1
|
Sphingolipid accumulation causes mitochondrial dysregulation and cell death. Cell Death Differ 2017; 24:2044-2053. [PMID: 28800132 DOI: 10.1038/cdd.2017.128] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
Sphingolipids are structural components of cell membranes that have signaling roles to regulate many activities, including mitochondrial function and cell death. Sphingolipid metabolism is integrated with numerous metabolic networks, and dysregulated sphingolipid metabolism is associated with disease. Here, we describe a monogenic yeast model for sphingolipid accumulation. A csg2Δ mutant cannot readily metabolize and accumulates the complex sphingolipid inositol phosphorylceramide (IPC). In these cells, aberrant activation of Ras GTPase is IPC-dependent, and accompanied by increased mitochondrial reactive oxygen species (ROS) and reduced mitochondrial mass. Survival or death of csg2Δ cells depends on nutritional status. Abnormal Ras activation in csg2Δ cells is associated with impaired Snf1/AMPK protein kinase, a key regulator of energy homeostasis. csg2Δ cells are rescued from ROS production and death by overexpression of mitochondrial catalase Cta1, abrogation of Ras hyperactivity or genetic activation of Snf1/AMPK. These results suggest that sphingolipid dysregulation compromises metabolic integrity via Ras and Snf1/AMPK pathways.
Collapse
|
2
|
Pérez-Landero S, Sandoval-Motta S, Martínez-Anaya C, Yang R, Folch-Mallol JL, Martínez LM, Ventura L, Guillén-Navarro K, Aldana-González M, Nieto-Sotelo J. Complex regulation of Hsf1-Skn7 activities by the catalytic subunits of PKA in Saccharomyces cerevisiae: experimental and computational evidences. BMC SYSTEMS BIOLOGY 2015. [PMID: 26209979 PMCID: PMC4515323 DOI: 10.1186/s12918-015-0185-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background The cAMP-dependent protein kinase regulatory network (PKA-RN) regulates metabolism, memory, learning, development, and response to stress. Previous models of this network considered the catalytic subunits (CS) as a single entity, overlooking their functional individualities. Furthermore, PKA-RN dynamics are often measured through cAMP levels in nutrient-depleted cells shortly after being fed with glucose, dismissing downstream physiological processes. Results Here we show that temperature stress, along with deletion of PKA-RN genes, significantly affected HSE-dependent gene expression and the dynamics of the PKA-RN in cells growing in exponential phase. Our genetic analysis revealed complex regulatory interactions between the CS that influenced the inhibition of Hsf1/Skn7 transcription factors. Accordingly, we found new roles in growth control and stress response for Hsf1/Skn7 when PKA activity was low (cdc25Δ cells). Experimental results were used to propose an interaction scheme for the PKA-RN and to build an extension of a classic synchronous discrete modeling framework. Our computational model reproduced the experimental data and predicted complex interactions between the CS and the existence of a repressor of Hsf1/Skn7 that is activated by the CS. Additional genetic analysis identified Ssa1 and Ssa2 chaperones as such repressors. Further modeling of the new data foresaw a third repressor of Hsf1/Skn7, active only in theabsence of Tpk2. By averaging the network state over all its attractors, a good quantitative agreement between computational and experimental results was obtained, as the averages reflected more accurately the population measurements. Conclusions The assumption of PKA being one molecular entity has hindered the study of a wide range of behaviors. Additionally, the dynamics of HSE-dependent gene expression cannot be simulated accurately by considering the activity of single PKA-RN components (i.e., cAMP, individual CS, Bcy1, etc.). We show that the differential roles of the CS are essential to understand the dynamics of the PKA-RN and its targets. Our systems level approach, which combined experimental results with theoretical modeling, unveils the relevance of the interaction scheme for the CS and offers quantitative predictions for several scenarios (WT vs. mutants in PKA-RN genes and growth at optimal temperature vs. heat shock). Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0185-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergio Pérez-Landero
- Instituto de Biología, Universidad Nacional Autónoma de México, 04510, México, D.F., Mexico.
| | - Santiago Sandoval-Motta
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Claudia Martínez-Anaya
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Runying Yang
- Present Address: Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
| | - Jorge Luis Folch-Mallol
- Present Address: Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, 62209, Cuernavaca, Mor., Mexico.
| | - Luz María Martínez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Larissa Ventura
- Present Address: Grupo La Florida México, Tlalnepantla, 54170, Edo. de Méx., Mexico.
| | | | - Maximino Aldana-González
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico.
| | - Jorge Nieto-Sotelo
- Instituto de Biología, Universidad Nacional Autónoma de México, 04510, México, D.F., Mexico.
| |
Collapse
|
3
|
Wallace-Salinas V, Brink DP, Ahrén D, Gorwa-Grauslund MF. Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress. BMC Genomics 2015; 16:514. [PMID: 26156140 PMCID: PMC4496855 DOI: 10.1186/s12864-015-1737-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/29/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Laboratory evolution is an important tool for developing robust yeast strains for bioethanol production since the biological basis behind combined tolerance requires complex alterations whose proper regulation is difficult to achieve by rational metabolic engineering. Previously, we reported on the evolved industrial Saccharomyces cerevisiae strain ISO12 that had acquired improved tolerance to grow and ferment in the presence of lignocellulose-derived inhibitors at high temperature (39 °C). In the current study, we used comparative genomics to uncover the extent of the genomic alterations that occurred during the evolution process and investigated possible associations between the mutations and the phenotypic traits in ISO12. RESULTS Through whole-genome sequencing and variant calling we identified a high number of strain-unique SNPs and INDELs in both ISO12 and the parental strain Ethanol Red. The variants were predicted to have 760 non-synonymous effects in both strains combined and were significantly enriched in Gene Ontology terms related to cell periphery, membranes and cell wall. Eleven genes, including MTL1, FLO9/FLO11, and CYC3 were found to be under positive selection in ISO12. Additionally, the FLO genes exhibited changes in copy number, and the alterations to this gene family were correlated with experimental results of multicellularity and invasive growth in the adapted strain. An independent lipidomic analysis revealed further differences between the strains in the content of nine lipid species. Finally, ISO12 displayed improved viability in undiluted spruce hydrolysate that was unrelated to reduction of inhibitors and changes in cell wall integrity, as shown by HPLC and lyticase assays. CONCLUSIONS Together, the results of the sequence comparison and the physiological characterisations indicate that cell-periphery proteins (e.g. extracellular sensors such as MTL1) and peripheral lipids/membranes are important evolutionary targets in the process of adaptation to the combined stresses. The capacity of ISO12 to develop complex colony formation also revealed multicellularity as a possible evolutionary strategy to improve competitiveness and tolerance to environmental stresses (also reflected by the FLO genes). Although a panel of altered genes with high relevance to the novel phenotype was detected, this study also demonstrates that the observed long-term molecular effects of thermal and inhibitor stress have polygenetic basis.
Collapse
Affiliation(s)
- Valeria Wallace-Salinas
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, Lund, SE-22100, Sweden.
| | - Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, Lund, SE-22100, Sweden.
| | - Dag Ahrén
- Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, Lund, Sweden.
| | - Marie F Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, Lund, SE-22100, Sweden.
| |
Collapse
|
4
|
Bai C, Tesker M, Engelberg D. The yeast Hot1 transcription factor is critical for activating a single target gene, STL1. Mol Biol Cell 2015; 26:2357-74. [PMID: 25904326 PMCID: PMC4462951 DOI: 10.1091/mbc.e14-12-1626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/15/2015] [Indexed: 11/24/2022] Open
Abstract
An active variant of the MAPK Hog1 is used to identify its target genes. The promoter of one target, STL1, possesses a Hog1-responsive element (HoRE) that binds the transcription factor Hot1. HoRE is not found in other promoters, and the STL1 mRNA is the only one abolished in hot1Δ cells. Hot1 may be essential for transcription of one gene. Transcription factors are commonly activated by signal transduction cascades and induce expression of many genes. They therefore play critical roles in determining the cell's fate. The yeast Hog1 MAP kinase pathway is believed to control the transcription of hundreds of genes via several transcription factors. To identify the bona fide target genes of Hog1, we inducibly expressed the spontaneously active variant Hog1D170A+F318L in cells lacking the Hog1 activator Pbs2. This system allowed monitoring the effects of Hog1 by itself. Expression of Hog1D170A+F318L in pbs2∆ cells imposed induction of just 105 and suppression of only 26 transcripts by at least twofold. We looked for the Hog1-responsive element within the promoter of the most highly induced gene, STL1 (88-fold). A novel Hog1 responsive element (HoRE) was identified and shown to be the direct target of the transcription factor Hot1. Unexpectedly, we could not find this HoRE in any other yeast promoter. In addition, the only gene whose expression was abolished in hot1∆ cells was STL1. Thus Hot1 is essential for transcription of just one gene, STL1. Hot1 may represent a class of transcription factors that are essential for transcription of a very few genes or even just one.
Collapse
Affiliation(s)
- Chen Bai
- CREATE-NUS-HUJ Cellular and Molecular Mechanisms of Inflammation Programme, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | - Masha Tesker
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Engelberg
- CREATE-NUS-HUJ Cellular and Molecular Mechanisms of Inflammation Programme, National University of Singapore, Singapore 138602 Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
5
|
Resolution of pulmonary hypertension complication during venovenous perfusion-induced systemic hyperthermia application. ASAIO J 2013; 59:390-6. [PMID: 23820278 DOI: 10.1097/mat.0b013e318291d0a5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We are developing a venovenous perfusion-induced systemic hyperthermia (vv-PISH) system for advanced cancer treatment. The vv-PISH system consistently delivered hyperthermia to adult healthy swine, but significant pulmonary hypertension developed during the heating phase. The goal of this study was to develop a method to prevent pulmonary hypertension. We hypothesized that pulmonary hypertension results from decreased priming solution air solubility, which causes pulmonary gas embolism. Healthy adult sheep (n = 3) were used to establish a standard vv-PISH sheep model without priming solution preheating. In subsequent sheep (n = 7), the priming solution was preheated (42-46°C) and the hyperthermia circuit flushed with CO2. All sheep survived the experiment and achieved 2 hours of 42°C hyperthermia. In the group lacking priming solution preheating, significant pulmonary hypertension (35-44 mm Hg) developed. In the sheep with priming solution preheating, pulmonary artery pressure was very stable without pulmonary hypertension. Blood electrolytes were in physiologic range, and complete blood counts were unaffected by hyperthermia. Blood chemistries revealed no significant liver or kidney damage. Our simple strategy of priming solution preheating completely resolved the problem of pulmonary hypertension as a milestone toward developing a safe and easy-to-use vv-PISH system for cancer treatment.
Collapse
|
6
|
Disruption of aldo-keto reductase genes leads to elevated markers of oxidative stress and inositol auxotrophy in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:237-45. [PMID: 17919749 DOI: 10.1016/j.bbamcr.2007.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/13/2007] [Accepted: 08/15/2007] [Indexed: 11/21/2022]
Abstract
A large family of aldo-keto reductases with similar kinetic and structural properties but unknown physiological roles is expressed in the yeast Saccharomyces cerevisiae. Strains with one or two AKR genes disrupted have apparently normal phenotypes, but disruption of at least three AKR genes results in a heat shock phenotype and slow growth in inositol-deficient culture medium (Ino(-)). The present study was carried out to identify metabolic or signaling defects that may underlie phenotypes that emerge in AKR deficient strains. Here we demonstrate that pretreatment of a pentuple AKR null mutant with the anti-oxidative agent N-acetyl-cysteine rescues the heat shock phenotype. This indicates that AKR gene disruption may be associated with defects in oxidative stress response. We observed additional markers of oxidative stress in AKR-deficient strains, including reduced glutathione levels, constitutive nuclear localization of the oxidation-sensitive transcription factor Yap1 and upregulation of a set of Yap1 target genes whose function as a group is primarily involved in response to oxidative stress and redox balance. Genetic analysis of the Ino(-) phenotype of the null mutants showed that defects in transcriptional regulation of the INO1, which encodes for inositol-1-phosphate synthase, can be rescued through ectopic expression of a functional INO1. Taken together, these results suggest potential roles for AKRs in oxidative defense and transcriptional regulation.
Collapse
|
7
|
Belden WJ, Larrondo LF, Froehlich AC, Shi M, Chen CH, Loros JJ, Dunlap JC. The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output. Genes Dev 2007; 21:1494-505. [PMID: 17575051 PMCID: PMC1891427 DOI: 10.1101/gad.1551707] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
band, an allele enabling clear visualization of circadianly regulated spore formation (conidial banding), has remained an integral tool in the study of circadian rhythms for 40 years. bd was mapped using single-nucleotide polymorphisms (SNPs), cloned, and determined to be a T79I point mutation in ras-1. Alterations in light-regulated gene expression in the ras-1(bd) mutant suggests that the Neurospora photoreceptor WHITE COLLAR-1 is a target of RAS signaling, and increases in transcription of both wc-1 and fluffy show that regulators of conidiation are elevated in ras-1(bd). Comparison of ras-1(bd) with dominant active and dominant-negative ras-1 mutants and biochemical assays of RAS function indicate that RAS-1(bd) displays a modest enhancement of GDP/GTP exchange and no change in GTPase activity. Because the circadian clock in ras-1(bd) appears to be normal, ras-1(bd) apparently acts to amplify a subtle endogenous clock output signal under standard assay conditions. Reactive oxygen species (ROS), which can affect and be affected by RAS signaling, increase conidiation, suggesting a link between generation of ROS and RAS-1 signaling; surprisingly, however, ROS levels are not elevated in ras-1(bd). The data suggest that interconnected RAS- and ROS-responsive signaling pathways regulate the amplitude of circadian- and light-regulated gene expression in Neurospora.
Collapse
Affiliation(s)
- William J. Belden
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Luis F. Larrondo
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Allan C. Froehlich
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Mi Shi
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Chen-Hui Chen
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Jennifer J. Loros
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Jay C. Dunlap
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
- Corresponding author.E-MAIL ; FAX (603) 650-1233
| |
Collapse
|
8
|
Swiegers JH, Pretorius IS, Bauer FF. Regulation of respiratory growth by Ras: the glyoxylate cycle mutant, cit2Delta, is suppressed by RAS2. Curr Genet 2006; 50:161-71. [PMID: 16832579 DOI: 10.1007/s00294-006-0084-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 05/17/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
In Saccharomyces cerevisiae the Ras/cAMP/PKA signalling pathway controls multiple metabolic pathways, and alterations in the intracellular concentrations of cAMP through modification of signalling pathway factors can be lethal or result in severe growth defects. In this work, the important role of Ras2p in metabolic regulation during growth on the non-fermentable carbon source glycerol is further investigated. The data show that the overexpression of RAS2 suppresses the growth defect of the glyoxylate cycle citrate synthase mutant, cit2Delta. The overexpression results in enhanced proliferation and biomass yield when cells are grown on glycerol as sole carbon source, and increases citrate synthase activity and intracellular citrate concentration. Interestingly, the suppression of cit2Delta and the enhanced proliferation and biomass yield are only observed when RAS2 is overexpressed and not in strains containing the constitutively active allele RAS2(val19). However, both RAS2 and RAS2(val19)upregulated citrate synthase activity. We propose that the RAS2 overexpression results in a combination of general upregulation of respiratory growth capacity and an increase in mitochondrial citrate/citrate synthases, which together, complement the metabolic requirements of the cit2Delta mutant. The data therefore provide new evidence for the role of Ras2p as a powerful modulator of metabolism during growth on a non-fermentable carbon source.
Collapse
Affiliation(s)
- Jan H Swiegers
- The Australian Wine Research Institute, Glen Osmond, Adelaide, SA, Australia.
| | | | | |
Collapse
|
9
|
Sõti C, Nagy E, Giricz Z, Vígh L, Csermely P, Ferdinandy P. Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 2005; 146:769-80. [PMID: 16170327 PMCID: PMC1751210 DOI: 10.1038/sj.bjp.0706396] [Citation(s) in RCA: 278] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/03/2005] [Accepted: 08/15/2005] [Indexed: 12/31/2022] Open
Abstract
Chaperones (stress proteins) are essential proteins to help the formation and maintenance of the proper conformation of other proteins and to promote cell survival after a large variety of environmental stresses. Therefore, normal chaperone function is a key factor for endogenous stress adaptation of several tissues. However, altered chaperone function has been associated with the development of several diseases; therefore, modulators of chaperone activities became a new and emerging field of drug development. Inhibition of the 90 kDa heat shock protein (Hsp)90 recently emerged as a very promising tool to combat various forms of cancer. On the other hand, the induction of the 70 kDa Hsp70 has been proved to be an efficient help in the recovery from a large number of diseases, such as, for example, ischemic heart disease, diabetes and neurodegeneration. Development of membrane-interacting drugs to modify specific membrane domains, thereby modulating heat shock response, may be of considerable therapeutic benefit as well. In this review, we give an overview of the therapeutic approaches and list some of the key questions of drug development in this novel and promising therapeutic approach.
Collapse
Affiliation(s)
- Csaba Sõti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Enikõ Nagy
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Zoltán Giricz
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Péter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dom ter 9, Szeged H-6720, Hungary
| |
Collapse
|
10
|
Ferguson SB, Anderson ES, Harshaw RB, Thate T, Craig NL, Nelson HCM. Protein kinase A regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsf1p-dependent manner in Saccharomyces cerevisiae. Genetics 2004; 169:1203-14. [PMID: 15545649 PMCID: PMC1449542 DOI: 10.1534/genetics.104.034256] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hsf1p, the heat-shock transcription factor from Saccharomyces cerevisiae, has a low level of constitutive transcriptional activity and is kept in this state through negative regulation. In an effort to understand this negative regulation, we developed a novel genetic selection that detects altered expression from the HSP26 promoter. Using this reporter strain, we identified mutations and dosage compensators in the Ras/cAMP signaling pathway that decrease cAMP levels and increase expression from the HSP26 promoter. In yeast, low cAMP levels reduce the catalytic activity of the cAMP-dependent kinase PKA. Previous studies had proposed that the stress response transcription factors Msn2p/4p, but not Hsf1p, are repressed by PKA. However, we found that reduction or elimination of PKA activity strongly derepresses transcription of the small heat-shock genes HSP26 and HSP12, even in the absence of MSN2/4. In a strain deleted for MSN2/4 and the PKA catalytic subunits, expression of HSP12 and HSP26 depends on HSF1 expression. Our findings indicate that Hsf1p functions downstream of PKA and suggest that PKA might be involved in negative regulation of Hsf1p activity. These results represent a major change in our understanding of how PKA signaling influences the heat-shock response and heat-shock protein expression.
Collapse
Affiliation(s)
- Scott B Ferguson
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, 19104-6059, USA
| | | | | | | | | | | |
Collapse
|
11
|
Ivey FD, Kays AM, Borkovich KA. Shared and independent roles for a Galpha(i) protein and adenylyl cyclase in regulating development and stress responses in Neurospora crassa. EUKARYOTIC CELL 2002; 1:634-42. [PMID: 12456011 PMCID: PMC118002 DOI: 10.1128/ec.1.4.634-642.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Growth and development are regulated using cyclic AMP (cAMP)-dependent and -independent pathways in Neurospora crassa. The cr-1 adenylyl cyclase mutant lacks detectable cAMP and exhibits numerous defects, including colonial growth habit, short aerial hyphae, premature conidiation on plates, inappropriate conidiation in submerged culture, and increased thermotolerance. Evidence suggests that the heterotrimeric Galpha protein GNA-1 is a direct positive regulator of adenylyl cyclase. deltagna-1 strains are female-sterile, and deltagna-1 strains have, reduced apical extension rates on normal and hyperosmotic medium, greater resistance to oxidative and heat stress, and stunted aerial hyphae compared to the wild-type strain. In this study, a deltagna-1 cr-1 double mutant was analyzed to differentiate cAMP-dependent and -independent signaling pathways regulated by GNA-1. deltagna-1 cr-1 mutants have severely restricted colonial growth and do not produce aerial hyphae on plates or in standing liquid cultures. Addition of cAMP to plates or standing liquid cultures rescues cr-1, but not deltagna-1 cr-1, defects, which is consistent with previous results demonstrating that deltagna-1 mutants do not respond to exogenous cAMP. The females of all strains carrying the deltagna-1 mutation are sterile; however, unlike cr-1 and deltagna-1 strains, the deltagna-1 cr-1 mutant does not produce protoperithecia. The deltagna-1 and cr-1 mutations were synergistic with respect to inappropriate conidiation during growth in submerged culture. Thermotolerance followed the order wild type < deltaga-1 < cr-1 = deltagna-1 cr-1, consistent with a cAMP-dependent process. Taken together, the results suggest that in general, GNA-1 and CR-1 regulate N. crassa growth and development using parallel pathways, while thermotolerance is largely dependent on cAMP.
Collapse
Affiliation(s)
- F Douglas Ivey
- Department of Microbiology and Molecular Genetics, University of Texas--Houston Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
12
|
Scherz R, Shinder V, Engelberg D. Anatomical analysis of Saccharomyces cerevisiae stalk-like structures reveals spatial organization and cell specialization. J Bacteriol 2001; 183:5402-13. [PMID: 11514526 PMCID: PMC95425 DOI: 10.1128/jb.183.18.5402-5413.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently we reported an unusual multicellular organization in yeast that we termed stalk-like structures. These structures are tall (0.5 to 3 cm long) and narrow (1 to 3 mm in diameter). They are formed in response to UV radiation of cultures spread on high agar concentrations. Here we present an anatomical analysis of the stalks. Microscopic inspection of cross sections taken from stalks revealed that stalks are composed of an inner core in which cells are dense and vital and a layer of cells (four to six rows) that surrounds the core. This outer layer is physically separated from the core and contains many dead cells. The outer layer may form a protective shell for the core cells. Through electron microscopy analysis we observed three types of cells within the stalk population: (i) cells containing many unusual vesicles, which might be undergoing some kind of cell death; (ii) cells containing spores (usually one or two spores only); and (iii) familiar rounded cells. We suggest that stalk cells are not only spatially organized but may undergo processes that induce a certain degree of cell specialization. We also show that high agar concentration alone, although not sufficient to induce stalk formation, induces dramatic changes in a colony's morphology. Most striking among the agar effects is the induction of growth into the agar, forming peg-like structures. Colonies grown on 4% agar or higher are reminiscent of stalks in some aspects. The agar concentration effects are mediated in part by the Ras pathway and are related to the invasive-growth phenomenon.
Collapse
Affiliation(s)
- R Scherz
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
13
|
Piu F, Aronheim A, Katz S, Karin M. AP-1 repressor protein JDP-2: inhibition of UV-mediated apoptosis through p53 down-regulation. Mol Cell Biol 2001; 21:3012-24. [PMID: 11287607 PMCID: PMC86930 DOI: 10.1128/mcb.21.9.3012-3024.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2000] [Accepted: 02/08/2001] [Indexed: 11/20/2022] Open
Abstract
Members of the AP-1 transcription factor family, especially c-Jun and c-Fos, have long been known to mediate critical steps in the cellular response to ultraviolet (UV) irradiation. We sought to examine whether two newly discovered members of the AP-1 family, JDP-1 and JDP-2, also participate in the mammalian UV response. Here we report that JDP-2, but not JDP-1, is transiently induced upon UV challenge and that elevated levels of JDP-2 increase cell survival following UV exposure. This protective function of JDP-2 appears to be mediated through repression of p53 expression at the transcriptional level, via a conserved atypical AP-1 site in the p53 promoter.
Collapse
Affiliation(s)
- F Piu
- Department of Pharmacology, Laboratory of Gene Regulation and Signal Transduction, , University of California at San Diego, La Jolla, California 92093-0636, USA.
| | | | | | | |
Collapse
|
14
|
Pedruzzi I, Bürckert N, Egger P, De Virgilio C. Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J 2000; 19:2569-79. [PMID: 10835355 PMCID: PMC212766 DOI: 10.1093/emboj/19.11.2569] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2000] [Revised: 04/11/2000] [Accepted: 04/11/2000] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae protein kinase Rim15 was identified previously as a component of the Ras/cAMP pathway acting immediately downstream of cAMP-dependent protein kinase (cAPK) to control a broad range of adaptations in response to nutrient limitation. Here, we show that the zinc finger protein Gis1 acts as a dosage-dependent suppressor of the rim15Delta defect in nutrient limitation-induced transcriptional derepression of SSA3. Loss of Gis1 results in a defect in transcriptional derepression upon nutrient limitation of various genes that are negatively regulated by the Ras/cAMP pathway (e.g. SSA3, HSP12 and HSP26). Tests of epistasis as well as transcriptional analyses of Gis1-dependent expression indicate that Gis1 acts in this pathway downstream of Rim15 to mediate transcription from the previously identified post-diauxic shift (PDS) element. Accordingly, deletion of GIS1 partially suppresses, and overexpression of GIS1 exacerbates the growth defect of mutant cells that are compromised for cAPK activity. Moreover, PDS element-driven expression, which is negatively regulated by the Ras/cAMP pathway and which is induced upon nutrient limitation, is almost entirely dependent on the presence of Gis1.
Collapse
Affiliation(s)
- I Pedruzzi
- Botanisches Institut der Universität, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
15
|
Stanhill A, Schick N, Engelberg D. The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol Cell Biol 1999; 19:7529-38. [PMID: 10523641 PMCID: PMC84760 DOI: 10.1128/mcb.19.11.7529] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haploid yeast cells are capable of invading agar when grown on rich media. Cells of the Sigma1278b genetic background manifest this property, whereas other laboratory strains are incapable of invasive growth. We show that disruption of the RAS2 gene in the Sigma1278b background significantly reduces invasive growth but that expression of a constitutively active Ras2p (Ras2(Val19)p) in this strain has a minimal effect on its invasiveness. On the other hand, expression of Ras2(Val19)p in another laboratory strain, SP1, rendered it invasive. These results suggest that a hyperactive Ras2 pathway induces invasive growth and that this pathway might be overactive in the Sigma1278b genetic background. Indeed, cells of the Sigma1278b are defective in the induction of stress-responsive genes, while their Gcn4 target genes are constitutively transcribed. This pattern of gene expression was previously shown to be associated with an active Ras/cyclic AMP (cAMP) pathway. We show that suppression of stress-related genes in Sigma1278b cells is a result of their inability to activate transcription through the stress response element (STRE). Disruption of RAS2, which abolished invasiveness, induced an increase in STRE activity. Further, in the SP1 genetic background, disruption of either the MSN2/4 genes (encoding activators of STRE) or the yAP-1 gene was sufficient to restore invasive growth in ras2Delta cells. We conclude that Ras2-mediated suppression of the stress response is sufficient to induce invasiveness. Accordingly, the fact that the stress response is suppressed in Sigma1278b background explains its invasiveness. It seems that invasiveness is a phenotype related to unregulated growth and is therefore manifested by cells harboring an overactive Ras/cAMP cascade. In this respect, invasiveness in yeast is reminiscent of the property of ras-transformed fibroblasts to invade soft agar.
Collapse
Affiliation(s)
- A Stanhill
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
16
|
Jiang Y, Davis C, Broach JR. Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. EMBO J 1998; 17:6942-51. [PMID: 9843500 PMCID: PMC1171042 DOI: 10.1093/emboj/17.23.6942] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Strains carrying ras2(318S) as their sole RAS gene fail to elicit a transient increase in cAMP levels following addition of glucose to starved cells but maintain normal steady-state levels of cAMP under a variety of growth conditions. Such strains show extended delays in resuming growth following transition from a quiescent state to glucose-containing growth media, either in emerging from stationary phase or following inoculation as spores onto fresh media. Otherwise, growth of such strains is indistinguishable from that of RAS2(+) strains. ras2(318S) strains also exhibit a delay in glucose-stimulated phosphorylation and turnover of fructose-1,6-bisphosphatase, a substrate of the cAMP-dependent protein kinase A (PKA) and a key component of the gluconeogenic branch of the glycolytic pathway. Finally Tpk(w) strains, which fail to modulate PKA in response to fluctuations in cAMP levels, show the same growth delay phenotypes, as do ras2(318S) strains. These observations indicate that the glucose-induced cAMP spike results in a transient activation of PKA, which is required for efficient transition of yeast cells from a quiescent state to resumption of rapid growth. This represents the first demonstration that yeast cells use the Ras pathway to transmit a signal to effect a biological change in response to an upstream stimulus.
Collapse
Affiliation(s)
- Y Jiang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
17
|
Smith A, Ward MP, Garrett S. Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J 1998; 17:3556-64. [PMID: 9649426 PMCID: PMC1170692 DOI: 10.1093/emboj/17.13.3556] [Citation(s) in RCA: 292] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Yeast cAMP-dependent protein kinase (PKA) activity is essential for growth and antagonizes induction of the general stress response as well as accumulation of glycogen stores. Previous studies have suggested that the PKA effects on the two latter processes result in part from transcription repression. Here we show that transcription derepression that accompanies PKA depletion is dependent upon the presence of two redundant Zn2+-finger transcription factors, Msn2p and Msn4p. The Msn2p and Msn4p proteins were shown previously to act as positive transcriptional factors in the stress response pathway, and our results suggest that Msn2p and Msn4p also mediate PKA-dependent effects on stress response as well as glycogen accumulation genes. Interestingly, PKA activity is dispensable in a strain lacking Msn2p and Msn4p activity. Thus, Msn2p and Msn4p may antagonize PKAdependent growth by stimulating expression of genes that inhibit growth. In agreement with this model, Msn2p/Msn4p function is required for expression of a gene, YAK1, previously shown to antagonize PKA-dependent growth. These results suggest that Msn2p/Msn4p-dependent gene expression may account for all, or at least most, of the pleiotropic effects of yeast PKA, including growth regulation, response to stress and carbohydrate store accumulation.
Collapse
Affiliation(s)
- A Smith
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
18
|
Boy-Marcotte E, Perrot M, Bussereau F, Boucherie H, Jacquet M. Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol 1998; 180:1044-52. [PMID: 9495741 PMCID: PMC106990 DOI: 10.1128/jb.180.5.1044-1052.1998] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The multicopy suppressors of the snf1 defect, Msn2p and Msn4p transcription factors (Msn2/4p), activate genes through the stress-responsive cis element (CCCCT) in response to various stresses. This cis element is also the target for repression by the cyclic AMP (cAMP)-signaling pathway. We analyzed the two-dimensional gel electrophoresis pattern of protein synthesis of the msn2 msn4 double mutant and compared it with that of the wild-type strain during exponential growth phase and at the diauxic transition. Thirty-nine gene products (including those of ALD3, GDH3, GLK1, GPP2, HSP104, HXK1, PGM2, SOD2, SSA3, SSA4, TKL2, TPS1, and YBR149W) are dependent upon Msn2/4p for their induction at the diauxic transition. The expression of all these genes is repressed by cAMP. Thirty other genes identified during this study are still inducible in the mutant. A subset of these genes were found to be superinduced at the diauxic transition, and others were subject to cAMP repression (including ACH1, ADH2, ALD6, ATP2, GPD1, ICL1, and KGD2). We conclude from this analysis that Msn2/4p control a large number of genes induced at the diauxic transition but that other, as-yet-uncharacterized regulators, also contribute to this response. In addition, we show here that cAMP repression applies to both Msn2/4p-dependent and -independent control of gene expression at the diauxic shift. Furthermore, the fact that all the Msn2/4p gene targets are subject to cAMP repression suggests that these regulators could be targets for the cAMP-signaling pathway.
Collapse
Affiliation(s)
- E Boy-Marcotte
- Institut de Génétique et Microbiologie, Unité de Recherche Associée CNRS 2225, Université Paris-Sud, Orsay, France.
| | | | | | | | | |
Collapse
|
19
|
Ward MP, Gimeno CJ, Fink GR, Garrett S. SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol 1995; 15:6854-63. [PMID: 8524252 PMCID: PMC230940 DOI: 10.1128/mcb.15.12.6854] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Yeast cyclic AMP (cAMP)-dependent protein kinase (PKA) activity is essential for growth and cell cycle progression. Dependence on PKA function can be partially relieved by overexpression of a gene, SOK2, whose product has significant homology with several fungal transcription factors (StuA from Aspergillus nidulans and Phd1 from Saccharomyces cerevisiae) that are associated with cellular differentiation and development. Deletion of SOK2 is not lethal but exacerbates the growth defect of strains compromised for PKA activity. Alterations in Sok2 protein production also affect the expression of genes involved in several other PKA-regulated processes, including glycogen accumulation (GAC1) and heat shock resistance (SSA3). These results suggest SOK2 plays a general regulatory role in the PKA signal transduction pathway. Expression of the PKA catalytic subunit genes is unaltered by deletion or overexpression of SOK2. Because homozygous sok2/sok2 diploid strains form pseudohyphae at an accelerated rate, the Sok2 protein may inhibit the switch from unicellular to filamentous growth, a process that is dependent on cAMP. Thus, the product of SOK2 may act downstream of PKA to regulate the expression of genes important in growth and development.
Collapse
Affiliation(s)
- M P Ward
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
20
|
Varela JC, Praekelt UM, Meacock PA, Planta RJ, Mager WH. The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol 1995; 15:6232-45. [PMID: 7565776 PMCID: PMC230875 DOI: 10.1128/mcb.15.11.6232] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The HSP12 gene encodes one of the two major small heat shock proteins of Saccharomyces cerevisiae. Hsp12 accumulates massively in yeast cells exposed to heat shock, osmostress, oxidative stress, and high concentrations of alcohol as well as in early-stationary-phase cells. We have cloned an extended 5'-flanking region of the HSP12 gene in order to identify cis-acting elements involved in regulation of this highly expressed stress gene. A detailed analysis of the HSP12 promoter region revealed that five repeats of the stress-responsive CCCCT motif (stress-responsive element [STRE]) are essential to confer wild-type induced levels on a reporter gene upon osmostress, heat shock, and entry into stationary phase. Disruption of the HOG1 and PBS2 genes leads to a dramatic decrease of the HSP12 inducibility in osmostressed cells, whereas overproduction of Hog1 produces a fivefold increase in wild-type induced levels upon a shift to a high salt concentration. On the other hand, mutations resulting in high protein kinase A (PKA) activity reduce or abolish the accumulation of the HSP12 mRNA in stressed cells. Conversely, mutants containing defective PKA catalytic subunits exhibit high basal levels of HSP12 mRNA. Taken together, these results suggest that HSP12 is a target of the high-osmolarity glycerol (HOG) response pathway under negative control of the Ras-PKA pathway. Furthermore, they confirm earlier observations that STRE-like sequences are responsive to a broad range of stresses and that the HOG and Ras-PKA pathways have antagonistic effects upon CCCCT-driven transcription.
Collapse
Affiliation(s)
- J C Varela
- Department of Biochemistry and Molecular Biology, Instituut voor Moleculair Biologische Wetenschappen, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Abstract
Living cells, both prokaryotic and eukaryotic, employ specific sensory and signalling systems to obtain and transmit information from their environment in order to adjust cellular metabolism, growth, and development to environmental alterations. Among external factors that trigger such molecular communications are nutrients, ions, drugs and other compounds, and physical parameters such as temperature and pressure. One could consider stress imposed on cells as any disturbance of the normal growth condition and even as any deviation from optimal growth circumstances. It may be worthwhile to distinguish specific and general stress circumstances. Reasoning from this angle, the extensively studied response to heat stress on the one hand is a specific response of cells challenged with supra-optimal temperatures. This response makes use of the sophisticated chaperoning mechanisms playing a role during normal protein folding and turnover. The response is aimed primarily at protection and repair of cellular components and partly at acquisition of heat tolerance. In addition, heat stress conditions induce a general response, in common with other metabolically adverse circumstances leading to physiological perturbations, such as oxidative stress or osmostress. Furthermore, it is obvious that limitation of essential nutrients, such as glucose or amino acids for yeasts, leads to such a metabolic response. The purpose of the general response may be to promote rapid recovery from the stressful condition and resumption of normal growth. This review focuses on the changes in gene expression that occur when cells are challenged by stress, with major emphasis on the transcription factors involved, their cognate promoter elements, and the modulation of their activity upon stress signal transduction. With respect to heat shock-induced changes, a wealth of information on both prokaryotic and eukaryotic organisms, including yeasts, is available. As far as the concept of the general (metabolic) stress response is concerned, major attention will be paid to Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- W H Mager
- Department of Biochemistry and Molecular Biology, IMBW, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | |
Collapse
|