1
|
Lange A, Fasken MB, Stewart M, Corbett AH. Dissecting the roles of Cse1 and Nup2 in classical NLS-cargo release in vivo. Traffic 2020; 21:622-635. [PMID: 32734712 PMCID: PMC7891619 DOI: 10.1111/tra.12759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 01/26/2023]
Abstract
The importin α/β transport machinery mediates the nuclear import of cargo proteins that bear a classical nuclear localization sequence (cNLS). These cargo proteins are linked to the major nuclear protein import factor, importin‐β, by the importin‐α adapter, after which cargo/carrier complexes enter the nucleus through nuclear pores. In the nucleus, cargo is released by the action of RanGTP and the nuclear pore protein Nup2, after which the importins are recycled to the cytoplasm for further transport cycles. The nuclear export of importin‐α is mediated by Cse1/CAS. Here, we exploit structures of functionally important complexes to identify residues that are critical for these interactions and provide insight into how cycles of protein import and recycling of importin‐α occur in vivo using a Saccharomyces cerevisiae model. We examine how these molecular interactions impact protein localization, cargo import, function and complex formation. We show that reversing the charge of key residues in importin‐α (Arg44) or Cse1 (Asp220) results in loss of function of the respective proteins and impairs complex formation both in vitro and in vivo. To extend these results, we show that basic residues in the Nup2 N‐terminus are required for both Nup2 interaction with importin‐α and Nup2 function. These results provide a more comprehensive mechanistic model of how Cse1, RanGTP and Nup2 function in concert to mediate cNLS‐cargo release in the nucleus. Directional transport of cargoes between the nucleus and cytoplasm is mediated by receptors that bind cargo in one compartment and release cargo into a destination compartment. Cargoes that contain a cNLS are recognized by importin‐α in the cytoplasm. Release factors including the importin‐α export receptor, Cse1, and a nuclear pore complex protein, Nup2, ensure efficient cargo delivery into the nucleus. Interactions defined by previous structural studies are required for productive interactions between importin‐α, Cse1, and Nup2 to occur in vivo.
Collapse
Affiliation(s)
- Allison Lange
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Milo B Fasken
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Murray Stewart
- Cambridge Biomedical Campus, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Becker D, Hirsch AG, Bender L, Lingner T, Salinas G, Krebber H. Nuclear Pre-snRNA Export Is an Essential Quality Assurance Mechanism for Functional Spliceosomes. Cell Rep 2019; 27:3199-3214.e3. [PMID: 31189105 DOI: 10.1016/j.celrep.2019.05.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023] Open
Abstract
Removal of introns from pre-mRNAs is an essential step in eukaryotic gene expression, mediated by spliceosomes that contain snRNAs as key components. Although snRNAs are transcribed in the nucleus and function in the same compartment, all except U6 shuttle to the cytoplasm. Surprisingly, the physiological relevance for shuttling is unclear, in particular because the snRNAs in Saccharomyces cerevisiae were reported to remain nuclear. Here, we show that all yeast pre-snRNAs including U6 undergo a stepwise maturation process after nuclear export by Mex67 and Xpo1. Sm- and Lsm-ring attachment occurs in the cytoplasm and is important for the snRNA re-import, mediated by Cse1 and Mtr10. Finally, nuclear pre-snRNA cleavage and trimethylation of the 5'-cap finalizes shuttling. Importantly, preventing pre-snRNAs from being exported or processed results in faulty spliceosome assembly and subsequent genome-wide splicing defects. Thus, pre-snRNA export is obligatory for functional splicing and resembles an essential evolutionarily conserved quality assurance step.
Collapse
Affiliation(s)
- Daniel Becker
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Anna Greta Hirsch
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Lysann Bender
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Thomas Lingner
- Transkriptomanalyselabor, Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- Transkriptomanalyselabor, Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Perez AM, Thorner J. Septin-associated proteins Aim44 and Nis1 traffic between the bud neck and the nucleus in the yeast Saccharomyces cerevisiae. Cytoskeleton (Hoboken) 2019; 76:15-32. [PMID: 30341817 PMCID: PMC6474838 DOI: 10.1002/cm.21500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
Abstract
In budding yeast, a collar of septin filaments at the neck between a mother cell and its bud marks the incipient site for cell division and serves as a scaffold that recruits proteins required for proper spatial and temporal execution of cytokinesis. A set of interacting proteins that localize at or near the bud neck, including Aim44/Gps1, Nba1 and Nis1, also has been implicated in preventing Cdc42-dependent bud site re-establishment at the division site. We found that, at their endogenous level, Aim44 and Nis1 robustly localize sequentially at the septin collar. Strikingly, however, when overproduced, both proteins shift their subcellular distribution predominantly to the nucleus. Aim44 localizes with the inner nuclear envelope, as well as at the plasma membrane, whereas Nis1 accumulates within the nucleus, indicating that these proteins normally undergo nucleocytoplasmic shuttling. Of the 14 yeast karyopherins, Kap123/Yrb4 is the primary importin for Aim44, whereas several importins mediate Nis1 nuclear entry. Conversely, Kap124/Xpo1/Crm1 is the primary exportin for Nis1, whereas both Xpo1 and Cse1/Kap109 likely contribute to Aim44 nuclear export. Even when endogenously expressed, Nis1 accumulates in the nucleus when Nba1 is absent. When either Aim44 or Nis1 are overexpressed, Nba1 is displaced from the bud neck, further consistent with the mutual interactions of these proteins. Collectively, our results indicate that a previously unappreciated level at which localization of septin-associated proteins is controlled is via regulation of their nucleocytoplasmic shuttling, which places constraints on their availability for complex formation with other partners at the bud neck.
Collapse
Affiliation(s)
- Adam M. Perez
- Division of Biochemistry, Biophysics and Structural BiologyDepartment of Molecular and Cell Biology, University of CaliforniaBerkeleyCalifornia
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural BiologyDepartment of Molecular and Cell Biology, University of CaliforniaBerkeleyCalifornia
| |
Collapse
|
4
|
Hildebrand EM, Biggins S. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects. PLoS Genet 2016; 12:e1005930. [PMID: 26982580 PMCID: PMC4794243 DOI: 10.1371/journal.pgen.1005930] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 02/22/2016] [Indexed: 01/08/2023] Open
Abstract
The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-ACse4 is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-ACse4 for degradation. To identify additional mechanisms that prevent CENP-ACse4 misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-ACse4 in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-ACse4 is enriched at promoters that contain histone H2A.ZHtz1 nucleosomes, but that H2A.ZHtz1 is not required for CENP-ACse4 mislocalization. Instead, the INO80 complex, which removes H2A.ZHtz1 from nucleosomes, promotes the ectopic deposition of CENP-ACse4. Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-ACse4. The down-regulated genes are enriched for CENP-ACse4 mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation. Chromosomes carry the genetic material in cells. When cells divide, each daughter cell must inherit a single copy of each chromosome. The centromere is the locus on each chromosome that ensures the equal distribution of chromosomes during cell division. One essential protein involved in this task is CENP-ACse4, which normally localizes exclusively to centromeres. Here, we investigated where CENP-ACse4 spreads in the genome when parts of its regulatory machinery are removed. We found that CENP-ACse4 becomes mislocalized to promoters, the region upstream of each gene that controls the activity of the gene. Consistent with this, the mislocalization of CENP-ACse4 to promoters leads to problems with gene activity. Our work shows that mislocalization of centromeric proteins can have effects beyond chromosome segregation defects, such as interfering with gene expression on chromosome arms.
Collapse
Affiliation(s)
- Erica M. Hildebrand
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
5
|
Okimoto S, Sun J, Fukuto A, Horikoshi Y, Matsuda S, Matsuda T, Ikura M, Ikura T, Machida S, Kurumizaka H, Miyamoto Y, Oka M, Yoneda Y, Kiuchi Y, Tashiro S. hCAS/CSE1L regulates RAD51 distribution and focus formation for homologous recombinational repair. Genes Cells 2015; 20:681-94. [PMID: 26123175 DOI: 10.1111/gtc.12262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/14/2015] [Indexed: 01/05/2023]
Abstract
Homologous recombinational repair (HR) is one of the major repair systems for DNA double-strand breaks. RAD51 is a key molecule in HR, and the RAD51 concentration in the cell nucleus increases after DNA damage induction. However, the mechanism that regulates the intracellular distribution of RAD51 is still unclear. Here, we show that hCAS/CSE1L associates with RAD51 in human cells. We found that hCAS/CSE1L negatively regulates the nuclear protein level of RAD51 under normal conditions. hCAS/CSE1L is also required to repress the DNA damage-induced focus formation of RAD51. Moreover, we show that hCAS/CSE1L plays roles in the regulation of the HR activity and in chromosome stability. These findings suggest that hCAS/CSE1L is responsible for controlling the HR activity by directly interacting with RAD51.
Collapse
Affiliation(s)
- Satoshi Okimoto
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8551, Japan.,Department of Ophthalmology and Visual Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Jiying Sun
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Atsuhiko Fukuto
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8551, Japan.,Department of Ophthalmology and Visual Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8551, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Shun Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, 520-0811, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, 520-0811, Japan
| | - Masae Ikura
- Laboratory of Chromatin Regulatory Network, Department of Mutagenesis, Radiation Biology Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tsuyoshi Ikura
- Laboratory of Chromatin Regulatory Network, Department of Mutagenesis, Radiation Biology Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinichi Machida
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yoichi Miyamoto
- National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masahiro Oka
- National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoshihiro Yoneda
- National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8551, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Hiroshima, 734-8551, Japan
| |
Collapse
|
6
|
Kimura M, Imamoto N. Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 2014; 15:727-48. [PMID: 24766099 DOI: 10.1111/tra.12174] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
Importin-β family proteins (Imp-βs) are nucleocytoplasmic transport receptors (NTRs) that import and export proteins and RNAs through the nuclear pores. The family consists of 14-20 members depending on the biological species, and each member transports a specific group of cargoes. Thus, the Imp-βs mediate multiple, parallel transport pathways that can be regulated separately. In fact, the spatiotemporally differential expressions and the functional regulations of Imp-βs have been reported. Additionally, the biological significance of each pathway has been characterized by linking the function of a member of Imp-βs to a cellular consequence. Connecting these concepts, the regulation of the transport pathways conceivably induces alterations in the cellular physiological states. However, few studies have linked the regulation of an importin-β family NTR to an induced cellular response and the corresponding cargoes, despite the significance of this linkage in comprehending the biological relevance of the transport pathways. This review of recent reports on the regulation and biological functions of the Imp-βs highlights the significance of the transport pathways in physiological contexts and points out the possibility that the identification of yet unknown specific cargoes will reinforce the importance of transport regulation.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
7
|
Nguyen MM, Harmon RM, Wang Z. Characterization of karyopherins in androgen receptor intracellular trafficking in the yeast model. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2768-2779. [PMID: 25031696 PMCID: PMC4097219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/25/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Mechanisms regulating androgen receptor (AR) subcellular localization represent an essential component of AR signaling. Karyopherins are a family of nucleocytoplasmic trafficking factors. In this paper, we used the yeast model to study the effects of karyopherins on the subcellular localization of the AR. METHODS Yeast mutants deficient in different nuclear transport factors were transformed with various AR based, GFP tagged constructs and their localization was monitored using microscopy. RESULTS We showed that yeast can mediate androgen-induced AR nuclear localization and that in addition to the import factor, Importinα/β, this process required the import karyopherin Sxm1. We also showed that a previously identified nuclear export sequence (NES(AR)) in the ligand binding domain of AR does not appear to rely on karyopherins for cytoplasmic localization. CONCLUSIONS These results suggest that while AR nuclear import relies on karyopherin activity, AR nuclear export and/or cytoplasmic localization may require other undefined mechanisms.
Collapse
Affiliation(s)
- Minh M Nguyen
- Department of Urology, School of Medicine Pittsburgh, University of Pittsburgh Cancer InstitutePA 15232, USA
| | - Robert M Harmon
- Department of Pathology, Northwestern UniversityChicago, IL 60611, USA
| | - Zhou Wang
- Department of Urology, School of Medicine Pittsburgh, University of Pittsburgh Cancer InstitutePA 15232, USA
| |
Collapse
|
8
|
Lorenzato A, Biolatti M, Delogu G, Capobianco G, Farace C, Dessole S, Cossu A, Tanda F, Madeddu R, Olivero M, Di Renzo MF. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells. Exp Cell Res 2013; 319:2627-36. [PMID: 23948303 DOI: 10.1016/j.yexcr.2013.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 07/27/2013] [Accepted: 07/31/2013] [Indexed: 12/28/2022]
Abstract
The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals.
Collapse
Affiliation(s)
- Annalisa Lorenzato
- Department of Oncology, University of Torino School of Medicine, Torino, Italy; Institute for Cancer Research at Candiolo, Candiolo, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sillars-Hardebol AH, Carvalho B, Beliën JA, de Wit M, Delis-van Diemen PM, Tijssen M, van de Wiel MA, Pontén F, Meijer GA, Fijneman RJA. CSE1L, DIDO1 and RBM39 in colorectal adenoma to carcinoma progression. Cell Oncol (Dordr) 2012; 35:293-300. [DOI: 10.1007/s13402-012-0088-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2012] [Indexed: 01/22/2023] Open
|
10
|
Lorenzato A, Martino C, Dani N, Oligschläger Y, Ferrero AM, Biglia N, Calogero R, Olivero M, Di Renzo MF. The cellular apoptosis susceptibility
CAS/CSE1L
gene protects ovarian cancer cells from death by suppressing RASSF1C. FASEB J 2012; 26:2446-56. [DOI: 10.1096/fj.11-195982] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Annalisa Lorenzato
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Cosimo Martino
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Nadia Dani
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Yvonne Oligschläger
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Anna Maria Ferrero
- Department of Obstetrics and GynaecologyAzienda Sanitaria Ospedaliera (ASO) Ordine MaurizianoTurinItaly
| | - Nicoletta Biglia
- Department of Obstetrics and GynaecologyAzienda Sanitaria Ospedaliera (ASO) Ordine MaurizianoTurinItaly
| | - Raffaele Calogero
- Genomics and Bioinformatics UnitDepartment of Clinical and Biological SciencesASO San Luigi GonzagaOrbassanoItaly
| | - Martina Olivero
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Maria Flavia Di Renzo
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| |
Collapse
|
11
|
Wen R, Li F, Xie Y, Li S, Xiang J. A Homolog of the Cell Apoptosis Susceptibility Gene Involved in Ovary Development of Chinese Shrimp Fenneropenaeus chinensis1. Biol Reprod 2012; 86:1-7. [DOI: 10.1095/biolreprod.111.092635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
12
|
Conaway RC, Conaway JW. Origins and activity of the Mediator complex. Semin Cell Dev Biol 2011; 22:729-34. [PMID: 21821140 DOI: 10.1016/j.semcdb.2011.07.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/16/2022]
Abstract
The Mediator is a large, multisubunit RNA polymerase II transcriptional regulator that was first identified in Saccharomyces cerevisiae as a factor required for responsiveness of Pol II and the general initiation factors to DNA binding transactivators. Since its discovery in yeast, Mediator has been shown to be an integral and highly evolutionarily conserved component of the Pol II transcriptional machinery with critical roles in multiple stages of transcription, from regulation of assembly of the Pol II initiation complex to regulation of Pol II elongation. Here we provide a brief overview of the evolutionary origins of Mediator, its subunit composition, and its remarkably diverse collection of activities in Pol II transcription.
Collapse
Affiliation(s)
- Ronald C Conaway
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| | | |
Collapse
|
13
|
Bagnat M, Navis A, Herbstreith S, Brand-Arzamendi K, Curado S, Gabriel S, Mostov K, Huisken J, Stainier DYR. Cse1l is a negative regulator of CFTR-dependent fluid secretion. Curr Biol 2010; 20:1840-5. [PMID: 20933420 DOI: 10.1016/j.cub.2010.09.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/05/2010] [Accepted: 09/02/2010] [Indexed: 01/26/2023]
Abstract
Transport of chloride through the cystic fibrosis transmembrane conductance regulator (CFTR) channel is a key step in regulating fluid secretion in vertebrates [1, 2]. Loss of CFTR function leads to cystic fibrosis [1, 3, 4], a disease that affects the lungs, pancreas, liver, intestine, and vas deferens. Conversely, uncontrolled activation of the channel leads to increased fluid secretion and plays a major role in several diseases and conditions including cholera [5, 6] and other secretory diarrheas [7] as well as polycystic kidney disease [8-10]. Understanding how CFTR activity is regulated in vivo has been limited by the lack of a genetic model. Here, we used a forward genetic approach in zebrafish to uncover CFTR regulators. We report the identification, isolation, and characterization of a mutation in the zebrafish cse1l gene that leads to the sudden and dramatic expansion of the gut tube. We show that this phenotype results from a rapid accumulation of fluid due to the uncontrolled activation of the CFTR channel. Analyses in zebrafish larvae and mammalian cells indicate that Cse1l is a negative regulator of CFTR-dependent fluid secretion. This work demonstrates the importance of fluid homeostasis in development and establishes the zebrafish as a much-needed model system to study CFTR regulation in vivo.
Collapse
Affiliation(s)
- Michel Bagnat
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tai CJ, Hsu CH, Shen SC, Lee WR, Jiang MC. Cellular apoptosis susceptibility (CSE1L/CAS) protein in cancer metastasis and chemotherapeutic drug-induced apoptosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:110. [PMID: 20701792 PMCID: PMC2925819 DOI: 10.1186/1756-9966-29-110] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 08/11/2010] [Indexed: 11/10/2022]
Abstract
The cellular apoptosis susceptibility (CSE1L/CAS) protein is highly expressed in cancer, and its expression is positively correlated with high cancer stage, high cancer grade, and worse outcomes of patients. CSE1L (or CAS) regulates chemotherapeutic drug-induced cancer cell apoptosis and may play important roles in mediating the cytotoxicities of chemotherapeutic drugs against cancer cells in cancer chemotherapy. CSE1L was originally regarded as a proliferation-associated protein and was thought to regulate the proliferation of cancer cells in cancer progression. However, the results of experimental studies showed that enhanced CSE1L expression is unable to increase proliferation of cancer cells and CSE1L regulates invasion and metastasis but not proliferation of cancer cells. Recent studies revealed that CSE1L is a secretory protein, and there is a higher prevalence of secretory CSE1L in the sera of patients with metastatic cancer. Therefore, CSE1L may be a useful serological marker for screening, diagnosis and prognosis, assessment of therapeutic responses, and monitoring for recurrence of cancer. In this paper, we review the expression of CSE1L in cancer and discuss why CSE1L regulates the invasion and metastasis rather than the proliferation of cancer.
Collapse
Affiliation(s)
- Cheng-Jeng Tai
- Section of Hematology-Oncology, Department of Medicine, Taipei Medical University and Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Rogers C, Guo Z, Stiller JW. Connecting mutations of the RNA polymerase II C-terminal domain to complex phenotypic changes using combined gene expression and network analyses. PLoS One 2010; 5:e11386. [PMID: 20613981 PMCID: PMC2894937 DOI: 10.1371/journal.pone.0011386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/22/2010] [Indexed: 11/19/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit in DNA-dependent RNA polymerase II (RNAP II) is essential for mRNA synthesis and processing, through coordination of an astounding array of protein-protein interactions. Not surprisingly, CTD mutations can have complex, pleiotropic impacts on phenotype. For example, insertions of five alanine residues between CTD diheptads in yeast, which alter the CTD's overall tandem structure and physically separate core functional units, dramatically reduce growth rate and result in abnormally large cells that accumulate increased DNA content over time. Patterns by which specific CTD-protein interactions are disrupted by changes in CTD structure, as well as how downstream metabolic pathways are impacted, are difficult to target for direct experimental analyses. In an effort to connect an altered CTD to complex but quantifiable phenotypic changes, we applied network analyses of genes that are differentially expressed in our five alanine CTD mutant, combined with established genetic interactions from the Saccharomyces cerevisiae Genome Database (SGD). We were able to identify candidate genetic pathways, and several key genes, that could explain how this change in CTD structure leads to the specific phenotypic changes observed. These hypothetical networks identify links between CTD-associated proteins and mitotic function, control of cell cycle checkpoint mechanisms, and expression of cell wall and membrane components. Such results can help to direct future genetic and biochemical investigations that tie together the complex impacts of the CTD on global cellular metabolism.
Collapse
Affiliation(s)
- Carlyle Rogers
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America.
| | | | | |
Collapse
|
16
|
Taberner FJ, Igual JC. Yeast karyopherin Kap95 is required for cell cycle progression at Start. BMC Cell Biol 2010; 11:47. [PMID: 20587033 PMCID: PMC2904269 DOI: 10.1186/1471-2121-11-47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 06/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background The control of the subcellular localization of cell cycle regulators has emerged as a crucial mechanism in cell division regulation. The active transport of proteins between the nucleus and the cytoplasm is mediated by the transport receptors of the β-karyopherin family. In this work we characterized the terminal phenotype of a mutant strain in β-karyopherin Kap95, a component of the classical nuclear import pathway. Results When KAP95 was inactivated, most cells arrested at the G2/M phase of the cell cycle, which is in agreement with the results observed in mutants in the other components of this pathway. However, a number of cells accumulate at G1, suggesting a novel role of Kap95 and the classical import pathway at Start. We investigated the localization of Start transcription factors. It is known that Swi6 contains a classical NLS that interacts with importin α. Here we show that the in vivo nuclear import of Swi6 depends on Kap95. For Swi4, we identified a functional NLS between amino acids 371 and 376 that is sufficient and necessary for Swi4 to enter the nucleus. The nuclear import driven by this NLS is mediated by karyopherins Kap95 and Srp1. Inactivation of Kap95 also produces a dramatic change in the localization of Mbp1 since the protein is mainly detected in the cytoplasm. Two functionally redundant Kap95- and Srp1-dependent NLSs were identified in Mbp1 between amino acids 27-30 and 166-181. Nuclear accumulation was not completely abolished in a kap95 mutant or in the Mbp1 mutated in the two NLSs, suggesting that alternative pathways might contribute to the Mbp1 nuclear import to a lesser extent. Conclusions Kap95 plays an essential role at the initiation of the cell cycle by driving the nuclear import of Swi4, Swi6 and Mbp1, the three transcription factors responsible for the gene expression at Start. This transport depends on the specific nuclear localization signals present in cargo proteins.
Collapse
Affiliation(s)
- Francisco José Taberner
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Dr. Moliner 50, 46100 Burjassot (Valencia), Spain
| | | |
Collapse
|
17
|
Takahashi H, Kasahara K, Kokubo T. Saccharomyces cerevisiaeMed9 comprises two functionally distinct domains that play different roles in transcriptional regulation. Genes Cells 2009; 14:53-67. [DOI: 10.1111/j.1365-2443.2008.01250.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Yamamoto A, Nunoshiba T, Umezu K, Enomoto T, Yamamoto K. Phenyl hydroquinone, an Ames test-negative carcinogen, induces Hog1-dependent stress response signaling. FEBS J 2008; 275:5733-44. [DOI: 10.1111/j.1742-4658.2008.06700.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Tanaka T, Ohkubo S, Tatsuno I, Prives C. hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell 2007; 130:638-50. [PMID: 17719542 DOI: 10.1016/j.cell.2007.08.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 03/23/2007] [Accepted: 08/01/2007] [Indexed: 12/21/2022]
Abstract
The p53 tumor suppressor protein regulates many genes that can determine different cellular outcomes such as growth arrest or cell death. Promoter-selective transactivation by p53, although critical for the different cellular outcomes, is not well understood. We report here that the human cellular apoptosis susceptibility protein (hCAS/CSE1L) associates with a subset of p53 target promoters, including PIG3, in a p53-autonomous manner. Downregulation of hCAS/CSE1L decreases transcription from those p53 target promoters to which it preferentially binds and reduces apoptosis. In addition, hCAS/CSE1L silencing leads to increased methylation of histone H3 lysine 27 within the PIG3 gene. hCAS/CSE1L was previously shown to function as a nucleo-cytoplasmic transport factor, as does its closely related yeast homologue Cse1, which can also associate with chromatin and serve as a barrier protein that prevents spreading of heterochromatin. Thus, human CAS/CSE1L can bind select genes with significant functional consequences for p53-mediated transcription and determine cellular outcome.
Collapse
Affiliation(s)
- Tomoaki Tanaka
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
20
|
Wong J, Nakajima Y, Westermann S, Shang C, Kang JS, Goodner C, Houshmand P, Fields S, Chan CS, Drubin D, Barnes G, Hazbun T. A protein interaction map of the mitotic spindle. Mol Biol Cell 2007; 18:3800-9. [PMID: 17634282 PMCID: PMC1995735 DOI: 10.1091/mbc.e07-06-0536] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mitotic spindle consists of a complex network of proteins that segregates chromosomes in eukaryotes. To strengthen our understanding of the molecular composition, organization, and regulation of the mitotic spindle, we performed a system-wide two-hybrid screen on 94 proteins implicated in spindle function in Saccharomyces cerevisiae. We report 604 predominantly novel interactions that were detected in multiple screens, involving 303 distinct prey proteins. We uncovered a pattern of extensive interactions between spindle proteins reflecting the intricate organization of the spindle. Furthermore, we observed novel connections between kinetochore complexes and chromatin-modifying proteins and used phosphorylation site mutants of NDC80/TID3 to gain insights into possible phospho-regulation mechanisms. We also present analyses of She1p, a novel spindle protein that interacts with the Dam1 kinetochore/spindle complex. The wealth of protein interactions presented here highlights the extent to which mitotic spindle protein functions and regulation are integrated with each other and with other cellular activities.
Collapse
Affiliation(s)
- Jonathan Wong
- *Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Yuko Nakajima
- *Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | | | - Ching Shang
- *Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Jung-seog Kang
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712
| | - Crystal Goodner
- Howard Hughes Medical Institute, Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA 98195-5065; and
| | - Pantea Houshmand
- *Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Stanley Fields
- Howard Hughes Medical Institute, Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA 98195-5065; and
| | - Clarence S.M. Chan
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712
| | - David Drubin
- *Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Georjana Barnes
- *Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Tony Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Bindley Bioscience Center and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
21
|
Dujardin JC, De Doncker S, Jacquet D, Bañuls AL, Balavoine M, Van Bockstaele D, Tibayrenc M, Arevalo J, Le Ray D. Clonal propagation and the fast generation of karyotype diversity: An in vitro Leishmania model. Parasitology 2006; 134:33-9. [PMID: 16978449 DOI: 10.1017/s0031182006001156] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 06/26/2006] [Accepted: 06/26/2006] [Indexed: 11/07/2022]
Abstract
In the present work we studied the karyotype stability during long-term in vitro maintenance in 3 cloned strains of Leishmania (Viannia) peruviana, Leishmania (Viannia) braziliensis and a hybrid between both species. Only the L. (V.) peruviana strain showed an unstable karyotype, even after subcloning. Four chromosomes were studied in detail, each of them characterized by homologous chromosomes of different size (heteromorphy). Variations in chromosome patterns during in vitro maintenance were rapid and discrete, involving loss of heteromorphy or appearance of additional chromosome size variants. The resulting pattern was not the same according to experimental conditions (subinoculation rate or incubation temperature), and interestingly, this was associated with differences in growth behaviour of the respective parasites. No change in total ploidy of the cells was observed by flow cytometry. We discuss several mechanisms that might account for this variation of chromosome patterns, but we favour the occurrence of aneuploidy, caused by aberrant chromosome segregation during mitosis. Our results provide insight into the generation of karyotype diversity in natural conditions and highlight the relativity of the clone concept in parasitology.
Collapse
Affiliation(s)
- J-C Dujardin
- Unit of Molecular Parasitology, Instituut voor Tropische Geneeskunde, 155 Nationalestraat, B-2000 Antwerpen, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yu L, Castillo LP, Mnaimneh S, Hughes TR, Brown GW. A survey of essential gene function in the yeast cell division cycle. Mol Biol Cell 2006; 17:4736-47. [PMID: 16943325 PMCID: PMC1635385 DOI: 10.1091/mbc.e06-04-0368] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutations impacting specific stages of cell growth and division have provided a foundation for dissecting mechanisms that underlie cell cycle progression. We have undertaken an objective examination of the yeast cell cycle through flow cytometric analysis of DNA content in TetO(7) promoter mutant strains representing 75% of all essential yeast genes. More than 65% of the strains displayed specific alterations in DNA content, suggesting that reduced function of an essential gene in most cases impairs progression through a specific stage of the cell cycle. Because of the large number of essential genes required for protein biosynthesis, G1 accumulation was the most common phenotype observed in our analysis. In contrast, relatively few mutants displayed S-phase delay, and most of these were defective in genes required for DNA replication or nucleotide metabolism. G2 accumulation appeared to arise from a variety of defects. In addition to providing a global view of the diversity of essential cellular processes that influence cell cycle progression, these data also provided predictions regarding the functions of individual genes: we identified four new genes involved in protein trafficking (NUS1, PHS1, PGA2, PGA3), and we found that CSE1 and SMC4 are important for DNA replication.
Collapse
Affiliation(s)
- Lisa Yu
- *Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Lourdes Peña Castillo
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6; and
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Sanie Mnaimneh
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6; and
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Timothy R. Hughes
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6; and
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Grant W. Brown
- *Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
23
|
Praveen K, Leary JH, Evans DL, Jaso-Friedmann L. Molecular cloning of cellular apoptosis susceptibility (CAS) gene in Oreochromis niloticus and its proposed role in regulation of non-specific cytotoxic cell (NCC) functions. FISH & SHELLFISH IMMUNOLOGY 2006; 20:647-55. [PMID: 16153859 DOI: 10.1016/j.fsi.2005.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 06/07/2005] [Accepted: 06/28/2005] [Indexed: 05/04/2023]
Abstract
Cellular apoptosis susceptibility (CAS) gene is a homologue of the chromosome segregation gene (CSE) in yeast, involved in multiple cellular mechanisms associated with cell proliferation as well as cell death. CAS is highly expressed in proliferating cells but at a lower level in quiescent cells and tissues. Therefore it appears that CAS may play an important role in cancer development. We have previously identified CAS in tilapia non-specific cytotoxic cells (NCC) with a cross-reacting monoclonal antibody. Its expression was up-regulated in NCC in response to apoptosis regulatory factors. In the present report, the molecular cloning and expression of CAS in NCC is described, suggesting the importance of this protein in regulation of teleost immune functions. Furthermore, CAS expression is proposed as one of the mechanisms of regulation of activation induced programmed cell death (AIPCD) in these cytotoxic cells. As CAS expression is ubiquitous, we expect that these studies will help identify proliferating cells protected from apoptosis in additional tissues.
Collapse
Affiliation(s)
- Kesavannair Praveen
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Agriculture Drive, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
24
|
Shimojo M. Characterization of the nuclear targeting signal of REST/NRSF. Neurosci Lett 2006; 398:161-6. [PMID: 16442230 DOI: 10.1016/j.neulet.2005.12.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 11/22/2005] [Accepted: 12/29/2005] [Indexed: 11/28/2022]
Abstract
RE-1 silencer transcription factor (REST), also known as neuron-restrictive silencer factor (NRSF), contains nine Cys2-His2 type zinc finger domains (ZFDs). REST/NRSF is localized to the nucleus, where it represses the transcriptional activity of a large number of neuronal genes in non-neuronal cells. It has been suggested that REST/NRSF contains a nuclear localization signal (NLS) corresponding to amino acids (512-522). However, our studies showed that REST4, a REST/NRSF splicing isoform, which contains the N-terminal 5 of 9 ZFDs, efficiently localized to the nucleus. On the other hand REST1, another REST/NRSF splicing isoform, which contains 4 of the 9 ZFDs, localized to the cytosol. In this study REST-DeltaC, which contains 8 ZFDs with the NLS (512-522) deleted, was found to localize to the nucleus in HeLa, COS and PC12 cells. Complete deletion or mutation of NLS (512-522) still permitted REST/NRSF to be localized to the nucleus in HeLa, COS and PC12 cells. In contrast REST/NRSF constructs which contain a deletion of ZFD-5 mislocalized to the cytosol. A point mutation in the zinc finger structure that disrupts its conformation remains nuclear. These data suggest that REST/NRSF contains a NLS around ZFD-5, while the putative NLS at residues 512-522 is non-functional.
Collapse
Affiliation(s)
- Masahito Shimojo
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Biomedical Biological Sciences Research Building, 741 Limestone Street, Lexington, KY 40536-0509, USA.
| |
Collapse
|
25
|
Strahl T, Hama H, DeWald DB, Thorner J. Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J Cell Biol 2005; 171:967-79. [PMID: 16365163 PMCID: PMC1382337 DOI: 10.1083/jcb.200504104] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 11/17/2005] [Indexed: 11/26/2022] Open
Abstract
Phosphatidylinositol 4-kinase, Pik1, is essential for viability. GFP-Pik1 localized to cytoplasmic puncta and the nucleus. The puncta colocalized with Sec7-DsRed, a marker of trans-Golgi cisternae. Kap95 (importin-beta) was necessary for nuclear entry, but not Kap60 (importin-alpha), and exportin Msn5 was required for nuclear exit. Frq1 (frequenin orthologue) also is essential for viability and binds near the NH2 terminus of Pik1. Frq1-GFP localized to Golgi puncta, and Pik1 lacking its Frq1-binding site (or Pik1 overexpressed in frq1Delta cells) did not decorate the Golgi, but nuclear localization was unperturbed. Pik1(Delta10-192), which lacks its nuclear export sequence, displayed prominent nuclear accumulation and did not rescue inviability of pik1Delta cells. A Pik1-CCAAX chimera was excluded from the nucleus and also did not rescue inviability of pik1Delta cells. However, coexpression of Pik1(Delta10-192) and Pik1-CCAAX in pik1Delta cells restored viability. Catalytically inactive derivatives of these compartment-restricted Pik1 constructs indicated that PtdIns4P must be generated both in the nucleus and at the Golgi for normal cell function.
Collapse
Affiliation(s)
- Thomas Strahl
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
26
|
Rahl PB, Chen CZ, Collins RN. Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Mol Cell 2005; 17:841-53. [PMID: 15780940 DOI: 10.1016/j.molcel.2005.02.018] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 02/02/2005] [Accepted: 02/14/2005] [Indexed: 11/23/2022]
Abstract
The activation of Rab GTPases is a critical focal point of membrane trafficking events in eukaryotic cells; however, the cellular mechanisms that spatially and temporally regulate this process are poorly understood. Here, we identify a null allele of ELP1 as a suppressor of a mutant in a Rab guanine nucleotide exchange factor Sec2p. Elp1p was previously thought to be involved in transcription elongation as part of the Elongator complex. We show that elp1Delta suppression of sec2(ts) is not a result of reduced transcriptional elongation and that Elp1p physically associates with Sec2p. The Sec2p interaction domain of Elp1p is necessary for both Elp1p function and for the polarized localization of Sec2p. Mutations in human Elp1p (IKAP) are a known cause of familial dysautonomia (FD). Our results raise the possibility that regulation of polarized exocytosis is an evolutionarily conserved function of the entire Elongator complex and that FD results from a dysregulation of neuronal exocytosis.
Collapse
Affiliation(s)
- Peter B Rahl
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
27
|
Conaway JW, Florens L, Sato S, Tomomori-Sato C, Parmely TJ, Yao T, Swanson SK, Banks CAS, Washburn MP, Conaway RC. The mammalian Mediator complex. FEBS Lett 2005; 579:904-8. [PMID: 15680972 DOI: 10.1016/j.febslet.2004.11.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 11/02/2004] [Indexed: 11/27/2022]
Abstract
The multiprotein Mediator (Med) complex is an evolutionarily conserved transcriptional regulator that plays important roles in activation and repression of RNA polymerase II transcription. Prior studies identified a set of more than twenty distinct polypeptides that compose the Saccharomyces cerevisiae Mediator. Here we discuss efforts to characterize the subunit composition and associated activities of the mammalian Med complex.
Collapse
|
28
|
Matsuura Y, Stewart M. Structural basis for the assembly of a nuclear export complex. Nature 2005; 432:872-7. [PMID: 15602554 DOI: 10.1038/nature03144] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 11/01/2004] [Indexed: 11/08/2022]
Abstract
The nuclear import and export of macromolecular cargoes through nuclear pore complexes is mediated primarily by carriers such as importin-beta. Importins carry cargoes into the nucleus, whereas exportins carry cargoes to the cytoplasm. Transport is orchestrated by nuclear RanGTP, which dissociates cargoes from importins, but conversely is required for cargo binding to exportins. Here we present the 2.0 A crystal structure of the nuclear export complex formed by exportin Cse1p complexed with its cargo (Kap60p) and RanGTP, thereby providing a structural framework for understanding nuclear protein export and the different functions of RanGTP in export and import. In the complex, Cse1p coils around both RanGTP and Kap60p, stabilizing the RanGTP-state and clamping the Kap60p importin-beta-binding domain, ensuring that only cargo-free Kap60p is exported. Mutagenesis indicated that conformational changes in exportins couple cargo binding to high affinity for RanGTP, generating a spring-loaded molecule to facilitate disassembly of the export complex following GTP hydrolysis in the cytoplasm.
Collapse
|
29
|
Wermuth PJ, Buchberg AM. Meis1-mediated apoptosis is caspase dependent and can be suppressed by coexpression of HoxA9 in murine and human cell lines. Blood 2004; 105:1222-30. [PMID: 15479723 DOI: 10.1182/blood-2004-03-0802] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Coexpression of the homeodomain protein Meis1 and either HoxA7 or HoxA9 is characteristic of many acute myelogenous leukemias. Although Meis1 can be overexpressed in bone marrow long-term repopulating cells, it is incapable of mediating their transformation. Although overexpressing HoxA9 alone transforms murine bone marrow cells, concurrent Meis1 overexpression greatly accelerates oncogenesis. Meis1-HoxA9 cooperation suppresses several myeloid differentiation pathways. We now report that Meis1 overexpression strongly induces apoptosis in a variety of cell types in vitro through a caspase-dependent process. Meis1 requires a functional homeodomain and Pbx-interaction motif to induce apoptosis. Coexpressing HoxA9 with Meis1 suppresses this apoptosis and provides protection from several apoptosis inducers. Pbx1, another Meis1 cofactor, also induces apoptosis; however, coexpressing HoxA9 is incapable of rescuing Pbx-mediated apoptosis. This resistance to apoptotic stimuli, coupled with the previously reported ability to suppress multiple myeloid differentiation pathways, would provide a strong selective advantage to Meis1-HoxA9 coexpressing cells in vivo, leading to leukemogenesis.
Collapse
Affiliation(s)
- Peter J Wermuth
- Department of Microbiology and Immunology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, 233 S 10th St, Philadelphia, PA 19107-5541, USA
| | | |
Collapse
|
30
|
Freedman ND, Yamamoto KR. Importin 7 and importin alpha/importin beta are nuclear import receptors for the glucocorticoid receptor. Mol Biol Cell 2004; 15:2276-86. [PMID: 15004228 PMCID: PMC404022 DOI: 10.1091/mbc.e03-11-0839] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 01/22/2004] [Accepted: 02/16/2004] [Indexed: 11/11/2022] Open
Abstract
The vertebrate glucocorticoid receptor (GR) is cytoplasmic without hormone and localizes to the nucleus after hormone binding. GR has two nuclear localization signals (NLS): NL1 is similar in sequence to the SV40 NLS; NL2 is poorly defined, residing in the ligand-binding domain. We found that GR displayed similar hormone-regulated compartmentalization in Saccharomyces cerevisiae and required the Sxm1 nuclear import receptor for NL2-mediated import. Two metazoan homologues of Sxm1, importin 7 and importin 8, bound both NL1 and NL2, whereas importin alpha selectively bound NL1. In an in vitro nuclear import assay, both importin 7 and the importin alpha-importin beta heterodimer could import a GR NL1 fragment. Under these conditions, full-length GR localized to nuclei in the presence but not absence of an unidentified component in cell extracts. Interestingly, importin 7, importin 8, and importin alpha bound GR even in the absence of hormone; thus, hormonal control of localization is exerted at a step downstream of import receptor binding.
Collapse
Affiliation(s)
- Neal D Freedman
- Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94143-2280, USA
| | | |
Collapse
|
31
|
Affiliation(s)
- Stefan Björklund
- Department of Medical Biochemistry, Umeå University, S-901 87 Umeå, Sweden
| | | |
Collapse
|
32
|
Harreman MT, Cohen PE, Hodel MR, Truscott GJ, Corbett AH, Hodel AE. Characterization of the auto-inhibitory sequence within the N-terminal domain of importin alpha. J Biol Chem 2003; 278:21361-9. [PMID: 12672802 DOI: 10.1074/jbc.m301114200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein cargoes that contain a classic nuclear localization signal (NLS) are transported into the nucleus through binding to a heterodimeric receptor comprised of importin/karyopherin alpha and beta. An evolutionarily conserved auto-inhibitory sequence within the N-terminal importin beta binding (IBB) domain of importin alpha regulates NLS-cargo binding to the NLS binding pocket on importin alpha. In this study, we have used site-directed mutagenesis coupled with in vitro binding assays and in vivo analyses to investigate the intramolecular interaction of the N-terminal IBB domain and the NLS binding pocket of Saccharomyces cerevisiae importin alpha, Srp1p. We find that mutations within the IBB domain that decrease the binding affinity of the auto-inhibitory sequence for the NLS binding pocket impact importin alpha function in vivo. In addition, the severity of the in vivo phenotype is directly correlated to the reduction of auto-inhibition measured in vitro, suggesting that the in vivo phenotypes are directly related to the loss of auto-inhibitory function. We exploit a conditional auto-inhibitory mutant, srp1-55, to study the in vivo functional overlap between the N-terminal IBB domain of importin alpha and other factors implicated in NLS-cargo release, Cse1p and Nup2p. We propose that the N-terminal IBB domain of importin alpha and Cse1p function together in NLS-cargo release, whereas Nup2p contributes to cargo release/importin alpha recycling through a distinct mechanism.
Collapse
Affiliation(s)
- Michelle T Harreman
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
33
|
Harreman MT, Hodel MR, Fanara P, Hodel AE, Corbett AH. The auto-inhibitory function of importin alpha is essential in vivo. J Biol Chem 2003; 278:5854-63. [PMID: 12486120 DOI: 10.1074/jbc.m210951200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins that contain a classical nuclear localization signal (NLS) are recognized in the cytoplasm by a heterodimeric import receptor composed of importin/karyopherin alpha and beta. The importin alpha subunit recognizes classical NLS sequences, and the importin beta subunit directs the complex to the nuclear pore. Recent work shows that the N-terminal importin beta binding (IBB) domain of importin alpha regulates NLS-cargo binding in the absence of importin beta in vitro. To analyze the in vivo functions of the IBB domain, we created a series of mutants in the Saccharomyces cerevisiae importin alpha protein. These mutants dissect the two functions of the N-terminal IBB domain, importin beta binding and auto-inhibition. One of these importin alpha mutations, A3, decreases auto-inhibitory function without impacting binding to importin beta or the importin alpha export receptor, Cse1p. We used this mutant to show that the auto-inhibitory function is essential in vivo and to provide evidence that this auto-inhibitory-defective importin alpha remains bound to NLS-cargo within the nucleus. We propose a model where the auto-inhibitory activity of importin alpha is required for NLS-cargo release and the subsequent Cse1p-dependent recycling of importin alpha to the cytoplasm.
Collapse
Affiliation(s)
- Michelle T Harreman
- Department of Biochemistry, School of Medicine and the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
34
|
Steggerda SM, Paschal BM. Regulation of nuclear import and export by the GTPase Ran. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:41-91. [PMID: 12019565 DOI: 10.1016/s0074-7696(02)17012-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the control of nuclear import and export pathways by the small GTPase Ran. Transport of signal-containing cargo substrates is mediated by receptors that bind to the cargo proteins and RNAs and deliver them to the appropriate cellular compartment. Ran is an evolutionarily conserved member of the Ras superfamily that regulates all receptor-mediated transport between the nucleus and the cytoplasm. We describe the identification and characterization of the RanGTPase and its binding partners: the guanine nucleotide exchange factor, RanGEF; the GTPase activating protein, RanGAP; the soluble import and export receptors; Ran-binding domain-(RBD) containing proteins; and NTF2 and related factors.
Collapse
Affiliation(s)
- Susanne M Steggerda
- Center for Cell Signaling and Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville 22908, USA
| | | |
Collapse
|
35
|
Asakawa K, Toh-e A. A defect of Kap104 alleviates the requirement of mitotic exit network gene functions in Saccharomyces cerevisiae. Genetics 2002; 162:1545-56. [PMID: 12524331 PMCID: PMC1462384 DOI: 10.1093/genetics/162.4.1545] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A subgroup of the karyopherin beta (also called importin beta) protein that includes budding yeast Kap104 and human transportin/karyopherin beta2 is reported to function as a receptor for the transport of mRNA-binding proteins into the nucleus. We identified KAP104 as a responsible gene for a suppressor mutation of cdc15-2. We found that the kap104-E604K mutation suppressed the temperature-sensitive growth of cdc15-2 cells by promoting the exit from mitosis and suppressed the temperature sensitivity of various mitotic-exit mutations. The cytokinesis defect of these mitotic-exit mutants was not suppressed by kap104-E604K. Furthermore, the kap104-E604K mutation delays entry into DNA synthesis even at a permissive temperature. In cdc15-2 kap104-E604K cells, SWI5 and SIC1, but not CDH1, became essential at a high temperature, suggesting that the kap104-E604K mutation promotes mitotic exit via the Swi5-Sic1 pathway. Interestingly, SPO12, which is involved in the release of Cdc14 from the nucleolus during early anaphase, also became essential in cdc15-2 kap104-E604K cells at a high temperature. The kap104-E604K mutation caused a partial delocalization of Cdc14 from the nucleolus during interphase. This delocalization of Cdc14 was suppressed by the deletion of SPO12. These results suggest that a mutation in Kap104 stimulates exit from mitosis through the activation of Cdc14 and implies a novel role for Kap104 in cell-cycle progression in budding yeast.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | |
Collapse
|
36
|
Pujol G, Söderqvist H, Radu A. Age-associated reduction of nuclear protein import in human fibroblasts. Biochem Biophys Res Commun 2002; 294:354-8. [PMID: 12051719 DOI: 10.1016/s0006-291x(02)00492-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Age-dependent decreases in the protein concentrations of the nucleocytoplasmic transport factors karyopherin alpha2, CAS, and RanBP1 were found by comparing fibroblast cultures obtained from young, mature, and old human donors. Karyopherin beta1 levels do not change with age and present very little variation among donors. The decrease in the concentration of transport factors is accompanied by a reduction in the protein import rate in fibroblasts from old donors, as detected by a change in the intracellular localization of a test transport substrate that shuttles between the cytoplasm and the nucleus. Measurements of concentrations of the same import factors in organs and tissues of old mice revealed a decrease of CAS in kidney, lung, and spleen. The import reduction in old age is expected to lead to impaired activity of proteins whose functions depend on timely import into the nuclei.
Collapse
Affiliation(s)
- Gemma Pujol
- Carl C. Icahn Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
37
|
Abstract
Calcineurin is a conserved Ca2+/calmodulin-specific serine-threonine protein phosphatase that mediates many Ca2+-dependent signaling events. In yeast, calcineurin dephosphorylates Crz1p, a transcription factor that binds to the calcineurin-dependent response element, a 24-bp promoter element. Calcineurin-dependent dephosphorylation of Crz1p alters Crz1p nuclear localization. This study examines the mechanism by which calcineurin regulates the nuclear localization of Crz1p in more detail. We describe the identification and characterization of a novel nuclear localization sequence (NLS) in Crz1p, which requires both basic and hydrophobic residues for activity, and show that the karyopherin Nmd5p is required for Crz1p nuclear import. We also demonstrate that the binding of Crz1p to Nmd5p is dependent upon its phosphorylation state, indicating that nuclear import of Crz1p is regulated by calcineurin. Finally, we demonstrate that residues in both the NH2- and COOH-terminal portions of Crz1p are required for regulated Crz1p binding to Nmd5p, supporting a model of NLS masking for regulating Crz1p nuclear import.
Collapse
Affiliation(s)
- R S Polizotto
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
38
|
Carvalho J, Bertram PG, Wente SR, Zheng XF. Phosphorylation regulates the interaction between Gln3p and the nuclear import factor Srp1p. J Biol Chem 2001; 276:25359-65. [PMID: 11331291 DOI: 10.1074/jbc.m103050200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gln3p is a GATA-type transcription activator of nitrogen catabolite repressible (NCR) genes. Gln3p was recently found to be hyperphosphorylated in a TOR-dependent manner and resides in the cytoplasm in high quality nitrogen. In contrast, during nitrogen starvation or rapamycin treatment, Gln3p becomes rapidly dephosphorylated and accumulates in the nucleus, thereby activating nitrogen catabolite repression genes. However, a detailed mechanistic understanding is lacking for the regulation of Gln3p nucleocytoplasmic distribution. In this study, we applied a functional genomics approach to identify the nuclear transport factors for Gln3p. We found that yeast karyopherin alpha/Srp1p and Crm1p are required for the nuclear import and export of Gln3p, respectively. Similarly, the Ran GTPase pathway is also involved in the nuclear translocation of Gln3p. Finally, we show that Srp1p preferentially interacts with the hypophosphorylated versus the hyperphosphorylated Gln3p. These findings define a possible mechanism for regulated nucleocytoplasmic transport of Gln3p by phosphorylation in vivo.
Collapse
Affiliation(s)
- J Carvalho
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
39
|
Yen YM, Roberts PM, Johnson RC. Nuclear localization of the Saccharomyces cerevisiae HMG protein NHP6A occurs by a Ran-independent nonclassical pathway. Traffic 2001; 2:449-64. [PMID: 11422939 DOI: 10.1034/j.1600-0854.2001.20703.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Saccharomyces cerevisiae non-histone protein 6-A (NHP6A) is a member of the high-mobility group 1/2 protein family that bind and bend DNA of mixed sequence. NHP6A has only one high-mobility group 1/2 DNA binding domain and also requires a 16-amino-acid basic tail at its N-terminus for DNA binding. We show in this report that nuclear accumulation of NHP6A is strictly correlated with its DNA binding properties since only nonhistone protein 6 A-green fluorescent protein chimeras that were competent for DNA binding were localized to the nucleus. Despite the requirement for basic residues within the N-terminal segment for DNA binding and nuclear accumulation, this region does not appear to contain a nuclear localization signal. Moreover, NHP6A does not bind to the yeast nuclear localization signal receptor SRP1 and nuclear targeting of NHP6A does not require the function of the 14 different importins. Unlike histone H2B1 which contains a classical nuclear localization signal, entry of NHP6A into the nucleus was found to be independent of Ran as judged by coexpression of Ran GTPase mutants and was shown to occur at 0 degrees C after a 15-min induction. These unusual properties lead us to suggest that NHP6A entry into the nucleus proceeds by a nonclassical Ran-independent pathway.
Collapse
Affiliation(s)
- Y M Yen
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, CA 90095-1737, USA
| | | | | |
Collapse
|
40
|
Kerscher O, Hieter P, Winey M, Basrai MA. Novel role for a Saccharomyces cerevisiae nucleoporin, Nup170p, in chromosome segregation. Genetics 2001; 157:1543-53. [PMID: 11290711 PMCID: PMC1461611 DOI: 10.1093/genetics/157.4.1543] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We determined that a mutation in the nucleoporin gene NUP170 leads to defects in chromosome transmission fidelity (ctf) and kinetochore integrity in Saccharomyces cerevisiae. A ctf mutant strain, termed s141, shows a transcription readthrough phenotype and stabilizes a dicentric chromosome fragment in two assays for kinetochore integrity. Previously, these assays led to the identification of two essential kinetochore components, Ctf13p and Ctf14p. Thus, s141 represents another ctf mutant involved in the maintenance of kinetochore integrity. We cloned and mapped the gene complementing the ctf mutation of s141 and showed that it is identical to the S. cerevisiae NUP170 gene. A deletion strain of NUP170 (nup170 Delta::HIS3) has a Ctf(-) phenotype similar to the s141 mutant (nup170-141) and also exhibits a kinetochore integrity defect. We identified a second nucleoporin, NUP157, a homologue of NUP170, as a suppressor of the Ctf(-) phenotype of nup170-141 and nup170 Delta::HIS3 strains. However, a deletion of NUP157 or several other nucleoporins did not affect chromosome segregation. Our data suggest that NUP170 encodes a specialized nucleoporin with a unique role in chromosome segregation and possibly kinetochore function.
Collapse
Affiliation(s)
- O Kerscher
- Department of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20889, USA
| | | | | | | |
Collapse
|
41
|
Weis K. Identification, analysis, and use of nuclear export signals in Saccharomyces cerevisiae. Methods Enzymol 2001; 327:297-304. [PMID: 11044992 DOI: 10.1016/s0076-6879(00)27285-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- K Weis
- Department of Molecular and Cell Biology, University of California at Berkeley 94720-3200, USA
| |
Collapse
|
42
|
Künzler M, Trueheart J, Sette C, Hurt E, Thorner J. Mutations in the YRB1 gene encoding yeast ran-binding-protein-1 that impair nucleocytoplasmic transport and suppress yeast mating defects. Genetics 2001; 157:1089-105. [PMID: 11238397 PMCID: PMC1461573 DOI: 10.1093/genetics/157.3.1089] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We identified two temperature-sensitive (ts) mutations in the essential gene, YRB1, which encodes the yeast homolog of Ran-binding-protein-1 (RanBP1), a known coregulator of the Ran GTPase cycle. Both mutations result in single amino acid substitutions of evolutionarily conserved residues (A91D and R127K, respectively) in the Ran-binding domain of Yrb1. The altered proteins have reduced affinity for Ran (Gsp1) in vivo. After shift to restrictive temperature, both mutants display impaired nuclear protein import and one also reduces poly(A)+ RNA export, suggesting a primary defect in nucleocytoplasmic trafficking. Consistent with this conclusion, both yrb1ts mutations display deleterious genetic interactions with mutations in many other genes involved in nucleocytoplasmic transport, including SRP1 (alpha-importin) and several beta-importin family members. These yrb1ts alleles were isolated by their ability to suppress two different types of mating-defective mutants (respectively, fus1Delta and ste5ts), indicating that reduction in nucleocytoplasmic transport enhances mating proficiency. Indeed, in both yrb1ts mutants, Ste5 (scaffold protein for the pheromone response MAPK cascade) is mislocalized to the cytosol, even in the absence of pheromone. Also, both yrb1ts mutations suppress the mating defect of a null mutation in MSN5, which encodes the receptor for pheromone-stimulated nuclear export of Ste5. Our results suggest that reimport of Ste5 into the nucleus is important in downregulating mating response.
Collapse
Affiliation(s)
- M Künzler
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Three lines of evidence have converged on a multiprotein Mediator complex as a conserved interface between gene-specific regulatory proteins and the general transcription apparatus of eukaryotes. Mediator was discovered as an activity required for transcriptional activation in a reconstituted system from yeast. Upon resolution to homogeneity, the activity proved to reside in a 20-protein complex, which could exist in a free state or in a complex with RNA polymerase II, termed holoenzyme. A second line of evidence came from screens in yeast for mutations affecting transcription. Two-thirds of Mediator subunits are encoded by genes revealed by these screens. Five of the genetically defined subunits, termed Srbs, were characterized as interacting with the C-terminal domain of RNA polymerase II in vivo, and were shown to bind polymerase in vitro. A third line of evidence has come recently from studies in mammalian transcription systems. Mammalian counterparts of yeast Mediator were shown to interact with transcriptional activator proteins and to play an essential role in transcriptional regulation. Mediator evidently integrates and transduces positive and negative regulatory information from enhancers and operators to promoters. It functions directly through RNA polymerase II, modulating its activity in promoter-dependent transcription. Details of the Mediator mechanism remain obscure. Additional outstanding questions include the patterns of promoter-specificity of the various Mediator subunits, the possible cell-type-specificity of Mediator subunit composition, and the full structures of both free Mediator and RNA polymerase II holoenzyme.
Collapse
Affiliation(s)
- L C Myers
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
44
|
Bäumer M, Künzler M, Steigemann P, Braus GH, Irniger S. Yeast Ran-binding protein Yrb1p is required for efficient proteolysis of cell cycle regulatory proteins Pds1p and Sic1p. J Biol Chem 2000; 275:38929-37. [PMID: 10991951 DOI: 10.1074/jbc.m007925200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-dependent proteolysis of specific target proteins is required for several important steps during the cell cycle. Degradation of such proteins is strictly cell cycle-regulated and triggered by two large ubiquitin ligases, termed anaphase-promoting complex (APC) and Skp1/Cullin/F-box complex (SCF). Here we show that yeast Ran-binding protein 1 (Yrb1p), a predominantly cytoplasmic protein implicated in nucleocytoplasmic transport, is required for cell cycle regulated protein degradation. Depletion of Yrb1p results in the accumulation of unbudded G(1) cells and of cells arrested in mitosis implying a function of Yrb1p in the G(1)/S transition and in the progression through mitosis. Temperature-sensitive yrb1-51 mutants are defective in APC-mediated degradation of the anaphase inhibitor protein Pds1p and in degradation of the cyclin-dependent kinase inhibitor Sic1p, a target of SCF. Thus, Yrb1p is crucial for efficient APC- and SCF-mediated proteolysis of important cell cycle regulatory proteins. We have identified the UBS1 gene as a multicopy suppressor of yrb1-51 mutants. Ubs1p is a nuclear protein, and its deletion is synthetic lethal with a yrb1-51 mutation. Interestingly, UBS1 was previously identified as a multicopy suppressor of cdc34-2 mutants, which are defective in SCF activity. We suggest that Ubs1p may represent a link between nucleocytoplasmic transport and ubiquitin ligase activity.
Collapse
Affiliation(s)
- M Bäumer
- Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
45
|
Stage-Zimmermann T, Schmidt U, Silver PA. Factors affecting nuclear export of the 60S ribosomal subunit in vivo. Mol Biol Cell 2000; 11:3777-89. [PMID: 11071906 PMCID: PMC15036 DOI: 10.1091/mbc.11.11.3777] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2000] [Revised: 08/16/2000] [Accepted: 08/23/2000] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, the 60S ribosomal subunit assembles in the nucleolus and then is exported to the cytoplasm, where it joins the 40S subunit for translation. Export of the 60S subunit from the nucleus is known to be an energy-dependent and factor-mediated process, but very little is known about the specifics of its transport. To begin to address this problem, an assay was developed to follow the localization of the 60S ribosomal subunit in S. cerevisiae. Ribosomal protein L11b (Rpl11b), one of the approximately 45 ribosomal proteins of the 60S subunit, was tagged at its carboxyl terminus with the green fluorescent protein (GFP) to enable visualization of the 60S subunit in living cells. A panel of mutant yeast strains was screened for their accumulation of Rpl11b-GFP in the nucleus as an indicator of their involvement in ribosome synthesis and/or transport. This panel included conditional alleles of several rRNA-processing factors, nucleoporins, general transport factors, and karyopherins. As predicted, conditional alleles of rRNA-processing factors that affect 60S ribosomal subunit assembly accumulated Rpl11b-GFP in the nucleus. In addition, several of the nucleoporin mutants as well as a few of the karyopherin and transport factor mutants also mislocalized Rpl11b-GFP. In particular, deletion of the previously uncharacterized karyopherin KAP120 caused accumulation of Rpl11b-GFP in the nucleus, whereas ribosomal protein import was not impaired. Together, these data further define the requirements for ribosomal subunit export and suggest a biological function for KAP120.
Collapse
Affiliation(s)
- T Stage-Zimmermann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
46
|
Nishijima H, Seki T, Nishitani H, Nishimoto T. Premature chromatin condensation caused by loss of RCC1. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:145-56. [PMID: 10740822 DOI: 10.1007/978-1-4615-4253-7_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hamster rcc1 mutant, tsBN2, prematurely enter mitosis during S phase. RCC1 is a guanine nucleotide exchanging factor for a small G protein Ran and localised on the chromatin, whereas RanGTPase activating protein is in the cytoplasm. Consistently, Ran shuttles between the nucleus and the cytoplasm, carrying out nucleus-cytosol exchange of macromolecules, which regulates the cell cycle. The finding that loss of RCC1 which disturbs nuclear protein export due to loss of RanGTP, abrogates the check point control suggests that RCC1 senses the status of the chromatin, such as replication, and couples it to the cell cycle progression through Ran.
Collapse
Affiliation(s)
- H Nishijima
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
47
|
Abstract
Despite its fundamental role in cell division, the mitotic spindle remains an enigmatic figure in cell biology. This is due to the complex dynamic behaviour of microtubules, which form the spindle fibres responsible for segregating chromosomes to opposite ends of the cell during mitosis. Recent reports indicate that the small GTPase Ran, which plays a key role in nuclear transport, also has a role in mitosis by regulating microtubule nucleation and/or growth. The race is now on to determine how Ran exerts its effects on spindle assembly.
Collapse
Affiliation(s)
- R Heald
- Dept of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
| | | |
Collapse
|
48
|
Abstract
The compartmentation of eukaryotic cells requires all nuclear proteins to be imported from the cytoplasm, whereas, for example, transfer RNAs, messenger RNAs, and ribosomes are made in the nucleus and need to be exported to the cytoplasm. Nuclear import and export proceed through nuclear pore complexes and can occur along a great number of distinct pathways, many of which are mediated by importin beta-related nuclear transport receptors. These receptors shuttle between nucleus and cytoplasm, and they bind transport substrates either directly or via adapter molecules. They all cooperate with the RanGTPase system to regulate the interactions with their cargoes. Another focus of our review is nuclear export of messenger RNA, which apparently largely relies on export mediators distinct from importin beta-related factors. We discuss mechanistic aspects and the energetics of transport receptor function and describe a number of pathways in detail.
Collapse
Affiliation(s)
- D Görlich
- Zentrum für Molekulare Biologie, Universität Heidelberg, Federal Republic of Germany.
| | | |
Collapse
|
49
|
Booth JW, Belanger KD, Sannella MI, Davis LI. The yeast nucleoporin Nup2p is involved in nuclear export of importin alpha/Srp1p. J Biol Chem 1999; 274:32360-7. [PMID: 10542277 DOI: 10.1074/jbc.274.45.32360] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importin alpha.beta heterodimer mediates nuclear import of proteins containing classical nuclear localization signals. After carrying its cargo into the nucleus, the importin dimer dissociates, and Srp1p (the yeast importin alpha subunit) is recycled to the cytoplasm in a complex with Cse1p and RanGTP. Nup2p is a yeast FXFG nucleoporin that contains a Ran-binding domain. We find that export of Srp1p from the nucleus is impaired in Deltanup2 mutants. Also, Srp1p fusion proteins accumulate at the nuclear rim in wild-type cells but accumulate in the nuclear interior in Deltanup2 cells. A deletion of NUP2 shows genetic interactions with mutants in SRP1 and PRP20, which encodes the Ran nucleotide exchange factor. Srp1p binds directly to an N-terminal domain of Nup2p. This region of Nup2p is sufficient to allow accumulation of an Srp1p fusion protein at the nuclear rim, but the C-terminal Ran-binding domain of Nup2p is required for efficient Srp1p export. Formation of the Srp1p.Cse1p. RanGTP export complex releases Srp1p from its binding site in Nup2p. We propose that Nup2p may act as a scaffold that facilitates formation of the Srp1p export complex.
Collapse
Affiliation(s)
- J W Booth
- W.M. Keck Institute for Cellular Visualization, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
50
|
Nambara E, McCourt P. Protein farnesylation in plants: a greasy tale. CURRENT OPINION IN PLANT BIOLOGY 1999; 2:388-392. [PMID: 10508754 DOI: 10.1016/s1369-5266(99)00010-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although farnesylation is required for a number of abscisic acid mediated responses in plants, knowledge of how this lipid modification of proteins regulates specific developmental and physiological processes remains unclear. Recent information from the Arabidopsis genome-sequencing project in combination with mutants deficient in farnesylation should unravel the role(s) of this process in plant signaling.
Collapse
Affiliation(s)
- E Nambara
- Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, Canada M5S 3B2
| | | |
Collapse
|