1
|
Chhatwal K, Smith JJ, Bola H, Zahid A, Venkatakrishnan A, Brand T. Uncovering the Genetic Basis of Congenital Heart Disease: Recent Advancements and Implications for Clinical Management. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:464-480. [PMID: 38205435 PMCID: PMC10777202 DOI: 10.1016/j.cjcpc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart disease (CHD) is the most prevalent hereditary disorder, affecting approximately 1% of all live births. A reduction in morbidity and mortality has been achieved with advancements in surgical intervention, yet challenges in managing complications, extracardiac abnormalities, and comorbidities still exist. To address these, a more comprehensive understanding of the genetic basis underlying CHD is required to establish how certain variants are associated with the clinical outcomes. This will enable clinicians to provide personalized treatments by predicting the risk and prognosis, which might improve the therapeutic results and the patient's quality of life. We review how advancements in genome sequencing are changing our understanding of the genetic basis of CHD, discuss experimental approaches to determine the significance of novel variants, and identify barriers to use this knowledge in the clinics. Next-generation sequencing technologies are unravelling the role of oligogenic inheritance, epigenetic modification, genetic mosaicism, and noncoding variants in controlling the expression of candidate CHD-associated genes. However, clinical risk prediction based on these factors remains challenging. Therefore, studies involving human-induced pluripotent stem cells and single-cell sequencing help create preclinical frameworks for determining the significance of novel genetic variants. Clinicians should be aware of the benefits and implications of the responsible use of genomics. To facilitate and accelerate the clinical integration of these novel technologies, clinicians should actively engage in the latest scientific and technical developments to provide better, more personalized management plans for patients.
Collapse
Affiliation(s)
- Karanjot Chhatwal
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Jacob J. Smith
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Harroop Bola
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Abeer Zahid
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Ashwin Venkatakrishnan
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| |
Collapse
|
2
|
Padmanabhan A, Alexanian M, Linares-Saldana R, González-Terán B, Andreoletti G, Huang Y, Connolly AJ, Kim W, Hsu A, Duan Q, Winchester SAB, Felix F, Perez-Bermejo JA, Wang Q, Li L, Shah PP, Haldar SM, Jain R, Srivastava D. BRD4 (Bromodomain-Containing Protein 4) Interacts with GATA4 (GATA Binding Protein 4) to Govern Mitochondrial Homeostasis in Adult Cardiomyocytes. Circulation 2020; 142:2338-2355. [PMID: 33094644 DOI: 10.1161/circulationaha.120.047753] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gene regulatory networks control tissue homeostasis and disease progression in a cell type-specific manner. Ubiquitously expressed chromatin regulators modulate these networks, yet the mechanisms governing how tissue specificity of their function is achieved are poorly understood. BRD4 (bromodomain-containing protein 4), a member of the BET (bromo- and extraterminal domain) family of ubiquitously expressed acetyl-lysine reader proteins, plays a pivotal role as a coactivator of enhancer signaling across diverse tissue types in both health and disease and has been implicated as a pharmacological target in heart failure. However, the cell-specific role of BRD4 in adult cardiomyocytes remains unknown. METHODS We combined conditional mouse genetics, unbiased transcriptomic and epigenomic analyses, and classic molecular biology and biochemical approaches to understand the mechanism by which BRD4 in adult cardiomyocyte homeostasis. RESULTS Here, we show that cardiomyocyte-specific deletion of Brd4 in adult mice leads to acute deterioration of cardiac contractile function with mutant animals demonstrating a transcriptomic signature characterized by decreased expression of genes critical for mitochondrial energy production. Genome-wide occupancy data show that BRD4 enriches at many downregulated genes (including the master coactivators Ppargc1a, Ppargc1b, and their downstream targets) and preferentially colocalizes with GATA4 (GATA binding protein 4), a lineage-determining cardiac transcription factor not previously implicated in regulation of adult cardiac metabolism. BRD4 and GATA4 form an endogenous complex in cardiomyocytes and interact in a bromodomain-independent manner, revealing a new functional interaction partner for BRD4 that can direct its locus and tissue specificity. CONCLUSIONS These results highlight a novel role for a BRD4-GATA4 module in cooperative regulation of a cardiomyocyte-specific gene program governing bioenergetic homeostasis in the adult heart.
Collapse
Affiliation(s)
- Arun Padmanabhan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.).,Division of Cardiology, Department of Medicine (A.P., S.M.H.), University of California, San Francisco
| | - Michael Alexanian
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Ricardo Linares-Saldana
- Institute of Regenerative Medicine, Penn Cardiovascular Institute, Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA (R.L.-S., W.K., Q.W., L.L., P.P.S., R.J.)
| | - Bárbara González-Terán
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Gaia Andreoletti
- Bakar Computational Health Sciences Institute (G.A.), University of California, San Francisco
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Andrew J Connolly
- Department of Pathology (A.J.C.), University of California, San Francisco
| | - Wonho Kim
- Institute of Regenerative Medicine, Penn Cardiovascular Institute, Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA (R.L.-S., W.K., Q.W., L.L., P.P.S., R.J.)
| | - Austin Hsu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Qiming Duan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Sarah A B Winchester
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Franco Felix
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Juan A Perez-Bermejo
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.)
| | - Qiaohong Wang
- Institute of Regenerative Medicine, Penn Cardiovascular Institute, Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA (R.L.-S., W.K., Q.W., L.L., P.P.S., R.J.)
| | - Li Li
- Institute of Regenerative Medicine, Penn Cardiovascular Institute, Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA (R.L.-S., W.K., Q.W., L.L., P.P.S., R.J.)
| | - Parisha P Shah
- Institute of Regenerative Medicine, Penn Cardiovascular Institute, Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA (R.L.-S., W.K., Q.W., L.L., P.P.S., R.J.)
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.).,Division of Cardiology, Department of Medicine (A.P., S.M.H.), University of California, San Francisco
| | - Rajan Jain
- Institute of Regenerative Medicine, Penn Cardiovascular Institute, Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA (R.L.-S., W.K., Q.W., L.L., P.P.S., R.J.)
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA (A.P., M.A., B.G.-T., Y.H., A.H., Q.D., S.A.B.W., F.F., J.A.P.-B., S.M.H., D.S.).,Department of Pediatrics (D.S.), University of California, San Francisco.,Department of Biochemistry and Biophysics (D.S.), University of California, San Francisco.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (D.S.)
| |
Collapse
|
3
|
Hoffman M, Kyriazis ID, Dimitriou A, Mishra SK, Koch WJ, Drosatos K. B-type natriuretic peptide is upregulated by c-Jun N-terminal kinase and contributes to septic hypotension. JCI Insight 2020; 5:133675. [PMID: 32324169 PMCID: PMC7205432 DOI: 10.1172/jci.insight.133675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
B-type natriuretic peptide (BNP) is secreted by ventricular cardiomyocytes in response to various types of cardiac stress and has been used as a heart failure marker. In septic patients, increased BNP suggests poor prognosis; however, no causal link has been established. Among various effects, BNP decreases systemic vascular resistance and increases natriuresis that leads to lower blood pressure. We previously observed that JNK inhibition corrects cardiac dysfunction and suppresses cardiac BNP mRNA in endotoxemia. In this study, we investigated the transcriptional mechanism that regulates BNP expression and the involvement of plasma BNP in causing septic hypotension. Our in vitro and in vivo findings confirmed that activation of JNK signaling increases BNP expression in sepsis via direct binding of c-Jun in activating protein–1 (AP-1) regulatory elements of the Nppb promoter. Accordingly, genetic ablation of BNP, as well as treatment with a potentially novel neutralizing anti-BNP monoclonal antibody (19B3) or suppression of its expression via administration of JNK inhibitor SP600125 improved cardiac output, stabilized blood pressure, and improved survival in mice with polymicrobial sepsis. Therefore, inhibition of JNK signaling or BNP in sepsis appears to stabilize blood pressure and improve survival.
Collapse
Affiliation(s)
- Matthew Hoffman
- Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ioannis D Kyriazis
- Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alexandra Dimitriou
- Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Walter J Koch
- Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Konstantinos Drosatos
- Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA.,Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Jumppanen M, Kinnunen SM, Välimäki MJ, Talman V, Auno S, Bruun T, Boije Af Gennäs G, Xhaard H, Aumüller IB, Ruskoaho H, Yli-Kauhaluoma J. Synthesis, Identification, and Structure-Activity Relationship Analysis of GATA4 and NKX2-5 Protein-Protein Interaction Modulators. J Med Chem 2019; 62:8284-8310. [PMID: 31431011 PMCID: PMC7076710 DOI: 10.1021/acs.jmedchem.9b01086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Transcription factors GATA4 and NKX2-5
directly interact and synergistically
activate several cardiac genes and stretch-induced cardiomyocyte hypertrophy.
Previously, we identified phenylisoxazole carboxamide 1 as a hit compound, which inhibited the GATA4–NKX2-5 transcriptional
synergy. Here, the chemical space around the molecular structure of 1 was explored by synthesizing and characterizing 220 derivatives
and structurally related compounds. In addition to the synergistic
transcriptional activation, selected compounds were evaluated for
their effects on transcriptional activities of GATA4 and NKX2-5 individually
as well as potential cytotoxicity. The structure–activity relationship
(SAR) analysis revealed that the aromatic isoxazole substituent in
the southern part regulates the inhibition of GATA4–NKX2-5
transcriptional synergy. Moreover, inhibition of GATA4 transcriptional
activity correlated with the reduced cell viability. In summary, comprehensive
SAR analysis accompanied by data analysis successfully identified
potent and selective inhibitors of GATA4–NKX2-5 transcriptional
synergy and revealed structural features important for it.
Collapse
Affiliation(s)
| | | | | | - Virpi Talman
- Imperial College London, Imperial Centre for Translational and Experimental Medicine , National Heart and Lung Institute , Du Cane Road , London W12 0NN , United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Glahn A, Rhein M, Heberlein A, Muschler M, Kornhuber J, Frieling H, Bleich S, Hillemacher T. The Epigenetic Regulation of GATA4-Dependent Brain Natriuretic Peptide Expression during Alcohol Withdrawal. Neuropsychobiology 2018; 74:131-138. [PMID: 28441648 DOI: 10.1159/000456011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Natriuretic peptides participate in the collection of metabolic effects during alcohol withdrawal. Having witnessed modulation of other natriuretic peptides in alcohol-dependent patients during alcohol withdrawal, we were interested in the relation of brain natriuretic peptide (BNP) methylation with protein expression and craving in this longitudinal study. METHODS Ninety-nine male patients were compared to 101 healthy controls concerning epigenetic regulation and protein expression during detoxification treatment. RESULTS With BNP expression being GATA4 dependent, we observed a correlation of GATA4 binding site methylation and protein expression. BNP serum levels and Obsessive Compulsive Drinking Scale scores are significantly decreased during withdrawal. Focusing on the two CpGs that are between GATA transcription factor binding sites, statistical analysis revealed a reversely proportional methylation pattern, significantly increasing with ongoing detoxification and thereby supporting the observed serum level changes. CONCLUSION Without the functional knowledge about regulation of BNP expression via the GATA transcription factor, it would have been easy to take the mean results of the global CpG data and propose a direct relationship between methylation and expression. Thus, these findings are a voice for functionally and mechanistically approved results. There was no causal relationship between protein expression levels and epigenetic changes. Further research is needed which includes protein expression and other approaches.
Collapse
Affiliation(s)
- Alexander Glahn
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Välimäki MJ, Tölli MA, Kinnunen SM, Aro J, Serpi R, Pohjolainen L, Talman V, Poso A, Ruskoaho HJ. Discovery of Small Molecules Targeting the Synergy of Cardiac Transcription Factors GATA4 and NKX2-5. J Med Chem 2017; 60:7781-7798. [PMID: 28858485 DOI: 10.1021/acs.jmedchem.7b00816] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription factors are pivotal regulators of gene transcription, and many diseases are associated with the deregulation of transcriptional networks. In the heart, the transcription factors GATA4 and NKX2-5 are required for cardiogenesis. GATA4 and NKX2-5 interact physically, and the activation of GATA4, in cooperation with NKX2-5, is essential for stretch-induced cardiomyocyte hypertrophy. Here, we report the identification of four small molecule families that either inhibit or enhance the GATA4-NKX2-5 transcriptional synergy. A fragment-based screening, reporter gene assay, and pharmacophore search were utilized for the small molecule screening, identification, and optimization. The compounds modulated the hypertrophic agonist-induced cardiac gene expression. The most potent hit compound, N-[4-(diethylamino)phenyl]-5-methyl-3-phenylisoxazole-4-carboxamide (3, IC50 = 3 μM), exhibited no activity on the protein kinases involved in the regulation of GATA4 phosphorylation. The identified and chemically and biologically characterized active compound, and its derivatives may provide a novel class of small molecules for modulating heart regeneration.
Collapse
Affiliation(s)
- Mika J Välimäki
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland.,Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Marja A Tölli
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Sini M Kinnunen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland.,Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Jani Aro
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Raisa Serpi
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| | - Lotta Pohjolainen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland
| | - Virpi Talman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland
| | - Antti Poso
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland , Kuopio FI-70211, Finland
| | - Heikki J Ruskoaho
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki , Helsinki FI-00014, Finland.,Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu , Oulu FI-90014, Finland
| |
Collapse
|
7
|
Qian Y, Xiao D, Guo X, Chen H, Hao L, Ma X, Huang G, Ma D, Wang H. Multiple gene variations contributed to congenital heart disease via GATA family transcriptional regulation. J Transl Med 2017; 15:69. [PMID: 28372585 PMCID: PMC5379520 DOI: 10.1186/s12967-017-1173-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/23/2017] [Indexed: 11/14/2022] Open
Abstract
Background Congenital heart disease (CHD) is a common birth defect, and most cases occur sporadically. Mutations in key genes that are responsible for cardiac development could contribute to CHD. To date, the genetic causes of CHD remain largely unknown. Methods In this study, twenty-nine candidate genes in CHD were sequenced in 106 patients with Tetralogy of Fallot (TOF) using target exome sequencing (TES). The co-immunoprecipitation (CO-IP) and luciferase reporter gene assays were performed in HEK293T cells, and wild-type and mutant mRNA of ZFPM2 were microinjected into zebrafish embryos. Results Rare variants in key cardiac transcriptional factors and JAG1 were identified in the patients. Four patients carried multiple gene variants. The novel E1148K variant was located at the eighth Zinc-finger domain of FOG2 protein. The CO-IP assays in the HEK293T cells revealed that the variant significantly damaged the interaction between ZFPM2/FOG2 and GATA4. The luciferase reporter gene assays revealed that the E1148K mutant ZFPM2 protein displayed a significantly greater inhibition of the transcriptional activation of GATA4 than the wild-type protein. The wild-type mRNA and the E1148K mutant mRNA of ZFPM2 were injected into zebrafish embryos. At 48 hpf, in the mutant mRNA injection group, the number of embryos with an abnormal cardiac chamber structure and a loss of left–right asymmetry was increased. By 72 hpf, the defects in the chamber and left–right asymmetry became obvious. Conclusions We performed TES in sporadic TOF patients and identified rare variants in candidate genes in CHD. We first validated the E1148 K variant in ZFPM2, which is likely involved in the pathogenesis of CHD via GATA4. Moreover, our results suggest that TES could be a useful tool for discovering sequence variants in CHD patients. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1173-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanyan Qian
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 20032, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 20032, China
| | - Xiao Guo
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Hongbo Chen
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Lili Hao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 20032, China
| | - Xiaojing Ma
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Guoying Huang
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China.,Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 20032, China. .,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China. .,Research Center for Birth Defects, School of Basic Medical Sciences, Fudan University, 130 Dongan Road, Shanghai, 200030, China.
| | - Huijun Wang
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China. .,Molecular Genetics Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
8
|
Ting WJ, Huang CY, Jiang CH, Lin YM, Chung LC, Shen CY, Pai P, Lin KH, Viswanadha VP, Liao SC. Treatment with 17β-Estradiol Reduced Body Weight and the Risk of Cardiovascular Disease in a High-Fat Diet-Induced Animal Model of Obesity. Int J Mol Sci 2017; 18:ijms18030629. [PMID: 28335423 PMCID: PMC5372642 DOI: 10.3390/ijms18030629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/25/2017] [Accepted: 03/08/2017] [Indexed: 01/12/2023] Open
Abstract
Estrogen receptor α (ERα) and estrogen receptor β (ERβ) play important roles in cardiovascular disease (CVD) prevention. Recently, these estrogen receptors were reconsidered as an important treatment target of obesity leading to CVD. In this study, 17β-estradiol (17β-E) replacement therapy applied to high-fat diet-induced obese C57B male mice and ovariectomized (OVX) rats were evaluated, and the protective effects against high-fat diet-induced obesity were assessed in C57B mouse hearts. The results showed that 17β-E treatment activated both ERα and ERβ, and ERβ levels increased in a dose-dependent manner in high-fat diet C57B mouse cardiomyocytes following 17β-E treatment. Notably, an almost 16% reduction in body weight was observed in the 17β-E-treated (12 μg/kg/day for 60 days) high-fat diet-induced obese C57B male mice. These results suggested that 17β-E supplements may reduce CVD risk due to obesity.
Collapse
Affiliation(s)
- Wei-Jen Ting
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan 511518, China.
- Graduate Institute of Basic Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
- Graduate Institute of Chinese Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, 500 Lioufeng Road, Taichung 41354, Taiwan.
| | - Chong-He Jiang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan 511518, China.
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, 135 Nanxiao Street, Changhua 50006, Taiwan.
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, 79-9 Sha-Luen Hu, Hou-Loung Town, Miaoli 35664, Taiwan.
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, China Nan University of Pharmacy & Science, 60, Section 1, Erren Road, Rende District, Tainan 71710, Taiwan.
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, 23 Pingguang Road, Pingtung 91202, Taiwan.
| | - Peiying Pai
- Division of Cardiology, China Medical University Hospital, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| | | | - Shih-Chieh Liao
- School of Medicine, College of Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
9
|
Reilly MT, Noronha A, Goldman D, Koob GF. Genetic studies of alcohol dependence in the context of the addiction cycle. Neuropharmacology 2017; 122:3-21. [PMID: 28118990 DOI: 10.1016/j.neuropharm.2017.01.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/16/2022]
Abstract
Family, twin and adoption studies demonstrate clearly that alcohol dependence and alcohol use disorders are phenotypically complex and heritable. The heritability of alcohol use disorders is estimated at approximately 50-60% of the total phenotypic variability. Vulnerability to alcohol use disorders can be due to multiple genetic or environmental factors or their interaction which gives rise to extensive and daunting heterogeneity. This heterogeneity makes it a significant challenge in mapping and identifying the specific genes that influence alcohol use disorders. Genetic linkage and (candidate gene) association studies have been used now for decades to map and characterize genomic loci and genes that underlie the genetic vulnerability to alcohol use disorders. These approaches have been moderately successful in identifying several genes that contribute to the complexity of alcohol use disorders. Recently, genome-wide association studies have become one of the major tools for identifying genes for alcohol use disorders by examining correlations between millions of common single-nucleotide polymorphisms with diagnosis status. Genome-wide association studies are just beginning to uncover novel biology; however, the functional significance of results remains a matter of extensive debate and uncertainty. In this review, we present a select group of genome-wide association studies of alcohol dependence, as one example of a way to generate functional hypotheses, within the addiction cycle framework. This analysis may provide novel directions for validating the functional significance of alcohol dependence candidate genes. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Matthew T Reilly
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Division of Neuroscience and Behavior, 5635 Fishers Lane, Bethesda, MD 20852, USA.
| | - Antonio Noronha
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Division of Neuroscience and Behavior, 5635 Fishers Lane, Bethesda, MD 20852, USA
| | - David Goldman
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Chief, Laboratory of Neurogenetics, 5635 Fishers Lane, Bethesda, MD 20852, USA
| | - George F Koob
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Director NIAAA, 5635 Fishers Lane, Bethesda, MD 20852, USA
| |
Collapse
|
10
|
Zois E, Vollstädt-Klein S, Hoffmann S, Reinhard I, Bach P, Charlet K, Beck A, Treutlein J, Frank J, Jorde A, Kirsch M, Degenhardt F, Walter H, Heinz A, Kiefer F. GATA4 variant interaction with brain limbic structure and relapse risk: A voxel-based morphometry study. Eur Neuropsychopharmacol 2016; 26:1431-1437. [PMID: 27397865 DOI: 10.1016/j.euroneuro.2016.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/25/2016] [Accepted: 06/18/2016] [Indexed: 01/08/2023]
Abstract
Atrial natriuretic peptide (ANP) receptors are highly expressed in the amygdala, caudate and hypothalamus. GATA4 gene encodes a transcription factor of ANP associated with the pathophysiology of alcohol dependence. We have previously demonstrated that the GATA4 single nucleotide polymorphism (SNP) rs13273672 revealed stronger alcohol-specific amygdala activation associated with lowered relapse risk to heavy drinking at 90 days in the AA-homozygotes. Our understanding however with respect to GATA4 variation on gray matter (GM) regional amygdala, caudate and hypothalamus volume is limited. We investigated GM differences specific to GATA4 and hypothesized that GM alterations will be predictive of heavy relapse. Eighty-three recently detoxified alcohol dependent patients were included. Neuroimaging data was analyzed using Voxel Based Morphometry (VBM). The main effects of GM volume and genotype as well as their interaction effect on time to heavy relapse (60 and 90 days) were analyzed using cox regression. Significant higher GM volume was found for the AA-genotype group compared with AG/GG-genotype in the hypothalamus and caudate. A significant interaction was revealed between caudate and amygdala GM volume and GATA4 genotype on time to heavy relapse. The interaction was expressed by means of higher GM in the AA genotype group to be associated with reduced risk to relapse whereas in the AG/GG group higher GM was associated with increased risk to relapse. This is the first report on GM regional volume alterations specific to GATA4 genotype [(SNP) rs13273672] and its association with relapse in alcohol dependence. Current findings further support the role of GATA4 in alcoholism.
Collapse
Affiliation(s)
- Evangelos Zois
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sabine Hoffmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Iris Reinhard
- Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Katrin Charlet
- Department of Psychiatry and Psychotherapy, Charité, University Medicine, Campus Mitte, Berlin, Germany
| | - Anne Beck
- Department of Psychiatry and Psychotherapy, Charité, University Medicine, Campus Mitte, Berlin, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University Heidelberg, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University Heidelberg, Mannheim, Germany
| | - Anne Jorde
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Martina Kirsch
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | | | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité, University Medicine, Campus Mitte, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité, University Medicine, Campus Mitte, Berlin, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| |
Collapse
|
11
|
Miyagi H, Nag K, Sultana N, Munakata K, Hirose S, Nakamura N. Characterization of the zebrafish cx36.7 gene promoter: Its regulation of cardiac-specific expression and skeletal muscle-specific repression. Gene 2016; 577:265-74. [PMID: 26692140 DOI: 10.1016/j.gene.2015.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/28/2015] [Accepted: 12/03/2015] [Indexed: 11/25/2022]
Abstract
Zebrafish connexin 36.7 (cx36.7/ecx) has been identified as a key molecule in the early stages of heart development in this species. A defect in cx36.7 causes severe heart malformation due to the downregulation of nkx2.5 expression, a result which resembles congenital heart disease in humans. It has been shown that cx36.7 is expressed specifically in early developing heart cardiomyocytes. However, the regulatory mechanism for the cardiac-restricted expression of cx36.7 remains to be elucidated. In this study we isolated the 5'-flanking promoter region of the cx36.7 gene and characterized its promoter activity in zebrafish embryos. Deletion analysis showed that a 316-bp upstream region is essential for cardiac-restricted expression. This region contains four GATA elements, the proximal two of which are responsible for promoter activation in the embryonic heart and serve as binding sites for gata4. When gata4, gata5 and gata6 were simultaneously knocked down, the promoter activity was significantly decreased. Moreover, the deletion of the region between -316 and -133bp led to EGFP expression in the embryonic trunk muscle. The distal two GATA and A/T-rich elements in this region act as repressors of promoter activity in skeletal muscle. These results suggest that cx36.7 expression is directed by cardiac promoter activation via the two proximal GATA elements as well as by skeletal muscle-specific promoter repression via the two distal GATA elements.
Collapse
Affiliation(s)
- Hisako Miyagi
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Kakon Nag
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Naznin Sultana
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Keijiro Munakata
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
12
|
Kinnunen S, Välimäki M, Tölli M, Wohlfahrt G, Darwich R, Komati H, Nemer M, Ruskoaho H. Nuclear Receptor-Like Structure and Interaction of Congenital Heart Disease-Associated Factors GATA4 and NKX2-5. PLoS One 2015; 10:e0144145. [PMID: 26642209 PMCID: PMC4671672 DOI: 10.1371/journal.pone.0144145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023] Open
Abstract
AIMS Transcription factor GATA4 is a dosage sensitive regulator of heart development and alterations in its level or activity lead to congenital heart disease (CHD). GATA4 has also been implicated in cardiac regeneration and repair. GATA4 action involves combinatorial interaction with other cofactors such as NKX2-5, another critical cardiac regulator whose mutations also cause CHD. Despite its critical importance to the heart and its evolutionary conservation across species, the structural basis of the GATA4-NKX2-5 interaction remains incompletely understood. METHODS AND RESULTS A homology model was constructed and used to identify surface amino acids important for the interaction of GATA4 and NKX2-5. These residues were subjected to site-directed mutagenesis, and the mutant proteins were characterized for their ability to bind DNA and to physically and functionally interact with NKX2-5. The studies identify 5 highly conserved amino acids in the second zinc finger (N272, R283, Q274, K299) and its C-terminal extension (R319) that are critical for physical and functional interaction with the third alpha helix of NKX2-5 homeodomain. Integration of the experimental data with computational modeling suggests that the structural arrangement of the zinc finger-homeodomain resembles the architecture of the conserved DNA binding domain of nuclear receptors. CONCLUSIONS The results provide novel insight into the structural basis for protein-protein interactions between two important classes of transcription factors. The model proposed will help to elucidate the molecular basis for disease causing mutations in GATA4 and NKX2-5 and may be relevant to other members of the GATA and NK classes of transcription factors.
Collapse
Affiliation(s)
- Sini Kinnunen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Mika Välimäki
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Marja Tölli
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Gerd Wohlfahrt
- Orion Pharma, Computer-Aided Drug Design, Espoo, Finland
| | - Rami Darwich
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Canada
| | - Hiba Komati
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Canada
| | - Mona Nemer
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Canada
- * E-mail: (HR); (MN)
| | - Heikki Ruskoaho
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- * E-mail: (HR); (MN)
| |
Collapse
|
13
|
Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5. PLoS One 2015; 10:e0125384. [PMID: 26047103 PMCID: PMC4457652 DOI: 10.1371/journal.pone.0125384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/23/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Adult cardiac stem cells (CSCs) express many endogenous cardiogenic transcription factors including members of the Gata, Hand, Mef2, and T-box family. Unlike its DNA-binding targets, Myocardin (Myocd)-a co-activator not only for serum response factor, but also for Gata4 and Tbx5-is not expressed in CSCs. We hypothesised that its absence was a limiting factor for reprogramming. Here, we sought to investigate the susceptibility of adult mouse Sca1+ side population CSCs to reprogramming by supplementing the triad of GATA4, MEF2C, and TBX5 (GMT), and more specifically by testing the effect of the missing co-activator, Myocd. Exogenous factors were expressed via doxycycline-inducible lentiviral vectors in various combinations. High throughput quantitative RT-PCR was used to test expression of 29 cardiac lineage markers two weeks post-induction. GMT induced more than half the analysed cardiac transcripts. However, no protein was detected for the induced sarcomeric genes Actc1, Myh6, and Myl2. Adding MYOCD to GMT affected only slightly the breadth and level of gene induction, but, importantly, triggered expression of all three proteins examined (α-cardiac actin, atrial natriuretic peptide, sarcomeric myosin heavy chains). MYOCD + TBX was the most effective pairwise combination in this system. In clonal derivatives homogenously expressing MYOCD + TBX at high levels, 93% of cardiac transcripts were up-regulated and all five proteins tested were visualized. IN SUMMARY (1) GMT induced cardiac genes in CSCs, but not cardiac proteins under the conditions used. (2) Complementing GMT with MYOCD induced cardiac protein expression, indicating a more complete cardiac differentiation program. (3) Homogeneous transduction with MYOCD + TBX5 facilitated the identification of differentiating cells and the validation of this combinatorial reprogramming strategy. Together, these results highlight the pivotal importance of MYOCD in driving CSCs toward a cardiac muscle fate.
Collapse
|
14
|
Prosdocimo DA, Sabeh MK, Jain MK. Kruppel-like factors in muscle health and disease. Trends Cardiovasc Med 2014; 25:278-87. [PMID: 25528994 DOI: 10.1016/j.tcm.2014.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/22/2022]
Abstract
Kruppel-like factors (KLF) are zinc-finger DNA-binding transcription factors that are critical regulators of tissue homeostasis. Emerging evidence suggests that KLFs are critical regulators of muscle biology in the context of cardiovascular health and disease. The focus of this review is to provide an overview of the current state of knowledge regarding the physiologic and pathologic roles of KLFs in the three lineages of muscle: cardiac, smooth, and skeletal.
Collapse
Affiliation(s)
- Domenick A Prosdocimo
- Case Cardiovascular Research Institute, Cleveland, OH; Harrington Heart & Vascular Institute, Cleveland, OH; Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, OH
| | - M Khaled Sabeh
- Case Cardiovascular Research Institute, Cleveland, OH; Harrington Heart & Vascular Institute, Cleveland, OH; Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, OH
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Cleveland, OH; Harrington Heart & Vascular Institute, Cleveland, OH; Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, OH.
| |
Collapse
|
15
|
Carboxy terminus of GATA4 transcription factor is required for its cardiogenic activity and interaction with CDK4. Mech Dev 2014; 134:31-41. [PMID: 25241353 PMCID: PMC4259525 DOI: 10.1016/j.mod.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/02/2014] [Accepted: 09/15/2014] [Indexed: 12/15/2022]
Abstract
Carboxy terminal region of GATA4 is required for cardiogenesis in Xenopus pluripotent explants and in embryos. Carboxy terminus of GATA4 interacts with CDK4. CDK4 enhances transcriptional and cardiogenic activity of GATA4. GATA4-Tbx5 and GATA4-FOG2 interactions are not required for cardiogenesis.
GATA4-6 transcription factors regulate numerous aspects of development and homeostasis in multiple tissues of mesodermal and endodermal origin. In the heart, the best studied of these factors, GATA4, has multiple distinct roles in cardiac specification, differentiation, morphogenesis, hypertrophy and survival. To improve understanding of how GATA4 achieves its numerous roles in the heart, here we have focused on the carboxy-terminal domain and the residues required for interaction with cofactors FOG2 and Tbx5. We present evidence that the carboxy terminal region composed of amino acids 362–400 is essential for mediating cardiogenesis in Xenopus pluripotent explants and embryos. In contrast, the same region is not required for endoderm-inducing activity of GATA4. Further evidence is presented that the carboxy terminal cardiogenic region of GATA4 does not operate as a generic transcriptional activator. Potential mechanism of action of the carboxy terminal end of GATA4 is provided by the results showing physical and functional interaction with CDK4, including the enhancement of cardiogenic activity of GATA4 by CDK4. These results establish CDK4 as a GATA4 partner in cardiogenesis. The interactions of GATA4 with its other well described cofactors Tbx5 and FOG2 are known to be involved in heart morphogenesis, but their requirement for cardiac differentiation is unknown. We report that the mutations that disrupt interactions of GATA4 with Tbx5 and FOG2, G295S and V217G, respectively, do not impair cardiogenic activity of GATA4. These findings add support to the view that distinct roles of GATA4 in the heart are mediated by different determinants of the protein. Finally, we show that the rat GATA4 likely induces cardiogenesis cell autonomously or directly as it does not require activity of endodermal transcription factor Sox17, a GATA4 target gene that induces cardiogenesis non-cell autonomously.
Collapse
|
16
|
Mohan RA, van Engelen K, Stefanovic S, Barnett P, Ilgun A, Baars MJ, Bouma BJ, Mulder BJ, Christoffels VM, Postma AV. A mutation in the Kozak sequence ofGATA4hampers translation in a family with atrial septal defects. Am J Med Genet A 2014; 164A:2732-8. [DOI: 10.1002/ajmg.a.36703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 07/02/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Rajiv A. Mohan
- Department of Anatomy; Embryology & Physiology; Academic Medical Center; Amsterdam the Netherlands
| | - Klaartje van Engelen
- Department of Clinical Genetics; Academic Medical Center; Amsterdam the Netherlands
- Department of Cardiology; Academic Medical Center; Amsterdam the Netherlands
| | - Sonia Stefanovic
- Department of Anatomy; Embryology & Physiology; Academic Medical Center; Amsterdam the Netherlands
| | - Phil Barnett
- Department of Anatomy; Embryology & Physiology; Academic Medical Center; Amsterdam the Netherlands
| | - Aho Ilgun
- Department of Anatomy; Embryology & Physiology; Academic Medical Center; Amsterdam the Netherlands
| | - Marieke J.H. Baars
- Department of Clinical Genetics; Academic Medical Center; Amsterdam the Netherlands
| | - Berto J. Bouma
- Department of Cardiology; Academic Medical Center; Amsterdam the Netherlands
| | - Barbara J.M. Mulder
- Department of Cardiology; Academic Medical Center; Amsterdam the Netherlands
| | - Vincent M. Christoffels
- Department of Anatomy; Embryology & Physiology; Academic Medical Center; Amsterdam the Netherlands
| | - Alex V. Postma
- Department of Anatomy; Embryology & Physiology; Academic Medical Center; Amsterdam the Netherlands
- Department of Clinical Genetics; Academic Medical Center; Amsterdam the Netherlands
| |
Collapse
|
17
|
Wang E, Sun S, Qiao B, Duan W, Huang G, An Y, Xu S, Zheng Y, Su Z, Gu X, Jin L, Wang H. Identification of functional mutations in GATA4 in patients with congenital heart disease. PLoS One 2013; 8:e62138. [PMID: 23626780 PMCID: PMC3633926 DOI: 10.1371/journal.pone.0062138] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 03/19/2013] [Indexed: 01/10/2023] Open
Abstract
Congenital heart disease (CHD) is one of the most prevalent developmental anomalies and the leading cause of noninfectious morbidity and mortality in newborns. Despite its prevalence and clinical significance, the etiology of CHD remains largely unknown. GATA4 is a highly conserved transcription factor that regulates a variety of physiological processes and has been extensively studied, particularly on its role in heart development. With the combination of TBX5 and MEF2C, GATA4 can reprogram postnatal fibroblasts into functional cardiomyocytes directly. In the past decade, a variety of GATA4 mutations were identified and these findings originally came from familial CHD pedigree studies. Given that familial and sporadic CHD cases allegedly share a basic genetic basis, we explore the GATA4 mutations in different types of CHD. In this study, via direct sequencing of the GATA4 coding region and exon-intron boundaries in 384 sporadic Chinese CHD patients, we identified 12 heterozygous non-synonymous mutations, among which 8 mutations were only found in CHD patients when compared with 957 controls. Six of these non-synonymous mutations have not been previously reported. Subsequent functional analyses revealed that the transcriptional activity, subcellular localization and DNA binding affinity of some mutant GATA4 proteins were significantly altered. Our results expand the spectrum of GATA4 mutations linked to cardiac defects. Together with the newly reported mutations, approximately 110 non-synonymous mutations have currently been identified in GATA4. Our future analysis will explore why the evolutionarily conserved GATA4 appears to be hypermutable.
Collapse
Affiliation(s)
- Erli Wang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuna Sun
- Children’s Hospital of Fudan University, Shanghai, China
| | - Bin Qiao
- Institute of Cardiovascular Disease General Hospital of Jinan Military Region, Jinan, China
| | - Wenyuan Duan
- Institute of Cardiovascular Disease General Hospital of Jinan Military Region, Jinan, China
| | - Guoying Huang
- Children’s Hospital of Fudan University, Shanghai, China
| | - Yu An
- Children’s Hospital of Fudan University, Shanghai, China
- The Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shuhua Xu
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yufang Zheng
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhixi Su
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xun Gu
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongyan Wang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- The Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Viger RS, Taniguchi H, Robert NM, Tremblay JJ. The 25th Volume: Role of the GATA Family of Transcription Factors in Andrology. ACTA ACUST UNITED AC 2013; 25:441-52. [PMID: 15223831 DOI: 10.1002/j.1939-4640.2004.tb02813.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Robert S Viger
- Ontogeny-Reproduction Research Unit, CHUL Research Centre, and Centre de Recherche en Biologie de la Reproduction, Department of Obstetrics and Gynecology, Faculty of Medicine, Université Laval, Ste-Foy, Québec, Canada.
| | | | | | | |
Collapse
|
19
|
Adipose tissue-derived stem cell response to the differently processed 316L stainless steel substrates. Tissue Cell 2012; 44:365-72. [DOI: 10.1016/j.tice.2012.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 05/28/2012] [Accepted: 06/01/2012] [Indexed: 11/18/2022]
|
20
|
Pandey KN. Emerging Roles of Natriuretic Peptides and their Receptors in Pathophysiology of Hypertension and Cardiovascular Regulation. ACTA ACUST UNITED AC 2012; 2:210-26. [PMID: 19746200 DOI: 10.1016/j.jash.2008.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thus far, three related natriuretic peptides (NPs) and three distinct receptors have been identified, which have advanced our knowledge towards understanding the control of high blood pressure, hypertension, and cardiovascular disorders to a great extent. Biochemical and molecular studies have been advanced to examine receptor function and signaling mechanisms and the role of second messenger cGMP in pathophysiology of hypertension, renal hemodynamics, and cardiovascular functions. The development of gene-knockout and gene-duplication mouse models along with transgenic mice have provided a framework for understanding the importance of the antagonistic actions of natriuretic peptides receptor in cardiovascular events at the molecular level. Now, NPs are considered as circulating markers of congestive heart failure, however, their therapeutic potential for the treatment of cardiovascular diseases such as hypertension, renal insufficiency, cardiac hypertrophy, congestive heart failure, and stroke has just begun to unfold. Indeed, the alternative avenues of investigations in this important are need to be undertaken, as we are at the initial stage of the molecular therapeutic and pharmacogenomic implications.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112
| |
Collapse
|
21
|
Popov S, Venetsanou K, Chedrese PJ, Pinto V, Takemori H, Franco-Cereceda A, Eriksson P, Mochizuki N, Soares-da-Silva P, Bertorello AM. Increases in intracellular sodium activate transcription and gene expression via the salt-inducible kinase 1 network in an atrial myocyte cell line. Am J Physiol Heart Circ Physiol 2012; 303:H57-65. [PMID: 22467310 DOI: 10.1152/ajpheart.00512.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac hypertrophy (CH) generally occurs as the result of the sustained mechanical stress caused by elevated systemic arterial blood pressure (BP). However, in animal models, elevated salt intake is associated with CH even in the absence of significant increases in BP. We hypothesize that CH is not exclusively the consequence of mechanical stress but also of other factors associated with elevated BP such as abnormal cell sodium homeostasis. We examined the effect of small increases in intracellular sodium concentration ([Na(+)](i)) on transcription factors and genes associated with CH in a cardiac cell line. Increases in [Na(+)](i) led to a time-dependent increase in the expression levels of mRNA for natriuretic peptide and myosin heavy chain genes and also increased myocyte enhancer factor (MEF)2/nuclear factor of activated T cell (NFAT) transcriptional activity. Increases in [Na(+)](i) are associated with activation of salt-inducible kinase 1 (snflk-1, SIK1), a kinase known to be critical for cardiac development. Moreover, increases in [Na(+)](i) resulted in increased SIK1 expression. Sodium did not increase MEF2/NFAT activity or gene expression in cells expressing a SIK1 that lacked kinase activity. The mechanism by which SIK1 activated MEF2 involved phosphorylation of HDAC5. Increases in [Na(+)](i) activate SIK1 and MEF2 via a parallel increase in intracellular calcium through the reverse mode of Na(+)/Ca(2+)-exchanger and activation of CaMK1. These data obtained in a cardiac cell line suggest that increases in intracellular sodium could influence myocardial growth by controlling transcriptional activation and gene expression throughout the activation of the SIK1 network.
Collapse
Affiliation(s)
- Sergej Popov
- Membrane Signaling Networks, Atherosclerosis Research Unit, Department of Medicine, CMM, Karolinska Institutet, Karolinska University Hospital-Solna, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chandrakala AN, Sukul D, Selvarajan K, Sai-Sudhakar C, Sun B, Parthasarathy S. Induction of brain natriuretic peptide and monocyte chemotactic protein-1 gene expression by oxidized low-density lipoprotein: relevance to ischemic heart failure. Am J Physiol Cell Physiol 2012; 302:C165-77. [DOI: 10.1152/ajpcell.00116.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain natriuretic peptide (BNP) and monocyte chemotactic protein-1 (MCP-1) are biomarkers of heart failure (HF). The aim of the present study was to determine the role of oxidized low-density lipoprotein (Ox-LDL) in the induction of these biomarkers and the signaling pathways involved in vitro. Incubation of HL-1 cardiomyocytes and human myocytes with Ox-LDL induced the expression of BNP and MCP-1 genes, while native LDL had no effect. When peroxides associated with Ox-LDL were reduced to hydroxides, the ability to induce BNP and MCP-1 gene expression was abolished. Furthermore, exposure of HL-1 cells to ischemic conditions alone had no effect on BNP gene expression, while ischemia followed by reperfusion resulted in increased expression of BNP gene. Inhibitors of ERK and JNK inhibited the induction of BNP. Signaling array results suggested that the induction of both MAPK and NF-κB pathways is involved in the induction of BNP by Ox-LDL. These results suggest that Ox-LDL or peroxidized lipids formed in oxidatively stressed myocytes during ischemia-reperfusion injury may play a role in the induction of BNP and MCP-1.
Collapse
Affiliation(s)
| | - Devraj Sukul
- Division of Cardiac Surgery, The Ohio State University Medical Center, Columbus, Ohio
| | - Krithika Selvarajan
- Division of Cardiac Surgery, The Ohio State University Medical Center, Columbus, Ohio
| | - Chittoor Sai-Sudhakar
- Division of Cardiac Surgery, The Ohio State University Medical Center, Columbus, Ohio
| | - Benjamin Sun
- Division of Cardiac Surgery, The Ohio State University Medical Center, Columbus, Ohio
| | - Sampath Parthasarathy
- Division of Cardiac Surgery, The Ohio State University Medical Center, Columbus, Ohio
| |
Collapse
|
23
|
Takagaki Y, Yamagishi H, Matsuoka R. Factors Involved in Signal Transduction During Vertebrate Myogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:187-272. [DOI: 10.1016/b978-0-12-394307-1.00004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Ishibashi T, Yokura Y, Ohashi K, Yamamoto H, Maeda M. Conserved GC-boxes, E-box and GATA motif are essential for GATA-4 gene expression in P19CL6 cells. Biochem Biophys Res Commun 2011; 413:171-5. [PMID: 21878320 DOI: 10.1016/j.bbrc.2011.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/08/2011] [Indexed: 01/12/2023]
Abstract
The promoter of the GATA-4 gene was analyzed in P19CL6 cells. A 124bp segment containing conserved two GC-boxes and E-box was essential for the basal promoter activity, as determined with a transient luciferase reporter gene assay. However, an extended 1312 bp reporter construct but not the 124 bp segment, when ligated to the GFP gene and stably inserted into the chromosome, showed regulated promoter activity since GFP was expressed upon DMSO addition. Mutations of the two GC-boxes and/or E-box significantly impaired the GFP expression. Furthermore, mutation of the distal conserved GATA motif in the 1312 bp sequence decreased the expression of GFP. Chromatin immuno-precipitation assay showed that GATA-6 binds to this conserved GATA motif. These results suggest that the distal GATA motif recognized by GATA-6 together with the GC- and E-boxes may be important for transcriptional activation of the GATA-4 gene in the chromosome.
Collapse
Affiliation(s)
- Takuya Ishibashi
- Laboratory of Immunology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
25
|
Laforest B, Nemer M. GATA5 interacts with GATA4 and GATA6 in outflow tract development. Dev Biol 2011; 358:368-78. [PMID: 21839733 DOI: 10.1016/j.ydbio.2011.07.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 12/12/2022]
Abstract
Members of the GATA family of transcription factors are critical regulators of heart development and mutations in 2 of them, GATA4 and GATA6 are associated with outflow tract and septal defects in human. The heart expresses 3 GATA factors, GATA4, 5 and 6 in a partially overlapping pattern. Here, we report that compound Gata4/Gata5 and Gata5/Gata6 mutants die embryonically or perinatally due to severe congenital heart defects. Almost all Gata4(+/-)Gata5(+/-) mutant embryos have double outlet right ventricles (DORV), large ventricular septal defects (VSD) as well as hypertrophied mitral and tricuspid valves. Only 25% of double compound Gata4/Gata5 heterozygotes survive to adulthood and these mice have aortic stenosis. Compound loss of a Gata5 and a Gata6 allele also leads to DORVs associated with subaortic VSDs. Expression of several transcription factors important for endocardial and myocardial cell differentiation, such as Tbx20, Mef2c, Hey1 and Hand2, was reduced in compound heterozygote embryos. These findings suggest the existence of important genetic interactions between Gata5 and the 2 other cardiac GATA factors in endocardial cushion formation and outflow tract morphogenesis. The data identify GATA5 as a potential genetic modifier of congenital heart disease and provide insight for elucidating the genetic basis of an important class of human birth defects.
Collapse
Affiliation(s)
- Brigitte Laforest
- Laboratoire de Développement et Différentiation Cardiaque, Programme de Biologie Moléculaire, Université de Montréal, Montréal QC, Canada H3C 3J7
| | | |
Collapse
|
26
|
Möllmann H, Nef HM, Voss S, Troidl C, Willmer M, Szardien S, Rolf A, Klement M, Voswinckel R, Kostin S, Ghofrani HA, Hamm CW, Elsässer A. Stem cell-mediated natural tissue engineering. J Cell Mol Med 2011; 15:52-62. [PMID: 19941631 PMCID: PMC3822493 DOI: 10.1111/j.1582-4934.2009.00972.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recently, we demonstrated that a fully differentiated tissue developed on a ventricular septal occluder that had been implanted due to infarct-related septum rupture. We suggested that this tissue originated from circulating stem cells. The aim of the present study was to evaluate this hypothesis and to investigate the physiological differentiation and transdifferentiation potential of circulating stem cells. We developed an animal model in which a freely floating membrane was inserted into each the left ventricle and the descending aorta. Membranes were removed after pre-specified intervals of 3 days, and 2, 6 and 12 weeks; the newly developed tissue was evaluated using quantitative RT-PCR, immunohistochemistry and in situ hybridization. The contribution of stem cells was directly evaluated in another group of animals that were by treated with granulocyte macrophage colony-stimulating factor (GM-CSF) early after implantation. We demonstrated the time-dependent generation of a fully differentiated tissue composed of fibroblasts, myofibroblasts, smooth muscle cells, endothelial cells and new blood vessels. Cells differentiated into early cardiomyocytes on membranes implanted in the left ventricles but not on those implanted in the aortas. Stem cell mobilization with GM-CSF led to more rapid tissue growth and differentiation. The GM-CSF effect on cell proliferation outlasted the treat ment period by several weeks. Circulating stem cells contributed to the development of a fully differentiated tissue on membranes placed within the left ventricle or descending aorta under physiological conditions. Early cardiomyocyte generation was identified only on membranes positioned within the left ventricle.
Collapse
Affiliation(s)
- H Möllmann
- Kerckhoff Heart Center, Department of Cardiology, Bad Nauheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Koivisto E, Kaikkonen L, Tokola H, Pikkarainen S, Aro J, Pennanen H, Karvonen T, Rysä J, Kerkelä R, Ruskoaho H. Distinct regulation of B-type natriuretic peptide transcription by p38 MAPK isoforms. Mol Cell Endocrinol 2011; 338:18-27. [PMID: 21354263 DOI: 10.1016/j.mce.2011.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/27/2011] [Accepted: 02/17/2011] [Indexed: 11/17/2022]
Abstract
Persistent controversy underlies the functional roles of specific p38 MAPK isoforms in cardiac biology and regulation of hypertrophy-associated genes. Here we show that adenoviral gene transfer of p38β but not p38α increased B-type natriuretic peptide (BNP) mRNA levels in vitro as well as atrial natriuretic peptide mRNA levels both in vitro and in vivo. Overexpression of p38α, in turn, augmented the expression fibrosis-related genes connective tissue growth factor, basic fibroblast growth factor and matrix metalloproteinase-9 both in vitro and in vivo. p38β-induced BNP transcription was diminished by mutation of GATA-4 binding site, whereas overexpression of MKK6b, an upstream regulator of p38α and p38β, activated BNP transcription through both GATA-4 and AP-1. Overexpression of MKK3, upstream regulator of p38α, induced BNP transcription independently from AP-1 and GATA-4. These data provide new evidence for diversity in downstream targets and functional roles of p38 pathway kinases in regulation of hypertrophy-associated cardiac genes.
Collapse
Affiliation(s)
- Elina Koivisto
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pandey KN. The functional genomics of guanylyl cyclase/natriuretic peptide receptor-A: perspectives and paradigms. FEBS J 2011; 278:1792-807. [PMID: 21375691 DOI: 10.1111/j.1742-4658.2011.08081.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cardiac hormones atrial natriuretic peptide and B-type natriuretic peptide (brain natriuretic peptide) activate guanylyl cyclase (GC)-A/natriuretic peptide receptor-A (NPRA) and produce the second messenger cGMP. GC-A/NPRA is a member of the growing family of GC receptors. The recent biochemical, molecular and genomic studies on GC-A/NPRA have provided important insights into the regulation and functional activity of this receptor protein, with a particular emphasis on cardiac and renal protective roles in hypertension and cardiovascular disease states. The progress in this field of research has significantly strengthened and advanced our knowledge about the critical roles of Npr1 (coding for GC-A/NPRA) in the control of fluid volume, blood pressure, cardiac remodeling, and other physiological functions and pathological states. Overall, this review attempts to provide insights and to delineate the current concepts in the field of functional genomics and signaling of GC-A/NPRA in hypertension and cardiovascular disease states at the molecular level.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
29
|
|
30
|
Abstract
Atrial and brain natriuretic peptides (ANP and BNP, respectively) are cardiac hormones. During cardiac development, their expression is a maker of cardiomyocyte differentiation and is under tight spatiotemporal regulation. After birth, however, their ventricular expression is only up-regulated in response to various cardiovascular diseases. As a result, analysis of ANP and BNP gene expression has led to discoveries of transcriptional regulators and signaling pathways involved in both cardiac differentiation and cardiac disease. Studies using genetically engineered mice have shed light on the molecular mechanisms regulating ANP and BNP gene expression, as well as the physiological and pathophysiological relevance of the cardiac natriuretic peptide system. In this review we will summarize what is currently known about their regulation and the significance of ANP and BNP as hormones derived from the heart.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan.
| | | |
Collapse
|
31
|
Martel G, Hamet P, Tremblay J. Central role of guanylyl cyclase in natriuretic peptide signaling in hypertension and metabolic syndrome. Mol Cell Biochem 2009; 334:53-65. [PMID: 19937369 DOI: 10.1007/s11010-009-0326-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 11/04/2009] [Indexed: 01/05/2023]
Abstract
Studied for nearly 30 years for its ability to control many parameters, such as vascular smooth muscle cell relaxation, heart fibrosis, and kidney function, the natriuretic peptide (NP) system is now considered to be a key element in several other major metabolic pathways. After stimulation by NPs, natriuretic peptide receptors (NPR) convert GTP to the second messenger cGMP. In addition to its vasodilatory effects and natriuretic and diuretic functions, cGMP has been positively associated with fat cell function, apoptosis, and NPR expression/activity modulation. The NP system is also closely linked to metabolic syndrome (MetS) progression and obesity control. A new era is now on its way targeting the NP system to not only treat high blood pressure, but to also assist in the fight against the obesity pandemic. Here, we summarize recent data on the role of NPs in hypertension and MetS.
Collapse
Affiliation(s)
- G Martel
- Laboratory of Cellular Biology of Hypertension, Centre for Ecogenomic Models of Human Diseases, Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Technopôle Angus, 2901 rue Rachel est, bureau 314, Montreal, QC H1W 4A4, Canada
| | | | | |
Collapse
|
32
|
Relation of Cardiotrophin-1 (CT-1) and cardiac transcription factor GATA4 expression in rat's cardiac myocytes hypertrophy and apoptosis. Pathol Res Pract 2009; 205:615-25. [DOI: 10.1016/j.prp.2009.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 11/21/2022]
|
33
|
Clement CA, Kristensen SG, Møllgård K, Pazour GJ, Yoder BK, Larsen LA, Christensen ST. The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation. J Cell Sci 2009; 122:3070-82. [PMID: 19654211 DOI: 10.1242/jcs.049676] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Defects in the assembly or function of primary cilia, which are sensory organelles, are tightly coupled to developmental defects and diseases in mammals. Here, we investigated the function of the primary cilium in regulating hedgehog signaling and early cardiogenesis. We report that the pluripotent P19.CL6 mouse stem cell line, which can differentiate into beating cardiomyocytes, forms primary cilia that contain essential components of the hedgehog pathway, including Smoothened, Patched-1 and Gli2. Knockdown of the primary cilium by Ift88 and Ift20 siRNA or treatment with cyclopamine, an inhibitor of Smoothened, blocks hedgehog signaling in P19.CL6 cells, as well as differentiation of the cells into beating cardiomyocytes. E11.5 embryos of the Ift88(tm1Rpw) (Ift88-null) mice, which form no cilia, have ventricular dilation, decreased myocardial trabeculation and abnormal outflow tract development. These data support the conclusion that cardiac primary cilia are crucial in early heart development, where they partly coordinate hedgehog signaling.
Collapse
|
34
|
Glenn DJ, Rahmutula D, Nishimoto M, Liang F, Gardner DG. Atrial natriuretic peptide suppresses endothelin gene expression and proliferation in cardiac fibroblasts through a GATA4-dependent mechanism. Cardiovasc Res 2009; 84:209-17. [PMID: 19546173 DOI: 10.1093/cvr/cvp208] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Atrial natriuretic peptide (ANP) is a hormone that has both antihypertrophic and antifibrotic properties in the heart. We hypothesized that myocyte-derived ANP inhibits endothelin (ET) gene expression in fibroblasts. METHODS AND RESULTS We have investigated the mechanism(s) involved in the antiproliferative effect of ANP on cardiac fibroblasts in a cell culture model. We found that cardiac myocytes inhibited DNA synthesis in co-cultured cardiac fibroblasts as did treatment with the ET-1 antagonist BQ610. The effect of co-culture was reversed by antibody directed against ANP or the ANP receptor antagonist HS-142-1. ANP inhibited the expression of the ET-1 gene and ET-1 gene promoter activity in cultured fibroblasts. The site of the inhibition was localized to a GATA-binding site positioned between -132 and -135 upstream from the transcription start site. GATA4 expression was demonstrated in cardiac fibroblasts, GATA4 bound the ET-1 promoter both in vitro and in vivo, and siRNA-mediated knockdown of GATA4 inhibited ET-1 expression. ET-1 treatment resulted in increased levels of phospho-serine(105) GATA4 in cardiac fibroblasts and this induction was partially suppressed by co-treatment with ANP. CONCLUSION Collectively, these findings suggest that locally produced ET-1 serves as an autocrine stimulator of fibroblast proliferation, that ANP produced in neighbouring myocytes serves as a paracrine inhibitor of this proliferation, and that the latter effect operates through a reduction in GATA4 phosphorylation and coincident reduction in GATA4-dependent transcriptional activity.
Collapse
Affiliation(s)
- Denis J Glenn
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
35
|
Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb Exp Pharmacol 2009:341-66. [PMID: 19089336 DOI: 10.1007/978-3-540-68964-5_15] [Citation(s) in RCA: 394] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natriuretic peptides are a family of three structurally related hormone/ paracrine factors. Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are secreted from the cardiac atria and ventricles, respectively. ANP signals in an endocrine and paracrine manner to decrease blood pressure and cardiac hypertrophy. BNP acts locally to reduce ventricular fibrosis. C-type natriuretic peptide (CNP) primarily stimulates long bone growth but likely serves unappreciated functions as well. ANP and BNP activate the transmembrane guanylyl cyclase, natriuretic peptide receptor-A (NPR-A). CNP activates a related cyclase, natriuretic peptide receptor-B (NPR-B). Both receptors catalyze the synthesis of cGMP, which mediates most known effects of natriuretic peptides. A third natriuretic peptide receptor, natriuretic peptide receptor-C (NPR-C), clears natriuretic peptides from the circulation through receptor-mediated internalization and degradation. However, a signaling function for the receptor has been suggested as well. Targeted disruptions of the genes encoding all natriuretic peptides and their receptors have been generated in mice, which display unique physiologies. A few mutations in these proteins have been reported in humans. Synthetic analogs of ANP (anaritide and carperitide) and BNP (nesiritide) have been investigated as potential therapies for the treatment of decompensated heart failure and other diseases. Anaritide and nesiritide are approved for use in acute decompensated heart failure, but recent studies have cast doubt on their safety and effectiveness. New clinical trials are examining the effect of nesiritide and novel peptides, like CD-NP, on these critical parameters. In this review, the history, structure, function, and clinical applications of natriuretic peptides and their receptors are discussed.
Collapse
Affiliation(s)
- Lincoln R Potter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, 321 Church St SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Shimko VF, Claycomb WC. Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes. Tissue Eng Part A 2008. [PMID: 18333804 DOI: 10.1089/ten.2007.0092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cardiomyocytes selected from murine embryonic stem cells (ESCs) using the cardiac-specific promoter alpha-myosin heavy chain were embedded into collagen and fibronectin scaffolds. A custom-built device was used to expose these constructs to mechanical loading (10% stretch at 1, 2, or 3 Hz) or no loading. Constructs were evaluated using reverse transcriptase polymerase chain reaction, histology, and immunohistochemistry. Mechanical loading significantly affected gene expression, and these changes were dependent on the frequency of stretch. A 1 Hz cyclical stretch resulted in significantly lower gene expression, whereas a 3 Hz cyclical stretch resulted in significantly greater gene expression than in unstretched controls. These constructs also developed cardiac-specific cell structures similar to those found in vivo. This study describes a 3-dimensional model to examine the direct effect of mechanical loading on the differentiation of ESC-derived cardiomyocytes embedded in a defined extracellular matrix scaffold. A technique was also developed to isolate the areas within the constructs undergoing the most homogeneous strain so that the effect of mechanical loading on gene expression could be directly evaluated. These experiments emphasize that ESC-derived cardiomyocytes are actively responding to cues from their environment and that those cues can drive phenotypic control and cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Valerie F Shimko
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | | |
Collapse
|
38
|
Shimko VF, Claycomb WC. Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes. Tissue Eng Part A 2008; 14:49-58. [PMID: 18333804 DOI: 10.1089/ten.a.2007.0092] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cardiomyocytes selected from murine embryonic stem cells (ESCs) using the cardiac-specific promoter alpha-myosin heavy chain were embedded into collagen and fibronectin scaffolds. A custom-built device was used to expose these constructs to mechanical loading (10% stretch at 1, 2, or 3 Hz) or no loading. Constructs were evaluated using reverse transcriptase polymerase chain reaction, histology, and immunohistochemistry. Mechanical loading significantly affected gene expression, and these changes were dependent on the frequency of stretch. A 1 Hz cyclical stretch resulted in significantly lower gene expression, whereas a 3 Hz cyclical stretch resulted in significantly greater gene expression than in unstretched controls. These constructs also developed cardiac-specific cell structures similar to those found in vivo. This study describes a 3-dimensional model to examine the direct effect of mechanical loading on the differentiation of ESC-derived cardiomyocytes embedded in a defined extracellular matrix scaffold. A technique was also developed to isolate the areas within the constructs undergoing the most homogeneous strain so that the effect of mechanical loading on gene expression could be directly evaluated. These experiments emphasize that ESC-derived cardiomyocytes are actively responding to cues from their environment and that those cues can drive phenotypic control and cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Valerie F Shimko
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | | |
Collapse
|
39
|
Takahashi T, Yu F, Saegusa S, Sumino H, Nakahashi T, Iwai K, Morimoto S, Kurabayashi M, Kanda T. Impaired expression of cardiac adiponectin in leptin-deficient mice with viral myocarditis. Int Heart J 2007; 47:107-23. [PMID: 16479046 DOI: 10.1536/ihj.47.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A mouse model of encephalomyocarditis (EMC) virus-induced myocarditis was used to investigate the expression of adiponectin in damaged cardiomyocytes. We intraperitoneally injected EMC virus into leptin-deficient ob/ob (OB) mice and wild-type (WT) mice. OB mice were divided into two subgroups consisting of mice with no intervention and mice receiving leptin replacement starting simultaneously with viral inoculation. We determined differences in heart weight, cardiac histological score, numbers of infiltrating and apoptotic cells in the myocardium, expression levels of adiponectin and TNF-alpha mRNA in the heart, adiponectin immunoreactivity in myocytes, adiponectin and TNF-alpha concentrations in the heart, and immunoreactivity of adiponectin receptors in myocytes between OB mice and WT mice. There was significantly decreased adiponectin mRNA expression, immunoreactivity, and protein level in the heart, and reduced immunoreactivity of adiponectin receptor 1 in myocytes from OB mice on days 4 and 8 after viral inoculation as compared with those in WT mice, together with increased cardiac weight, severe inflammatory myocardial damage, and increased levels of cardiac TNF-alpha mRNA and protein. Replacement of leptin in OB mice inhibited the development of severe myocarditis through augmentation of adiponectin mRNA, immunoreactivity, and protein level, increased adiponectin receptor 1 immunoreactivity in myocytes, and suppressed levels of TNF-alpha mRNA and protein. These results suggest that impaired expression of cardiac adiponectin may contribute to the progression of viral myocarditis through enhanced expression of TNF-alpha under a leptin-deficient condition.
Collapse
Affiliation(s)
- Takashi Takahashi
- Department of General Medicine, Kanazawa Medical University, Ishikawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Genetic insights into normal and abnormal heart development. Cardiovasc Pathol 2007; 17:48-54. [PMID: 18160060 DOI: 10.1016/j.carpath.2007.06.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 06/28/2007] [Indexed: 11/23/2022] Open
Abstract
Congenital heart defects (CHDs) affect 1-2% of newborn children and are the leading cause of death in infants under 1 year of age. CHDs represent the single largest class of birth defects and account for 25% of all human congenital abnormalities. Numerous epidemiologic studies have established the heritable nature of CHDs. However, despite the remarkable progress of the past decade, very few CHD-causing genes have been identified so far. Molecular and genetic analysis of heart development--which requires the execution of specific genetic programs--has led to the identification of essential cardiac regulators and mutations that are linked to human CHD. Elucidation of the mechanisms of action of these transcription factors has also provided a molecular framework that will continue to help furthering our understanding of the molecular basis of normal and abnormal heart growth. This review will summarize present knowledge of cardiac development and illustrate how analysis of heart development has helped understand the genetic basis of some CHDs and how these advances could translate into better prevention, diagnosis, and care of congenital heart disease.
Collapse
|
41
|
Majalahti T, Suo-Palosaari M, Sármán B, Hautala N, Pikkarainen S, Tokola H, Vuolteenaho O, Wang J, Paradis P, Nemer M, Ruskoaho H. Cardiac BNP gene activation by angiotensin II in vivo. Mol Cell Endocrinol 2007; 273:59-67. [PMID: 17587490 DOI: 10.1016/j.mce.2007.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 04/20/2007] [Accepted: 05/09/2007] [Indexed: 01/12/2023]
Abstract
The transcription factors involved in the activation of cardiac gene expression by angiotensin II (Ang II) in vivo are not well understood. Here we studied the contribution of transcriptional elements to the activation of the cardiac B-type natriuretic peptide (BNP) gene promoter by Ang II in conscious rats and in angiotensin II type 1 receptor (AT1R) transgenic mice. Rat BNP luciferase reporter gene constructs were injected into the left ventricular wall. The mean luciferase activity was 1.8-fold higher (P<0.05) in the ventricles of animals subjected to 2-week Ang II infusion as compared with vehicle infusion. Our results indicate that GATA binding sites at -90 and -81 in the rat BNP promoter are essential for the in vivo response to Ang II. The GATA factor binding to these sites is GATA-4. BNP mRNA levels and GATA-4 binding activity are also increased in the hypertrophied hearts of aged AT1R transgenic mice.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Body Weight/drug effects
- Cells, Cultured
- DNA/metabolism
- GATA4 Transcription Factor/genetics
- GATA4 Transcription Factor/metabolism
- GATA6 Transcription Factor/genetics
- GATA6 Transcription Factor/metabolism
- Gene Expression Regulation/drug effects
- Hypertension/physiopathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mice
- Mice, Transgenic
- Myocardium/metabolism
- Natriuretic Peptide, Brain/genetics
- Organ Size/drug effects
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- Proto-Oncogene Proteins c-ets/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/metabolism
- Transcription Factor AP-1/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Theresa Majalahti
- Department of Physiology, Biocenter Oulu, University of Oulu, Oulu FIN-90014, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Haldar SM, Ibrahim OA, Jain MK. Kruppel-like Factors (KLFs) in muscle biology. J Mol Cell Cardiol 2007; 43:1-10. [PMID: 17531262 PMCID: PMC2743293 DOI: 10.1016/j.yjmcc.2007.04.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 11/23/2022]
Abstract
The Kruppel-like Factor (KLF) family of zinc-finger transcription factors are critical regulators of cell differentiation, phenotypic modulation and physiologic function. An emerging body of evidence implicates an important role for these factors in cardiovascular biology, however, the role of KLFs in muscle biology is only beginning to be understood. This article reviews the published data describing the role of KLFs in the heart, smooth muscle, and skeletal muscle and highlights the importance of these factors in cardiovascular development, physiology and disease pathobiology.
Collapse
Affiliation(s)
| | | | - Mukesh K. Jain
- Address correspondence to: Mukesh K. Jain M.D., Case Cardiovascular Research Institute, Case Medical School and Cardiovascular Division, University Hospitals of Cleveland, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106. ; Tel: (216) 368-3609, Fax: (216) 368-0556
| |
Collapse
|
43
|
Affiliation(s)
- David G Gardner
- Diabetes Center, University of California at San Francisco, San Francisco, CA 94143-0540, USA.
| | | | | | | |
Collapse
|
44
|
Lavallée G, Andelfinger G, Nadeau M, Lefebvre C, Nemer G, Horb ME, Nemer M. The Kruppel-like transcription factor KLF13 is a novel regulator of heart development. EMBO J 2006; 25:5201-13. [PMID: 17053787 PMCID: PMC1630408 DOI: 10.1038/sj.emboj.7601379] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 09/06/2006] [Indexed: 11/09/2022] Open
Abstract
In humans, congenital heart defects occur in 1-2% of live birth, but the molecular mechanisms and causative genes remain unidentified in the majority of cases. We have uncovered a novel transcription pathway important for heart morphogenesis. We report that KLF13, a member of the Krüppel-like family of zinc-finger proteins, is expressed predominantly in the heart, binds evolutionarily conserved regulatory elements on cardiac promoters and activates cardiac transcription. KLF13 is conserved across species and knockdown of KLF13 in Xenopus embryos leads to atrial septal defects and hypotrabeculation similar to those observed in humans or mice with hypomorphic GATA-4 alleles. Physical and functional interaction with GATA-4, a dosage-sensitive cardiac regulator, provides a mechanistic explanation for KLF13 action in the heart. The data demonstrate that KLF13 is an important component of the transcription network required for heart development and suggest that KLF13 is a GATA-4 modifier; by analogy to other GATA-4 collaborators, mutations in KLF13 may be causative for congenital human heart disease.
Collapse
Affiliation(s)
- Geneviève Lavallée
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Gregor Andelfinger
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Mathieu Nadeau
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Chantal Lefebvre
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Georges Nemer
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Marko E Horb
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
- Cardiac Growth and Differentiation Unit, Institut de recherches cliniques de Montréal (IRCM), 110, avenue des Pins Ouest, Montréal, Quebec, Canada H2W 1R7. Tel.: +1 514 987 5680; Fax: +1 514 987 5575; E-mail:
| | - Mona Nemer
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
- Cardiac Growth and Differentiation Unit, Institut de recherches cliniques de Montréal (IRCM), 110, avenue des Pins Ouest, Montréal, Quebec, Canada H2W 1R7. Tel.: +1 514 987 5680; Fax: +1 514 987 5575; E-mail:
| |
Collapse
|
45
|
Karamboulas C, Swedani A, Ward C, Al-Madhoun AS, Wilton S, Boisvenue S, Ridgeway AG, Skerjanc IS. HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. J Cell Sci 2006; 119:4305-14. [PMID: 17038545 DOI: 10.1242/jcs.03185] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class II histone deacetylases (HDAC4, HDAC5, HDAC7 and HDAC9) have been shown to interact with myocyte enhancer factors 2 (MEF2s) and play an important role in the repression of cardiac hypertrophy. We examined the role of HDACs during the differentiation of P19 embryonic carcinoma stem cells into cardiomyoctyes. Treatment of aggregated P19 cells with the HDAC inhibitor trichostatin A induced the entry of mesodermal cells into the cardiac muscle lineage, shown by the upregulation of transcripts Nkx2-5, MEF2C, GATA4 and cardiac α-actin. Furthermore, the overexpression of HDAC4 inhibited cardiomyogenesis, shown by the downregulation of cardiac muscle gene expression. Class II HDAC activity is inhibited through phosphorylation by Ca2+/calmodulin-dependent kinase (CaMK). Expression of an activated CaMKIV in P19 cells upregulated the expression of Nkx2-5, GATA4 and MEF2C, enhanced cardiac muscle development, and activated a MEF2-responsive promoter. Moreover, inhibition of CaMK signaling downregulated GATA4 expression. Finally, P19 cells constitutively expressing a dominant-negative form of MEF2C, capable of binding class II HDACs, underwent cardiomyogenesis more efficiently than control cells, implying the relief of an inhibitor. Our results suggest that HDAC activity regulates the specification of mesoderm cells into cardiomyoblasts by inhibiting the expression of GATA4 and Nkx2-5 in a stem cell model system.
Collapse
Affiliation(s)
- Christina Karamboulas
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Karamboulas C, Dakubo GD, Liu J, De Repentigny Y, Yutzey K, Wallace VA, Kothary R, Skerjanc IS. Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis. J Cell Sci 2006; 119:4315-21. [PMID: 17003108 DOI: 10.1242/jcs.03186] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Myocyte enhancer factors (MEF2s) bind to muscle-specific promoters and activate transcription. Drosophila Mef2 is essential for Drosophila heart development, however, neither MEF2C nor MEF2B are essential for the early stages of murine cardiomyogenesis. Although Mef2c-null mice were defective in the later stages of heart morphogenesis, differentiation of cardiomyocytes still occurred. Since there are four isoforms of MEF2 factors (MEF2A, MEF2B, MEF2C and MEF2D), the ability of cells to differentiate may have been confounded by genetic redundancy. To eliminate this variable, the effect of a dominant-negative MEF2 mutant (MEF2C/EnR) during cardiomyogenesis was examined in transgenic mice and P19 cells. Targeting the expression of MEF2C/EnR to cardiomyoblasts using an Nkx2-5 enhancer in the P19 system resulted in the loss of both cardiomyocyte development and the expression of GATA4, BMP4, Nkx2-5 and MEF2C. In transiently transgenic mice, MEF2C/EnR expression resulted in embryos that lacked heart structures and exhibited defective differentiation. Our results show that MEF2C, or genes containing MEF2 DNA-binding sites, is required for the efficient differentiation of cardiomyoblasts into cardiomyocytes, suggesting conservation in the role of MEF2 from Drosophila to mammals.
Collapse
Affiliation(s)
- Christina Karamboulas
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abdelalim EM, Takada T, Toyoda F, Omatsu-Kanbe M, Matsuura H, Tooyama I, Torii R. In Vitro expression of natriuretic peptides in cardiomyocytes differentiated from monkey embryonic stem cells. Biochem Biophys Res Commun 2006; 340:689-95. [PMID: 16378593 DOI: 10.1016/j.bbrc.2005.12.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/05/2005] [Indexed: 11/17/2022]
Abstract
Functional characterization of ES cell-derived cardiomyocytes is important for differentiation control and application to the cell therapy. One of the crucial functions of cardiomyocytes is a production of atrial and brain natriuretic peptides (ANP and BNP, respectively), which have important endocrine, autocrine, and paracrine functions. In this study, we focused on the functional aspect of the cardiomyocytes differentiated from monkey ES cells in vitro and investigated the expression of ANP and BNP. Spontaneously contracting cells showed nodal-like action potentials, and expression of ANP and BNP by RT-PCR and immunocytochemistry. Interestingly, ANP and BNP expressions were detected as immunoreactive granules in the perinuclear area and these signals appeared to co-localize with trans-Golgi network. These findings suggest that monkey ES cells were able to differentiate into cardiomyocytes with functional characteristics in vitro and therefore can be used as a useful model to study mechanisms and functions in early cardiogenesis.
Collapse
Affiliation(s)
- Essam Mohamed Abdelalim
- Research Center For Animal Life Science, Shiga University of Medical Science, Tsukinowa-Cho, Seta, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 2006; 27:47-72. [PMID: 16291870 DOI: 10.1210/er.2005-0014] [Citation(s) in RCA: 704] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natriuretic peptides are a family of structurally related but genetically distinct hormones/paracrine factors that regulate blood volume, blood pressure, ventricular hypertrophy, pulmonary hypertension, fat metabolism, and long bone growth. The mammalian members are atrial natriuretic peptide, B-type natriuretic peptide, C-type natriuretic peptide, and possibly osteocrin/musclin. Three single membrane-spanning natriuretic peptide receptors (NPRs) have been identified. Two, NPR-A/GC-A/NPR1 and NPR-B/GC-B/NPR2, are transmembrane guanylyl cyclases, enzymes that catalyze the synthesis of cGMP. One, NPR-C/NPR3, lacks intrinsic enzymatic activity and controls the local concentrations of natriuretic peptides through constitutive receptor-mediated internalization and degradation. Single allele-inactivating mutations in the promoter of human NPR-A are associated with hypertension and heart failure, whereas homozygous inactivating mutations in human NPR-B cause a form of short-limbed dwarfism known as acromesomelic dysplasia type Maroteaux. The physiological effects of natriuretic peptides are elicited through three classes of cGMP binding proteins: cGMP-dependent protein kinases, cGMP-regulated phosphodiesterases, and cyclic nucleotide-gated ion channels. In this comprehensive review, the structure, function, regulation, and biological consequences of natriuretic peptides and their associated signaling proteins are described.
Collapse
Affiliation(s)
- Lincoln R Potter
- Department of Biochemistry, Molecular Biology, and Biophysics, 6-155 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
49
|
Ohara Y, Atarashi T, Ishibashi T, Ohashi-Kobayashi A, Maeda M. GATA-4 Gene Organization and Analysis of Its Promoter. Biol Pharm Bull 2006; 29:410-9. [PMID: 16508137 DOI: 10.1248/bpb.29.410] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse GATA-4 gene is separated by six introns, and this gene organization is conserved in rodents and man. The transcriptional start site of the GATA-4 gene is essentially the same in rat heart, stomach and testis, and in cultured cells expressing GATA-4 such as TM3, TM4, I-10 and P19.CL6 cells. The 5'-upstream of the GATA-4 gene is also conserved in rodents and man. We examined its promoter activity by means of luciferase reporter gene assay using testis-derived TM3 and TM4 cells. The GC-boxes and E-box located in the several tens of base pairs upstream of the transcriptional start sites of the GATA-4 gene were found to be critical for its promoter activity in these cells, consistent with the mode of transcription characteristics of the TATA-less promoter. P19.CL6 cells differentiate into beating cardiomyocytes upon induction by DMSO, accompanied by stimulation of the transcription of heart-specific genes including GATA-4. Interestingly, they exhibit increased luciferase reporter gene activity upon induction by DMSO. Both proximal tandem GC-boxes and the E-box are also contributed to the reporter gene activity in P19.CL6 cells.
Collapse
Affiliation(s)
- Yasunori Ohara
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | | | | | |
Collapse
|
50
|
Takahashi T, Zhu SJ, Sumino H, Saegusa S, Nakahashi T, Iwai K, Morimoto S, Kanda T. Inhibition of cyclooxygenase-2 enhances myocardial damage in a mouse model of viral myocarditis. Life Sci 2005; 78:195-204. [PMID: 16107267 DOI: 10.1016/j.lfs.2005.04.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 04/18/2005] [Indexed: 11/30/2022]
Abstract
To determine critical role of cyclooxygenase-2 (COX-2) for development of viral myocarditis, a mouse model of encephalomyocarditis virus-induced myocarditis was used. The virus was intraperitoneally given to COX-2 gene-deficient heterozygote mice (COX-2+/-) and wild-type mice (WT). We examined differences in heart weights, cardiac histological scores, numbers of infiltrating or apoptotic cells in myocardium, cardiac expression levels of COX-2, tumor necrosis factor-alpha (TNF-alpha), and adiponectin mRNA, immunoreactivity of COX-2, TNF-alpha, and adiponectin in myocytes, cardiac concentrations of TNF-alpha and adiponectin, prostaglandin E2 (PGE2) levels in hearts, and viral titers in tissues between COX-2+/- and WT. We observed significantly decreased expression of COX-2 mRNA and reactivity in hearts from COX-2+/- on day 8 after viral inoculation as compared with that from WT, together with elevated cardiac weights and severe inflammatory myocardial damage in COX-2+/-. Cardiac expression of TNF-alpha mRNA, reactivity, and protein on day 8 was significantly higher in COX-2+/- than in WT, together with reciprocal expression of adiponectin mRNA, reactivity, and protein in hearts. Significantly reduced cardiac PGE2 levels on day 8 were found in COX-2+/- compared with those in WT. There was no difference in local viral titers between both groups on day 4. Infected WT treated with a selective COX-2 inhibitor, NS-398, also showed the augmented myocardial damage on day 8. These results suggest that inhibition of COX-2 may enhance myocardial damage through reciprocal cardiac expression of TNF-alpha and adiponectin in a mouse model of viral myocarditis.
Collapse
Affiliation(s)
- Takashi Takahashi
- Department of a General Medicine, Kanazawa Medical University, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan
| | | | | | | | | | | | | | | |
Collapse
|