well as stress resilience. The members of the transcription factor family, called heat shock factors (HSFs), have been shown to play important roles in all of these biological processes, and in the past decade it has become evident that their activities are rewired during tumorigenesis. This review focuses on the expression patterns and functions of HSF1, HSF2, and HSF4 in specific cancer types, highlighting the mechanisms by which the regulatory functions of these transcription factors are modulated. Recently developed therapeutic approaches that target HSFs are also discussed.
Collapse
Affiliation(s)
- Mikael Christer Puustinen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland;
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Lea Sistonen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland;
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
- Correspondence: ; Tel.: +358-2215-3311
| |
Collapse
|
25
|
Tabuchi Y, Maekawa K, Torigoe M, Furusawa Y, Hirano T, Minagawa S, Yunoki T, Hayashi A. HIKESHI silencing can enhance mild hyperthermia sensitivity in human oral squamous cell carcinoma HSC‑3 cells. Int J Mol Med 2020; 46:58-66. [PMID: 32377716 PMCID: PMC7255474 DOI: 10.3892/ijmm.2020.4591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperthermia (HT) is considered to be of value as a treatment modality in various cancers. However, the acquisition of thermotolerance in cancer cells due to the induction of heat shock proteins (HSPs) makes HT less effective. Recent findings have indicated that heat shock protein nuclear import factor hikeshi (HIKESHI), also referred to as C11orf73, acts as a nuclear import carrier of Hsp70 under heat stress conditions. The aim of the present study was to determine whether knockdown (KD) of HIKESHI by small interfering RNA (siRNA) can potentiate mild HT (MHT) sensitivity in human oral squamous cell carcinoma (OSCC) HSC‑3 cells. The mRNA and protein expression of HIKESHI was found to be markedly suppressed in HSC‑3 cells treated with siRNA for HIKESHI (siHIKE). Silencing HIKESHI significantly decreased the cell viability under MHT conditions (42˚C for 90 min). Immunocytochemical and western blot analyses clearly demonstrated that Hsp70 protein translocated from the cytoplasm to the nucleus under MHT conditions, and this translocation was significantly inhibited in cells treated with siHIKE. Treatment of the cells with MHT transiently increased the phosphorylation level of extracellular signal‑regulated kinase (ERK)2. Furthermore, the phosphorylation was sustained in HIKESHI‑KD cells under MHT conditions, and this sustained phosphorylation was abolished by pretreatment with U0126, an inhibitor of mitogen‑activated protein kinase/ERK. In addition, U0126 significantly decreased the viability of cells treated with the combination of HIKESHI‑KD and MHT. The data of the present study suggest that HIKESHI silencing enhanced the sensitivity of human OSCC HSC‑3 cells to MHT.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan
| | - Keita Maekawa
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan
| | - Misako Torigoe
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan
| | - Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama 939‑0398, Japan
| | - Tetsushi Hirano
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan
| | - Satsuki Minagawa
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan
| | - Tatsuya Yunoki
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan
| | - Atsushi Hayashi
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan
| |
Collapse
|
26
|
Spychalski P, Poradowski D, Chrószcz A. Histological and Electrophoretic Analysis of Carpathian barbel ( Barbus carpathicus, Cyprinidae) Skin and Mucus in Environmental Context. Animals (Basel) 2020; 10:ani10040645. [PMID: 32276487 PMCID: PMC7222720 DOI: 10.3390/ani10040645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Natural environment monitoring and identification of river or lake water pollution plays an important role for human comfort and safety. Some fish, as water-living animals, are especially sensitive to any water quality changes. Fish skin forms a natural border between the water and internal organs of the animal’s body; therefore, the skin must be able to provide defense and resistance against any factors dangerous for the fish. Some seasonal changes can influence the skin morphology and physiology (mucus composition), blurring the assessment of the skin’s reaction to any contamination. Abstract Fish frequently serve as bioindicators of aquatic environments during their ecological evaluation. Carpathian barbel (Barbus carpathicus, Cyprinidae) is a species common to rivers and lakes of Eurasia and Africa. Seasons of the year can influence its skin morphology and mucus composition. The clinical status of the animal depends on the above-mentioned factors. The aim of this study was a histological, histometrical and electrophoretical analysis of periodical changes in barbel common integument. The accessible material was investigated in histological, cytological and electrophoretic analysis using hematoxylin-eosin staining, histometric morphometry, gel electrophoresis and cytological methods. The results demonstrated significant differences in the investigated parameters for spring–summer and autumn–winter periods. Both skin epithelium morphology (epithelium thickness, number of cell layers, melanophores and mucous cell existence) and mucus composition (proteins, immune system cells, keratinocytes and mucocytes) showed significant differences between investigated seasons. These morphological and physiological changes were more pronounced in the dorsal than ventral regions of common integument. The differences in the physical characteristics of mucus and the histological structure of the skin cannot only serve as a source of useful information about an evaluated ecosystem, but can be also related to additional factors, e.g., microbiological and chemical water contamination.
Collapse
|
27
|
Cohen-Berkman M, Dudkevich R, Ben-Hamo S, Fishman A, Salzberg Y, Waldman Ben-Asher H, Lamm AT, Henis-Korenblit S. Endogenous siRNAs promote proteostasis and longevity in germline-less Caenorhabditis elegans. eLife 2020; 9:e50896. [PMID: 32213289 PMCID: PMC7136021 DOI: 10.7554/elife.50896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
How lifespan and the rate of aging are set is a key problem in biology. Small RNAs are conserved molecules that impact diverse biological processes through the control of gene expression. However, in contrast to miRNAs, the role of endo-siRNAs in aging remains unexplored. Here, by combining deep sequencing and genomic and genetic approaches in Caenorhabditis elegans, we reveal an unprecedented role for endo-siRNA molecules in the maintenance of proteostasis and lifespan extension in germline-less animals. Furthermore, we identify an endo-siRNA-regulated tyrosine phosphatase, which limits the longevity of germline-less animals by restricting the activity of the heat shock transcription factor HSF-1. Altogether, our findings point to endo-siRNAs as a link between germline removal and the HSF-1 proteostasis and longevity-promoting somatic pathway. This establishes a role for endo siRNAs in the aging process and identifies downstream genes and physiological processes that are regulated by the endo siRNAs to affect longevity.
Collapse
Affiliation(s)
- Moran Cohen-Berkman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Reut Dudkevich
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Shani Ben-Hamo
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Alla Fishman
- Faculty of Biology, Technion-Israel Institute of Technology, Technion CityHaifaIsrael
| | - Yehuda Salzberg
- Department of Neurobiology, Weizmann Institute of ScienceRehovotIsrael
| | | | - Ayelet T Lamm
- Faculty of Biology, Technion-Israel Institute of Technology, Technion CityHaifaIsrael
| | - Sivan Henis-Korenblit
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| |
Collapse
|
28
|
HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol 2020; 22:151-158. [PMID: 32015439 PMCID: PMC7135912 DOI: 10.1038/s41556-019-0458-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 12/16/2019] [Indexed: 01/05/2023]
Abstract
Under proteotoxic stress, some cells survive whereas others die. Mechanisms governing this heterogeneity in cell fate are unknown. We report that condensation and phase transition of heat-shock factor 1 (HSF1), a transcriptional regulator of chaperones1,2, is integral to cell fate decisions underlying survival or death. During stress, HSF1 drives chaperone expression but also accumulates separately in nuclear stress bodies (foci)3–6. Foci formation has been regarded as a marker of cells actively upregulating chaperones3,6–10. Using multiplexed tissue imaging, we observed HSF1 foci in human tumors. Paradoxically, their presence inversely correlated with chaperone expression. By live-cell microscopy and single-cell analysis, we found that foci dissolution rather than formation promoted HSF1 activity and cell survival. During prolonged stress, the biophysical properties of HSF1 foci changed; small, fluid condensates enlarged into indissoluble gel-like arrangements with immobilized HSF1. Chaperone gene induction was reduced in such cells, which were prone to apoptosis. Quantitative analysis suggests that survival under stress results from competition between concurrent yet opposing mechanisms. Foci may serve as sensors that tune cytoprotective responses, balancing rapid transient responses and irreversible outcomes.
Collapse
|
29
|
Hunt AP, Minett GM, Gibson OR, Kerr GK, Stewart IB. Could Heat Therapy Be an Effective Treatment for Alzheimer's and Parkinson's Diseases? A Narrative Review. Front Physiol 2020; 10:1556. [PMID: 31998141 PMCID: PMC6965159 DOI: 10.3389/fphys.2019.01556] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases involve the progressive deterioration of structures within the central nervous system responsible for motor control, cognition, and autonomic function. Alzheimer's disease and Parkinson's disease are among the most common neurodegenerative disease and have an increasing prevalence over the age of 50. Central in the pathophysiology of these neurodegenerative diseases is the loss of protein homeostasis, resulting in misfolding and aggregation of damaged proteins. An element of the protein homeostasis network that prevents the dysregulation associated with neurodegeneration is the role of molecular chaperones. Heat shock proteins (HSPs) are chaperones that regulate the aggregation and disaggregation of proteins in intracellular and extracellular spaces, and evidence supports their protective effect against protein aggregation common to neurodegenerative diseases. Consequently, upregulation of HSPs, such as HSP70, may be a target for therapeutic intervention for protection against neurodegeneration. A novel therapeutic intervention to increase the expression of HSP may be found in heat therapy and/or heat acclimation. In healthy populations, these interventions have been shown to increase HSP expression. Elevated HSP may have central therapeutic effects, preventing or reducing the toxicity of protein aggregation, and/or peripherally by enhancing neuromuscular function. Broader physiological responses to heat therapy have also been identified and include improvements in muscle function, cerebral blood flow, and markers of metabolic health. These outcomes may also have a significant benefit for people with neurodegenerative disease. While there is limited research into body warming in patient populations, regular passive heating (sauna bathing) has been associated with a reduced risk of developing neurodegenerative disease. Therefore, the emerging evidence is compelling and warrants further investigation of the potential benefits of heat acclimation and passive heat therapy for sufferers of neurodegenerative diseases.
Collapse
Affiliation(s)
- Andrew P. Hunt
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Geoffrey M. Minett
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Graham K. Kerr
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ian B. Stewart
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Seibert JT, Adur MK, Schultz RB, Thomas PQ, Kiefer ZE, Keating AF, Baumgard LH, Ross JW. Differentiating between the effects of heat stress and lipopolysaccharide on the porcine ovarian heat shock protein response1. J Anim Sci 2019; 97:4965-4973. [PMID: 31782954 PMCID: PMC6915215 DOI: 10.1093/jas/skz343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/27/2019] [Indexed: 11/14/2022] Open
Abstract
Heat stress (HS) negatively affects both human and farm-animal health and undermines efficiency in a variety of economically important agricultural variables, including reproduction. HS impairs the intestinal barrier, allowing for translocation of the resident microflora and endotoxins, such as lipopolysaccharide (LPS), from the gastrointestinal lumen into systemic circulation. While much is known about the cellular function of heat shock proteins (HSPs) in most tissues, the in vivo ovarian HSP response to stressful stimuli remains ill-defined. The purpose of this study was to compare the effects of HS or LPS on ovarian HSP expression in pigs. We hypothesized that ovarian HSPs are responsive to both HS and LPS. Altrenogest (15 mg/d) was administered per os for estrus synchronization (14 d) prior to treatment and three animal paradigms were used: (i) gilts were exposed to cyclical HS (31 ± 1.4 °C) or thermoneutral (TN; 20 ± 0.5 °C) conditions immediately following altrenogest withdrawal for 5 d during follicular development; (ii) gilts were subjected to repeated (4×/d) saline (CON) or LPS (0.1 μg/kg BW) i.v. infusion immediately following altrenogest withdrawal for 5 d; and (iii) gilts were subjected to TN (20 ± 1 °C) or cyclical HS (31 to 35 °C) conditions 2 d post estrus (dpe) until 12 dpe during the luteal phase. While no differences were detected for transcript abundances of the assessed ovarian HSP, the protein abundance of specific HSP was influenced by stressors during the follicular and luteal phases. HS during the follicular phase tended (P < 0.1) to increase ovarian protein abundance of HSP90AA1 and HSPA1A, and increased (P ≤ 0.05) HSF1, HSPD1, and HSPB1 compared with TN controls, while HS decreased HSP90AB1 (P = 0.01). Exposure to LPS increased (P < 0.05) HSP90AA1 and HSPA1A and tended (P < 0.1) to increase HSF1 and HSPB1 compared with CON gilts, while HSP90AB1 and HSPD1 were not affected by LPS. HS during the luteal phase increased (P < 0.05) abundance of HSPB1 in corpora lutea (CL), decreased (P < 0.05) CL HSP90AB1, but did not impact HSF1, HSPD1, HSP90AA1, or HSPA1A abundance. Thus, these data support that HS and LPS similarly regulate expression of specific ovarian HSP, which suggest that HS effects on the ovary are in part mediated by LPS.
Collapse
Affiliation(s)
- Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA
| | - Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - Porsha Q Thomas
- Department of Animal Science, Iowa State University, Ames, IA
| | - Zoe E Kiefer
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
31
|
Gao Y, Kim S, Lee YI, Lee J. Cellular Stress-Modulating Drugs Can Potentially Be Identified by in Silico Screening with Connectivity Map (CMap). Int J Mol Sci 2019; 20:ijms20225601. [PMID: 31717493 PMCID: PMC6888006 DOI: 10.3390/ijms20225601] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
Accompanied by increased life span, aging-associated diseases, such as metabolic diseases and cancers, have become serious health threats. Recent studies have documented that aging-associated diseases are caused by prolonged cellular stresses such as endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress. Thus, ameliorating cellular stresses could be an effective approach to treat aging-associated diseases and, more importantly, to prevent such diseases from happening. However, cellular stresses and their molecular responses within the cell are typically mediated by a variety of factors encompassing different signaling pathways. Therefore, a target-based drug discovery method currently being used widely (reverse pharmacology) may not be adequate to uncover novel drugs targeting cellular stresses and related diseases. The connectivity map (CMap) is an online pharmacogenomic database cataloging gene expression data from cultured cells treated individually with various chemicals, including a variety of phytochemicals. Moreover, by querying through CMap, researchers may screen registered chemicals in silico and obtain the likelihood of drugs showing a similar gene expression profile with desired and chemopreventive conditions. Thus, CMap is an effective genome-based tool to discover novel chemopreventive drugs.
Collapse
Affiliation(s)
- Yurong Gao
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
| | - Sungwoo Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
| | - Yun-Il Lee
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence: (Y.-I.L.); (J.L.)
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
- Correspondence: (Y.-I.L.); (J.L.)
| |
Collapse
|
32
|
Takii R, Fujimoto M, Matsumoto M, Srivastava P, Katiyar A, Nakayama KI, Nakai A. The pericentromeric protein shugoshin 2 cooperates with HSF1 in heat shock response and RNA Pol II recruitment. EMBO J 2019; 38:e102566. [PMID: 31657478 DOI: 10.15252/embj.2019102566] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022] Open
Abstract
The recruitment of RNA polymerase II (Pol II) to core promoters is highly regulated during rapid induction of genes. In response to heat shock, heat shock transcription factor 1 (HSF1) is activated and occupies heat shock gene promoters. Promoter-bound HSF1 recruits general transcription factors and Mediator, which interact with Pol II, but stress-specific mechanisms of Pol II recruitment are unclear. Here, we show in comparative analyses of HSF1 paralogs and their mutants that HSF1 interacts with the pericentromeric adaptor protein shugoshin 2 (SGO2) during heat shock in mouse cells, in a manner dependent on inducible phosphorylation of HSF1 at serine 326, and recruits SGO2 to the HSP70 promoter. SGO2-mediated binding and recruitment of Pol II with a hypophosphorylated C-terminal domain promote expression of HSP70, implicating SGO2 as one of the coactivators that facilitate Pol II recruitment by HSF1. Furthermore, the HSF1-SGO2 complex supports cell survival and maintenance of proteostasis in heat shock conditions. These results exemplify a proteotoxic stress-specific mechanism of Pol II recruitment, which is triggered by phosphorylation of HSF1 during the heat shock response.
Collapse
Affiliation(s)
- Ryosuke Takii
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Masaki Matsumoto
- Division of Proteomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Pratibha Srivastava
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Arpit Katiyar
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Keiich I Nakayama
- Division of Proteomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| |
Collapse
|
33
|
Biebl MM, Buchner J. Structure, Function, and Regulation of the Hsp90 Machinery. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034017. [PMID: 30745292 DOI: 10.1101/cshperspect.a034017] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in the maturation of a plethora of substrates ("clients"), including protein kinases, transcription factors, and E3 ubiquitin ligases, positioning Hsp90 as a central regulator of cellular proteostasis. Hsp90 undergoes large conformational changes during its ATPase cycle. The processing of clients by cytosolic Hsp90 is assisted by a cohort of cochaperones that affect client recruitment, Hsp90 ATPase function or conformational rearrangements in Hsp90. Because of the importance of Hsp90 in regulating central cellular pathways, strategies for the pharmacological inhibition of the Hsp90 machinery in diseases such as cancer and neurodegeneration are being developed. In this review, we summarize recent structural and mechanistic progress in defining the function of organelle-specific and cytosolic Hsp90, including the impact of individual cochaperones on the maturation of specific clients and complexes with clients as well as ways of exploiting Hsp90 as a drug target.
Collapse
Affiliation(s)
- Maximilian M Biebl
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|
34
|
Wu CW, Wimberly K, Pietras A, Dodd W, Atlas MB, Choe KP. RNA processing errors triggered by cadmium and integrator complex disruption are signals for environmental stress. BMC Biol 2019; 17:56. [PMID: 31311534 PMCID: PMC6631800 DOI: 10.1186/s12915-019-0675-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Adaptive responses to stress are essential for cell and organismal survival. In metazoans, little is known about the impact of environmental stress on RNA homeostasis. RESULTS By studying the regulation of a cadmium-induced gene named numr-1 in Caenorhabditis elegans, we discovered that disruption of RNA processing acts as a signal for environmental stress. We find that NUMR-1 contains motifs common to RNA splicing factors and influences RNA splicing in vivo. A genome-wide screen reveals that numr-1 is strongly and specifically induced by silencing of genes that function in basal RNA metabolism including subunits of the metazoan integrator complex. Human integrator processes snRNAs for functioning with splicing factors, and we find that silencing of C. elegans integrator subunits disrupts snRNA processing, causes aberrant pre-mRNA splicing, and induces the heat shock response. Cadmium, which also strongly induces numr-1, has similar effects on RNA and the heat shock response. Lastly, we find that heat shock factor-1 is required for full numr-1 induction by cadmium. CONCLUSION Our results are consistent with a model in which disruption of integrator processing of RNA acts as a molecular damage signal initiating an adaptive stress response mediated by heat shock factor-1. When numr-1 is induced via this pathway in C. elegans, its function in RNA metabolism may allow it to mitigate further damage and thereby promote tolerance to cadmium.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA.
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada.
| | - Keon Wimberly
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Adele Pietras
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - William Dodd
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - M Blake Atlas
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
35
|
Niemelä E, Desai D, Lundsten E, Rosenholm JM, Kankaanpää P, Eriksson JE. Quantitative bioimage analytics enables measurement of targeted cellular stress response induced by celastrol-loaded nanoparticles. Cell Stress Chaperones 2019; 24:735-748. [PMID: 31079284 PMCID: PMC6629742 DOI: 10.1007/s12192-019-00999-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022] Open
Abstract
The cellular stress response, which provides protection against proteotoxic stresses, is characterized by the activation of heat shock factor 1 and the formation of nuclear stress bodies (nSBs). In this study, we developed a computerized method to quantify the formation and size distribution of nSBs, as stress response induction is of interest in cancer research, neurodegenerative diseases, and in other pathophysiological processes. We employed an advanced bioimaging and analytics workflow to enable quantitative detailed subcellular analysis of cell populations even down to single-cell level. This type of detailed analysis requires automated single cell analysis to allow for detection of both size and distribution of nSBs. For specific induction of nSB we used mesoporous silica nanoparticles (MSNs) loaded with celastrol, a plant-derived triterpene with the ability to activate the stress response. To enable specific targeting, we employed folic acid functionalized nanoparticles, which yields targeting to folate receptor expressing cancer cells. In this way, we could assess the ability to quantitatively detect directed and spatio-temporal nSB induction using 2D and 3D confocal imaging. Our results demonstrate successful implementation of an imaging and analytics workflow based on a freely available, general-purpose software platform, BioImageXD, also compatible with other imaging modalities due to full 3D/4D and high-throughput batch processing support. The developed quantitative imaging analytics workflow opens possibilities for detailed stress response examination in cell populations, with significant potential in the analysis of targeted drug delivery systems related to cell stress and other cytoprotective cellular processes.
Collapse
Affiliation(s)
- Erik Niemelä
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Diti Desai
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Emine Lundsten
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Pasi Kankaanpää
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - John E. Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
36
|
HSB-1 Inhibition and HSF-1 Overexpression Trigger Overlapping Transcriptional Changes To Promote Longevity in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2019; 9:1679-1692. [PMID: 30894454 PMCID: PMC6505166 DOI: 10.1534/g3.119.400044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heat shock factor 1 (HSF-1) is a component of the heat shock response pathway that is induced by cytoplasmic proteotoxic stress. In addition to its role in stress response, HSF-1 also acts as a key regulator of the rate of organismal aging. Overexpression of HSF-1 promotes longevity in C. elegans via mechanisms that remain less understood. Moreover, genetic ablation of a negative regulator of HSF-1, termed as heat shock factor binding protein 1 (HSB-1), results in hsf-1-dependent life span extension in animals. Here we show that in the absence of HSB-1, HSF-1 acquires increased DNA binding activity to its genomic target sequence. Using RNA-Seq to compare the gene expression profiles of the hsb-1 mutant and hsf-1 overexpression strains, we found that while more than 1,500 transcripts show ≥1.5-fold upregulation due to HSF-1 overexpression, HSB-1 inhibition alters the expression of less than 500 genes in C. elegans. Roughly half of the differentially regulated transcripts in the hsb-1 mutant have altered expression also in hsf-1 overexpressing animals, with a strongly correlated fold-expression pattern between the two strains. In addition, genes that are upregulated via both HSB-1 inhibition and HSF-1 overexpression include numerous DAF-16 targets that have known functions in longevity regulation. This study identifies how HSB-1 acts as a specific regulator of the transactivation potential of HSF-1 in non-stressed conditions, thus providing a detailed understanding of the role of HSB-1/HSF-1 signaling pathway in transcriptional regulation and longevity in C. elegans.
Collapse
|
37
|
Veri AO, Robbins N, Cowen LE. Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits. FEMS Yeast Res 2019; 18:4975774. [PMID: 29788061 DOI: 10.1093/femsyr/foy041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
The impact of fungal pathogens on human health is devastating. For fungi and other pathogens, a key determinant of virulence is the capacity to thrive at host temperatures, with elevated temperature in the form of fever as a ubiquitous host response to defend against infection. A prominent feature of cells experiencing heat stress is the increased expression of heat shock proteins (Hsps) that play pivotal roles in the refolding of misfolded proteins in order to restore cellular homeostasis. Transcriptional activation of this heat shock response is orchestrated by the essential heat shock transcription factor, Hsf1. Although the influence of Hsf1 on cellular stress responses has been studied for decades, many aspects of its regulation and function remain largely enigmatic. In this review, we highlight our current understanding of how Hsf1 is regulated and activated in the model yeast Saccharomyces cerevisiae, and highlight exciting recent discoveries related to its diverse functions under both basal and stress conditions. Given that thermal adaption is a fundamental requirement for growth and virulence in fungal pathogens, we also compare and contrast Hsf1 activation and function in other fungal species with an emphasis on its role as a critical regulator of virulence traits.
Collapse
Affiliation(s)
- Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
38
|
Liu P, Chen X, Zhu J, Li B, Chen Z, Wang G, Sun H, Xu Z, Zhao Z, Zhou C, Xie C, Lou L, Zhu W. Design, Synthesis and Pharmacological Evaluation of Novel Hsp90N-terminal Inhibitors Without Induction of Heat Shock Response. ChemistryOpen 2019; 8:344-353. [PMID: 30976475 PMCID: PMC6437812 DOI: 10.1002/open.201900055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/28/2019] [Indexed: 01/24/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is a potential oncogenic target. However, Hsp90 inhibitors in clinical trial induce heat shock response, resulting in drug resistance and inefficiency. In this study, we designed and synthesized a series of novel triazine derivatives (A1‐26, B1‐13, C1‐23) as Hsp90 inhibitors. Compound A14 directly bound to Hsp90 in a different manner from traditional Hsp90 inhibitors, and degraded client proteins, but did not induce the concomitant activation of Hsp72. Importantly, A14 exhibited the most potent anti‐proliferation ability by inducing autophagy, with the IC50 values of 0.1 μM and 0.4 μM in A549 and SK‐BR‐3 cell lines, respectively. The in
vivo study demonstrated that A14 could induce autophagy and degrade Hsp90 client proteins in tumor tissues, and exhibit anti‐tumor activity in A549 lung cancer xenografts. Therefore, the compound A14 with potent antitumor activity and unique pharmacological characteristics is a novel Hsp90 inhibitor for developing anticancer agent without heat shock response.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Xiangling Chen
- Division of Anti-Tumor Pharmacology Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Jianming Zhu
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Bo Li
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Zhaoqiang Chen
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Guimin Wang
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Haiguo Sun
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Zhijian Xu
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Zhixin Zhao
- Division of Anti-Tumor Pharmacology Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Chen Zhou
- Division of Anti-Tumor Pharmacology Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Chengying Xie
- Division of Anti-Tumor Pharmacology Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Liguang Lou
- Division of Anti-Tumor Pharmacology Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China
| | - Weiliang Zhu
- Key Laboratory of Receptor Research Drug Discovery and Design Center Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China.,University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 China.,Open Studio for Druggability Research of Marine Natural Products Pilot National Laboratory for Marine Science and Technology (Qingdao) 1 Wenhai Road, Aoshanwei, Jimo Qingdao 266237 China
| |
Collapse
|
39
|
Cuthbert RL, Shute RJ, Slivka DR. Skeletal muscle cold shock and heat shock protein mRNA response to aerobic exercise in different environmental temperatures. Temperature (Austin) 2019; 6:77-84. [PMID: 30906813 DOI: 10.1080/23328940.2018.1555414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022] Open
Abstract
The response of cold shock proteins to exercise and environmental temperature in human skeletal muscle is not known. The purpose of this study was to determine the early mRNA response of human stress proteins to endurance exercise and environmental temperatures. Seven recreationally trained males cycled for 1 hour at 60% VO2peak in 7°C, 20°C, and 33°C with biopsies taken pre- and 3 hours post-exercise. Gene expression for heat shock and cold shock proteins were analyzed using qRT-PCR on muscle biopsy samples from the vastus lateralis. RBM3 mRNA was reduced 1.43 ± 0.10 fold (p = 0.006) while there was a trend for CIRP to decrease1.27 ± 0.14 fold (p = 0.059) from pre- to 3 h post-exercise. CIRP and RBM3 mRNA were not different between temperatures (p = 0.273 and p = 0.686, respectively). HSP70 mRNA was 2.27 ± 0.23 fold higher 3 h post-exercise when compared to pre-exercise (p = 0.002) but was not significantly different between temperatures (p = 0.103). HSP27, HSP90, and HSF1 mRNA did not change from pre- to post-exercise (p = 0.052, p = 0.324, p = 0.795) and were not different between temperatures (p = 0.247, p = 0.134, p = 0.808). These data indicate that exposure to mild heat and cold during aerobic exercise have limited effect on the skeletal muscle mRNA expression of heat shock and cold shock proteins. However, skeletal muscle mRNA of cold shock proteins decrease, while HSP70 mRNA increases in response to a low to moderate intensity aerobic exercise bout.
Collapse
Affiliation(s)
- Rebecca L Cuthbert
- Department of Health and Kinesiology, University of Nebraska, Omaha, NE, USA
| | - Robert J Shute
- Department of Health and Kinesiology, University of Nebraska, Omaha, NE, USA
| | - Dustin R Slivka
- Department of Health and Kinesiology, University of Nebraska, Omaha, NE, USA
| |
Collapse
|
40
|
Girard PM, Peynot N, Lelièvre JM. Differential correlations between changes to glutathione redox state, protein ubiquitination, and stress-inducible HSPA chaperone expression after different types of oxidative stress. Cell Stress Chaperones 2018; 23:985-1002. [PMID: 29754332 PMCID: PMC6111089 DOI: 10.1007/s12192-018-0909-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 04/04/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
In primary bovine fibroblasts with an hspa1b/luciferase transgene, we examined the intensity of heat-shock response (HSR) following four types of oxidative stress or heat stress (HS), and its putative relationship with changes to different cell parameters, including reactive oxygen species (ROS), the redox status of the key molecules glutathione (GSH), NADP(H) NAD(H), and the post-translational protein modifications carbonylation, S-glutathionylation, and ubiquitination. We determined the sub-lethal condition generating the maximal luciferase activity and inducible HSPA protein level for treatments with hydrogen peroxide (H2O2), UVA-induced oxygen photo-activation, the superoxide-generating agent menadione (MN), and diamide (DA), an electrophilic and sulfhydryl reagent. The level of HSR induced by oxidative stress was the highest after DA and MN, followed by UVA and H2O2 treatments, and was not correlated to the level of ROS production nor to the extent of protein S-glutathionylation or carbonylation observed immediately after stress. We found a correlation following oxidative treatments between HSR and the level of GSH/GSSG immediately after stress, and the increase in protein ubiquitination during the recovery period. Conversely, HS treatment, which led to the highest HSR level, did not generate ROS nor modified or depended on GSH redox state. Furthermore, the level of protein ubiquitination was maximum immediately after HS and lower than after MN and DA treatments thereafter. In these cells, heat-induced HSR was therefore clearly different from oxidative stress-induced HSR, in which conversely early redox changes of the major cellular thiol predicted the level of HSR and polyubiquinated proteins.
Collapse
Affiliation(s)
- Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS UMR3347, INSERM U1021, 91405, Orsay, France
- Université Paris-Sud, Université Paris-Saclay, Rue Georges Clémenceau, 91405, Orsay, France
| | - Nathalie Peynot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Marc Lelièvre
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France.
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
41
|
Kim HH, Choi S. Therapeutic Aspects of Carbon Monoxide in Cardiovascular Disease. Int J Mol Sci 2018; 19:ijms19082381. [PMID: 30104479 PMCID: PMC6121498 DOI: 10.3390/ijms19082381] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022] Open
Abstract
Carbon monoxide (CO) is being increasingly recognized as a potential therapeutic with important signaling functions in various diseases. Carbon monoxide-releasing molecules (CORMs) show anti-apoptotic, anti-inflammatory, and anti-oxidant effects on the tissues of organisms, thus contributing to tissue homeostasis. An increase in reactive oxygen species production from the mitochondria after exposure to CO is also considered one of the underlying mechanisms of cardioprotection, although mitochondrial inhibition is the main toxic mechanism of CO poisoning. This review highlights the mechanism of the biological effects of CO and its potential application as a therapeutic in clinical settings, including in cardiovascular diseases. This review also discusses the obstacles and limitations of using exogenous CO or CORMs as a therapeutic option, with respect to acute CO poisoning.
Collapse
Affiliation(s)
- Hyuk-Hoon Kim
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Sangchun Choi
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
42
|
Szpotowicz-Czech B, Wiecek M, Szymura J, Maciejczyk M, Szygula Z. Changes in chosen immune system indicators and the level of HSP-70 after single whole-body cryostimulation in healthy men. Cent Eur J Immunol 2018; 43:186-193. [PMID: 30135632 PMCID: PMC6102624 DOI: 10.5114/ceji.2018.77389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 09/25/2017] [Indexed: 01/20/2023] Open
Abstract
AIM OF THE STUDY The aim of our research was to examine the influence of single whole-body cryostimulation (WBC) on chosen immune system indicators including the heat shock protein HSP-70. MATERIAL AND METHODS The study was carried out among ten young and healthy men (mean age 22.4 ±1.65, with a body mass index of 22.91 ±2.39 kg/m2). The participants were subjected to single whole-body cryostimulation (at -130°C temperatures) in a special cryogenic chamber for 3 minutes. Blood samples were collected three times: before cryostimulation, 30 minutes and 24 hours after WBC. Immunoglobulins (IgA, IgG, IgM), interleukins (IL-6, IL-10, IL-1β) and the heat shock protein (HSP-70) were determined in the blood serum. RESULTS As a result of a single exposure to cryogenic temperatures, a significant increase in the level of IL-6 was observed 30 minutes after the WBC (p < 0.05) and a decrease in the level of HSP-70 24 hours after the treatment (p < 0.05). There were no significant changes in the level of interleukins (IL-10, IL-1β) or immunoglobulins 30 minutes after a single WBC treatment or 24 hours later. CONCLUSIONS Detailed analysis of the issue shows that a single application of whole-body cryostimulation causes a small, modulating effect on the IL-6 level. Single whole-body cryostimulation treatment has also a slight silencing effect on the HSP-70 level in healthy, young men. Reduction in the concentration of HSP-70 24 hours after WBC may indicate lack of the damaging impact on the spatial structure of the protein due to cryogenic temperatures.
Collapse
Affiliation(s)
| | - Magdalena Wiecek
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education, Krakow, Poland
| | - Jadwiga Szymura
- Department of Clinical Rehabilitation, Faculty of Motor Rehabilitation, University of Physical Education, Krakow, Poland
| | - Marcin Maciejczyk
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education, Krakow, Poland
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
| |
Collapse
|
43
|
Higuchi-Sanabria R, Frankino PA, Paul JW, Tronnes SU, Dillin A. A Futile Battle? Protein Quality Control and the Stress of Aging. Dev Cell 2018; 44:139-163. [PMID: 29401418 PMCID: PMC5896312 DOI: 10.1016/j.devcel.2017.12.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
There exists a phenomenon in aging research whereby early life stress can have positive impacts on longevity. The mechanisms underlying these observations suggest a robust, long-lasting induction of cellular defense mechanisms. These include the various unfolded protein responses of the endoplasmic reticulum (ER), cytosol, and mitochondria. Indeed, ectopic induction of these pathways, in the absence of stress, is sufficient to increase lifespan in organisms as diverse as yeast, worms, and flies. Here, we provide an overview of the protein quality control mechanisms that operate in the cytosol, mitochondria, and ER and discuss how they affect cellular health and viability during stress and aging.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip Andrew Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph West Paul
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Uhlein Tronnes
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
44
|
Zhao Z, Zhu J, Quan H, Wang G, Li B, Zhu W, Xie C, Lou L. X66, a novel N-terminal heat shock protein 90 inhibitor, exerts antitumor effects without induction of heat shock response. Oncotarget 2018; 7:29648-63. [PMID: 27105490 PMCID: PMC5045423 DOI: 10.18632/oncotarget.8818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/28/2016] [Indexed: 01/16/2023] Open
Abstract
Heat shock protein 90 (HSP90) is essential for cancer cells to assist the function of various oncoproteins, and it has been recognized as a promising target in cancer therapy. Although the HSP90 inhibitors in clinical trials have shown encouraging clinical efficacy, these agents induce heat shock response (HSR), which undermines their therapeutic effects. In this report, we detailed the pharmacologic properties of 4-(2-((1H-indol-3-yl)methylene)hydrazinyl)-N-(4-bromophenyl)-6-(3,5- dimethyl-1H -pyrazol-1-yl)-1,3,5-triazin-2-amine (X66), a novel and potent HSP90 inhibitor. X66 binds to the N-terminal domain in a different manner from the classic HSP90 inhibitors. Cellular study showed that X66 depleted HSP90 client proteins, resulted in cell cycle arrest and apoptosis, and inhibition of proliferation in cancer cell lines. X66 did not activate heat shock factor-1 (HSF-1) or stimulate transcription of HSPs. Moreover, the combination of X66 with HSP90 and proteasome inhibitors yielded synergistic cytotoxicity which was involved in X66-mediated abrogation of HSR through inhibition of HSF-1 activity. The intraperitoneal administration of X66 alone depleted client protein and inhibited tumor growth, and led to enhanced activity when combined with celastrol as compared to either agent alone in BT-474 xenograft model. Collectively, the HSP90 inhibitory action and the potent antitumor activity, with the anti-HSR action, promise X66 a novel HSP90-targeted agent, which merits further research and development.
Collapse
Affiliation(s)
- Zhixin Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianming Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haitian Quan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guimin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bo Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiliang Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chengying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
45
|
Nieto A, Pérez Ishiwara DG, Orozco E, Sánchez Monroy V, Gómez García C. A Novel Heat Shock Element (HSE) in Entamoeba histolytica that Regulates the Transcriptional Activation of the EhPgp5 Gene in the Presence of Emetine Drug. Front Cell Infect Microbiol 2017; 7:492. [PMID: 29238701 PMCID: PMC5712549 DOI: 10.3389/fcimb.2017.00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023] Open
Abstract
Transcriptional regulation of the multidrug resistance EhPgp5 gene in Entamoeba histolytica is induced by emetine stress. EhPgp5 overexpression alters the chloride-dependent currents that cause trophozoite swelling, diminishing induced programmed cell death (PCD) susceptibility. In contrast, antisense inhibition of P-glycoprotein (PGP) expression produces synchronous death of trophozoites and the enhancement of the biochemical and morphological characteristics of PCD induced by G418. Transcriptional gene regulation analysis identified a 59 bp region at position −170 to −111 bp promoter as putative emetine response elements (EREs). However, insights into transcription factors controlling EhPgp5 gene transcription are missing; to fill this knowledge gap, we used deletion studies and transient CAT activity assays. Our findings suggested an activating motif (−151 to −136 bp) that corresponds to a heat shock element (HSE). Gel-shift assays, UV-crosslinking, binding protein purification, and western blotting assays revealed proteins of 94, 66, 62, and 51 kDa binding to the EhPgp5 HSE that could be heat shock-like transcription factors that regulate the transcriptional activation of the EhPgp5 gene in the presence of emetine drug.
Collapse
Affiliation(s)
- Alma Nieto
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - David G Pérez Ishiwara
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Virginia Sánchez Monroy
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Consuelo Gómez García
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
46
|
Dominguez CE, Cunningham D, Chandler DS. SMN regulation in SMA and in response to stress: new paradigms and therapeutic possibilities. Hum Genet 2017; 136:1173-1191. [PMID: 28852871 PMCID: PMC6201753 DOI: 10.1007/s00439-017-1835-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Low levels of the survival of motor neuron (SMN) protein cause the neurodegenerative disease spinal muscular atrophy (SMA). SMA is a pediatric disease characterized by spinal motor neuron degeneration. SMA exhibits several levels of severity ranging from early antenatal fatality to only mild muscular weakness, and disease prognosis is related directly to the amount of functional SMN protein that a patient is able to express. Current therapies are being developed to increase the production of functional SMN protein; however, understanding the effect that natural stresses have on the production and function of SMN is of critical importance to ensuring that these therapies will have the greatest possible effect for patients. Research has shown that SMN, both on the mRNA and protein level, is highly affected by cellular stress. In this review we will summarize the research that highlights the roles of SMN in the disease process and the response of SMN to various environmental stresses.
Collapse
Affiliation(s)
- Catherine E Dominguez
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - David Cunningham
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Dawn S Chandler
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
47
|
Takii R, Fujimoto M, Matsuura Y, Wu F, Oshibe N, Takaki E, Katiyar A, Akashi H, Makino T, Kawata M, Nakai A. HSF1 and HSF3 cooperatively regulate the heat shock response in lizards. PLoS One 2017; 12:e0180776. [PMID: 28686674 PMCID: PMC5501597 DOI: 10.1371/journal.pone.0180776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023] Open
Abstract
Cells cope with temperature elevations, which cause protein misfolding, by expressing heat shock proteins (HSPs). This adaptive response is called the heat shock response (HSR), and it is regulated mainly by heat shock transcription factor (HSF). Among the four HSF family members in vertebrates, HSF1 is a master regulator of HSP expression during proteotoxic stress including heat shock in mammals, whereas HSF3 is required for the HSR in birds. To examine whether only one of the HSF family members possesses the potential to induce the HSR in vertebrate animals, we isolated cDNA clones encoding lizard and frog HSF genes. The reconstructed phylogenetic tree of vertebrate HSFs demonstrated that HSF3 in one species is unrelated with that in other species. We found that the DNA-binding activity of both HSF1 and HSF3 in lizard and frog cells was induced in response to heat shock. Unexpectedly, overexpression of lizard and frog HSF3 as well as HSF1 induced HSP70 expression in mouse cells during heat shock, indicating that the two factors have the potential to induce the HSR. Furthermore, knockdown of either HSF3 or HSF1 markedly reduced HSP70 induction in lizard cells and resistance to heat shock. These results demonstrated that HSF1 and HSF3 cooperatively regulate the HSR at least in lizards, and suggest complex mechanisms of the HSR in lizards as well as frogs.
Collapse
Affiliation(s)
- Ryosuke Takii
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Mitsuaki Fujimoto
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Yuki Matsuura
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Fangxu Wu
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Namiko Oshibe
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Eiichi Takaki
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Arpit Katiyar
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Hiroshi Akashi
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masakado Kawata
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Akira Nakai
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
- * E-mail:
| |
Collapse
|
48
|
Yin J, Jiang XY, Qi W, Ji CG, Xie XL, Zhang DX, Cui ZJ, Wang CK, Bai Y, Wang J, Jiang HQ. piR-823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF1. Cancer Sci 2017; 108:1746-1756. [PMID: 28618124 PMCID: PMC5581525 DOI: 10.1111/cas.13300] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/02/2017] [Accepted: 06/10/2017] [Indexed: 12/13/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs), a novel class of small non-coding RNAs, were first discovered in germline cells and are thought to silence transposons in spermatogenesis. Recently, piRNAs have also been identified in somatic tissues, and aberrant expression of piRNAs in tumor tissues may be implicated in carcinogenesis. However, the function of piR-823 in colorectal cancer (CRC) remains unclear. Here, we first found that piR-823 was significantly upregulated in CRC tissues compared with its expression in the adjacent tissues. Inhibition of piR-823 suppressed cell proliferation, arrested the cell cycle in the G1 phase and induced cell apoptosis in CRC cell lines HCT116 and DLD-1, whereas overexpression of piR-823 promoted cell proliferation in normal colonic epithelial cell line FHC. Interestingly, Inhibition of piR-823 repressed the expression of heat shock protein (HSP) 27, 60, 70. Furthermore, elevated HSPs expression partially abolished the effect of piR-823 on cell proliferation and apoptosis. In addition, we further demonstrated that piR-823 increased the transcriptional activity of HSF1, the common transcription factor of HSPs, by binding to HSF1 and promoting its phosphorylation at Ser326. Our study reveals that piR-823 plays a tumor-promoting role by upregulating phosphorylation and transcriptional activity of HSF1 and suggests piR-823 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Jie Yin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Xiao-Yu Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Wei Qi
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Chen-Guang Ji
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Xiao-Li Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Dong-Xuan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Zi-Jin Cui
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Cun-Kai Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Yun Bai
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Jia Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei.,Ronghe Biotechnology Co., Ltd, Shijiazhuang, Hebei, China
| | - Hui-Qing Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| |
Collapse
|
49
|
Saia-Cereda VM, Santana AG, Schmitt A, Falkai P, Martins-de-Souza D. The Nuclear Proteome of White and Gray Matter from Schizophrenia Postmortem Brains. MOLECULAR NEUROPSYCHIATRY 2017; 3:37-52. [PMID: 28879200 PMCID: PMC5582429 DOI: 10.1159/000477299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
Abstract
Schizophrenia (SCZ) is a serious neuropsychiatric disorder that manifests through several symptoms from early adulthood. Numerous studies over the last decades have led to significant advances in increasing our understanding of the factors involved in SCZ. For example, mass spectrometry-based proteomic analysis has provided important insights by uncovering protein dysfunctions inherent to SCZ. Here, we present a comprehensive analysis of the nuclear proteome of postmortem brain tissues from corpus callosum (CC) and anterior temporal lobe (ATL). We show an overview of the role of deregulated nuclear proteins in these two main regions of the brain: the first, mostly composed of glial cells and axons of neurons, and the second, represented mainly by neuronal cell bodies. These samples were collected from SCZ patients in an attempt to characterize the role of the nucleus in the disease process. With the ATL nucleus enrichment, we found 224 proteins present at different levels, and 76 of these were nuclear proteins. In the CC analysis, we identified 119 present at different levels, and 24 of these were nuclear proteins. The differentially expressed nuclear proteins of ATL are mainly associated with the spliceosome, whereas those of the CC region are associated with calcium/calmodulin signaling.
Collapse
Affiliation(s)
- Verônica M. Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Aline G. Santana
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University (LMU), Munich, Germany
- Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University (LMU), Munich, Germany
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- UNICAMP's Neurobiology Center, Campinas, Brazil
| |
Collapse
|
50
|
Kim HJ, Lee JJ, Cho JH, Jeong J, Park AY, Kang W, Lee KJ. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1. J Biol Chem 2017; 292:12801-12812. [PMID: 28592492 DOI: 10.1074/jbc.m117.774992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
When cells are exposed to heat shock and various other stresses, heat shock factor 1 (HSF1) is activated, and the heat shock response (HSR) is elicited. To better understand the molecular regulation of the HSR, we used 2D-PAGE-based proteome analysis to screen for heat shock-induced post-translationally modified cellular proteins. Our analysis revealed that two protein spots typically present on 2D-PAGE gels and containing heterogeneous nuclear ribonucleoprotein K (hnRNP K) with trioxidized Cys132 disappeared after the heat shock treatment and reappeared during recovery, but the total amount of hnRNP K protein remained unchanged. We next tested whether hnRNP K plays a role in HSR by regulating HSF1 and found that hnRNP K inhibits HSF1 activity, resulting in reduced expression of hsp70 and hsp27 mRNAs. hnRNP K also reduced binding affinity of HSF1 to the heat shock element by directly interacting with HSF1 but did not affect HSF1 phosphorylation-dependent activation or nuclear localization. hnRNP K lost its ability to induce these effects when its Cys132 was substituted with Ser, Asp, or Glu. These findings suggest that hnRNP K inhibits transcriptional activity of HSF1 by inhibiting its binding to heat shock element and that the oxidation status of Cys132 in hnRNP K is critical for this inhibition.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jae-Jin Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jin-Hwan Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jaeho Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - A Young Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Wonmo Kang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|