1
|
CXCL1: Gene, Promoter, Regulation of Expression, mRNA Stability, Regulation of Activity in the Intercellular Space. Int J Mol Sci 2022; 23:ijms23020792. [PMID: 35054978 PMCID: PMC8776070 DOI: 10.3390/ijms23020792] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
CXCL1 is one of the most important chemokines, part of a group of chemotactic cytokines involved in the development of many inflammatory diseases. It activates CXCR2 and, at high levels, CXCR1. The expression of CXCL1 is elevated in inflammatory reactions and also has important functions in physiology, including the induction of angiogenesis and recruitment of neutrophils. Due to a lack of reviews that precisely describe the regulation of CXCL1 expression and function, in this paper, we present the mechanisms of CXCL1 expression regulation with a special focus on cancer. We concentrate on the regulation of CXCL1 expression through the regulation of CXCL1 transcription and mRNA stability, including the involvement of NF-κB, p53, the effect of miRNAs and cytokines such as IFN-γ, IL-1β, IL-17, TGF-β and TNF-α. We also describe the mechanisms regulating CXCL1 activity in the extracellular space, including proteolytic processing, CXCL1 dimerization and the influence of the ACKR1/DARC receptor on CXCL1 localization. Finally, we explain the role of CXCL1 in cancer and possible therapeutic approaches directed against this chemokine.
Collapse
|
2
|
Wu Z, Neufeld H, Torlakovic E, Xiao W. Uev1A-Ubc13 promotes colorectal cancer metastasis through regulating CXCL1 expression via NF-кB activation. Oncotarget 2018; 9:15952-15967. [PMID: 29662619 PMCID: PMC5882310 DOI: 10.18632/oncotarget.24640] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 02/20/2018] [Indexed: 11/28/2022] Open
Abstract
Colorectal cancer is the second most common cause of cancer-related death worldwide. Uncontrolled growth and distant metastasis are hallmarks of colorectal cancer. However, the precise etiological factors and the mechanisms are diverse and still largely unclear. The potential proto-oncogene UEV1A encodes a ubiquitin conjugating enzyme variant, which is required for Ubc13-catalyzed K63-linked poly-ubiquitination of target proteins and the activation of NF-кB, a transcription factor known to be involved in innate immunity, anti-apoptosis, inflammation and cancer. In order to understand the roles of Uev1A in colon cancer progression, we experimentally manipulated the Uev1A level in HCT116 colon cancer cells and found that UEV1A overexpression alone is sufficient to promote invasion in vitro and metastasis in vivo. This process is mediated by NF-κB activation and depends on its physical interaction with Ubc13. No expression of Uev1A was detected in histologically normal human colonic mucosa, but its expression was detected in human colorectal adenocarcinoma, which was closely correlated with nuclear p65 levels, an indicator of NF-κB activation. Uev1A protein was detected in 46% of primary tumors and 79% of metastatic tumors examined. Our experimental data establish that among NF-κB target genes, Uev1A-regulated CXCL1 expression plays a critical role in colon cell invasion and metastasis, a notion supported by the colon adenocarcinoma survey. Furthermore, experimental depletion of Uev1 in HCT116 cells reduces CXCL1 expression, and prevents cell invasion and tumor growth in a xenograft mouse model. These results identify Uev1A as a potential therapeutic target in the treatment of metastatic colorectal cancers.
Collapse
Affiliation(s)
- Zhaojia Wu
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - Heather Neufeld
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - Eminao Torlakovic
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada.,Current address: Department of Laboratory Hematology, Toronto General Hospital/UHN, Toronto M5G 2C4, Canada
| | - Wei Xiao
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| |
Collapse
|
3
|
Kim KH, Park SH, Do KH, Kim J, Choi KU, Moon Y. NSAID-activated gene 1 mediates pro-inflammatory signaling activation and paclitaxel chemoresistance in type I human epithelial ovarian cancer stem-like cells. Oncotarget 2018; 7:72148-72166. [PMID: 27708225 PMCID: PMC5342151 DOI: 10.18632/oncotarget.12355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/20/2016] [Indexed: 12/30/2022] Open
Abstract
Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy in developed countries. Chronic endogenous sterile pro-inflammatory responses are strongly linked to EOC progression and chemoresistance to anti-cancer therapeutics. In the present study, the activity of epithelial NF-κB, a key pro-inflammatory transcription factor, was enhanced with the progress of EOC. This result was mechanistically linked with an increased expression of NSAID-Activated Gene 1 (NAG-1) in MyD88-positive type I EOC stem-like cells, compared with that in MyD88-negative type II EOC cells. Elevated NAG-1 as a potent biomarker of poor prognosis in the ovarian cancer was positively associated with the levels of NF-κB activation, chemokines and stemness markers in type I EOC cells. In terms of signal transduction, NAG-1-activated SMAD-linked and non-canonical TGFβ-activated kinase 1 (TAK-1)-activated pathways contributed to NF-κB activation and the subsequent induction of some chemokines and cancer stemness markers. In addition to effects on NF-κB-dependent gene regulation, NAG-1 was involved in expression of EGF receptor and subsequent activation of EGF receptor-linked signaling. The present study also provided evidences for links between NAG-1-linked signaling and chemoresistance in ovarian cancer cells. NAG-1 and pro-inflammatory NF-κB were positively associated with resistance to paclitaxel in MyD88-positive type I EOC cells. Mechanistically, this chemoresistance occurred due to enhanced activation of the SMAD-4- and non-SMAD-TAK-1-linked pathways. All of the present data suggested NAG-1 protein as a crucial mediator of EOC progression and resistance to the standard first-line chemotherapy against EOC, particularly in MyD88-positive ovarian cancer stem-like cells.
Collapse
Affiliation(s)
- Ki-Hyung Kim
- Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea.,Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan, South Korea.,Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, South Korea
| | - Seong-Hwan Park
- Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Basic Sciences, Pusan National University, Busan, South Korea
| | - Kee Hun Do
- Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Basic Sciences, Pusan National University, Busan, South Korea
| | - Juil Kim
- Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Basic Sciences, Pusan National University, Busan, South Korea
| | - Kyung Un Choi
- Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan, South Korea.,Department of Pathology, Pusan National University School of Medicine, Busan, South Korea
| | - Yuseok Moon
- Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea.,Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan, South Korea.,Research Institute for Basic Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
4
|
Su Y, Amiri KI, Horton LW, Yu Y, Ayers GD, Koehler E, Kelley MC, Puzanov I, Richmond A, Sosman JA. A phase I trial of bortezomib with temozolomide in patients with advanced melanoma: toxicities, antitumor effects, and modulation of therapeutic targets. Clin Cancer Res 2009; 16:348-57. [PMID: 20028756 DOI: 10.1158/1078-0432.ccr-09-2087] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Preclinical studies show that bortezomib, a proteasome inhibitor, blocks NF-kappaB activation and, combined with temozolomide, enhances activity against human melanoma xenografts and modulates other critical tumor targets. We initiated a phase I trial of temozolomide plus bortezomib in advanced melanoma. Objectives included defining a maximum tolerated dose for the combination, characterizing biomarker changes reflecting inhibition of both proteasome and NF-kappaB activity in blood (if possible tumor), and characterizing antitumor activity. EXPERIMENTAL DESIGN Cohorts were enrolled onto escalating dose levels of temozolomide (50-75 mg/m(2)) daily, orally, for 6 of 9 weeks and bortezomib (0.75-1.5 mg/m(2)) by i.v. push on days 1, 4, 8, and 11 every 21 days. Peripheral blood mononuclear cells were assayed at specified time points for proteasome inhibition and NF-kappaB biomarker activity. RESULTS Bortezomib (1.3 mg/m(2)) and temozolomide (75 mg/m(2)) proved to be the maximum tolerated dose. Dose-limiting toxicities included neurotoxicity, fatigue, diarrhea, and rash. Nineteen melanoma patients were enrolled onto four dose levels. This melanoma population (17 M1c, 10 elevated lactate dehydrogenase, 12 performance status 1-2) showed only one partial response (8 months) and three with stable disease >or=4 months. A significant reduction in proteasome-specific activity was observed 1 hour after infusion at all bortezomib doses. Changes in NF-kappaB electrophoretic mobility shift assay and circulating chemokines in blood failed to correlate with the schedule/dose of bortezomib, inhibition of proteasome activity, or clinical outcome. CONCLUSIONS We have defined phase II doses for this schedule of temozolomide with bortezomib. Although proteasome activity was inhibited for a limited time in peripheral blood mononuclear cells, we were unable to show consistent effects on NF-kappaB activation.
Collapse
Affiliation(s)
- Yingjun Su
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37027, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Klein D, Timoneri F, Ichii H, Ricordi C, Pastori RL. CD40 activation in human pancreatic islets and ductal cells. Diabetologia 2008; 51:1853-61. [PMID: 18661119 DOI: 10.1007/s00125-008-1092-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 06/09/2008] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS CD40 expression on non-haematopoietic cells is linked to inflammation. We previously reported that CD40 is expressed on isolated human and non-human primate islets and its activation results in secretion of IL-8, macrophage inflammatory protein 1-beta (MIP-1beta) and monocyte chemoattractant protein-1 (MCP-1) through nuclear factor-kappaB and extracellularly regulated kinases 1/2 pathways. The objective of this study was to identify the pattern of gene expression, and to study viability and functionality affected by CD40-CD40 ligand (CD40L) interaction in human islets. Furthermore, we have studied the CD40-mediated cytokine/chemokine profile in pancreatic ductal cells, as they are always present in human islet transplant preparations and express CD40 constitutively. METHODS CD40-CD40L gene expression modulation was studied by microarray on islet cells depleted of ductal cells. Selected genes were validated by quantitative RT-PCR. The cytokine profile in purified ductal cells was evaluated by Luminex technology, based on the use of fluorescent-coated beads, known as microspheres, and capable of multiplex detection of proteins from a single sample. Glucose-stimulated insulin secretion and islet viability were assessed by perifusion and 7-aminoactinomycin D membrane exclusion, respectively. RESULTS Statistical analysis of microarrays identified 30 genes exhibiting at least a 2.5-fold increase across all replicate arrays. The majority of them were related to oxidative stress/inflammation. Prominently upregulated were chemokine C-X-C motif ligand 1 (CXCL1), CXCL2 and CXCL3 belonging to the CXC family of chemokines related to IL-8. CD40-mediated CXCL1 secretion was confirmed by ELISA. The viability or in vitro function was not affected by CD40 activation. In addition to previously reported IL-8, MIP-1beta and MCP-1, CD40 stimulation in ductal cells produced IL-1beta, IFN-gamma, TNF-alpha, granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. CONCLUSIONS/INTERPRETATION CD40 activation in islets and ductal cells produces cytokines/chemokines with a broad-spectrum range of biological functions.
Collapse
Affiliation(s)
- D Klein
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
6
|
Wen Y, Giardina SF, Hamming D, Greenman J, Zachariah E, Bacolod MD, Liu H, Shia J, Amenta PS, Barany F, Paty P, Gerald W, Notterman D. GROalpha is highly expressed in adenocarcinoma of the colon and down-regulates fibulin-1. Clin Cancer Res 2006; 12:5951-9. [PMID: 17062666 DOI: 10.1158/1078-0432.ccr-06-0736] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The growth-related oncogene alpha (GROalpha) is a secreted interleukin-like molecule that interacts with the CXCR2 G-protein-coupled receptor. We found that the mRNA and protein products of GROalpha are more highly expressed in neoplastic than normal colon epithelium, and we studied potential mechanisms by which GROalpha may contribute to tumor initiation or growth. EXPERIMENTAL DESIGN Cell lines that constitutively overexpress GROalpha were tested for growth rate, focus formation, and tumor formation in a xenograft model. GROalpha expression was determined by Affymetrix GeneChip (241 microdissected colon samples), real-time PCR (n = 32), and immunohistochemistry. Primary colon cancer samples were also employed to determine copy number changes and loss of heterozygosity related to the GROalpha and fibulin-1 genes. RESULTS In cell cultures, GROalpha transfection transformed NIH 3T3 cells, whereas inhibition of GROalpha by inhibitory RNA was associated with apoptosis, decreased growth rate, and marked up-regulation of the matrix protein fibulin-1. Forced expression of GROalpha was associated with decreased expression of fibulin-1. Expression of GROalpha mRNA was higher in primary adenocarcinomas (n = 132), adenomas (n = 32), and metastases (n = 52) than in normal colon epithelium (P < 0.001). These results were confirmed by real-time PCR and by immunohistochemistry. Samples of primary and metastatic colon cancer showed underexpression of fibulin-1 when compared with normal samples. There were no consistent changes in gene copy number of GROalpha or fibulin-1, implying a transcriptional basis for these findings. CONCLUSION Elevated expression of GROalpha is frequent in adenocarcinoma of the colon and is associated with down-regulation of the matrix protein fibulin-1 in experimental models and in clinical samples. GROalpha overexpression abrogates contact inhibition in cell culture models, whereas inhibition of GROalpha expression is associated with apoptosis. Importantly, coexpression of fibulin-1 with GROalpha abrogates key aspects of the transformed phenotype, including tumor formation in a murine xenograft model. Targeting GRO proteins may provide new opportunities for treatment of colon cancer.
Collapse
Affiliation(s)
- Yu Wen
- Robert Wood Johnson Medical School and Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Amiri KI, Ha HC, Smulson ME, Richmond A. Differential regulation of CXC ligand 1 transcription in melanoma cell lines by poly(ADP-ribose) polymerase-1. Oncogene 2006; 25:7714-22. [PMID: 16799643 PMCID: PMC2665274 DOI: 10.1038/sj.onc.1209751] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The continuous production of the CXC ligand 1 (CXCL1) chemokine by melanoma cells is a major effector of tumor growth. We have previously shown that the constitutive expression of this chemokine is dependent upon transcription factors nuclear factor-kappa B (NF-kappaB), stimulating protein-1 (SP1), high-mobility group-I/Y (HMGI/Y), CAAT displacement protein (CDP) and poly(ADP-ribose) polymerase-1 (PARP-1). In this study, we demonstrate for the first time the mechanism of transcriptional regulation of CXCL1 through PARP-1 in melanoma cells. In its inactive state, PARP-1 binds to the CXCL1 promoter in a sequence-specific manner and prevents binding of NF-kappaB (p65/p50) to its element. However, activation of the PARP-1 enzymatic activity enhances CXCL1 expression, owing to the loss of PARP-1 binding to the CXCL1 promoter, accompanied by enhanced binding of p65 to the promoter. The delineation of the role of NF-kappaB-interacting factors in the putative CXCL1 enhanceosome will provide key information in developing strategies to block constitutive expression of this and other chemokines in cancer and to develop targeted therapy.
Collapse
Affiliation(s)
- KI Amiri
- Department of Veterans Affairs, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Microbiology, Meharry Medical College, Nashville, TN, USA
| | - HC Ha
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - ME Smulson
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - A Richmond
- Department of Veterans Affairs, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
8
|
Lee Z, Swaby RF, Liang Y, Yu S, Liu S, Lu KH, Bast RC, Mills GB, Fang X. Lysophosphatidic acid is a major regulator of growth-regulated oncogene alpha in ovarian cancer. Cancer Res 2006; 66:2740-8. [PMID: 16510595 DOI: 10.1158/0008-5472.can-05-2947] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growth-regulated oncogene alpha (GROalpha), a member of the chemokine superfamily, is commonly expressed in transformed cells and contributes to angiogenesis and tumorigenesis. Here, we report that increased GROalpha levels are detected in the plasma and ascites of ovarian cancer patients. Ovarian cancer cell lines in culture express and secrete GROalpha. However, when they are starved in serum-free medium, ovarian cancer cells ceased producing GROalpha, suggesting that GROalpha is not constitutively expressed but rather is produced in response to exogenous growth factors in ovarian cancer cells. The prototype peptide growth factors present in serum such as platelet-derived growth factor, insulin-like growth factor I, and insulin do not stimulate GROalpha production by ovarian cancer cells. In contrast, lysophosphatidic acid (LPA), a glycerol backbone phospholipid mediator present in serum and ascites of ovarian cancer patients, is a potent inducer of GROalpha expression in ovarian cancer cell lines. Treatment of ovarian cancer cells with LPA leads to transcriptional activation of the GROalpha gene promoter and robust accumulation of GROalpha protein in culture supernatants. The action of LPA on GROalpha expression is mediated by LPA receptors, particularly the LPA(2) receptor in that ectopic expression of these receptors restores the LPA-dependent GROalpha production in nonresponsive cells. Down-regulation of LPA(2) expression by small interfering RNA (siRNA) in ovarian cancer cells desensitizes GROalpha production in response to LPA. The effect of serum on GROalpha production is also significantly decreased by siRNA inhibition of LPA(2) expression. These studies identify LPA as a primary regulator of GROalpha expression in ovarian cancer.
Collapse
Affiliation(s)
- Zendra Lee
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Nuclear Factor-kappa B (NF-kappa B) is an inducible transcription factor that regulates the expression of many genes involved in the immune response. Recently, NF-kappa B activity has been shown to be upregulated in many cancers, including melanoma. Data indicate that the enhanced activation of NF-kappa B may be due to deregulations in upstream signaling pathways such as Ras/Raf, PI3K/Akt, and NIK. Multiple studies have shown that NF-kappa B is involved in the regulation of apoptosis, angiogenesis, and tumor cell invasion, all of which indicate the important role of NF-kappa B in tumorigenesis. Thus, understanding the molecular mechanism of melanoma progression will aid in designing new therapeutic approaches for melanoma. In this review, the association between NF-kappa B and melanoma tumorigenesis are discussed. Additionally, the potential of emerging selective NF-kappa B inhibitors for the treatment of melanoma is reviewed.
Collapse
|
10
|
Varughese R, Nayak JL, LoMonaco M, O'Reilly MA, Ryan RM, D'Angio CT. Effects of hyperoxia on tumor necrosis factor alpha and Grobeta expression in newborn rabbit lungs. Lung 2004; 181:335-46. [PMID: 14749938 DOI: 10.1007/s00408-003-1036-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2003] [Indexed: 11/28/2022]
Abstract
Chemokines have been implicated in the pathogenesis of many inflammatory processes, including bronchopulmonary dysplasia in mechanically ventilated premature infants. We hypothesized that early expression of the proinflammatory cytokine, tumor necrosis factor alpha (TNFalpha), would be followed by later expression of the downstream chemokine, Grobeta, in the oxygen-injured newborn lung. Reverse transcriptase-polymerase chain reaction (RT-PCR) and ribonuclease protection assay (RPA) were used to assess TNFalpha and Grobeta mRNA expression in lung RNA samples from newborn rabbits exposed to > 95% O2 for 8-9 days, followed by 60% O2 for a further 2-4 weeks or from control rabbits exposed to air. Four lung samples per condition were collected every 2 days from day 0 to day 14, and at days 22 and 36. Rabbit alveolar macrophages (AM) stimulated in vitro with bacterial lipopolysaccharide served as positive controls ( n = 8). Grobeta mRNA expression in rabbit lung samples increased with oxygen exposure until day 8, then returned toward baseline levels. This corresponded to previously described elevations in neutrophil number in the lungs. TNFalpha mRNA expression in lung samples was below the limit of detection by RPA and showed no upregulation in hyperoxic lung samples by RT-PCR. TNFalpha activity was assessed in lung lavage ( n = 2 samples per condition per time) using an L929 cell line bioassay and was not increased in hyperoxic animals. The expression of Grobeta mRNA without antecedent or concurrent TNFalpha mRNA expression or activity makes it unlikely that Grobeta in the hyperoxic newborn rabbit lung is elaborated in response to a stimulus by TNFalpha.
Collapse
Affiliation(s)
- R Varughese
- Department of Pediatrics, Strong Children's Research Center, University of Rochester, NY 14623, USA
| | | | | | | | | | | |
Collapse
|
11
|
Waterston AM, Salway F, Andreakos E, Butler DM, Feldmann M, Coombes RC. TNF autovaccination induces self anti-TNF antibodies and inhibits metastasis in a murine melanoma model. Br J Cancer 2004; 90:1279-84. [PMID: 15026813 PMCID: PMC2409655 DOI: 10.1038/sj.bjc.6601670] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
TNF is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases, but also in metastasis in certain types of cancer. In terms of therapy, TNF is targeted by anti-TNF neutralising monoclonal antibodies or soluble TNF receptors. Recently, a novel strategy based on the generation of self anti-TNF antibodies (TNF autovaccination) has been developed. We have previously shown that TNF autovaccination successfully generates high anti-TNF antibody titres, blocks TNF and ameliorates collagen-induced arthritis in DBA/1 mice. In this study, we examined the ability of TNF autovaccination to generate anti-TNF antibody titres and block metastasis in the murine B16F10 melanoma model. We found that immunisation of C57BL/6 mice with TNF autovaccine produces a 100-fold antibody response to TNF compared to immunisation with phosphate-buffered saline vehicle control and significantly reduces both the number (P<0.01) and size of metastases (P<0.01) of B16F10 melanoma cells. This effect is also observed when an anti-TNF neutralising monoclonal antibody is administered, confirming the essential role TNF plays in metastasis in this model. This study suggests that TNF autovaccination is a cheaper and highly efficient alternative that can block TNF and reduce metastasis in vivo and trials with TNF autovaccination are already underway in patients with metastatic cancer.
Collapse
Affiliation(s)
- A M Waterston
- Department of Cancer Medicine, Faculty of Medicine, Chelsea and Westminster Hospital, 369 Fulham Rd, Imperial college School of Medicine, London SW10 9NH, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The constitutive expression of angiogenic and tumorigenic chemokines by tumour cells facilitates the growth of tumours. The transcription of these angiogenic and tumorigenic chemokine genes is modulated, in part, by the nuclear factor-kappa B (NF-kappa B) family of transcription factors. In some tumours, there is constitutive activation of the kinases that modulate the activity of inhibitor of NF-kappa B (I kappa B) kinase (IKK), which leads to the constitutive activation of members of the NF-kappa B family. This activation of NF-kappa B is associated with the dysregulation of transcription of genes that encode cytokines, chemokines, adhesion factors and inhibitors of apoptosis. In this review, I discuss the factors that lie upstream of the NF-kappa B cascade that are activated during tumorigenesis and the role of the putative NF-kappa B enhanceosome in constitutive chemokine gene transcription during tumorigenesis.
Collapse
Affiliation(s)
- Ann Richmond
- Department of Veterans Affairs and Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| |
Collapse
|
13
|
Dhawan P, Richmond A. A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 2002; 277:7920-8. [PMID: 11773061 PMCID: PMC2668260 DOI: 10.1074/jbc.m112210200] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Constitutive activation of NF-kappa B is an emerging hallmark of various types of tumors including breast, colon, pancreatic, ovarian, and melanoma. In melanoma cells, the basal expression of the CXC chemokine, CXCL1, is constitutively up-regulated. This up-regulation can be attributed in part to constitutive activation of NF-kappa B. Previous studies have shown an elevated basal I kappa B kinase (IKK) activity in Hs294T melanoma cells, which leads to an increased rate of I kappa B phosphorylation and degradation. This increase in I kappa B-alpha phosphorylation and degradation leads to an approximately 19-fold higher nuclear localization of NF-kappa B. However, the upstream IKK kinase activity is up-regulated by only about 2-fold and cannot account for the observed increase in NF-kappa B activity. We now demonstrate that NF-kappa B-inducing kinase (NIK) is highly expressed in melanoma cells, and IKK-associated NIK activity is enhanced in these cells compared with the normal cells. Kinase-dead NIK blocked constitutive NF-kappa B or CXCL1 promoter activity in Hs294T melanoma cells, but not in control normal human epidermal melanocytes. Transient overexpression of wild type NIK results in increased phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which is inhibited in a concentration-dependent manner by PD98059, an inhibitor of p42/44 MAPK. Moreover, the NF-kappa B promoter activity decreased with overexpression of dominant negative ERK expression constructs, and EMSA analyses further support the hypothesis that ERK acts upstream of NF-kappa B and regulates the NF-kappa B DNA binding activity. Taken together, our data implicate involvement of I kappa B kinase and MAPK signaling cascades in NIK-induced constitutive activation of NF-kappa B.
Collapse
Affiliation(s)
- Punita Dhawan
- Department of Veterans Affairs, Nashville, Tennessee 37212
| | - Ann Richmond
- Department of Veterans Affairs, Nashville, Tennessee 37212
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- To whom correspondence should be addressed: Dept. of Cancer Biology, Vanderbilt University School of Medicine, MCN T-2212, Nashville, TN 37232. Tel.: 615-343-7777; Fax: 615-343-4539; E-mail:
| |
Collapse
|
14
|
Nirodi C, Hart J, Dhawan P, Moon NS, Nepveu A, Richmond A. The role of CDP in the negative regulation of CXCL1 gene expression. J Biol Chem 2001; 276:26122-31. [PMID: 11371564 PMCID: PMC2665279 DOI: 10.1074/jbc.m102872200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The CXC chemokine, melanoma growth stimulatory activity/growth-regulated protein, CXCL1 is an important modulator of inflammation, wound healing, angiogenesis, and tumorigenesis. Transcription of CXCL1 is regulated through several cis-acting elements including Sp1, NF-kappa B, and an element that lies immediately upstream of the NF-kappa B element, the immediate upstream region (IUR). A transcription element data base search indicated that the IUR element contains a binding site for the transcriptional repressor, human CUT homeodomain protein/CCAAT displacement protein (CDP). It is shown here that in electrophoretic mobility shift assays, complexes obtained with the IUR oligonucleotide probe are supershifted by anti-CDP antibodies and that a CDP polypeptide containing a high affinity DNA binding domain binds to the sequence GGGATCGATC in the IUR element. In Southwestern blot analyses, oligonucleotides containing the wild-type IUR sequence, but not a mutant oligonucleotide with substitutions in the GGGATCGATC sequence, bind a 170--180-kDa protein. Furthermore, overexpression of the CDP protein blocks CXCL1 promoter activity in reporter gene assays, whereas overexpression of an antisense CDP construct leads to a significant increase in CXCL1 promoter activity. Mutations in the IUR element, which map in the putative CDP-binding site, inhibit the binding of CDP to the IUR element and favor increased transcription from the CXCL1 promoter. Based on these results, we propose that transcriptional regulation of the CXCL1 gene is mediated in part by CDP, which could play an important role in inflammatory processes and tumorigenesis.
Collapse
Affiliation(s)
- C Nirodi
- Department of Veterans Affairs, Nashville, Tennessee 37212, Vanderbilt University School of Medicine, Department of Cancer Biology, Nashville, Tennessee 37232, and the Molecular Oncology Group, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Nirodi C, NagDas S, Gygi SP, Olson G, Aebersold R, Richmond A. A role for poly(ADP-ribose) polymerase in the transcriptional regulation of the melanoma growth stimulatory activity (CXCL1) gene expression. J Biol Chem 2001; 276:9366-74. [PMID: 11112786 PMCID: PMC3369623 DOI: 10.1074/jbc.m009897200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The melanoma growth stimulatory activity/growth-regulated protein, CXCL1, is constitutively expressed at high levels during inflammation and progression of melanocytes into malignant melanoma. It has been shown previously that CXCL1 overexpression in melanoma cells is due to increased transcription as well as stability of the CXCL1 message. The transcription of CXCL1 is regulated through several cis-acting elements including Sp1, NF-kappaB, HMGI(Y), and the immediate upstream region (IUR) element (nucleotides -94 to -78), which lies immediately upstream to the nuclear factor kappaB (NF-kappaB) element. Previously, it has been shown that the IUR is necessary for basal and cytokine-induced transcription of the CXCL1 gene. UV cross-linking and Southwestern blot analyses indicate that the IUR oligonucleotide probe selectively binds a 115-kDa protein. In this study, the IUR element has been further characterized. We show here that proximity of the IUR element to the adjacent NF-kappaB element is critical to its function as a positive regulatory element. Using binding site oligonucleotide affinity chromatography, we have selectively purified the 115-kDa IUR-F. Mass spectrometry/mass spectrometry/matrix-assisted laser desorption ionization/time of flight spectroscopy and amino acid analysis as well as microcapillary reverse phase chromatography electrospray ionization tandem mass spectrometry identified this protein as the 114-kDa poly(ADP-ribose) polymerase (PARP1). Furthermore, 3-aminobenzamide, an inhibitor of PARP-specific ADP-ribosylation, inhibits CXCL1 promoter activity and reduces levels of CXCL1 mRNA. The data point to the possibility that PARP may be a coactivator of CXCL1 transcription.
Collapse
Affiliation(s)
- C Nirodi
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
16
|
Pianetti S, Arsura M, Romieu-Mourez R, Coffey RJ, Sonenshein GE. Her-2/neu overexpression induces NF-kappaB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IkappaB-alpha that can be inhibited by the tumor suppressor PTEN. Oncogene 2001; 20:1287-99. [PMID: 11313873 DOI: 10.1038/sj.onc.1204257] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2000] [Revised: 01/05/2001] [Accepted: 01/09/2001] [Indexed: 11/08/2022]
Abstract
The Nuclear Factor (NF)-kappaB family of transcription factors controls expression of genes which promote cell growth, survival, and neoplastic transformation. Recently we demonstrated aberrant constitutive activation of NF-kappaB in primary human and rat breast cancer specimens and in cell lines. Overexpression of the epidermal growth factor receptor (EGFR) family member Her-2/neu, seen in approximately 30% of breast cancers, is associated with poor prognosis. Previously, Her-2/neu has been shown to signal via a phosphatidylinositol 3 (PI3)-kinase to Akt/protein kinase B (PKB) pathway. Since this signaling pathway was recently shown to activate NF-kappaB, here we have tested the hypothesis that Her-2/neu can activate NF-kappaB in breast cancer. Overexpression of Her-2/neu and EGFR-4 in Ba/F3 cells led to constitutive PI3- and Akt kinase activities, and induction of classical NF-kappaB (p50/p65). Similarly, a tumor cell line and tumors derived from MMTV-Her-2/neu transgenic mice displayed elevated levels of classical NF-kappaB. Engagement of Her-2/neu receptor downregulated the level of NF-kappaB. NF-kappaB binding and activity in the cultured cells was reduced upon inhibition of the PI3- to Akt kinase signaling pathway via ectopic expression of kinase inactive mutants, incubation with wortmannin, or expression of the tumor suppressor phosphatase PTEN. Inhibitors of calpain, but not the proteasome, blocked IkappaB-alpha degradation. Inhibition of Akt did not affect IKK activity. These results indicate that Her-2/neu activates NF-kappaB via a PI3- to Akt kinase signaling pathway that can be inhibited via the tumor suppressor PTEN, and is mediated by calpain rather than the IkappaB kinase complex.
Collapse
Affiliation(s)
- S Pianetti
- Department of Biochemistry and the Program in Research on Women's Health, Boston University Schools of Medicine, Boston, Massachusetts, MA 02118, USA
| | | | | | | | | |
Collapse
|
17
|
Matute-Bello G, Winn RK, Jonas M, Chi EY, Martin TR, Liles WC. Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute pulmonary inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:153-61. [PMID: 11141488 PMCID: PMC1850249 DOI: 10.1016/s0002-9440(10)63953-3] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2000] [Indexed: 11/25/2022]
Abstract
Activation of the Fas/FasL system induces apoptosis of susceptible cells, but may also lead to nuclear factor kappaB activation. Our goal was to determine whether local Fas activation produces acute lung injury by inducing alveolar epithelial cell apoptosis and by generating local inflammatory responses. Normal mice (C57BL/6) and mice deficient in Fas (lpr) were treated by intranasal instillation of the Fas-activating monoclonal antibody (mAb) Jo2 or an irrelevant control mAb, and studied 6 or 24 hours later using bronchoalveolar lavage (BAL), histopathology, DNA nick-end-labeling assays, and electron microscopy. Normal mice treated with mAb Jo2 had significant increases in BAL protein at 6 hours, and BAL neutrophils at 24 hours, as compared to lpr mice and to mice treated with the irrelevant mAb. Neutrophil recruitment was preceded by increased mRNA expression for tumor necrosis factor-alpha, macrophage inflammatory protein-1alpha, macrophage inflammatory protein-2, macrophage chemotactic protein-1, and interleukin-6, but not interferon-gamma, transforming growth factor-ss, RANTES, eotaxin, or IP-10. Lung sections from Jo2-treated normal mice showed neutrophilic infiltrates, alveolar septal thickening, hemorrhage, and terminal dUTP nick-end-labeling-positive cells in the alveolar septae and airspaces. Type II pneumocyte apoptosis was confirmed by electron microscopy. Fas activation in vivo results in acute alveolar epithelial injury and lung inflammation, and may be important in the pathogenesis of acute lung injury.
Collapse
Affiliation(s)
- G Matute-Bello
- Divisions of Pulmonary and Critical Care Medicine, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
18
|
Wang D, Yang W, Du J, Devalaraja MN, Liang P, Matsumoto K, Tsubakimoto K, Endo T, Richmond A. MGSA/GRO-mediated melanocyte transformation involves induction of Ras expression. Oncogene 2000; 19:4647-59. [PMID: 11030154 PMCID: PMC2667445 DOI: 10.1038/sj.onc.1203820] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The MGSA/GRO protein is endogenously expressed in almost 70% of the melanoma cell lines and tumors, but not in normal melanocytes. We have previously demonstrated that over-expression of human MGSA/GROalpha, beta or gamma in immortalized murine melanocytes (melan-a cells) enables these cells to form tumors in SCID and nude mice. To examine the possibility that the MGSA/GRO effect on melanocyte transformation requires expression of other genes, differential display was performed. One of the mRNA's identified in the screen as overexpressed in MGSA/GRO transformed melan-a clones was the newly described M-Ras or R-Ras3 gene, a member of the Ras gene superfamily. Over-expression of MGSA/GRO upregulates M-Ras expression at both the mRNA and protein levels, and this induction requires an intact glutamine-leucine-arginine (ELR)-motif in the MGSA/GRO protein. Western blot examination of Ras expression revealed that K- and N-Ras proteins are also elevated in MGSA/GRO-expressing melan-a clones, leading to an overall increase in the amount of activated Ras. MGSA/GRO-expressing melan-a clones exhibited enhanced AP-1 activity. The effects of MGSA/GRO on AP-1 activation could be mimicked by over-expression of wild-type M-Ras or a constitutively activated M-Ras mutant in control melan-a cells as monitored by an AP-1-luciferase reporter, while expression of a dominant negative M-Ras blocked AP-1-luciferase activity in MGSA/GRO-transformed melan-a clones. In the in vitro transformation assay, over-expression of M-Ras mimicked the effects of MGSA/GRO by inducing cellular transformation in control melan-a cells, while over-expression of dominant negative M-Ras in MGSA/GROalpha-expressing melan-a-6 cells blocked transformation. These data suggest that MGSA/GRO-mediated transformation requires Ras activation in melanocytes.
Collapse
Affiliation(s)
- D Wang
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nirodi CS, Devalaraja R, Nanney LB, Arrindell S, Russell S, Trupin J, Richmond A. Chemokine and chemokine receptor expression in keloid and normal fibroblasts. Wound Repair Regen 2000; 8:371-82. [PMID: 11115149 PMCID: PMC3140346 DOI: 10.1111/j.1524-475x.2000.00371.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Keloids are benign collagenous tumors that occur during dermal wound healing in genetically predisposed individuals. The lesions are characterized by over-proliferation of fibroblasts, some leukocyte infiltration, and prolonged high rates of collagen synthesis. To determine whether leukocyte chemoattractants or chemokines are participating in this disease process, immunohistochemical staining for the CXC chemokine, MGSA/GROalpha, and its receptor, CXCR2, was performed on tissue from keloids, hypertrophic scars and normal skin. Immunoreactive MGSA/GROalpha was not observed in hypertrophic scars or normal dermis, but was present in some myofibroblasts and lymphocytes in nodular areas of the keloid samples. This staining positively correlated with the degree of inflammatory infiltrate in the lesions. Keloids, but not hypertrophic scars or normal dermis, also exhibited intensive immunoreactivity for the CXCR2 receptor in endothelial cells and inflammatory infiltrates with occasional staining of myofibroblasts. In contrast, cultured fibroblasts from either keloids or normal skin did not express detectable amounts of mRNA for MGSA/GRO or CXCR2, although interleukin-1 strongly induced MGSA/GRO mRNA in both cell types. Interleukin-1 induction of MGSA/GRO was inhibited by glucocorticoid in normal and keloid fibroblasts, and the effect was more pronounced in keloid fibroblasts. This event was not correlated with inhibition of nuclear activation of NF-kappaB, AP-1 or Sp1, and might therefore be mediated by another mechanism such as decreased mRNA stability or transcriptional repression through the glucocorticoid response element in the MGSA/GRO promoter. Data from in vitro wounding experiments with cultured normal and keloid fibroblasts indicate that there were no significant differences in MGSA/GRO or CXCR2 receptor levels between normal and keloid fibroblasts. We also show that cultured keloid fibroblasts exhibit a delayed wound healing response. We postulate that the inflammatory component is important in development of keloid lesions and chemotactic cytokines may participate in this process.
Collapse
Affiliation(s)
- Chatanya S. Nirodi
- Department of Veterans Affairs, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Radika Devalaraja
- Department of Veterans Affairs, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lillian B. Nanney
- Department of Veterans Affairs, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Plastic Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Shirley Russell
- Department of Microbiology, Meharry Medical College, Nashville, Tennessee
| | - Joel Trupin
- Department of Microbiology, Meharry Medical College, Nashville, Tennessee
| | - Ann Richmond
- Department of Veterans Affairs, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
20
|
Arsura M, Mercurio F, Oliver AL, Thorgeirsson SS, Sonenshein GE. Role of the IkappaB kinase complex in oncogenic Ras- and Raf-mediated transformation of rat liver epithelial cells. Mol Cell Biol 2000; 20:5381-91. [PMID: 10891479 PMCID: PMC85990 DOI: 10.1128/mcb.20.15.5381-5391.2000] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-kappaB/Rel factors have been implicated in the regulation of liver cell death during development, after partial hepatectomy, and in hepatocytes in culture. Rat liver epithelial cells (RLEs) display many biochemical and ultrastructural characteristics of oval cells, which are multipotent cells that can differentiate into mature hepatocytes. While untransformed RLEs undergo growth arrest and apoptosis in response to transforming growth factor beta1 (TGF-beta1) treatment, oncogenic Ras- or Raf-transformed RLEs are insensitive to TGF-beta1-mediated growth arrest. Here we have tested the hypothesis that Ras- or Raf-transformed RLEs have altered NF-kappaB regulation, leading to this resistance to TGF-beta1. We show that classical NF-kappaB is aberrantly activated in Ras- or Raf-transformed RLEs, due to increased phosphorylation and degradation of IkappaB-alpha protein. Inhibition of NF-kappaB activity with a dominant negative form of IkappaB-alpha restored TGF-beta1-mediated cell killing of transformed RLEs. IKK activity mediates this hyperphosphorylation of IkappaB-alpha protein. As judged by kinase assays and transfection of dominant negative IKK-1 and IKK-2 expression vectors, NF-kappaB activation by Ras appeared to be mediated by both IKK-1 and IKK-2, while Raf-induced NF-kappaB activation was mediated by IKK-2. NF-kappaB activation in the Ras-transformed cells was mediated by both the Raf and phosphatidylinositol 3-kinase pathways, while in the Raf-transformed cells, NF-kappaB induction was mediated by the mitogen-activated protein kinase cascade. Last, inhibition of either IKK-1 or IKK-2 reduced focus-forming activity in Ras-transformed RLEs. Overall, these studies elucidate a mechanism that contributes to the process of transformation of liver cells by oncogene Ras and Raf through the IkappaB kinase complex leading to constitutive activation of NF-kappaB.
Collapse
Affiliation(s)
- M Arsura
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA.
| | | | | | | | | |
Collapse
|
21
|
Norgauer J, Metzner B, Czech W, Schraufstatter I. Reconstitution of chemokine-induced actin polymerization in undifferentiated human leukemia cells (HL-60) by heterologous expression of interleukin-8 receptors. Inflamm Res 1996; 45:127-31. [PMID: 8689391 DOI: 10.1007/bf02265165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The chemokines interleukin-8 (IL-8) and GRO alpha bind in neutrophils to the interleukin-8 receptor alpha and beta (IL-8R alpha and beta) triggering reorganization of the actin cytoskeleton and activation of phospholipase C (PLC). Reconstitution of chemokine-induced activation of PLC indicated coupling of IL-8R alpha and beta to pertussis toxin-insensitive G alpha 16-proteins as well as to pertussis toxin-sensitive G alpha i2- or G alpha i3-proteins. To identify the signal transduction mechanisms of chemokine-induced actin response, undifferentiated human leukemia cells (HL-60 cells) constitutively expressing G alpha 16-, G alpha i2- and G alpha i3-proteins were chosen for reconstitution studies. Expression of recombinant receptors after transfection of the cells with the cDNA of IL-8R alpha and beta was confirmed by binding studies with radiolabeled ligands. IL-8R alpha bound IL-8 with high affinity (Kd approximately 1 nM) and GRO alpha with low affinity (Kd approximately 1 microM), whereas IL-8R beta bound both IL-8 and GRO alpha with high affinity (Kd approximately 1nM). Flow cytometric actin measurements indicated that high affinity ligand-receptor interactions in both receptor transfectants displayed inducible responses. Pretreatment of transfectants with pertussis toxin caused ADP-ribosylation of G-proteins and blocked chemokine-induced polymerization, indicating involvement of G alpha i2- or G alpha i3-proteins, but not G alpha 16-proteins in this response.
Collapse
MESH Headings
- Actins/metabolism
- Adenosine Diphosphate Ribose/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Base Sequence
- Binding, Competitive
- Chemokine CXCL1
- Chemokines/genetics
- Chemokines/metabolism
- Chemokines/pharmacology
- Chemokines, CXC
- Chemotactic Factors/genetics
- Chemotactic Factors/metabolism
- Chemotactic Factors/pharmacology
- DNA, Complementary/chemistry
- DNA, Complementary/metabolism
- Enzyme Activation/drug effects
- Growth Substances/genetics
- Growth Substances/metabolism
- Growth Substances/pharmacology
- HL-60 Cells/cytology
- HL-60 Cells/drug effects
- HL-60 Cells/metabolism
- Humans
- Intercellular Signaling Peptides and Proteins
- Interleukin-8/genetics
- Interleukin-8/metabolism
- Interleukin-8/pharmacology
- Molecular Sequence Data
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/pharmacology
- Neutrophils/cytology
- Neutrophils/drug effects
- Neutrophils/metabolism
- Pertussis Toxin
- Polymerase Chain Reaction
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-8A
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction/drug effects
- Transfection
- Type C Phospholipases/metabolism
- Virulence Factors, Bordetella/toxicity
Collapse
Affiliation(s)
- J Norgauer
- Department of Dermatology, University of Freiburg, Germany
| | | | | | | |
Collapse
|
22
|
Wood LD, Farmer AA, Richmond A. HMGI(Y) and Sp1 in addition to NF-kappa B regulate transcription of the MGSA/GRO alpha gene. Nucleic Acids Res 1995; 23:4210-9. [PMID: 7479086 PMCID: PMC307364 DOI: 10.1093/nar/23.20.4210] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Expression of the chemokine MGSA/GRO is upregulated as melanocytes progress to melanoma cells. We demonstrate that constitutive and cytokine induced MGSA/GRO alpha expression requires multiple DNA regulatory regions between positions -143 to -62. We have previously shown that the NF-kappa B element at -83 to -65 is essential for basal and cytokine induced MGSA/GRO alpha promoter activity in the Hs294T melanoma and normal retinal pigment epithelial (RPE) cells, respectively. Here, we have determined that the Sp1 binding element located approximately 42 base pairs upstream from the NF-kappa B element binds Sp1 and Sp3 constitutively and this element is necessary for basal MGSA/GRO alpha promoter activity. We demonstrate that the high mobility group proteins HMGI(Y) recognize the AT-rich motif nested within the NF-kappa B element in the MGSA/GRO alpha promoter. Loss of either NF-kappa B or HMGI(Y) complex binding by selected point mutations in the NF-kappa B element results in decreased basal and cytokine induced MGSA/GRO alpha promoter activity. Thus, these results indicate that transcriptional regulation of the chemokine MGSA/GRO alpha requires at least three transcription factors: Sp1, NF-kappa B and HMGI(Y).
Collapse
Affiliation(s)
- L D Wood
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-2175, USA
| | | | | |
Collapse
|
23
|
Freter RR, Alberta JA, Lam KK, Stiles CD. A new platelet-derived growth factor-regulated genomic element which binds a serine/threonine phosphoprotein mediates induction of the slow immediate-early gene MCP-1. Mol Cell Biol 1995; 15:315-25. [PMID: 7799939 PMCID: PMC231960 DOI: 10.1128/mcb.15.1.315] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The MCP-1 chemokine gene belongs to a cohort of immediate-early genes that are induced with slower kinetics than c-fos. In this study, we identified a cluster of four platelet-derived growth factor (PDGF)-responsive elements within a 240-bp enhancer found in the distal 5' flanking MCP-1 sequences. Two of the elements bind one or more forms of the transcription factor NF-kappa B. We focused on the other two elements which are hitherto unreported, PDGF-regulated genomic motifs. One of these novel elements, detected as a 28-mer by DNase I footprinting, restores PDGF inducibility when added in two copies to a 5' truncated MCP-1 gene. A single copy of the second novel element, a 27-mer, restores PDGF inducibility to a 5' truncated MCP-1 gene. The 27-base element interacts with a PDGF-activated serine/threonine phosphoprotein that is detected only within the nucleus of PDGF-treated 3T3 cells. DNA binding of this phosphoprotein is activated by PDGF treatment with slow kinetics that match the time course of MCP-1 gene expression, and activation is not inhibited by cycloheximide. PDGF-activated binding to the 27-mer is shown to involve a single 30-kDa protein by UV-cross-linking analysis.
Collapse
Affiliation(s)
- R R Freter
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|