1
|
Xu T, Liu K, Zhang Y, Chen Y, Yin D. EGFR and Hippo signaling pathways are involved in organophosphate esters-induced proliferation and migration of triple-negative breast cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41939-41952. [PMID: 38856849 DOI: 10.1007/s11356-024-33872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The widespread application of organophosphate flame retardants has led to pervasive exposure to organophosphate esters (OPEs), prompting considerable concerns regarding their potential health risk to humans. Despite hints from previous research about OPEs' association with breast cancer, their specific effects and underlying mechanisms of triple-negative breast cancer (TNBC) remain unclear. In this study, we investigated the effects of four representative OPEs on cell proliferation, cell cycle regulation, migration, and the expression of genes and proteins associated with the epidermal growth factor receptor (EGFR) and Hippo signaling pathways in TNBC (MDA-MB-231) cells. Our findings revealed that treatment with 1-25 μM triphenyl phosphate (TPHP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) induced TNBC cell proliferation and accelerated cell cycle progression, with upregulation in MYC, CCND1, and BRCA1 mRNA. Moreover, exposure to 1-25 μM TPHP, 10-25 μM TDCIPP, and 1-10 μM tris (2-chloroethyl) phosphate (TCEP) induced MMP2/9 mRNA expression and enhanced migratory capacity, except for 2-ethylhexyl diphenyl phosphate (EHDPP). Mechanistically, four OPEs treatments activated the EGFR-ERK1/2 and EGFR-PI3K/AKT signaling pathways by increasing the transcript of EGFR, ERK1/2, PI3K, and AKT mRNA. OPEs treatment also suppressed the Hippo signaling pathway by inhibiting the expression of MST1 mRNA and phosphorylation of LATS1, leading to the overactivation of YAP1 protein, thereby promoting TNBC cell proliferation and migration. In summary, our study elucidated that activation of the EGFR signaling pathway and suppression of the Hippo signaling pathway contributed to the proliferation, cell cycle dysregulation, and migration of TNBC cells following exposure to OPEs.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Kaiyue Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yajie Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yawen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Post-doctoral Research Station of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
2
|
Knight H, Abis G, Kaur M, Green HL, Krasemann S, Hartmann K, Lynham S, Clark J, Zhao L, Ruppert C, Weiss A, Schermuly RT, Eaton P, Rudyk O. Cyclin D-CDK4 Disulfide Bond Attenuates Pulmonary Vascular Cell Proliferation. Circ Res 2023; 133:966-988. [PMID: 37955182 PMCID: PMC10699508 DOI: 10.1161/circresaha.122.321836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a chronic vascular disease characterized, among other abnormalities, by hyperproliferative smooth muscle cells and a perturbed cellular redox and metabolic balance. Oxidants induce cell cycle arrest to halt proliferation; however, little is known about the redox-regulated effector proteins that mediate these processes. Here, we report a novel kinase-inhibitory disulfide bond in cyclin D-CDK4 (cyclin-dependent kinase 4) and investigate its role in cell proliferation and PH. METHODS Oxidative modifications of cyclin D-CDK4 were detected in human pulmonary arterial smooth muscle cells and human pulmonary arterial endothelial cells. Site-directed mutagenesis, tandem mass-spectrometry, cell-based experiments, in vitro kinase activity assays, in silico structural modeling, and a novel redox-dead constitutive knock-in mouse were utilized to investigate the nature and definitively establish the importance of CDK4 cysteine modification in pulmonary vascular cell proliferation. Furthermore, the cyclin D-CDK4 oxidation was assessed in vivo in the pulmonary arteries and isolated human pulmonary arterial smooth muscle cells of patients with pulmonary arterial hypertension and in 3 preclinical models of PH. RESULTS Cyclin D-CDK4 forms a reversible oxidant-induced heterodimeric disulfide dimer between C7/8 and C135, respectively, in cells in vitro and in pulmonary arteries in vivo to inhibit cyclin D-CDK4 kinase activity, decrease Rb (retinoblastoma) protein phosphorylation, and induce cell cycle arrest. Mutation of CDK4 C135 causes a kinase-impaired phenotype, which decreases cell proliferation rate and alleviates disease phenotype in an experimental mouse PH model, suggesting this cysteine is indispensable for cyclin D-CDK4 kinase activity. Pulmonary arteries and human pulmonary arterial smooth muscle cells from patients with pulmonary arterial hypertension display a decreased level of CDK4 disulfide, consistent with CDK4 being hyperactive in human pulmonary arterial hypertension. Furthermore, auranofin treatment, which induces the cyclin D-CDK4 disulfide, attenuates disease severity in experimental PH models by mitigating pulmonary vascular remodeling. CONCLUSIONS A novel disulfide bond in cyclin D-CDK4 acts as a rapid switch to inhibit kinase activity and halt cell proliferation. This oxidative modification forms at a critical cysteine residue, which is unique to CDK4, offering the potential for the design of a selective covalent inhibitor predicted to be beneficial in PH.
Collapse
Affiliation(s)
- Hannah Knight
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Giancarlo Abis
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, United Kingdom (G.A.)
| | - Manpreet Kaur
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Hannah L.H. Green
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Germany (S.K., K.H.)
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Germany (S.K., K.H.)
| | - Steven Lynham
- Proteomics Core Facility, Centre of Excellence for Mass Spectrometry (S.L.), King’s College London, United Kingdom
| | - James Clark
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (L.Z.)
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center Giessen Biobank, Justus-Liebig-University Giessen, Germany (C.R.)
| | - Astrid Weiss
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Member of the German Center for Lung Research (DZL), Germany (A.W., R.T.S.)
| | - Ralph T. Schermuly
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Member of the German Center for Lung Research (DZL), Germany (A.W., R.T.S.)
| | - Philip Eaton
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (P.E.)
| | - Olena Rudyk
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| |
Collapse
|
3
|
Cheng LZ, Huang DL, Tang ZR, Zhang JH, Xiong T, Zhou C, Zhang NX, Fu R, Cheng YX, Wu ZQ. Pharmacological targeting of Axin2 suppresses cell growth and metastasis in colorectal cancer. Br J Pharmacol 2023; 180:3071-3091. [PMID: 37461816 DOI: 10.1111/bph.16193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/26/2023] [Accepted: 07/02/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND AND PURPOSE The scaffold molecule Axin2 is constitutively activated in colorectal cancer (CRC) and functions as a potent promoter of CRC behaviour. Pharmacological targeting of Axin2 may therefore exert a therapeutic effect in patients with CRC. Here, we discovered a potent small-molecule inhibitor of Axin2, based on the mechanism by which Axin2 is regulated post-translationally, and investigated its antitumour effects. EXPERIMENTAL APPROACH Compound discovery and its inhibitory action on Axin2 protein were revealed by microscale thermophoresis, in vitro kinase assay, quantitative kinetic assay, immunoblotting/immunoprecipitation, RT-qPCR and cycloheximide pulse-chase assay. Compound antitumour effects and the underlying mechanisms were evaluated in multiple cell-based assays and mouse models. KEY RESULTS We discovered that glycogen synthase kinase 3β (GSK3β) phosphorylates Axin2 at two consensus motifs and coupled Axin2 phosphorylation to its ubiquitination (mediated by the E3 ligase β-Trcp2) and proteasomal degradation. The binding of Axin2 to GSK3β in CRC cells is faint, which enables most of the Axin2 protein to maintain an unphosphorylated status and thereby permits the cells to preserve high levels of Axin2. Importantly, we identified a small-molecule compound CW85319 that enhances Axin2's interaction with GSK3β via forming a high affinity for Axin2. Treatment of CRC cells with CW85319 enhanced Axin2 binding with GSK3β, thereby promoting Axin2 phosphorylation, subsequent ubiquitination, and degradation. Furthermore, we demonstrated that CW85319 efficiently suppressed Axin2-driven CRC growth and metastasis, without eliciting side toxicity. CONCLUSIONS AND IMPLICATIONS These findings suggest that pharmacological targeting of Axin2 by CW85319 may provide therapeutic benefits against certain human cancers, especially CRC.
Collapse
Affiliation(s)
- Li-Zhi Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dan-Ling Huang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhang-Rui Tang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jia-Hao Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Xiong
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chen Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Nai-Xia Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Yousuf M, Shamsi A, Mohammad T, Azum N, Alfaifi SYM, Asiri AM, Mohamed Elasbali A, Islam A, Hassan MI, Haque QMR. Inhibiting Cyclin-Dependent Kinase 6 by Taurine: Implications in Anticancer Therapeutics. ACS OMEGA 2022; 7:25844-25852. [PMID: 35910117 PMCID: PMC9330843 DOI: 10.1021/acsomega.2c03479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Cyclin-dependent kinase 6 (CDK6) is linked with a cyclin partner and plays a crucial role in the early stages of cancer development. It is currently a potential drug target for developing therapeutic molecules targeting cancer therapy. Here, we have identified taurine as an inhibitor of CDK6 using combined in silico and experimental studies. We performed various experiments to find the binding affinity of taurine with CDK6. Molecular docking analysis revealed critical residues of CDK6 that are involved in taurine binding. Fluorescence measurement studies showed that taurine binds to CDK6 with a significant binding affinity, with a binding constant of K = 0.7 × 107 M-1 for the CDK6-taurine complex. Enzyme inhibition assay suggested taurine as a good inhibitor of CDK6 possessing an IC50 value of 4.44 μM. Isothermal titration calorimetry analysis further confirmed a spontaneous binding of taurine with CDK6 and delineated the thermodynamic parameters for the CDK6-taurine system. Altogether, this study established taurine as a CDK6 inhibitor, providing a base for using taurine and its derivatives in CDK6-associated cancer and other diseases.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre
of
Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Taj Mohammad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Naved Azum
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Sulaiman Y. M. Alfaifi
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Clinical
Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | |
Collapse
|
5
|
Yoshida A, Phillips-Mason P, Tarallo V, Avril S, Koivisto C, Leone G, Diehl JA. Non-phosphorylatable cyclin D1 mutant potentiates endometrial hyperplasia and drives carcinoma with Pten loss. Oncogene 2022; 41:2187-2195. [PMID: 35210557 PMCID: PMC10056880 DOI: 10.1038/s41388-022-02243-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
Cyclin D1 is a regulatory subunit of -Cyclin Dependent Kinases 4 and 6 (CDK4/6) and regulates progression from G1 to S phase of the cell cycle. Dysregulated cyclin D1-CDK4/6 contributes to abnormal cell proliferation and tumor development. Phosphorylation of threonine 286 of cyclin D1 is necessary for ubiquitin-dependent degradation. Non-phosphorylatable cyclin D1 mutants are stabilized and concentrated in the nucleus, contributing to genomic instability and tumor development. Studies investigating the tumor-promoting functions of cyclin D1 mutants have focused on the use of artificial promoters to drive the expression which unfortunately may not accurately reflect tumorigenic functions of mutant cyclin D1 in cancer development. We have generated a conditional knock-in mouse model where cyclin D1T286A is expressed under the control of its endogenous promoter following Cre-dependent excision of a lox-stop-lox sequence. Acute expression of cyclin D1T286A following tamoxifen-inducible Cre recombinase triggers inflammation, lymphocyte abnormality and ultimately mesenteric tumors in the intestine. Tissue-specific expression of cyclin D1T286A in the uterus and endometrium cooperates with Pten loss to drive endometrial hyperplasia and cancer. Mechanistically, cyclin D1T286A mutant activates NF-κB signaling, augments inflammation, and contributes to tumor development. These results indicate that mutation of cyclin D1 at threonine 286 has a critical role in regulating inflammation and tumor development.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Polly Phillips-Mason
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Vincenzo Tarallo
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stefanie Avril
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christopher Koivisto
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Gustavo Leone
- Medical College of Wisconsin Cancer Center, Department of Biochemistry, Medical College of Wisconsin, Wauwatosa, WI, 53226, USA
| | - J Alan Diehl
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
6
|
Lossaint G, Horvat A, Gire V, Bacevic K, Mrouj K, Charrier-Savournin F, Georget V, Fisher D, Dulic V. Reciprocal regulation of p21 and Chk1 controls the Cyclin D1-RB pathway to mediate senescence onset after G2 arrest. J Cell Sci 2022; 135:274865. [PMID: 35343565 DOI: 10.1242/jcs.259114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Senescence is an irreversible proliferation withdrawal that can be initiated after DNA damage-induced cell cycle arrest in G2 phase to prevent genomic instability. Senescence onset in G2 requires p53 and RB family tumour suppressors, but how they are regulated to convert a temporary cell cycle arrest into a permanent one remains unknown. Here, we show that a previously unrecognised balance between the CDK inhibitor p21 and Chk1 controls D-type cyclin-CDK activity during G2 arrest. In non-transformed cells, p21 activates RB in G2 by inhibiting Cyclin D1-CDK2/CDK4. The resulting G2 exit, which precedes appearance of senescence markers, is associated with a mitotic bypass, Chk1 downregulation and DNA damage foci reduction. In p53/RB-proficient cancer cells, compromised G2 exit correlates with sustained Chk1 activity, delayed p21 induction, untimely Cyclin E1 re-expression and genome reduplication. Conversely, Chk1 depletion promotes senescence by inducing p21 binding to Cyclin D1 and Cyclin E1-CDK complexes and down-regulating CDK6, whereas Chk2 knockdown enables RB phosphorylation and delays G2 exit. In conclusion, p21 and Chk2 oppose Chk1 to maintain RB activity, thus promoting DNA damage-induced senescence onset in G2.
Collapse
Affiliation(s)
| | | | | | | | - Karim Mrouj
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | | | - Virginie Georget
- CRBM, Univ. Montpellier, CNRS, Montpellier, France.,Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
7
|
Mallucci L, Wells V. Intrinsic S phase checkpoint enforced by an antiproliferative oncosuppressor cytokine. Cancer Gene Ther 2022; 29:897-900. [PMID: 34737438 PMCID: PMC9293749 DOI: 10.1038/s41417-021-00397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022]
Abstract
The cell cycle is strictly programmed with control mechanisms that dictate order in cell cycle progression to ensure faithful DNA replication, whose deviance may lead to cancer. Checkpoint control at the G1/S, S/G2 and G2/M portals have been defined but no statutory time-programmed control for securing orderly transition through S phase has so far been identified. Here we report that in normal cells DNA synthesis is controlled by a checkpoint sited within the early part of S phase, enforced by the βGBP cytokine an antiproliferative molecule otherwise known for its oncosuppressor properties that normal cells constitutively produce for self-regulation. Suppression of active Ras and active MAPK, block of cyclin A gene expression and suppression of CDK2-cyclin A activity are events which while specific to the control of a cell cycle phase in normal cells are part of the apoptotic network in cancer cells.
Collapse
Affiliation(s)
- Livio Mallucci
- grid.13097.3c0000 0001 2322 6764Faculty of Life Sciences and Medicine, King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Campus, London, SE1 1UL UK
| | | |
Collapse
|
8
|
Portman N, Chen J, Lim E. MDM2 as a Rational Target for Intervention in CDK4/6 Inhibitor Resistant, Hormone Receptor Positive Breast Cancer. Front Oncol 2021; 11:777867. [PMID: 34804982 PMCID: PMC8596371 DOI: 10.3389/fonc.2021.777867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
With the adoption of inhibitors of cyclin dependent kinases 4 and 6 (CDK4/6i) in combination with endocrine therapy as standard of care for the treatment of advanced and metastatic estrogen receptor positive (ER+) breast cancer, the search is now on for novel therapeutic options to manage the disease after the inevitable development of resistance to CDK4/6i. In this review we will consider the integral role that the p53/MDM2 axis plays in the interactions between CDK4/6, ERα, and inhibitors of these molecules, the current preclinical evidence for the efficacy of MDM2 inhibitors in ER+ breast cancer, and discuss the possibility of targeting the p53/MDM2 via inhibition of MDM2 in the CDK4/6i resistance setting.
Collapse
Affiliation(s)
- Neil Portman
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Julia Chen
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Elgene Lim
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| |
Collapse
|
9
|
Tan MM, Chen MH, Han F, Wang JW, Tu YX. Role of Bioactive Constituents of Panax notoginseng in the Modulation of Tumorigenesis: A Potential Review for the Treatment of Cancer. Front Pharmacol 2021; 12:738914. [PMID: 34776959 PMCID: PMC8578715 DOI: 10.3389/fphar.2021.738914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of death, affecting people in both developed and developing countries. It is a challenging disease due to its complicated pathophysiological mechanism. Many anti-cancer drugs are used to treat cancer and reduce mortality rates, but their toxicity limits their administration. Drugs made from natural products, which act as multi-targeted therapy, have the ability to target critical signaling proteins in different pathways. Natural compounds possess pharmacological activities such as anti-cancer activity, low toxicity, and minimum side effects. Panax notoginseng is a medicinal plant whose extracts and phytochemicals are used to treat cancer, cardiovascular disorders, blood stasis, easing inflammation, edema, and pain. P. notoginseng's secondary metabolites target cancer's dysregulated pathways, causing cancer cell death. In this review, we focused on several ginsenosides extracted from P. notoginseng that have been evaluated against various cancer cell lines, with the aim of cancer treatment. Furthermore, an in vivo investigation of these ginsenosides should be conducted to gain insight into the dysregulation of several pathways, followed by clinical trials for the potential and effective treatment of cancer.
Collapse
Affiliation(s)
- Ming-Ming Tan
- Department of Emergency Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Min-Hua Chen
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Fang Han
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jun-Wei Wang
- Department of Emergency Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Yue-Xing Tu
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
10
|
Klein K, Witalisz-Siepracka A, Gotthardt D, Agerer B, Locker F, Grausenburger R, Knab VM, Bergthaler A, Sexl V. T Cell-Intrinsic CDK6 Is Dispensable for Anti-Viral and Anti-Tumor Responses In Vivo. Front Immunol 2021; 12:650977. [PMID: 34248938 PMCID: PMC8264666 DOI: 10.3389/fimmu.2021.650977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
The cyclin-dependent kinase 6 (CDK6) regulates the transition through the G1-phase of the cell cycle, but also acts as a transcriptional regulator. As such CDK6 regulates cell survival or cytokine secretion together with STATs, AP-1 or NF-κB. In the hematopoietic system, CDK6 regulates T cell development and promotes leukemia and lymphoma. CDK4/6 kinase inhibitors are FDA approved for treatment of breast cancer patients and have been reported to enhance T cell-mediated anti-tumor immunity. The involvement of CDK6 in T cell functions remains enigmatic. We here investigated the role of CDK6 in CD8+ T cells, using previously generated CDK6 knockout (Cdk6-/-) and kinase-dead mutant CDK6 (Cdk6K43M) knock-in mice. RNA-seq analysis indicated a role of CDK6 in T cell metabolism and interferon (IFN) signaling. To investigate whether these CDK6 functions are T cell-intrinsic, we generated a T cell-specific CDK6 knockout mouse model (Cdk6fl/fl CD4-Cre). T cell-intrinsic loss of CDK6 enhanced mitochondrial respiration in CD8+ T cells, but did not impact on cytotoxicity and production of the effector cytokines IFN-γ and TNF-α by CD8+ T cells in vitro. Loss of CDK6 in peripheral T cells did not affect tumor surveillance of MC38 tumors in vivo. Similarly, while we observed an impaired induction of early responses to type I IFN in CDK6-deficient CD8+ T cells, we failed to observe any differences in the response to LCMV infection upon T cell-intrinsic loss of CDK6 in vivo. This apparent contradiction might at least partially be explained by the reduced expression of Socs1, a negative regulator of IFN signaling, in CDK6-deficient CD8+ T cells. Therefore, our data are in line with a dual role of CDK6 in IFN signaling; while CDK6 promotes early IFN responses, it is also involved in the induction of a negative feedback loop. These data assign CDK6 a role in the fine-tuning of cytokine responses.
Collapse
Affiliation(s)
- Klara Klein
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix Locker
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vanessa Maria Knab
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
11
|
O’Connor SA, Feldman HM, Arora S, Hoellerbauer P, Toledo CM, Corrin P, Carter L, Kufeld M, Bolouri H, Basom R, Delrow J, McFaline‐Figueroa JL, Trapnell C, Pollard SM, Patel A, Paddison PJ, Plaisier CL. Neural G0: a quiescent-like state found in neuroepithelial-derived cells and glioma. Mol Syst Biol 2021; 17:e9522. [PMID: 34101353 PMCID: PMC8186478 DOI: 10.15252/msb.20209522] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Single-cell RNA sequencing has emerged as a powerful tool for resolving cellular states associated with normal and maligned developmental processes. Here, we used scRNA-seq to examine the cell cycle states of expanding human neural stem cells (hNSCs). From these data, we constructed a cell cycle classifier that identifies traditional cell cycle phases and a putative quiescent-like state in neuroepithelial-derived cell types during mammalian neurogenesis and in gliomas. The Neural G0 markers are enriched with quiescent NSC genes and other neurodevelopmental markers found in non-dividing neural progenitors. Putative glioblastoma stem-like cells were significantly enriched in the Neural G0 cell population. Neural G0 cell populations and gene expression are significantly associated with less aggressive tumors and extended patient survival for gliomas. Genetic screens to identify modulators of Neural G0 revealed that knockout of genes associated with the Hippo/Yap and p53 pathways diminished Neural G0 in vitro, resulting in faster G1 transit, down-regulation of quiescence-associated markers, and loss of Neural G0 gene expression. Thus, Neural G0 represents a dynamic quiescent-like state found in neuroepithelial-derived cells and gliomas.
Collapse
Affiliation(s)
- Samantha A O’Connor
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZUSA
| | - Heather M Feldman
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Sonali Arora
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Pia Hoellerbauer
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | - Chad M Toledo
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | - Philip Corrin
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Lucas Carter
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Megan Kufeld
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Hamid Bolouri
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Ryan Basom
- Genomics and Bioinformatics Shared ResourcesFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Jeffrey Delrow
- Genomics and Bioinformatics Shared ResourcesFred Hutchinson Cancer Research CenterSeattleWAUSA
| | | | - Cole Trapnell
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | - Steven M Pollard
- Edinburgh CRUK Cancer Research CentreMRC Centre for Regenerative MedicineThe University of EdinburghEdinburghUK
| | - Anoop Patel
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Department of NeurosurgeryUniversity of WashingtonSeattleWAUSA
| | - Patrick J Paddison
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | | |
Collapse
|
12
|
Merchut-Maya JM, Maya-Mendoza A. The Contribution of Lysosomes to DNA Replication. Cells 2021; 10:cells10051068. [PMID: 33946407 PMCID: PMC8147142 DOI: 10.3390/cells10051068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Lysosomes, acidic, membrane-bound organelles, are not only the core of the cellular recycling machinery, but they also serve as signaling hubs regulating various metabolic pathways. Lysosomes maintain energy homeostasis and provide pivotal substrates for anabolic processes, such as DNA replication. Every time the cell divides, its genome needs to be correctly duplicated; therefore, DNA replication requires rigorous regulation. Challenges that negatively affect DNA synthesis, such as nucleotide imbalance, result in replication stress with severe consequences for genome integrity. The lysosomal complex mTORC1 is directly involved in the synthesis of purines and pyrimidines to support DNA replication. Numerous drugs have been shown to target lysosomal function, opening an attractive avenue for new treatment strategies against various pathologies, including cancer. In this review, we focus on the interplay between lysosomal function and DNA replication through nucleic acid degradation and nucleotide biosynthesis and how these could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Joanna Maria Merchut-Maya
- DNA Replication and Cancer Group, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark;
- Genome Integrity, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Apolinar Maya-Mendoza
- DNA Replication and Cancer Group, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark;
- Correspondence: ; Tel.: +45-35-25-73-10
| |
Collapse
|
13
|
Liu Y, Chen H, Li X, Zhang F, Kong L, Wang X, Bai J, Wu X. PSMC2 Regulates Cell Cycle Progression Through the p21/Cyclin D1 Pathway and Predicts a Poor Prognosis in Human Hepatocellular Carcinoma. Front Oncol 2021; 11:607021. [PMID: 33718159 PMCID: PMC7952995 DOI: 10.3389/fonc.2021.607021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
Proteasome 26S subunit ATPase 2 (PSMC2) plays a pathogenic role in various cancers. However, its function and molecular mechanism in hepatocellular carcinoma (HCC) remain unknown. In this study, tissue microarray (TMA) analysis showed that PSMC2 is highly expressed in HCC tumors and correlates with poor overall and disease-free survival in HCC patients. Multivariate Cox regression analysis revealed that PSMC2 is an independent prognostic factor for HCC patients. Furthermore, our results showed that PSMC2 knockdown inhibited cell proliferation and suppressed tumorigenesis in vivo. Knockdown of PSMC2 increased the expression of p21 and therefore decreased the expression of cyclin D1. Dual-luciferase reporter assays indicated that depletion of PSMC2 significantly enhanced the promoter activity of p21. Importantly, PSMC2 knockdown-induced phenotypes were also rescued by downregulation of P21. Taken together, our data suggest that PSMC2 promotes HCC cell proliferation and cell cycle progression through the p21/cyclin D1 signaling pathway and could be a promising diagnostic and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Yiwei Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Hairong Chen
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Feng Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Lianbao Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaofeng Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| |
Collapse
|
14
|
Blatt EB, Kopplin N, Kumar S, Mu P, Conzen SD, Raj GV. Overcoming oncogene addiction in breast and prostate cancers: a comparative mechanistic overview. Endocr Relat Cancer 2021; 28:R31-R46. [PMID: 33263560 PMCID: PMC8218927 DOI: 10.1530/erc-20-0272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) and breast cancer (BCa) are both hormone-dependent cancers that require the androgen receptor (AR) and estrogen receptor (ER, ESR1) for growth and proliferation, respectively. Endocrine therapies that target these nuclear receptors (NRs) provide significant clinical benefit for metastatic patients. However, these therapeutic strategies are seldom curative and therapy resistance is prevalent. Because the vast majority of therapy-resistant PCa and BCa remain dependent on the augmented activity of their primary NR driver, common mechanisms of resistance involve enhanced NR signaling through overexpression, mutation, or alternative splicing of the receptor, coregulator alterations, and increased intracrine hormonal synthesis. In addition, a significant subset of endocrine therapy-resistant tumors become independent of their primary NR and switch to alternative NR or transcriptional drivers. While these hormone-dependent cancers generally employ similar mechanisms of endocrine therapy resistance, distinct differences between the two tumor types have been observed. In this review, we compare and contrast the most frequent mechanisms of antiandrogen and antiestrogen resistance, and provide potential therapeutic strategies for targeting both advanced PCa and BCa.
Collapse
Affiliation(s)
- Eliot B Blatt
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Noa Kopplin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shourya Kumar
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ping Mu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suzanne D Conzen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Investigating the influence of physiologically relevant hydrostatic pressure on CHO cell batch culture. Sci Rep 2021; 11:162. [PMID: 33420324 PMCID: PMC7794228 DOI: 10.1038/s41598-020-80576-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022] Open
Abstract
Chinese hamster ovary (CHO) cells have been the most commonly used mammalian host for large-scale commercial production of therapeutic proteins, such as monoclonal antibodies. Enhancement of productivity of these CHO cells is one of the top priorities in the biopharmaceutical industry to reduce manufacturing cost. Although there are many different methods (e.g. temperature, pH, feed) to improve protein production in CHO cells, the role of physiologically relevant hydrostatic pressure in CHO cell culture has not been reported yet. In this study, four different hydrostatic pressures (0, 30, 60, and 90 mmHg) were applied to batch CHO cells, and their cell growth/metabolism and IgG1 production were examined. Our results indicate that hydrostatic pressure can increase the maximum cell concentration by up to 50%. Moreover, overall IgG1 concentration on Day 5 showed that 30 mmHg pressure can increase IgG1 production by 26%. The percentage of non-disulphide-linked antibody aggregates had no significant change under pressure. Besides, no significant difference was observed between 30 mmHg and no pressure conditions in terms of cell clumping formation. All these findings are important for the optimization of fed-batch or perfusion culture for directing cell growth and improving antibody production.
Collapse
|
16
|
Yuan K, Wang X, Dong H, Min W, Hao H, Yang P. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs. Acta Pharm Sin B 2021; 11:30-54. [PMID: 33532179 PMCID: PMC7838032 DOI: 10.1016/j.apsb.2020.05.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 01/02/2023] Open
Abstract
The sustained cell proliferation resulting from dysregulation of the cell cycle and activation of cyclin-dependent kinases (CDKs) is a hallmark of cancer. The inhibition of CDKs is a highly promising and attractive strategy for the development of anticancer drugs. In particular, third-generation CDK inhibitors can selectively inhibit CDK4/6 and regulate the cell cycle by suppressing the G1 to S phase transition, exhibiting a perfect balance between anticancer efficacy and general toxicity. To date, three selective CDK4/6 inhibitors have received approval from the U.S. Food and Drug Administration (FDA), and 15 CDK4/6 inhibitors are in clinical trials for the treatment of cancers. In this perspective, we discuss the crucial roles of CDK4/6 in regulating the cell cycle and cancer cells, analyze the rationale for selectively inhibiting CDK4/6 for cancer treatment, review the latest advances in highly selective CDK4/6 inhibitors with different chemical scaffolds, explain the mechanisms associated with CDK4/6 inhibitor resistance and describe solutions to overcome this issue, and briefly introduce proteolysis targeting chimera (PROTAC), a new and revolutionary technique used to degrade CDK4/6.
Collapse
Key Words
- AKT, protein kinase B
- AML, acute myeloid leukemia
- CDK4/6
- CDKs, cyclin-dependent kinases
- CIP/KIP, cyclin-dependent kinase inhibitor 1/kinase inhibitory protein
- CKIs, cyclin-dependent kinase inhibitors
- CPU, China Pharmaceutical University
- CRPC, castration-resistant prostate cancer
- Cancer
- Cell cycle
- Drug resistance
- ER, estrogen receptor
- ERK, extracellular regulated protein kinases
- FDA, U.S. Food and Drug Administration
- FLT, fms-like tyrosine kinase
- HER2, human epidermal growth factor receptor 2
- INK4, inhibitors of CDK4
- JAK, janus kinase
- MCL, mantle cell lymphoma
- MM, multiple myeloma
- NSCLC, non-small cell lung cancer
- ORR, overall response rates
- PDK1, 3-phosphoinositide-dependent protein kinase 1
- PFS, progression-free survival
- PI3K, phosphatidylinositol 3-hydroxy kinase
- PR, progesterone receptor
- PROTAC
- PROTAC, proteolysis targeting chimera
- RB, retinoblastoma protein
- SPH, Shanghai Pharmaceuticals Holding Co., Ltd.
- STATs, signal transducers and activators of transcription
- Selectivity
- UNISA, University of South Australia
Collapse
Affiliation(s)
- Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haojie Dong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
17
|
Aly AA, Bräse S, Hassan AA, Mohamed NK, El-Haleem LEA, Nieger M, Morsy NM, Alshammari MB, Ibrahim MAA, Abdelhafez EMN. Design, Synthesis, and Molecular Docking of Paracyclophanyl-Thiazole Hybrids as Novel CDK1 Inhibitors and Apoptosis Inducing Anti-Melanoma Agents. Molecules 2020; 25:molecules25235569. [PMID: 33260954 PMCID: PMC7729638 DOI: 10.3390/molecules25235569] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Three new series of paracyclophanyl-dihydronaphtho[2,3-d]thiazoles and paracyclophanyl-thiazolium bromides were designed, synthesized, and characterized by their spectroscopic data, along with X-ray analysis. One-dose assay results of anticancer activity indicated that 3a–e had the highest ability to inhibit the proliferation of different cancer cell lines. Moreover, the hybrids 3c–e were selected for five-dose analyses to demonstrate a broad spectrum of antitumor activity without apparent selectivity. Interestingly, series I compounds (Z)-N-substituted-4,9-dihydronaphtho[2,3-d]thiazol-3(2H)-yl)-4′-[2.2]paracyclophanylamide) that are carrying 1,4-dihydronaphthoquinone were more active as antiproliferative agents than their naphthalene-containing congeners (series II: substituted 2-(4′-[2.2]paracyclophanyl)hydrazinyl)-4-(naphth-2-yl)-thiazol-3-ium bromide hybrids) and (series III: 3-(4′-[2.2]paracyclophanyl)amido-2-(cyclopropylamino)-4-(naphth-2-yl)thiazol-3-ium bromide) toward the SK-MEL-5 melanoma cell line. Further antiproliferation investigations of 3c and 3e on the healthy, normal unaffected SK-MEL-5 cell line indicated their relative safety. Compound 3c showed an inhibition of eight isoforms of cyclin-dependent kinases (CDK); however, it exhibited the lowest IC50 of 54.8 nM on CDK1 in comparison to Dinaciclib as a reference. Additionally, compound 3c revealed a remarkable downregulation of phospho-Tyr15 with a level (7.45 pg/mL) close to the reference. 3c mainly showed cell cycle arrest in the pre-G1 and G2/M phases upon analysis of the SK-MEL-5 cell line. The sequential caspase-3 assay for 3c indicated a remarkable overexpression level. Finally, a molecular docking study was adopted to elucidate the binding mode and interactions of the target compounds with CDK1.
Collapse
Affiliation(s)
- Ashraf A. Aly
- Department of Chemistry, Faculty of Science, Minia University, El Minia 61519, Egypt; (A.A.H.); (N.K.M.); (M.A.A.I.)
- Correspondence: or (A.A.A.); (S.B.); or (E.M.N.A.); Tel.: +20-10-0626-8742 (A.A.A.); +49-721-608-42902 (S.B.); +20-10-2158-3335 (E.M.N.A.)
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: or (A.A.A.); (S.B.); or (E.M.N.A.); Tel.: +20-10-0626-8742 (A.A.A.); +49-721-608-42902 (S.B.); +20-10-2158-3335 (E.M.N.A.)
| | - Alaa A. Hassan
- Department of Chemistry, Faculty of Science, Minia University, El Minia 61519, Egypt; (A.A.H.); (N.K.M.); (M.A.A.I.)
| | - Nasr K. Mohamed
- Department of Chemistry, Faculty of Science, Minia University, El Minia 61519, Egypt; (A.A.H.); (N.K.M.); (M.A.A.I.)
| | - Lamiaa E. Abd El-Haleem
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio I), 00014 Helsinki, Finland;
| | - Nesrin M. Morsy
- National Research Centre, Organometallic and Organometalloid Chemistry Department, Dokki, Cairo 12622, Egypt;
| | - Mohammed B. Alshammari
- College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Mahmoud A. A. Ibrahim
- Department of Chemistry, Faculty of Science, Minia University, El Minia 61519, Egypt; (A.A.H.); (N.K.M.); (M.A.A.I.)
| | - Elshimaa M. N. Abdelhafez
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, El Minia 61519, Egypt
- Correspondence: or (A.A.A.); (S.B.); or (E.M.N.A.); Tel.: +20-10-0626-8742 (A.A.A.); +49-721-608-42902 (S.B.); +20-10-2158-3335 (E.M.N.A.)
| |
Collapse
|
18
|
Tumor regression and resistance mechanisms upon CDK4 and RAF1 inactivation in KRAS/P53 mutant lung adenocarcinomas. Proc Natl Acad Sci U S A 2020; 117:24415-24426. [PMID: 32913049 DOI: 10.1073/pnas.2002520117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
KRAS mutant lung adenocarcinomas remain intractable for targeted therapies. Genetic interrogation of KRAS downstream effectors, including the MAPK pathway and the interphase CDKs, identified CDK4 and RAF1 as the only targets whose genetic inactivation induces therapeutic responses without causing unacceptable toxicities. Concomitant CDK4 inactivation and RAF1 ablation prevented tumor progression and induced complete regression in 25% of KRAS/p53-driven advanced lung tumors, yet a significant percentage of those tumors that underwent partial regression retained a population of CDK4/RAF1-resistant cells. Characterization of these cells revealed two independent resistance mechanisms implicating hypermethylation of several tumor suppressors and increased PI3K activity. Importantly, these CDK4/RAF1-resistant cells can be pharmacologically controlled. These studies open the door to new therapeutic strategies to treat KRAS mutant lung cancer, including resistant tumors.
Collapse
|
19
|
Nebenfuehr S, Kollmann K, Sexl V. The role of CDK6 in cancer. Int J Cancer 2020; 147:2988-2995. [PMID: 32406095 PMCID: PMC7586846 DOI: 10.1002/ijc.33054] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022]
Abstract
The regulation and function of cyclin‐dependent kinase 6 (CDK6)‐ and cyclin‐dependent kinase 4 (CDK4)‐cyclin complexes are commonly altered with enhanced kinase activity found in hematopoietic malignancies, breast cancer and melanoma making CDK4 and CDK6 attractive targets for therapeutic interference. Although dual CDK4/6 inhibitors have revolutionized treatment of breast cancer patients and reveal promising results in several solid tumors and hematological malignancies, there is a need for novel compounds targeting the versatile kinase‐independent functions of CDK6 to improve cancer treatment. The following review summarizes the latest findings on CDK6 in cancer development and discusses novel therapeutic approaches to selectively inhibit CDK6s function as a transcriptional regulator.
Collapse
Affiliation(s)
- Sofie Nebenfuehr
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
20
|
Yang HW, Cappell SD, Jaimovich A, Liu C, Chung M, Daigh LH, Pack LR, Fan Y, Regot S, Covert M, Meyer T. Stress-mediated exit to quiescence restricted by increasing persistence in CDK4/6 activation. eLife 2020; 9:44571. [PMID: 32255427 PMCID: PMC7213986 DOI: 10.7554/elife.44571] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/02/2020] [Indexed: 01/04/2023] Open
Abstract
Mammalian cells typically start the cell-cycle entry program by activating cyclin-dependent protein kinase 4/6 (CDK4/6). CDK4/6 activity is clinically relevant as mutations, deletions, and amplifications that increase CDK4/6 activity contribute to the progression of many cancers. However, when CDK4/6 is activated relative to CDK2 remained incompletely understood. Here, we developed a reporter system to simultaneously monitor CDK4/6 and CDK2 activities in single cells and found that CDK4/6 activity increases rapidly before CDK2 activity gradually increases, and that CDK4/6 activity can be active after mitosis or inactive for variable time periods. Markedly, stress signals in G1 can rapidly inactivate CDK4/6 to return cells to quiescence but with reduced probability as cells approach S phase. Together, our study reveals a regulation of G1 length by temporary inactivation of CDK4/6 activity after mitosis, and a progressively increasing persistence in CDK4/6 activity that restricts cells from returning to quiescence as cells approach S phase.
Collapse
Affiliation(s)
- Hee Won Yang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Steven D Cappell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States.,Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Ariel Jaimovich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Chad Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Leighton H Daigh
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Lindsey R Pack
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Yilin Fan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Bioengineering, Stanford University School of Medicine, Stanford, United States
| | - Markus Covert
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States.,Department of Bioengineering, Stanford University School of Medicine, Stanford, United States
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States.,Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, United States
| |
Collapse
|
21
|
Pérez-Posada A, Dudin O, Ocaña-Pallarès E, Ruiz-Trillo I, Ondracka A. Cell cycle transcriptomics of Capsaspora provides insights into the evolution of cyclin-CDK machinery. PLoS Genet 2020; 16:e1008584. [PMID: 32176685 PMCID: PMC7098662 DOI: 10.1371/journal.pgen.1008584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/26/2020] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Progression through the cell cycle in eukaryotes is regulated on multiple levels. The main driver of the cell cycle progression is the periodic activity of cyclin-dependent kinase (CDK) complexes. In parallel, transcription during the cell cycle is regulated by a transcriptional program that ensures the just-in-time gene expression. Many core cell cycle regulators are widely conserved in eukaryotes, among them cyclins and CDKs; however, periodic transcriptional programs are divergent between distantly related species. In addition, many otherwise conserved cell cycle regulators have been lost and independently evolved in yeast, a widely used model organism for cell cycle research. For a better understanding of the evolution of the cell cycle regulation in opisthokonts, we investigated the transcriptional program during the cell cycle of the filasterean Capsaspora owczarzaki, a unicellular species closely related to animals. We developed a protocol for cell cycle synchronization in Capsaspora cultures and assessed gene expression over time across the entire cell cycle. We identified a set of 801 periodic genes that grouped into five clusters of expression over time. Comparison with datasets from other eukaryotes revealed that the periodic transcriptional program of Capsaspora is most similar to that of animal cells. We found that orthologues of cyclin A, B and E are expressed at the same cell cycle stages as in human cells and in the same temporal order. However, in contrast to human cells where these cyclins interact with multiple CDKs, Capsaspora cyclins likely interact with a single ancestral CDK1-3. Thus, the Capsaspora cyclin-CDK system could represent an intermediate state in the evolution of animal-like cyclin-CDK regulation. Overall, our results demonstrate that Capsaspora could be a useful unicellular model system for animal cell cycle regulation.
Collapse
Affiliation(s)
- Alberto Pérez-Posada
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Eduard Ocaña-Pallarès
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- ICREA, Barcelona, Catalonia, Spain
| | - Andrej Ondracka
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| |
Collapse
|
22
|
Mitchell DC, Menon A, Garner AL. Cyclin-dependent kinase 4 inhibits the translational repressor 4E-BP1 to promote cap-dependent translation during mitosis-G1 transition. FEBS Lett 2019; 594:1307-1318. [PMID: 31853978 DOI: 10.1002/1873-3468.13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/18/2023]
Abstract
Phosphorylation of translational repressor eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) controls the initiation of cap-dependent translation, a type of protein synthesis that is frequently upregulated in human diseases such as cancer. Because of its critical cellular function, it is not surprising that multiple kinases can post-translationally modify 4E-BP1 to drive aberrant cap-dependent translation. We recently reported a site-selective chemoproteomic method for uncovering kinase-substrate interactions, and using this approach, we discovered the cyclin-dependent kinase (CDK)4 as a new 4E-BP1 kinase. Herein, we describe our extension of this work and reveal the role of CDK4 in modulating 4E-BP1 activity in the transition from mitosis to G1, thereby demonstrating a novel role for this kinase in cell cycle regulation.
Collapse
Affiliation(s)
- Dylan C Mitchell
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Amanda L Garner
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Guiley KZ, Stevenson JW, Lou K, Barkovich KJ, Kumarasamy V, Wijeratne TU, Bunch KL, Tripathi S, Knudsen ES, Witkiewicz AK, Shokat KM, Rubin SM. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science 2019; 366:eaaw2106. [PMID: 31831640 PMCID: PMC7592119 DOI: 10.1126/science.aaw2106] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The p27 protein is a canonical negative regulator of cell proliferation and acts primarily by inhibiting cyclin-dependent kinases (CDKs). Under some circumstances, p27 is associated with active CDK4, but no mechanism for activation has been described. We found that p27, when phosphorylated by tyrosine kinases, allosterically activated CDK4 in complex with cyclin D1 (CDK4-CycD1). Structural and biochemical data revealed that binding of phosphorylated p27 (phosp27) to CDK4 altered the kinase adenosine triphosphate site to promote phosphorylation of the retinoblastoma tumor suppressor protein (Rb) and other substrates. Surprisingly, purified and endogenous phosp27-CDK4-CycD1 complexes were insensitive to the CDK4-targeting drug palbociclib. Palbociclib instead primarily targeted monomeric CDK4 and CDK6 (CDK4/6) in breast tumor cells. Our data characterize phosp27-CDK4-CycD1 as an active Rb kinase that is refractory to clinically relevant CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Keelan Z Guiley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Jack W Stevenson
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Kevin Lou
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Krister J Barkovich
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Center, Buffalo, NY 14263, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Katharine L Bunch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Center, Buffalo, NY 14263, USA
| | | | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
24
|
Yudhani RD, Astuti I, Mustofa M, Indarto D, Muthmainah M. Metformin Modulates Cyclin D1 and P53 Expression to Inhibit Cell Proliferation and to Induce Apoptosis in Cervical Cancer Cell Lines. Asian Pac J Cancer Prev 2019; 20:1667-1673. [PMID: 31244286 PMCID: PMC7021606 DOI: 10.31557/apjcp.2019.20.6.1667] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Cervical cancer is one of the most prevalent gynecological cancers worldwide and contributes in high mortality of Indonesian women. The efficacy of chemotherapy as a standart therapy for cervical cancer decreases because it frequenly rises adverse effects. Recent studies have found that metformin has a potential anticancer effect mostly through reduction of cyclin expression and activation of Activated Adenosine Monophosphate Kinase (AMPK). This study aimed to investigate the effect of metfomin on expression of cyclin D1 and p53 and apoptosis in HeLa cancer cell line. Methods: HeLa cells were treated with various doses of metformin and doxorubicin as a positive control. Cytotoxic effect of metformin was determined using the MTT assay. Immunocytochemistry was used to assess cyclin D1 and p53 expression and apoptosis levels of treated HeLa cells were analyzed using flowcytometry. Data of cyclin D1 expression was statistically analyzed using the Kruskal-Wallis test followed by the Tamhane test, whilst ANOVA and Tukey post Hoc tests were used to analyze data of p53 and apoptosis level. The significant value was p< 0.05. Results: Metformin was able to inhibit proliferation of HeLa cells with IC50 60 mM. HeLa cells treated with 60 and 120 mM metformin had lower cyclin D1 expression than HeLa cells treated without metformin and reached a significant difference (p= 0.001). Moreover, 30 mM or higher doses of metformin increase significantly p53 expression (p< 0.001). Induction of apoptosis was observed in HeLa cells treated with all doses of metformin and reached statistically difference (p= 0.04 and p < 0.001). Conclusion: Metformin can modulate cyclin D1 and p53 expression in HeLa cancer cell line, leading to inhibition of cell proliferation and induction of apoptosis. Other cyclin family members, CDK inhibitors and AMPK signaling should be further investigated in order to know mechanism of metformin action.
Collapse
Affiliation(s)
- Ratih Dewi Yudhani
- Departement of Pharmacology, Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia.
| | - Indwiani Astuti
- Departement of Pharmacology, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Mustofa Mustofa
- Departement of Pharmacology, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Dono Indarto
- Departement of Phisiology, Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | - Muthmainah Muthmainah
- Departement of Anatomy, Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| |
Collapse
|
25
|
Topacio BR, Zatulovskiy E, Cristea S, Xie S, Tambo CS, Rubin SM, Sage J, Kõivomägi M, Skotheim JM. Cyclin D-Cdk4,6 Drives Cell-Cycle Progression via the Retinoblastoma Protein's C-Terminal Helix. Mol Cell 2019; 74:758-770.e4. [PMID: 30982746 PMCID: PMC6800134 DOI: 10.1016/j.molcel.2019.03.020] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/01/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Abstract
The cyclin-dependent kinases Cdk4 and Cdk6 form complexes with D-type cyclins to drive cell proliferation. A well-known target of cyclin D-Cdk4,6 is the retinoblastoma protein Rb, which inhibits cell-cycle progression until its inactivation by phosphorylation. However, the role of Rb phosphorylation by cyclin D-Cdk4,6 in cell-cycle progression is unclear because Rb can be phosphorylated by other cyclin-Cdks, and cyclin D-Cdk4,6 has other targets involved in cell division. Here, we show that cyclin D-Cdk4,6 docks one side of an alpha-helix in the Rb C terminus, which is not recognized by cyclins E, A, and B. This helix-based docking mechanism is shared by the p107 and p130 Rb-family members across metazoans. Mutation of the Rb C-terminal helix prevents its phosphorylation, promotes G1 arrest, and enhances Rb's tumor suppressive function. Our work conclusively demonstrates that the cyclin D-Rb interaction drives cell division and expands the diversity of known cyclin-based protein docking mechanisms.
Collapse
Affiliation(s)
| | | | - Sandra Cristea
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shicong Xie
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Carrie S Tambo
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mardo Kõivomägi
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Urbach A, Witte OW. Divide or Commit - Revisiting the Role of Cell Cycle Regulators in Adult Hippocampal Neurogenesis. Front Cell Dev Biol 2019; 7:55. [PMID: 31069222 PMCID: PMC6491688 DOI: 10.3389/fcell.2019.00055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
The adult dentate gyrus continuously generates new neurons that endow the brain with increased plasticity, helping to cope with changing environmental and cognitive demands. The process leading to the birth of new neurons spans several precursor stages and is the result of a coordinated series of fate decisions, which are tightly controlled by extrinsic signals. Many of these signals act through modulation of cell cycle (CC) components, not only to drive proliferation, but also for linage commitment and differentiation. In this review, we provide a comprehensive overview on key CC components and regulators, with emphasis on G1 phase, and analyze their specific functions in precursor cells of the adult hippocampus. We explore their role for balancing quiescence versus self-renewal, which is essential to maintain a lifelong pool of neural stem cells while producing new neurons “on demand.” Finally, we discuss available evidence and controversies on the impact of CC/G1 length on proliferation versus differentiation decisions.
Collapse
Affiliation(s)
- Anja Urbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
27
|
Jin Y, Xu L, Wu X, Feng J, Shu M, Gu H, Gao G, Zhang J, Dong B, Chen X. Synergistic Efficacy of the Demethylation Agent Decitabine in Combination With the Protease Inhibitor Bortezomib for Treating Multiple Myeloma Through the Wnt/β-Catenin Pathway. Oncol Res 2019; 27:729-737. [PMID: 30837032 PMCID: PMC7848415 DOI: 10.3727/096504018x15443011011637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a hematopoietic malignancy characterized by the clonal proliferation of antibody-secreting plasma cells. Bortezomib (BZM), the first FDA-approved proteasome inhibitor, has significant antimyeloma activity and prolongs the median survival of MM patients. However, MM remains incurable predominantly due to acquired drug resistance and disease relapse. β-Catenin, a key effector protein in the canonical Wnt signaling pathway, has been implicated in regulating myeloma cell sensitivity to BZM. Decitabine (DAC) is an epigenetic modulating agent that induces tumor suppressor gene reexpression based on its gene-specific DNA hypomethylation. DAC has been implicated in modulating Wnt/β-catenin signaling by promoting the demethylation of the Wnt/β-catenin antagonists sFRP and DKK. In this study, we report the effects of single reagent DAC therapy and DAC combined with BZM on β-catenin accumulation, myeloma cell survival, apoptosis, and treatment sensitivity. Our study proved that DAC demethylated and induced the reexpression of the Wnt antagonists sFRP3 and DKK1. DAC also reduced GSK3β (Ser9) phosphorylation and decreased β-catenin accumulation in the nucleus, which were induced by BZM. Thus, the transcription of cyclin D1, c-Myc, and LEF/TCF was reduced, which synergistically inhibited cell proliferation, enhanced BZM-induced apoptosis, and promoted BZM-induced cell cycle arrest in myeloma cells. In summary, these results indicated that DAC could synergistically enhance myeloma cell sensitivity to BZM at least partly by regulating Wnt/β-catenin signaling. Our results can be used to optimize therapeutic regimens for MM.
Collapse
Affiliation(s)
- Yulong Jin
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Li Xu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Xiaodong Wu
- Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Juan Feng
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Mimi Shu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Hongtao Gu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Guangxun Gao
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Jinyi Zhang
- Department of School of Life Sciences, Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Baoxia Dong
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Xiequn Chen
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
28
|
Quintana-Urzainqui I, Kozić Z, Mitra S, Tian T, Manuel M, Mason JO, Price DJ. Tissue-Specific Actions of Pax6 on Proliferation and Differentiation Balance in Developing Forebrain Are Foxg1 Dependent. iScience 2018; 10:171-191. [PMID: 30529950 PMCID: PMC6287089 DOI: 10.1016/j.isci.2018.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Differences in the growth and maturation of diverse forebrain tissues depend on region-specific transcriptional regulation. Individual transcription factors act simultaneously in multiple regions that develop very differently, raising questions about the extent to which their actions vary regionally. We found that the transcription factor Pax6 affects the transcriptomes and the balance between proliferation and differentiation in opposite directions in the diencephalon versus cerebral cortex. We tested several possible mechanisms to explain Pax6's tissue-specific actions and found that the presence of the transcription factor Foxg1 in the cortex but not in the diencephalon was most influential. We found that Foxg1 is responsible for many of the differences in cell cycle gene expression between the diencephalon and cortex and, in cortex lacking Foxg1, Pax6's action on the balance of proliferation versus differentiation becomes diencephalon like. Our findings reveal a mechanism for generating regional forebrain diversity in which one transcription factor completely reverses the actions of another.
Collapse
Affiliation(s)
- Idoia Quintana-Urzainqui
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | - Zrinko Kozić
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Soham Mitra
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Tian Tian
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Martine Manuel
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - John O Mason
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - David J Price
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
29
|
Fan Y, Sanyal S, Bruzzone R. Breaking Bad: How Viruses Subvert the Cell Cycle. Front Cell Infect Microbiol 2018; 8:396. [PMID: 30510918 PMCID: PMC6252338 DOI: 10.3389/fcimb.2018.00396] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023] Open
Abstract
Interactions between the host and viruses during the course of their co-evolution have not only shaped cellular function and the immune system, but also the counter measures employed by viruses. Relatively small genomes and high replication rates allow viruses to accumulate mutations and continuously present the host with new challenges. It is therefore, no surprise that they either escape detection or modulate host physiology, often by redirecting normal cellular pathways to their own advantage. Viruses utilize a diverse array of strategies and molecular targets to subvert host cellular processes, while evading detection. These include cell-cycle regulation, major histocompatibility complex-restricted antigen presentation, intracellular protein transport, apoptosis, cytokine-mediated signaling, and humoral immune responses. Moreover, viruses routinely manipulate the host cell cycle to create a favorable environment for replication, largely by deregulating cell cycle checkpoints. This review focuses on our current understanding of the molecular aspects of cell cycle regulation that are often targeted by viruses. Further study of their interactions should provide fundamental insights into cell cycle regulation and improve our ability to exploit these viruses.
Collapse
Affiliation(s)
- Ying Fan
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,LKS Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| |
Collapse
|
30
|
Zingerone Suppresses Tumor Development through Decreasing Cyclin D1 Expression and Inducing Mitotic Arrest. Int J Mol Sci 2018; 19:ijms19092832. [PMID: 30235818 PMCID: PMC6163242 DOI: 10.3390/ijms19092832] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer cells undergo uncontrolled proliferation resulting from aberrant activity of various cell-cycle proteins. Therefore, despite recent advances in intensive chemotherapy, it is difficult to cure cancer completely. Recently, cell-cycle regulators became attractive targets in cancer therapy. Zingerone, a phenolic compound isolated from ginger, is a nontoxic and inexpensive compound with varied pharmacological activities. In this study, the therapeutic effect of zingerone as an anti-mitotic agent in human neuroblastoma cells was investigated. Following treatment of BE(2)-M17 cells with zingerone, we performed a 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and colony-formation assay to evaluate cellular proliferation, in addition to immunofluorescence cytochemistry and flow cytometry to examine the mitotic cells. The association of gene expression with tumor stage and survival was analyzed. Furthermore, to examine the anti-cancer effect of zingerone, we applied a BALB/c mouse-tumor model using a BALB/c-derived adenocarcinoma cell line. In human neuroblastoma cells, zingerone inhibited cellular viability and survival. Moreover, the number of mitotic cells, particularly those in prometaphase, increased in zingerone-treated neuroblastoma cells. Regarding specific molecular mechanisms, zingerone decreased cyclin D1 expression and induced the cleavage of caspase-3 and poly (ADP-ribose) polymerase 1 (PARP-1). The decrease in cyclin D1 and increase in histone H3 phosphorylated (p)-Ser10 were confirmed by immunohistochemistry in tumor tissues administered with zingerone. These results suggest that zingerone induces mitotic arrest followed by inhibition of growth of neuroblastoma cells. Collectively, zingerone may be a potential therapeutic drug for human cancers, including neuroblastoma.
Collapse
|
31
|
Roof AK, Jirawatnotai S, Trudeau T, Kuzyk C, Wierman ME, Kiyokawa H, Gutierrez-Hartmann A. The Balance of PI3K and ERK Signaling Is Dysregulated in Prolactinoma and Modulated by Dopamine. Endocrinology 2018; 159:2421-2434. [PMID: 29726995 PMCID: PMC6172703 DOI: 10.1210/en.2017-03135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
Prolactin-secreting adenomas, or prolactinomas, cause hypogonadism, osteoporosis, and infertility. Although dopamine agonists (DAs) are used clinically to treat prolactinoma and reduce prolactin secretion via cAMP inhibition, the precise mechanism by which DAs inhibit lactotrope proliferation has not been defined. In this study, we report that phosphatidylinositol 3-kinase (PI3K) signals through AKT and mTOR to drive proliferation of pituitary somatolactotrope GH4T2 cells. We demonstrate that the DA cabergoline reduces activity of the mTOR effector s6K and diminishes GH4T2 cell proliferation primarily via activation of the long isoform of the dopamine D2 receptor (D2R). Dysfunctional D2R-mediated signaling and/or downregulated D2R expression is thought be the primary mechanism of DA resistance, which is observed in 10% to 20% of prolactinoma tumors. Dopamine-mediated D2R activation results in ERK stimulation and PI3K inhibition, suggesting that these two pathways act in an inverse manner to maintain lactotrope homeostasis. In this study, we found that ERK1/2-mediated prolactin transcription is inhibited by PI3K/CDK4-driven cell cycle progression, emphasizing that the ERK and PI3K signaling pathways oppose one another in lactotrope cells under homeostatic conditions. Lastly, we show that both ERK1/2 and AKT are activated in prolactinoma, demonstrating that the balance of ERK and AKT is dysregulated in human prolactinoma. Our findings reveal a potential use for dual pharmacological inhibitors of ERK and AKT as an alternative treatment strategy for DA-resistant prolactinomas.
Collapse
Affiliation(s)
- Allyson K Roof
- Program in Integrated Physiology and Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Siwanon Jirawatnotai
- Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois
| | - Tammy Trudeau
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Crystal Kuzyk
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Margaret E Wierman
- Program in Integrated Physiology and Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Denver, Colorado
| | - Hiroaki Kiyokawa
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois
- Department of Molecular Pharmacology and Biological Chemistry, University of Illinois College of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Arthur Gutierrez-Hartmann
- Program in Integrated Physiology and Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Correspondence: Arthur Gutierrez-Hartmann, MD, Departments of Medicine and Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, 12801 East 17th Avenue, Mail Stop 8106, Aurora, Colorado 80045. E-mail:
| |
Collapse
|
32
|
Li X, Seebacher NA, Garbutt C, Ma H, Gao P, Xiao T, Hornicek FJ, Duan Z. Inhibition of cyclin-dependent kinase 4 as a potential therapeutic strategy for treatment of synovial sarcoma. Cell Death Dis 2018; 9:446. [PMID: 29670090 PMCID: PMC5906661 DOI: 10.1038/s41419-018-0474-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 11/30/2022]
Abstract
Synovial sarcoma is a highly aggressive but rare form of soft tissue malignancy that primarily affects the extremities of the arms or legs, for which current chemotherapeutic agents have not been proven to be very effective. The cyclin-dependent kinase 4/6-retinoblastoma protein (CDK4/6-Rb) pathway of cell cycle control is known to be aberrant in a large proportion of cancers. Recently, CDK4 inhibitors have successfully been used pre-clinically for the treatment of many human cancers, and in 2015, following the success of clinical trials, the FDA approved the first selective CDK4/6 inhibitor, palbociclib, for the treatment of endocrine therapy resistant breast cancers. However, the expression and therapeutic potential of targeting CDK4 in synovial sarcoma remains unclear. In the present study, we report that CDK4 is highly expressed in human synovial sarcoma, and high CDK4 expressions are associated with poor prognosis in sarcomas patients and the clinical stage and the TNM grade in synovial sarcoma patients. Knockdown of CDK4 with specific small interference RNAs inhibits cell proliferation and enhances apoptotic effects in synovial sarcoma cells. CDK4 inhibitor palbociclib suppresses synovial sarcoma cell proliferation and growth in a dose and time-dependent manner. Palbociclib also inhibits the CDK4/6-Rb signaling pathway and promotes cell apoptosis without changing CDK4/6 protein levels, suggesting that palbociclib only represses the hyper-activation, not the expression of CDK4/6. Flow cytometry analysis reveals that palbociclib induces G1 cell-cycle arrest and apoptotic effects by targeting the CDK4/6-Rb pathway in synovial sarcoma cells. Furthermore, wound healing assays demonstrate that inhibition of the CDK4/6-Rb pathway by palbociclib significantly decreases synovial sarcoma cell migration in vitro. Our study highlights the importance of the CDK4/6-Rb pathway in human synovial sarcoma pathogenesis, and the role of the current selective CDK4/6 inhibitor, palbociclib, as a potential promising targeted therapeutic agent in the treatment of human synovial sarcoma.
Collapse
Affiliation(s)
- Xiaoyang Li
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Nicole A Seebacher
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA
| | - Cassandra Garbutt
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Hangzhan Ma
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA
| | - Peng Gao
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
33
|
Tsironis G, Ziogas DC, Kyriazoglou A, Lykka M, Koutsoukos K, Bamias A, Dimopoulos MA. Breakthroughs in the treatment of advanced squamous-cell NSCLC: not the neglected sibling anymore? ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:143. [PMID: 29862232 DOI: 10.21037/atm.2018.02.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the last years, translational research has contributed in many advances in the treatment of non-small cell lung cancer (NSCLC) discovering genetic alternations or recognizing the immuno-escape and neo-angiogenesis of lung cancer. Although the majority of these advances took place in the non-squamous histological subtype, therapeutic options for patients diagnosed with advanced squamous cell lung cancer (SqCLC) have been also enriched significantly with the addition of nab-paclitaxel in the conventional chemotherapy; the introduction of necitumumab, afatinib and erlotinib in the inhibition of epidermal growth factor receptor (EGFR) axis and of ramucirumab in the inhibition of VEGF-induced angiogenesis and last with the approvals of nivolumab, pembrolizumab atezolizumab and durvalumab soon in the promising field of immunotherapies. Agents targeted various other pathways including FGFR, IGF-1, PI3K, CDK4/6, MET and PARP inhibitors are under investigation in order to open new prospects in the treatment of SqCLC. In this review, we present all published data that led to recent approvals for the treatment of advanced SqCLC and all ongoing clinical trials that keep searching for new molecular targets following a more-personalized approach.
Collapse
Affiliation(s)
- Georgios Tsironis
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimitrios C Ziogas
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Anastasios Kyriazoglou
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Marita Lykka
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Konstantinos Koutsoukos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
34
|
Huang H, Han Y, Yang X, Li M, Zhu R, Hu J, Zhang X, Wei R, Li K, Gao R. HNRNPK inhibits gastric cancer cell proliferation through p53/p21/CCND1 pathway. Oncotarget 2017; 8:103364-103374. [PMID: 29262567 PMCID: PMC5732733 DOI: 10.18632/oncotarget.21873] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer (GC) is one of the most common human cancers. The molecular mechanisms underlying GC carcinogenesis and progression are still not well understood. In this study, we showed that heterogeneous nuclear ribonucleoprotein K (HNRNPK) was an effective prognostic marker for GC patients especially in early stage. Overexpression of HNRNPK can retard tumor cell proliferation and colony formation in vitro and inhibit tumor growth in vivo through p53/p21/CCND1 axis. Bioinformatics analyses indicated that HNRNPK associated genes were enriched in cell cycle and DNA replication process. Protein-protein interaction network showed that HNRNPK was physically interacted with p53, p21 and other cancer related genes. Besides, GSEA showed that HNRNPK expression was positively correlated with GAMMA radiation response and DNA repair, while negatively correlated with angiogenesis, TGF-β and Hedgehog pathway activation. Finally, several chemicals including Glycine that may repress GC progression through upregulating HNRNPK are suggested. Our study demonstrated that HNRNPK may play as a tumor suppressor in gastric cancer and could be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Hao Huang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| | - Yong Han
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, P. R. China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P. R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou 310014, Zhejiang, P. R. China
| | - Xingjiu Yang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| | - Mengyuan Li
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| | - Ruimin Zhu
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| | - Juanjuan Hu
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| | - Xiaowei Zhang
- Department of Gynaecology and Obstetrics, Civil Aviation General Hospital, Beijing 100123, P. R. China
| | - Rongfei Wei
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| | - Kejuan Li
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| | - Ran Gao
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| |
Collapse
|
35
|
Mages CF, Wintsche A, Bernhart SH, Müller GA. The DREAM complex through its subunit Lin37 cooperates with Rb to initiate quiescence. eLife 2017; 6. [PMID: 28920576 PMCID: PMC5602299 DOI: 10.7554/elife.26876] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022] Open
Abstract
The retinoblastoma Rb protein is an important factor controlling the cell cycle. Yet, mammalian cells carrying Rb deletions are still able to arrest under growth-limiting conditions. The Rb-related proteins p107 and p130, which are components of the DREAM complex, had been suggested to be responsible for a continued ability to arrest by inhibiting E2f activity and by recruiting chromatin-modifying enzymes. Here, we show that p130 and p107 are not sufficient for DREAM-dependent repression. We identify the MuvB protein Lin37 as an essential factor for DREAM function. Cells not expressing Lin37 proliferate normally, but DREAM completely loses its ability to repress genes in G0/G1 while all remaining subunits, including p130/p107, still bind to target gene promoters. Furthermore, cells lacking both Rb and Lin37 are incapable of exiting the cell cycle. Thus, Lin37 is an essential component of DREAM that cooperates with Rb to induce quiescence.
Collapse
Affiliation(s)
- Christina Fs Mages
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Axel Wintsche
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany.,Computational EvoDevo Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Stephan H Bernhart
- Transcriptome Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Gerd A Müller
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| |
Collapse
|
36
|
Liu J, He Y, Zhang D, Cai Y, Zhang C, Zhang P, Zhu H, Xu N, Liang S. In vitro anticancer effects of two novel phenanthroindolizidine alkaloid compounds on human colon and liver cancer cells. Mol Med Rep 2017; 16:2595-2603. [PMID: 28677760 PMCID: PMC5548052 DOI: 10.3892/mmr.2017.6879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 04/07/2017] [Indexed: 02/05/2023] Open
Abstract
Malignant cancer is one of the most serious diseases threatening the health of human beings. Natural plant alkaloids exhibit multiple biological functions, including inhibition of cell proliferation, and may have potential anticancer activity. However, most natural alkaloids may not be suitable for human therapies owing to instability, poor dissolubility and potential side effects. To improve their anticancer activity and drug effect, the present study aimed to develop new alkaloid derivatives, the phenanthroindolizidine alkaloid compounds, and evaluated their potential antitumor effects on human cancer cells in vitro. Among the several newly synthesized analogues of phenanthroindolizidine alkaloids (PAs), the compounds YS306 and YS206 exhibited an increased growth inhibition activity on HepG2 liver cancer cells and on HCT116 and HT29 colon cancer cells, with half‑maximal inhibitory concentrations in the micromolar range. YS206 and YS306 (5 µg/ml) both significantly induced cell cycle arrest at the G2/M phase and notably decreased cell distribution at the G0/G1 and S phase. In addition, these two molecules significantly inhibited cancer cell migration, as analyzed by the wound‑healing and Transwell assays. However, neither YS306 nor YS206 exhibited observable effects on apoptosis. Therefore, chemical structure modifications of natural PAs based on anticancer activity assessments may be feasible in the development of new cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Jingjing Liu
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yu He
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Dan Zhang
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Ying Cai
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Chenggang Zhang
- Department of Chemistry and Materials, Sichuan Normal University, Chengdu, Sichuan 610066, P.R. China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100034, P.R. China
| | - Ningzhi Xu
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Shufang Liang
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
37
|
Affiliation(s)
- Abigail S Krall
- Department of Biological Chemistry and the Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Heather R Christofk
- Department of Biological Chemistry and the Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
38
|
Chen H, Xu X, Wang G, Zhang B, Wang G, Xin G, Liu J, Jiang Q, Zhang H, Zhang C. CDK4 protein is degraded by anaphase-promoting complex/cyclosome in mitosis and reaccumulates in early G 1 phase to initiate a new cell cycle in HeLa cells. J Biol Chem 2017; 292:10131-10141. [PMID: 28446612 DOI: 10.1074/jbc.m116.773226] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/26/2017] [Indexed: 12/29/2022] Open
Abstract
CDK4 regulates G1/S phase transition in the mammalian cell cycle by phosphorylating retinoblastoma family proteins. However, the mechanism underlying the regulation of CDK4 activity is not fully understood. Here, we show that CDK4 protein is degraded by anaphase-promoting complex/cyclosome (APC/C) during metaphase-anaphase transition in HeLa cells, whereas its main regulator, cyclin D1, remains intact but is sequestered in cytoplasm. CDK4 protein reaccumulates in the following G1 phase and shuttles between the nucleus and the cytoplasm to facilitate the nuclear import of cyclin D1. Without CDK4, cyclin D1 cannot enter the nucleus. Point mutations that disrupt CDK4 and cyclin D1 interaction impair the nuclear import of cyclin D1 and the activity of CDK4. RNAi knockdown of CDK4 also induces cytoplasmic retention of cyclin D1 and G0/G1 phase arrest of the cells. Collectively, our data demonstrate that CDK4 protein is degraded in late mitosis and reaccumulates in the following G1 phase to facilitate the nuclear import of cyclin D1 for activation of CKD4 to initiate a new cell cycle in HeLa cells.
Collapse
Affiliation(s)
- Huabo Chen
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaowei Xu
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guopeng Wang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Boyan Zhang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Gang Wang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junjun Liu
- the Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768
| | - Qing Jiang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China,
| | - Hongyin Zhang
- the Cancer Research Center, Peking University Hospital, Peking University, Beijing 100871, China, and
| | - Chuanmao Zhang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China,
| |
Collapse
|
39
|
Soldera SV, Leighl NB. Update on the Treatment of Metastatic Squamous Non-Small Cell Lung Cancer in New Era of Personalized Medicine. Front Oncol 2017; 7:50. [PMID: 28396848 PMCID: PMC5366319 DOI: 10.3389/fonc.2017.00050] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/09/2017] [Indexed: 12/26/2022] Open
Abstract
Despite advances in molecular characterization and lung cancer treatment in recent years, treatment options for patients diagnosed with squamous cell carcinoma of the lung (SCC) remain limited as actionable mutations are rarely detected in this subtype. This article reviews potential molecular targets and associated novel agents for the treatment of advanced SCC in the era of personalized medicine. Elements of various pathways including epidermal growth factor receptor, PI3KCA, fibroblast growth factor receptor, retinoblastoma, cyclin-dependent kinases, discoidin domain receptor tyrosine kinase 2, and mesenchymal-to-epithelial transition may play pivotal roles in the development of SCC and are under investigation for drug development.
Collapse
Affiliation(s)
| | - Natasha B. Leighl
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
40
|
Fafián-Labora J, Lesende-Rodriguez I, Fernández-Pernas P, Sangiao-Alvarellos S, Monserrat L, Arntz OJ, Loo FJVD, Mateos J, Arufe MC. Effect of age on pro-inflammatory miRNAs contained in mesenchymal stem cell-derived extracellular vesicles. Sci Rep 2017; 7:43923. [PMID: 28262816 PMCID: PMC5338265 DOI: 10.1038/srep43923] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/18/2017] [Indexed: 02/08/2023] Open
Abstract
Stem cells possess significant age-dependent differences in their immune-response profile. These differences were analysed by Next-Generation Sequencing of six age groups from bone marrow mesenchymal stem cells. A total of 9,628 genes presenting differential expression between age groups were grouped into metabolic pathways. We focused our research on young, pre-pubertal and adult groups, which presented the highest amount of differentially expressed genes related to inflammation mediated by chemokine and cytokine signalling pathways compared with the newborn group, which was used as a control. Extracellular vesicles extracted from each group were characterized by nanoparticle tracking and flow cytometry analysis, and several micro-RNAs were verified by quantitative real-time polymerase chain reaction because of their relationship with the pathway of interest. Since miR-21-5p showed the highest statistically significant expression in extracellular vesicles from mesenchymal stem cells of the pre-pubertal group, we conducted a functional experiment inhibiting its expression and investigating the modulation of Toll-Like Receptor 4 and their link to damage-associated molecular patterns. Together, these results indicate for the first time that mesenchymal stem cell-derived extracellular vesicles have significant age-dependent differences in their immune profiles.
Collapse
Affiliation(s)
- J. Fafián-Labora
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade de A Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - I. Lesende-Rodriguez
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade de A Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - P. Fernández-Pernas
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade de A Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - S. Sangiao-Alvarellos
- Grupo Fisiopatología Endocrina, Nutricional y Médica (FENM-CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade de A Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - L. Monserrat
- Cardiology Department, Health in Code, As Xubias, 15006, A Coruña, Spain
| | - O. J. Arntz
- Experimental Rheumatology, Radboudumc University Medical Center, Huispost 272, route 272, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| | - F. J. Van de Loo
- Experimental Rheumatology, Radboudumc University Medical Center, Huispost 272, route 272, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| | - J. Mateos
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade de A Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - M. C. Arufe
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade de A Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| |
Collapse
|
41
|
Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl) 2016; 94:1313-1326. [PMID: 27695879 PMCID: PMC5145738 DOI: 10.1007/s00109-016-1475-3] [Citation(s) in RCA: 469] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022]
Abstract
Mammalian cells encode three D cyclins (D1, D2, and D3) that coordinately function as allosteric regulators of cyclin-dependent kinase 4 (CDK4) and CDK6 to regulate cell cycle transition from G1 to S phase. Cyclin expression, accumulation, and degradation, as well as assembly and activation of CDK4/CDK6 are governed by growth factor stimulation. Cyclin D1 is more frequently dysregulated than cyclin D2 or D3 in human cancers, and as such, it has been more extensively characterized. Overexpression of cyclin D1 results in dysregulated CDK activity, rapid cell growth under conditions of restricted mitogenic signaling, bypass of key cellular checkpoints, and ultimately, neoplastic growth. This review discusses cyclin D1 transcriptional, translational, and post-translational regulations and its biological function with a particular focus on the mechanisms that result in its dysregulation in human cancers.
Collapse
Affiliation(s)
- Shuo Qie
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC, 29425, USA
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC, 29425, USA.
| |
Collapse
|
42
|
Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Discov 2016; 6:353-67. [PMID: 26658964 PMCID: PMC4821753 DOI: 10.1158/2159-8290.cd-15-0894] [Citation(s) in RCA: 661] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Biochemical and genetic characterization of D-type cyclins, their cyclin D-dependent kinases (CDK4 and CDK6), and the polypeptide CDK4/6 inhibitor p16(INK4)over two decades ago revealed how mammalian cells regulate entry into the DNA synthetic (S) phase of the cell-division cycle in a retinoblastoma protein-dependent manner. These investigations provided proof-of-principle that CDK4/6 inhibitors, particularly when combined with coinhibition of allied mitogen-dependent signal transduction pathways, might prove valuable in cancer therapy. FDA approval of the CDK4/6 inhibitor palbociclib used with the aromatase inhibitor letrozole for breast cancer treatment highlights long-sought success. The newest findings herald clinical trials targeting other cancers. SIGNIFICANCE Rapidly emerging data with selective inhibitors of CDK4/6 have validated these cell-cycle kinases as anticancer drug targets, corroborating longstanding preclinical predictions. This review addresses the discovery of these CDKs and their regulators, as well as translation of CDK4/6 biology to positive clinical outcomes and development of rational combinatorial therapies.
Collapse
Affiliation(s)
- Charles J Sherr
- Howard Hughes Medical Institute, Chevy Chase, MD. Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - David Beach
- The Blizard Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Geoffrey I Shapiro
- Early Drug Development Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
43
|
Seo EJ, Efferth T. Interaction of antihistaminic drugs with human translationally controlled tumor protein (TCTP) as novel approach for differentiation therapy. Oncotarget 2016; 7:16818-39. [PMID: 26921194 PMCID: PMC4941353 DOI: 10.18632/oncotarget.7605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/19/2016] [Indexed: 01/04/2023] Open
Abstract
Translationally controlled tumor protein (TCTP) represents an exquisite target for cancer differentiation therapy, because it was most strikingly down-regulated in tumor reversion experiments. Since TCTP is identical with the histamine releasing factor, antihistamic drugs may inhibit TCTP. Indeed, antihistaminics, such as promethazine, thioridazine, perphemazine and chlorpromazine reveal antiproliferative effects. The aim of this investigation was to study antihistaminic drugs as new TCTP inhibitors to inhibit tumor growth. Levomepromazine and buclizine showed higher in silico binding affinities to TCTP among 12 different antihistaminic compounds including the control drugs, promethazine and hydroxyzine by using Autodock4 and AutodockTools-1.5.7.rc1. Recombinant human TCTP was codon-optimized, expressed in E. coli and purified by chitin affinity chromatography. For experimental validation of in silico data, we applied microscale thermophoresis. Levomepromazine bound with a Kd of 57.2 μM (p < 0.01) and buclizine with a Kd of 433μM (p < 0.01) to recombinant TCTP. Both drugs inhibited MCF-7 breast cancer cell growth in resazurin assays. TCTP expression was down-regulated after treatment with the two drugs. Cell cycle was arrested in the G1 phase without apoptosis as confirmed by the expression of cell cycle and apoptosis-regulating proteins. Annexin V-PI staining and Trypan blue exclusion assay supported that the two drugs are cytostatic rather than cytotoxic. Induction of differentiation with two drugs was detected by the increased appearance of lipid droplets. In conclusion, levomepromazine and buclizine inhibited cancer cell growth by binding to TCTP and induction of cell differentiation. These compounds may serve as lead compounds for cancer differentiation therapy.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
44
|
Fafián-Labora J, Fernández-Pernas P, Fuentes I, De Toro J, Oreiro N, Sangiao-Alvarellos S, Mateos J, Arufe M. Influence of age on rat bone-marrow mesenchymal stem cells potential. Sci Rep 2015; 5:16765. [PMID: 26581954 PMCID: PMC4652164 DOI: 10.1038/srep16765] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/20/2015] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells promising role in cell-based therapies and tissue engineering appears to be limited due to a decline of their regenerative potential with increasing donor age. Six age groups from bone marrow mesenchymal stem cells of Wistar rats were studied (newborn, infant, young, pre-pubertal, pubertal and adult). Quantitative proteomic assay was performance by iTRAQ using an 8-plex iTRAQ labeling and the proteins differentially expressed were grouped in pluripotency, proliferative and metabolism processes. Proliferation makers, CD117 and Ki67 were measure by flow cytometry assay. Real time polymerase chain reaction analysis of pluripotency markers Rex1, Oct4, Sox2 and Nanog were done. Biological differentiation was realized using specific mediums for 14 days to induce osteogenesis, adipogenesis or chondrogenesis and immunostain analysis of differentiated cell resulting were done. Enzimoimmunoassay analysis of several enzymes as L-lactate dehydrogenase and glucose-6-phosphate isomerase were also done to validate iTRAQ data. Taking together these results indicate for the first time that mesenchymal stem cells have significant differences in their proliferative, pluripotency and metabolism profiles and those differences are age depending.
Collapse
Affiliation(s)
- J. Fafián-Labora
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC). SERGAS. Departamento de Medicina. Facultade de Oza. Universidade de A Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| | - P. Fernández-Pernas
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC). SERGAS. Departamento de Medicina. Facultade de Oza. Universidade de A Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| | - I. Fuentes
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC). SERGAS. Departamento de Medicina. Facultade de Oza. Universidade de A Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| | - J. De Toro
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC). SERGAS. Departamento de Medicina. Facultade de Oza. Universidade de A Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| | - N. Oreiro
- Grupo de Proteómica-PBR2-ProteoRed/ISCIII-Servicio de Reumatologia. Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC). As Xubias, 15006. A Coruña, España
| | - S. Sangiao-Alvarellos
- Grupo Fisiopatología Endocrina, Nutricional y Médica (FENM-CHUAC). Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC). SERGAS. Departamento de Medicina. Facultade de Oza. Universidade de A Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| | - J. Mateos
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC). SERGAS. Departamento de Medicina. Facultade de Oza. Universidade de A Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| | - M.C. Arufe
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC). Complexo Hospitalario Universitario de A Coruña (CHUAC). SERGAS. Departamento de Medicina. Facultade de Oza. Universidade de A Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| |
Collapse
|
45
|
CDK6-a review of the past and a glimpse into the future: from cell-cycle control to transcriptional regulation. Oncogene 2015; 35:3083-91. [PMID: 26500059 DOI: 10.1038/onc.2015.407] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 12/19/2022]
Abstract
The G1 cell-cycle kinase CDK6 has long been thought of as a redundant homolog of CDK4. Although the two kinases have very similar roles in cell-cycle progression, it has recently become apparent that they differ in tissue-specific functions and contribute differently to tumor development. CDK6 is directly involved in transcription in tumor cells and in hematopoietic stem cells. These functions point to a role of CDK6 in tissue homeostasis and differentiation that is partially independent of CDK6's kinase activity and is not shared with CDK4. We review the literature on the contribution of CDK6 to transcription in an attempt to link the new findings on CDK6's transcriptional activity to cell-cycle progression. Finally, we note that anticancer therapies based on the inhibition of CDK6 kinase activity fail to take into account its kinase-independent role in tumor development.
Collapse
|
46
|
Jirawatnotai S, Sharma S, Michowski W, Suktitipat B, Geng Y, Quackenbush J, Elias JE, Gygi SP, Wang YE, Sicinski P. The cyclin D1-CDK4 oncogenic interactome enables identification of potential novel oncogenes and clinical prognosis. Cell Cycle 2015; 13:2889-900. [PMID: 25486477 DOI: 10.4161/15384101.2014.946850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Overexpression of cyclin D1 and its catalytic partner, CDK4, is frequently seen in human cancers. We constructed cyclin D1 and CDK4 protein interaction network in a human breast cancer cell line MCF7, and identified novel CDK4 protein partners. Among CDK4 interactors we observed several proteins functioning in protein folding and in complex assembly. One of the novel partners of CDK4 is FKBP5, which we found to be required to maintain CDK4 levels in cancer cells. An integrative analysis of the extended cyclin D1 cancer interactome and somatic copy number alterations in human cancers identified BAIAPL21 as a potential novel human oncogene. We observed that in several human tumor types BAIAPL21 is expressed at higher levels as compared to normal tissue. Forced overexpression of BAIAPL21 augmented anchorage independent growth, increased colony formation by cancer cells and strongly enhanced the ability of cells to form tumors in vivo. Lastly, we derived an Aggregate Expression Score (AES), which quantifies the expression of all cyclin D1 interactors in a given tumor. We observed that AES has a prognostic value among patients with ER-positive breast cancers. These studies illustrate the utility of analyzing the interactomes of proteins involved in cancer to uncover potential oncogenes, or to allow better cancer prognosis.
Collapse
Key Words
- ACN, acetonitrile
- AES, aggregate expression score
- ATCC, American type culture collection
- CDK4
- DMEM, Dulbecco's Modified Eagle's medium
- FBS, fetal bovine serum
- LC-MS/MS, liquid chromatography-tandem mass spectrometry
- PPI, protein-protein interaction
- RPMI, Roswell Park Memorial Institute medium
- SCNA, somatic copy-number variation
- TCGA, the cancer genome atlas
- WB, immunoblotting
- breast cancer
- cyclin D1
- interactome
- oncogenes
- oncogenic signature
- siFKBP4, FKBP4-specific small interfering RNA
- siFKBP5, FKBP5-specific small interfering RNA
- siRNA, small interfering RNA
- sicont, control small interfering RNA
- sicyclin D1, cyclin D1-specific small interfering RNA
Collapse
Affiliation(s)
- Siwanon Jirawatnotai
- a Department of Pharmacology; Faculty of Medicine Siriraj Hospital ; Mahidol University ; Bangkok , Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mateos J, Landeira-Abia A, Fafián-Labora JA, Fernández-Pernas P, Lesende-Rodríguez I, Fernández-Puente P, Fernández-Moreno M, Delmiro A, Martín MA, Blanco FJ, Arufe MC. iTRAQ-based analysis of progerin expression reveals mitochondrial dysfunction, reactive oxygen species accumulation and altered proteostasis. Stem Cell Res Ther 2015; 6:119. [PMID: 26066325 PMCID: PMC4487579 DOI: 10.1186/s13287-015-0110-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 10/14/2014] [Accepted: 06/04/2015] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Nuclear accumulation of a mutant form of the nuclear protein Lamin-A, called Progerin (PG) or Lamin AΔ50, occurs in Hutchinson-Gilford Progeria Syndrome (HGPS) or Progeria, an accelerated aging disease. One of the main symptoms of this genetic disorder is a loss of sub-cutaneous fat due to a dramatic lipodystrophy. METHODS We stably induced the expression of human PG and GFP -Green Fluorescent Protein- as control in 3T3L1 cells using a lentiviral system to study the effect of PG expression in the differentiation capacity of this cell line, one of the most used adipogenic models. Quantitative proteomics (iTRAQ) was done to study the effect of the PG accumulation. Several of the modulated proteins were validated by immunoblotting and real-time PCR. Mitochondrial function was analyzed by measurement of a) the mitochondrial basal activity, b) the superoxide anion production and c) the individual efficiency of the different complex of the respiratory chain. RESULTS We found that over-expression PG by lentiviral gene delivery leads to a decrease in the proliferation rate and to defects in adipogenic capacity when compared to the control. Quantitative proteomics analysis showed 181 proteins significantly (p<0.05) modulated in PG-expressing preadipocytes. Mitochondrial function is impaired in PG-expressing cells. Specifically, we have detected an increase in the activity of the complex I and an overproduction of Superoxide anion. Incubation with Reactive Oxygen Species (ROS) scavenger agents drives to a decrease in autophagic proteolysis as revealed by LC3-II/LC3-I ratio. CONCLUSION PG expression in 3T3L1 cells promotes changes in several Biological Processes, including structure of cytoskeleton, lipid metabolism, calcium regulation, translation, protein folding and energy generation by the mitochondria. Our data strengthen the contribution of ROS accumulation to the premature aging phenotype and establish a link between mitochondrial dysfunction and loss of proteostasis in HGPS.
Collapse
Affiliation(s)
- Jesús Mateos
- Grupo de Proteómica-ProteoRed/Plataforma PBR2-ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
| | - Arancha Landeira-Abia
- Grupo de Proteómica-ProteoRed/Plataforma PBR2-ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
| | - Juan Antonio Fafián-Labora
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
| | - Pablo Fernández-Pernas
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
- Rheumatology Division, CIBER-BBN/ISCII, Instituto de Investigación Biomédica de A Coruña INIBIC-Hospital Universitario A Coruña, 15006, A Coruña, Spain.
| | - Iván Lesende-Rodríguez
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
| | - Patricia Fernández-Puente
- Grupo de Proteómica-ProteoRed/Plataforma PBR2-ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
| | - Mercedes Fernández-Moreno
- Rheumatology Division, CIBER-BBN/ISCII, Instituto de Investigación Biomédica de A Coruña INIBIC-Hospital Universitario A Coruña, 15006, A Coruña, Spain.
- Grupo de Genómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
| | - Aitor Delmiro
- Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Hospital 12 de Octubre (i + 12), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, E-28041, Spain.
| | - Miguel A Martín
- Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Hospital 12 de Octubre (i + 12), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, E-28041, Spain.
| | - Francisco J Blanco
- Grupo de Proteómica-ProteoRed/Plataforma PBR2-ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
- Rheumatology Division, CIBER-BBN/ISCII, Instituto de Investigación Biomédica de A Coruña INIBIC-Hospital Universitario A Coruña, 15006, A Coruña, Spain.
| | - María C Arufe
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
- Rheumatology Division, CIBER-BBN/ISCII, Instituto de Investigación Biomédica de A Coruña INIBIC-Hospital Universitario A Coruña, 15006, A Coruña, Spain.
| |
Collapse
|
48
|
Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 2015; 14:130-46. [PMID: 25633797 PMCID: PMC4480421 DOI: 10.1038/nrd4504] [Citation(s) in RCA: 1229] [Impact Index Per Article: 136.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer represents a pathological manifestation of uncontrolled cell division; therefore, it has long been anticipated that our understanding of the basic principles of cell cycle control would result in effective cancer therapies. In particular, cyclin-dependent kinases (CDKs) that promote transition through the cell cycle were expected to be key therapeutic targets because many tumorigenic events ultimately drive proliferation by impinging on CDK4 or CDK6 complexes in the G1 phase of the cell cycle. Moreover, perturbations in chromosomal stability and aspects of S phase and G2/M control mediated by CDK2 and CDK1 are pivotal tumorigenic events. Translating this knowledge into successful clinical development of CDK inhibitors has historically been challenging, and numerous CDK inhibitors have demonstrated disappointing results in clinical trials. Here, we review the biology of CDKs, the rationale for therapeutically targeting discrete kinase complexes and historical clinical results of CDK inhibitors. We also discuss how CDK inhibitors with high selectivity (particularly for both CDK4 and CDK6), in combination with patient stratification, have resulted in more substantial clinical activity.
Collapse
Affiliation(s)
- Uzma Asghar
- Breakthrough Breast Cancer Research Centre, Chester Beatty Laboratories, Institute of Cancer Research, London, SW3 6JB, UK
| | - Agnieszka K Witkiewicz
- Simmons Cancer Center and Department of Pathology, University of Texas Southwestern, Dallas, USA
| | - Nicholas C Turner
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust Breast Cancer Unit, London, SW3 6JJ, UK
| | - Erik S Knudsen
- Simmons Cancer Center and Department of Pathology, University of Texas Southwestern, Dallas, USA
| |
Collapse
|
49
|
Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells. Nat Commun 2015; 6:5906. [PMID: 25562820 PMCID: PMC4354291 DOI: 10.1038/ncomms6906] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/19/2014] [Indexed: 01/02/2023] Open
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/CFZR1 activity as an important determinant in response to CDK4/6-inhibitors. In most human tumours, the cell cycle regulators Cdk4/6-cyclinD are overactive. Here the authors use C. elegans as a model system to identify downstream regulators that are critical in the response of tumour cells to Cdk4/6 inhibitors.
Collapse
|
50
|
Whiffin N, Hosking FJ, Farrington SM, Palles C, Dobbins SE, Zgaga L, Lloyd A, Kinnersley B, Gorman M, Tenesa A, Broderick P, Wang Y, Barclay E, Hayward C, Martin L, Buchanan DD, Win AK, Hopper J, Jenkins M, Lindor NM, Newcomb PA, Gallinger S, Conti D, Schumacher F, Casey G, Liu T, Campbell H, Lindblom A, Houlston RS, Tomlinson IP, Dunlop MG. Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Hum Mol Genet 2014; 23:4729-37. [PMID: 24737748 PMCID: PMC4133584 DOI: 10.1093/hmg/ddu177] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 02/06/2023] Open
Abstract
To identify common variants influencing colorectal cancer (CRC) risk, we performed a meta-analysis of five genome-wide association studies, comprising 5626 cases and 7817 controls of European descent. We conducted replication of top ranked single nucleotide polymorphisms (SNPs) in additional series totalling 14 037 cases and 15 937 controls, identifying a new CRC risk locus at 10q24.2 [rs1035209; odds ratio (OR) = 1.13, P = 4.54 × 10(-11)]. We also performed meta-analysis of our studies, with previously published data, of several recently purported CRC risk loci. We failed to find convincing evidence for a previously reported genome-wide association at rs11903757 (2q32.3). Of the three additional loci for which evidence of an association in Europeans has been previously described we failed to show an association between rs59336 (12q24.21) and CRC risk. However, for the other two SNPs, our analyses demonstrated new, formally significant associations with CRC. These are rs3217810 intronic in CCND2 (12p13.32; OR = 1.19, P = 2.16 × 10(-10)) and rs10911251 near LAMC1 (1q25.3; OR = 1.09, P = 1.75 × 10(-8)). Additionally, we found some evidence to support a relationship between, rs647161, rs2423297 and rs10774214 and CRC risk originally identified in East Asians in our European datasets. Our findings provide further insights into the genetic and biological basis of inherited genetic susceptibility to CRC.
Collapse
Affiliation(s)
- Nicola Whiffin
- Molecular and Population Genetics, Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Fay J Hosking
- Molecular and Population Genetics, Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Susan M Farrington
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and MRC Human Genetics Unit, Western General Hospital Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Claire Palles
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Sara E Dobbins
- Molecular and Population Genetics, Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Lina Zgaga
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and MRC Human Genetics Unit, Western General Hospital Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Amy Lloyd
- Molecular and Population Genetics, Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Ben Kinnersley
- Molecular and Population Genetics, Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Maggie Gorman
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Albert Tenesa
- The Roslin Institute, University of Edinburgh, Easter Bush, Roslin EH25 9RG, UK
| | - Peter Broderick
- Molecular and Population Genetics, Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Yufei Wang
- Molecular and Population Genetics, Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Ella Barclay
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Caroline Hayward
- Institute of Genetics and Molecular Medicine, University of Edinburgh and MRC Human Genetics Unit, Western General Hospital Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Lynn Martin
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Daniel D Buchanan
- Cancer and Population Studies Group, Queensland Institute of Medical Research, Queensland, Australia
| | - Aung Ko Win
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Victoria, Australia
| | - John Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Victoria, Australia
| | - Mark Jenkins
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Victoria, Australia
| | - Noralane M Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Polly A Newcomb
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Steve Gallinger
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - David Conti
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fred Schumacher
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Graham Casey
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tao Liu
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Richard S Houlston
- Molecular and Population Genetics, Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Ian P Tomlinson
- The Roslin Institute, University of Edinburgh, Easter Bush, Roslin EH25 9RG, UK
| | - Malcolm G Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and MRC Human Genetics Unit, Western General Hospital Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|