1
|
Wang X, Jiang A, Meng Q, Jiang T, Lu H, Geng X, Song Z, Hu X, Yu Z, Xu W, Ning C, Lin Y, Li D. Aberrant phase separation drives membranous organelle remodeling and tumorigenesis. Mol Cell 2025; 85:1852-1867.e10. [PMID: 40273917 DOI: 10.1016/j.molcel.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/08/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Membrane remodeling is essential for numerous cellular functions. Although liquid-liquid phase separation (LLPS) of intrinsically disordered region (IDR)-rich proteins could drive dramatic membrane remodeling of artificial giant unilamellar vesicles, it remains elusive whether LLPS-mediated membrane-remodeling functions in live cells and what role it plays in specific bioprocesses. Here, we show that three IDR-rich integral transmembrane fusion proteins (MFPs), generated by chromosomal translocations, can lead to de novo remodeling of their located membranous organelles. Taking FUS-CREB3L2, prevalent in low-grade fibromyxoid sarcoma (LGFMS), as a proof of concept, we recorded super-resolution long-time imaging of endoplasmic reticulum (ER) remodeling dynamics as accumulating FUS-CREB3L2, meanwhile causing spontaneous ER stress to hijack the X-box-binding protein 1 (XBP1) pathway. We further reveal the underlying mechanisms of how FUS-CREB3L2 transduces its tumorigenic signals and aberrant LLPS effects from the ER membrane into the nucleus autonomously, which activates hundreds of LGFMS-specific genes de novo compared with CREB3L2, thus sufficiently reprogramming the cells into an LGFMS-like status.
Collapse
Affiliation(s)
- Xinyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Amin Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huaide Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohan Geng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zikuo Song
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinyao Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhu Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wencong Xu
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Chao Ning
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Lin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Maeda M, Arakawa M, Saito K. Disease-Associated Factors at the Endoplasmic Reticulum-Golgi Interface. Traffic 2025; 26:e70001. [PMID: 40047103 PMCID: PMC11883524 DOI: 10.1111/tra.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 11/19/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025]
Abstract
The endoplasmic reticulum (ER)-Golgi interface is essential for directing the transport of proteins synthesized in the ER to the Golgi apparatus via the ER-Golgi intermediate compartment, as well as for recycling proteins back to the ER. This transport is facilitated by various components, including COPI and COPII coat protein complexes and the transport protein particle complex. Recently, the ER-Golgi transport pathway has gained attention due to emerging evidence of nonvesicular transport mechanisms and the regulation of trafficking through liquid-liquid phase separation. Numerous diseases have been linked to mutations in proteins localized at the ER-Golgi interface, highlighting the need for comprehensive analysis of these conditions. This review examines the disease phenotypes associated with dysfunctional ER-Golgi transport factors and explores their cellular effects, providing insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Miharu Maeda
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of MedicineAkita UniversityAkitaJapan
| | - Masashi Arakawa
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of MedicineAkita UniversityAkitaJapan
| | - Kota Saito
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of MedicineAkita UniversityAkitaJapan
| |
Collapse
|
3
|
Cappabianca L, Ruggieri M, Sebastiano M, Sbaffone M, Martelli I, Ruggeri P, Di Padova M, Farina AR, Mackay AR. Molecular Characterization and Inhibition of a Novel Stress-Induced Mitochondrial Protecting Role for Misfolded TrkAIII in Human SH-SY5Y Neuroblastoma Cells. Int J Mol Sci 2024; 25:5475. [PMID: 38791513 PMCID: PMC11122047 DOI: 10.3390/ijms25105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumors that originate from cells of neural crest origin committed to the sympathoadrenal progenitor cell lineage. Stress- and drug-resistance mechanisms drive post-therapeutic relapse and metastatic progression, the characterization and inhibition of which are major goals in improving therapeutic responses. Stress- and drug-resistance mechanisms in NBs include alternative TrkAIII splicing of the neurotrophin receptor tropomyosin-related kinase A (NTRK1/TrkA), which correlates with post-therapeutic relapse and advanced-stage metastatic disease. The TrkAIII receptor variant exerts oncogenic activity in NB models by mechanisms that include stress-induced mitochondrial importation and activation. In this study, we characterize novel targetable and non-targetable participants in this pro-survival mechanism in TrkAIII-expressing SH-SY5Y NB cells, using dithiothreitol (DTT) as an activator and a variety of inhibitors by regular and immunoprecipitation Western blotting of purified mitochondria and IncuCyte cytotoxicity assays. We report that stress-induced TrkAIII misfolding initiates this mechanism, resulting in Grp78, Ca2+-calmodulin, adenosine ribosylating factor (Arf) and Hsp90-regulated mitochondrial importation. TrkAIII imported into inner mitochondrial membranes is cleaved by Omi/high temperature requirement protein A2 (HtrA2) then activated by a mechanism dependent upon calmodulin kinase II (CaMKII), alpha serine/threonine kinase (Akt), mitochondrial Ca2+ uniporter and reactive oxygen species (ROS), involving inhibitory mitochondrial protein tyrosine phosphatase (PTPase) oxidation, resulting in phosphoinositide 3 kinase (PI3K) activation of mitochondrial Akt, which enhances stress resistance. This novel pro-survival function for misfolded TrkAIII mitigates the cytotoxicity of mitochondrial Ca2+ homeostasis disrupted during integrated stress responses, and is prevented by clinically approved Trk and Akt inhibitors and also by inhibitors of 78kDa glucose regulated protein (Grp78), heat shock protein 90 (Hsp90), Ca2+-calmodulin and PI3K. This identifies Grp78, Ca2+-calmodulin, Hsp90, PI3K and Akt as novel targetable participants in this mechanism, in addition to TrkAIII, the inhibition of which has the potential to enhance the stress-induced elimination of TrkAIII-expressing NB cells, with the potential to improve therapeutic outcomes in NBs that exhibit TrkAIII expression and activation.
Collapse
|
4
|
Yamamotoya T, Ohata Y, Akasaka Y, Hasei S, Inoue MK, Nakatsu Y, Kanna M, Yamazaki H, Kushiyama A, Fujishiro M, Ono H, Sakoda H, Yamada T, Ishihara H, Asano T. Trk-fused gene plays a critical role in diet-induced adipose tissue expansion and is also involved in thyroid hormone action. PNAS NEXUS 2024; 3:pgae150. [PMID: 38681675 PMCID: PMC11046318 DOI: 10.1093/pnasnexus/pgae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024]
Abstract
Mutations in the Trk-fused gene (TFG) cause hereditary motor and sensory neuropathy with proximal dominant involvement, which reportedly has high co-incidences with diabetes and dyslipidemia, suggesting critical roles of the TFG in metabolism as well. We found that TFG expression levels in white adipose tissues (WATs) were elevated in both genetically and diet-induced obese mice and that TFG deletion in preadipocytes from the stromal vascular fraction (SVF) markedly inhibited adipogenesis. To investigate its role in vivo, we generated tamoxifen-inducible adipocyte-specific TFG knockout (AiTFG KO) mice. While a marked down-regulation of the peroxisome proliferator-activated receptor gamma target, de novo lipogenesis (DNL), and mitochondria-related gene expressions were observed in subcutaneous WAT (scWAT) from AiTFG KO mice, these effects were blunted in SVF-derived adipocytes when the TFG was deleted after differentiation into adipocytes, implying cell nonautonomous effects. Intriguingly, expressions of thyroid hormone receptors, as well as carbohydrate responsive element-binding protein β, which mediates the metabolic actions of thyroid hormone, were drastically down-regulated in scWAT from AiTFG KO mice. Reduced DNL and thermogenic gene expressions in AiTFG KO mice might be attributable to impaired thyroid hormone action in vivo. Finally, when adipocyte TFG was deleted in either the early or the late phase of high-fat diet feeding, the former brought about an impaired expansion of epididymal WAT, whereas the latter caused prominent adipocyte cell death. TFG deletion in adipocytes markedly exacerbated hepatic steatosis in both experimental settings. Collectively, these observations indicate that the TFG plays essential roles in maintaining normal adipocyte functions, including an enlargement of adipose tissue, thyroid hormone function, and thermogenic gene expressions, and in preserving hypertrophic adipocytes.
Collapse
Affiliation(s)
- Takeshi Yamamotoya
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yukino Ohata
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yasuyuki Akasaka
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Shun Hasei
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Masa-Ki Inoue
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yusuke Nakatsu
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Machi Kanna
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Hiroki Yamazaki
- Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8606, Japan
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose City, Tokyo 204-8588, Japan
| | - Midori Fujishiro
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hiraku Ono
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8670, Japan
| | - Hideyuki Sakoda
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hisamitsu Ishihara
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Tomoichiro Asano
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| |
Collapse
|
5
|
Xiao A, Shahmarvand N, Nagy A, Kumar J, Van Ziffle J, Devine P, Huang F, Lezama L, Li P, Ohgami RS. TFG::ALK fusion in ALK positive large B-cell lymphoma: a case report and review of literature. Front Oncol 2023; 13:1174606. [PMID: 37305584 PMCID: PMC10248242 DOI: 10.3389/fonc.2023.1174606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) positive large B-cell lymphoma (ALK+ LBCL) is an aggressive and rare subtype of B-cell lymphoma. Patients typically present with advanced clinical stage disease and do not respond to conventional chemotherapy; the median overall survival is 1.8 years. The genetic landscape of this entity remains poorly understood. Here we report a unique case of ALK+ LBCL harbouring a rare TFG::ALK fusion. Targeted next-generation sequencing showed no significant single nucleotide variants, insertions/deletions, or other structural variants beyond the TFG::ALK fusion; deep deletions of FOXO1, PRKCA, and the MYB locus were also detected. Our case report draws attention to this rare disease, highlights a need for larger genetic profiling studies, and focuses on the pathogenesis and potential therapeutic targets of this aggressive disease. To our knowledge, this is the first report of a TFG::ALK fusion in ALK+ LBCL.
Collapse
Affiliation(s)
- Andrew Xiao
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | | | - Alexandra Nagy
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Jyoti Kumar
- Department of Pathology, Stanford University, Stanford, CA, United States
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jessica Van Ziffle
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Patrick Devine
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Franklin Huang
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Lhara Lezama
- Department of Pathology, Kaiser Permanente, Los Angeles, CA, United States
| | - Peng Li
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, United States
| | - Robert S. Ohgami
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, United States
| |
Collapse
|
6
|
Trouvilliez S, Lagadec C, Toillon RA. TrkA Co-Receptors: The Janus Face of TrkA? Cancers (Basel) 2023; 15:cancers15071943. [PMID: 37046604 PMCID: PMC10093326 DOI: 10.3390/cancers15071943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Larotrectinib and Entrectinib are specific pan-Trk tyrosine kinase inhibitors (TKIs) approved by the Food and Drug Administration (FDA) in 2018 for cancers with an NTRK fusion. Despite initial enthusiasm for these compounds, the French agency (HAS) recently reported their lack of efficacy. In addition, primary and secondary resistance to these TKIs has been observed in the absence of other mutations in cancers with an NTRK fusion. Furthermore, when TrkA is overexpressed, it promotes ligand-independent activation, bypassing the TKI. All of these clinical and experimental observations show that genetics does not explain all therapeutic failures. It is therefore necessary to explore new hypotheses to explain these failures. This review summarizes the current status of therapeutic strategies with TrkA inhibitors, focusing on the mechanisms potentially involved in these failures and more specifically on the role of TrkA.
Collapse
Affiliation(s)
- Sarah Trouvilliez
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
| | - Chann Lagadec
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
| | - Robert-Alain Toillon
- Univ. Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, Bvd. du Professeur Jules Leclercq, F-59000 Lille, France
- GdR2082 APPICOM-«Approche Intégrative Pour Une Compréhension Multi-Échelles de la Fonction des Protéines Membranaires», 75016 Paris, France
| |
Collapse
|
7
|
Liu J, Zhang Y, Zhu Y, Tian L, Tang M, Shen J, Chen Y, Ding S. Research Progress on Small Molecules Inhibitors Targeting TRK Kinases. Curr Med Chem 2023; 30:1175-1192. [PMID: 35927900 DOI: 10.2174/0929867329666220801145639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/11/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Trk gene fusions are an important driver in the development of cancers, including secretory breast cancer and infantile congenital sarcoma. Since the first-generation of small molecule Trk inhibitors (Larotrectinib and Entrectinib) came to market, research on small molecule TRK inhibitors, especially second-generation inhibitors that break through the resistance problem, has developed rapidly. Therefore, this article focuses on the research progress of first-generation drugs and second-generation drugs that break through drug resistance. METHODS We used the database to search for relevant and cutting-edge documents, and then filtered and selected them based on the content. The appropriate articles were analyzed and classified, and finally, the article was written according to the topics. RESULTS The phenomenon of Trk protein fusion and its relation to tumors are described, followed by an explanation of the composition and signaling pathways of Trk kinases. The representative Trk inhibitors and the development of novel Trk inhibitors are classified according to whether they overcome drug resistance problems. CONCLUSION This paper provides a theoretical reference for the development of novel inhibitors by introducing and summarizing the representative and novel Trk inhibitors that break through the drug resistance problem.
Collapse
Affiliation(s)
- Ju Liu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China.,API Engineering Tech-nology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China.,Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China
| | - Yadong Zhang
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China
| | - Yan Zhu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China
| | - Lu Tian
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China
| | - Mingrui Tang
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China
| | - Jiwei Shen
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China.,API Engineering Tech-nology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China.,Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China
| | - Ye Chen
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China.,API Engineering Tech-nology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China.,Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China
| | - Shi Ding
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, P. R. China.,API Engineering Tech-nology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China.,Small Molecular Tar-geted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China
| |
Collapse
|
8
|
Li T, Zhang G, Zhang X, Lin H, Liu Q. The 8p11 myeloproliferative syndrome: Genotypic and phenotypic classification and targeted therapy. Front Oncol 2022; 12:1015792. [PMID: 36408177 PMCID: PMC9669583 DOI: 10.3389/fonc.2022.1015792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 10/05/2023] Open
Abstract
EMS(8p11 myeloproliferative syndrome, EMS) is an aggressive hematological neoplasm with/without eosinophilia caused by a rearrangement of the FGFR1 gene at 8p11-12. It was found that all cases carry chromosome abnormalities at the molecular level, not only the previously reported chromosome translocation and insertion but also a chromosome inversion. These abnormalities produced 17 FGFR1 fusion genes, of which the most common partner genes are ZNF198 on 13q11-12 and BCR of 22q11.2. The clinical manifestations can develop into AML (acute myeloid leukemia), T-LBL (T-cell lymphoblastic lymphoma), CML (chronic myeloid leukemia), CMML (chronic monomyelocytic leukemia), or mixed phenotype acute leukemia (MPAL). Most patients are resistant to traditional chemotherapy, and a minority of patients achieve long-term clinical remission after stem cell transplantation. Recently, the therapeutic effect of targeted tyrosine kinase inhibitors (such as pemigatinib and infigratinib) in 8p11 has been confirmed in vitro and clinical trials. The TKIs may become an 8p11 treatment option as an alternative to hematopoietic stem cell transplantation, which is worthy of further study.
Collapse
Affiliation(s)
- Taotao Li
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Gaoling Zhang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Hai Lin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Qiuju Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Zhao HX, Li X, Liu JL, Guan GQ, Luo JX. Changes in TFG gene expression in bovine leucocytes transformed by Theileria annulata. Front Vet Sci 2022; 9:997294. [PMID: 36337204 PMCID: PMC9630592 DOI: 10.3389/fvets.2022.997294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2023] Open
Abstract
Theileria annulata schizont-infected host cells in culture in vitro show unlimited proliferation similar to tumor cells; thus far, T. annulata and T. parva are the only eukaryotes that have been found to transform mammalian cells (immortalized). The transformation of these cells is reversible; when the parasite is eliminated in transformed cells by buparvaquone (BW720c), the host cells show normal growth and apoptosis. TFG is a tropomyosin-receptor kinase fused gene that is conserved among many species and is an important proto-oncogene. In this study, the bovine TFG gene was amplified by PCR from the cDNA of T. annulata schizont-transformed cells, cloned into the pGEX-4T-1 vector and expressed in Escherichia coli BL21 (DE3). After purification, the fusion protein was injected into rabbits to produce polyclonal antibodies. Using T. annulata-transformed cells together with BW720c treatment to kill the parasite, we aimed to identify changes in TFG gene expression by real-time PCR and Western blotting. The results showed that the bovine TFG gene was ~582 bp in size; SDS-PAGE analysis showed that the fusion protein was expressed in BL21 (DE3) cells with a molecular mass of 48 kD, and Western blotting indicated that the polyclonal antibodies could react with bovine TFG proteins from T. annulata-transformed cells and showed high specificity. Compared with that in the control group, the transcription level of the host TFG gene decreased significantly in the BW720c test group, and the expression of host tumor-related TFG protein decreased sharply after 72 h of drug treatment, suggesting that the TFG protein expression in transformed cells was directly related to T. annulata. This finding laid a foundation for further study on the interaction between T. annulata and host cells.
Collapse
Affiliation(s)
- Hong-xi Zhao
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Xia Li
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jun-long Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Gui-quan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jian-xun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
10
|
Peotter JL, Pustova I, Lettman MM, Shatadal S, Bradberry MM, Winter-Reed AD, Charan M, Sharkey EE, Alvin JR, Bren AM, Oie AK, Chapman ER, Salamat MS, Audhya A. TFG regulates secretory and endosomal sorting pathways in neurons to promote their activity and maintenance. Proc Natl Acad Sci U S A 2022; 119:e2210649119. [PMID: 36161950 PMCID: PMC9546632 DOI: 10.1073/pnas.2210649119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/18/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular pathways that intrinsically regulate neuronal maintenance are poorly understood, but rare pathogenic mutations that underlie neurodegenerative disease can offer important insights into the mechanisms that facilitate lifelong neuronal function. Here, we leverage a rat model to demonstrate directly that the TFG p.R106C variant implicated previously in complicated forms of hereditary spastic paraplegia (HSP) underlies progressive spastic paraparesis with accompanying ventriculomegaly and thinning of the corpus callosum, consistent with disease phenotypes identified in adolescent patients. Analyses of primary cortical neurons obtained from CRISPR-Cas9-edited animals reveal a kinetic delay in biosynthetic secretory protein transport from the endoplasmic reticulum (ER), in agreement with prior induced pluripotent stem cell-based studies. Moreover, we identify an unexpected role for TFG in the trafficking of Rab4A-positive recycling endosomes specifically within axons and dendrites. Impaired TFG function compromises the transport of at least a subset of endosomal cargoes, which we show results in down-regulated inhibitory receptor signaling that may contribute to excitation-inhibition imbalances. In contrast, the morphology and trafficking of other organelles, including mitochondria and lysosomes, are unaffected by the TFG p.R106C mutation. Our findings demonstrate a multifaceted role for TFG in secretory and endosomal protein sorting that is unique to cells of the central nervous system and highlight the importance of these pathways to maintenance of corticospinal tract motor neurons.
Collapse
Affiliation(s)
- Jennifer L. Peotter
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Iryna Pustova
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Molly M. Lettman
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Shalini Shatadal
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Mazdak M. Bradberry
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Allison D. Winter-Reed
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Maya Charan
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Erin E. Sharkey
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - James R. Alvin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Alyssa M. Bren
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Annika K. Oie
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Edwin R. Chapman
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- HHMI, University of Wisconsin-Madison, Madison, WI 53705
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - M. Shahriar Salamat
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| |
Collapse
|
11
|
Hernandez-Prera JC, Saeed-Vafa D, Heidarian A, Gewandter K, Otto K, Wenig BM. Sclerosing Polycystic Adenoma: Conclusive Clinical and Molecular Evidence of Its Neoplastic Nature. Head Neck Pathol 2022; 16:416-426. [PMID: 34410594 PMCID: PMC9187789 DOI: 10.1007/s12105-021-01374-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023]
Abstract
Sclerosing polycystic adenosis, initially considered a non-neoplastic salivary gland lesion and classified as such in the 2017 WHO Classification of Head and Neck Tumors, has been the subject of controversy regarding its possible neoplastic nature. The reporting of recurrent PI3K pathway alteration represents evidence to support these lesions as being neoplastic and more appropriately referred to as sclerosing polycystic adenoma (SPA). Herein, we provide additional evidence that supports the classification of SPA as a true neoplasm. Eight cases of SPA were identified in our database and consultation files. All cases were subjected to PTEN immunohistochemistry (IHC) and next-generation sequencing (NGS). In addition, one patient underwent genetic counseling and germline testing. The cases included 5 men and 3 women with a mean age of 41 years (range 11-78) and all tumors arose in the parotid gland. One patient had multiple recurrences over a period of 2 years. Morphologically the tumors were circumscribed and characterized by an admixture of acini, ducts and cysts embedded in a fibrotic/sclerotic stroma. The cells lining the ducts and cysts showed variable granular, vacuolated, foamy and apocrine cytoplasmic features, as well as acinar cells contained intracytoplasmic brightly eosinophilic granules. The apocrine intraductal proliferations showed mild to moderate atypia in 6 cases. One case showed overt malignant morphology that ranged from intraductal carcinoma to invasive salivary duct carcinoma. Seven cases tested for PTEN IHC showed loss of nuclear expression in the acinar and ductal cells with retained PTEN expression in the myoepithelial cell and stroma. NGS detected PIK3CA or PIK3R1 genetic alterations in 7 cases, including a novel TFG-PIK3CA fusion. Coexisting PTEN mutations were seen in 4 cases, including in a patient with clinical stigmata of Cowden syndrome and confirmed by germline genetic testing. Our findings herein documented including recurrence of tumor, malignant transformation, high prevalence of PI3K pathway oncogenic alterations and the possible heretofore undescribed association with Cowden syndrome add support to classifying SPA as true neoplasms justifying their designation as adenoma, rather than adenosis.
Collapse
Affiliation(s)
- Juan C Hernandez-Prera
- Department of Pathology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Daryoush Saeed-Vafa
- Department of Pathology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Amin Heidarian
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Kristen Otto
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Bruce M Wenig
- Department of Pathology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| |
Collapse
|
12
|
Roosen M, Odé Z, Bunt J, Kool M. The oncogenic fusion landscape in pediatric CNS neoplasms. Acta Neuropathol 2022; 143:427-451. [PMID: 35169893 PMCID: PMC8960661 DOI: 10.1007/s00401-022-02405-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/09/2023]
Abstract
Pediatric neoplasms in the central nervous system (CNS) are the leading cause of cancer-related deaths in children. Recent developments in molecular analyses have greatly contributed to a more accurate diagnosis and risk stratification of CNS tumors. Additionally, sequencing studies have identified various, often entity specific, tumor-driving events. In contrast to adult tumors, which often harbor multiple mutated oncogenic drivers, the number of mutated genes in pediatric cancers is much lower and many tumors can have a single oncogenic driver. Moreover, in children, much more than in adults, fusion proteins play an important role in driving tumorigenesis, and many different fusions have been identified as potential driver events in pediatric CNS neoplasms. However, a comprehensive overview of all the different reported oncogenic fusion proteins in pediatric CNS neoplasms is still lacking. A better understanding of the fusion proteins detected in these tumors and of the molecular mechanisms how these proteins drive tumorigenesis, could improve diagnosis and further benefit translational research into targeted therapies necessary to treat these distinct entities. In this review, we discuss the different oncogenic fusions reported in pediatric CNS neoplasms and their structure to create an overview of the variety of oncogenic fusion proteins to date, the tumor entities they occur in and their proposed mode of action.
Collapse
Affiliation(s)
- Mieke Roosen
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Zelda Odé
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Jens Bunt
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands.
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Involvement of neuronal and muscular Trk-fused gene (TFG) defects in the development of neurodegenerative diseases. Sci Rep 2022; 12:1966. [PMID: 35121777 PMCID: PMC8816932 DOI: 10.1038/s41598-022-05884-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Trk-fused gene (TFG) mutations have been identified in patients with several neurodegenerative diseases. In this study, we attempted to clarify the effects of TFG deletions in motor neurons and in muscle fibers, using tissue-specific TFG knockout (vMNTFG KO and MUSTFG KO) mice. vMNTFG KO, generated by crossing TFG floxed with VAChT-Cre, showed deterioration of motor function and muscle atrophy especially in slow-twitch soleus muscle, in line with the predominant Cre expression in slow-twitch fatigue-resistant (S) and fast-twitch fatigue-resistant (FR) motor neurons. Consistently, denervation of the neuromuscular junction (NMJ) was apparent in the soleus, but not in the extensor digitorum longus, muscle. Muscle TFG expressions were significantly downregulated in vMNTFG KO, presumably due to decreased muscle IGF-1 concentrations. However, interestingly, MUSTFG KO mice showed no apparent impairment of muscle movements, though a denervation marker, AChRγ, was elevated and Agrin-induced AChR clustering in C2C12 myotubes was inhibited. Our results clarify that loss of motor neuron TFG is sufficient for the occurrence of NMJ degeneration and muscle atrophy, though lack of muscle TFG may exert an additional effect. Reduced muscle TFG, also observed in aged mice, might be involved in age-related NMJ degeneration, and this issue merits further study.
Collapse
|
14
|
Wu T, Qin Q, Liu N, Zhang C, Lv R, Yin W, Sun Y, Sun Y, Wang R, Zhao D, Cheng M. Rational drug design to explore the structure-activity relationship (SAR) of TRK inhibitors with 2,4-diaminopyrimidine scaffold. Eur J Med Chem 2022; 230:114096. [PMID: 35007864 DOI: 10.1016/j.ejmech.2021.114096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
Abstract
Tropomyosin receptor kinase (TRK) is an ideal target for treating cancers caused by the NTRK gene fusion. In this study, more than 60 2,4-diaminopyrimidine derivatives were prepared to understand the structure-activity relationship and confirm the rationality of the pharmacophore model reported previously. Among them, compound 19k was found to be a potent pan-TRK inhibitor that inhibits the proliferation of Km-12 cell lines. Additionally, compound 19k induced the apoptosis of Km-12 cells in a concentration-dependent manner. Western blot analysis revealed that compound 19k inhibited the phosphorylation of TRK to block downstream pathways. Compound 19k also possessed outstanding plasma stability and liver microsomal stability in vitro, with half-lives greater than 289.1 min and 145 min, respectively. Pharmacokinetic studies indicated that the oral bioavailability of compound 19k is 17.4%. These results demonstrate that compound 19k could serve as a novel lead compound for overcoming NTRK-fusion cancers.
Collapse
Affiliation(s)
- Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Chu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Ruicheng Lv
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Ruifeng Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| |
Collapse
|
15
|
Yoo D, Lee W, Lee SJ, Sung JJ, Jeon GS, Ban JJ, Shin C, Kim J, Kim HS, Ahn TB. A Novel TFG Mutation in a Korean Family with α-Synucleinopathy and Amyotrophic Lateral Sclerosis. Mov Disord 2021; 37:384-391. [PMID: 34779525 DOI: 10.1002/mds.28857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Tropomyosin-receptor kinase fused gene (TFG) functions as a regulator of intracellular protein packaging and trafficking at the endoplasmic reticulum exit sites. TFG has recently been proposed as a cause of multisystem proteinopathy. OBJECTIVES Here, we describe a Korean family presenting with Parkinson's disease or amyotrophic lateral sclerosis caused by a novel variant of TFG (c.1148 G > A, p.Arg383His). METHODS We collected clinical, genetic, dopamine transporter imaging, nerve conduction, and electromyography data from the seven subjects. To verify the pathogenicity of the R383H variant, we studied cell viability and the abnormal aggregation of α-synuclein and TAR DNA-binding protein 43 (TDP-43) in HeLa cells expressing R383H-TFG. RESULTS The clinical phenotypes of the R383H-TFG mutation varied; of the five family members, one had Parkinson's disease, three had subclinical parkinsonism, and one (the proband) had amyotrophic lateral sclerosis. The individual with multiple system atrophy was the proband's paternal cousin, but the TFG genotype was not confirmed due to unavailability of samples. Our in vitro studies showed that R383H-TFG overexpression impaired cell viability. In cells co-expressing R383H-TFG and α-synuclein, insoluble α-synuclein aggregates increased in concentration and were secreted from the cells and co-localized with R383H-TFG. The levels of cytoplasmic insoluble aggregates of TDP-43 increased in HeLa cells expressing R383H-TFG and co-localized with R383H-TFG. CONCLUSIONS Clinical and in vitro studies have supported the pathogenic role of the novel TFG mutation in α-synucleinopathy and TDP-43 proteinopathy. These findings expand the phenotypic spectrum of TFG and suggest a pivotal role of endoplasmic reticulum dysfunction during neurodegeneration. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dallah Yoo
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Wonjae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Neuramedy Co., Ltd, Seoul, Republic of Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gye Sun Jeon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chaewon Shin
- Department of Neurology, Neuroscience Center, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong-si, Republic of Korea
| | - Jungho Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Hyo Sun Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Tae-Beom Ahn
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Goto K, Pissaloux D, Tirode F, de la Fouchardière A. Spitz nevus with a novel TFG-NTRK2 fusion: The first case report of NTRK2-rearranged Spitz/Reed nevus. J Cutan Pathol 2021; 48:1193-1196. [PMID: 33979462 DOI: 10.1111/cup.14062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022]
Abstract
Fusions of ALK, ROS1, NTRK1, NTRK3, RET, MET, MERTK, FGFR1, ERBB4, LCK, BRAF, MAP3K8, MAP3K3, and PRKDC and mutation of HRAS have so far been discovered as the genetic alterations associated with the pathogenesis of Spitz neoplasms. This report presents the first case of NTRK2-rearranged Spitz/Reed nevus. The patient was a 39-year-old male with a pigmented macule rapidly growing on his shoulder. Histopathologically, the lesion was a junctional melanocytic nevus composed of large nests of spindled melanocytes with abundant eosinophilic cytoplasm associated with a hyperplastic epidermis. These findings fulfilled the diagnostic criteria of a pigmented spindle cell nevus of Reed (variant of Spitz nevus). Immunohistochemistry for pan-Trk revealed diffuse cytoplasmic positivity in the tumor cells, but immunoexpression of ALK, ROS1, and BRAF V600E was not seen. A novel, in-frame, TFG-NTRK2 fusion was identified by RNA sequencing. This case report expands the list of genetic alterations in Spitz neoplasms and the spectrum of NTRK2-rearranged tumors.
Collapse
Affiliation(s)
- Keisuke Goto
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan.,Department of Pathology, Itabashi Central Clinical Laboratory, Tokyo, Japan.,Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto, Japan.,Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan.,Department of Diagnostic Pathology, Osaka National Hospital, Osaka, Japan.,Department of Dermatology, Hyogo Cancer Center, Akashi, Japan
| | - Daniel Pissaloux
- Department of Biopathology, Center Léon Bérard, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Franck Tirode
- Department of Biopathology, Center Léon Bérard, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Arnaud de la Fouchardière
- Department of Biopathology, Center Léon Bérard, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| |
Collapse
|
17
|
Kim D, Jung SH, Chung YJ. Screening of novel alkaloid inhibitors for vascular endothelial growth factor in cancer cells: an integrated computational approach. Genomics Inform 2021; 19:e41. [PMID: 35172474 PMCID: PMC8752984 DOI: 10.5808/gi.21061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/20/2022] Open
Abstract
In addition to mutations and copy number alterations, gene fusions are commonly identified in cancers. In thyroid cancer, fusions of important cancer-related genes have been commonly reported; however, extant panels do not cover all clinically important gene fusions. In this study, we aimed to develop a custom RNA-based sequencing panel to identify the key fusions in thyroid cancer. Our ThyChase panel was designed to detect 87 types of gene fusion. As quality control of RNA sequencing, five housekeeping genes were included in this panel. When we applied this panel for the analysis of fusions containing reference RNA (HD796), three expected fusions (EML4-ALK, CCDC6-RET, and TPM3-NTRK1) were successfully identified. We confirmed the fusion breakpoint sequences of the three fusions from HD796 by Sanger sequencing. Regarding the limit of detection, this panel could detect the target fusions from a tumor sample containing a 1% fusion-positive tumor cellular fraction. Taken together, our ThyChase panel would be useful to identify gene fusions in the clinical field.
Collapse
Affiliation(s)
- Dongmoung Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung-Hyun Jung
- Department of Biochemistry, The Catholic University of Korea, Seoul 06591, Korea.,Precision Medicine Research Center, Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yeun-Jun Chung
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea.,Precision Medicine Research Center, Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
18
|
Jiang T, Wang G, Liu Y, Feng L, Wang M, Liu J, Chen Y, Ouyang L. Development of small-molecule tropomyosin receptor kinase (TRK) inhibitors for NTRK fusion cancers. Acta Pharm Sin B 2021; 11:355-372. [PMID: 33643817 PMCID: PMC7893124 DOI: 10.1016/j.apsb.2020.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Tropomyosin receptor kinase A, B and C (TRKA, TRKB and TRKC), which are well-known members of the cell surface receptor tyrosine kinase (RTK) family, are encoded by the neurotrophic receptor tyrosine kinase 1, 2 and 3 (NTRK1, NTRK2 and NTRK3) genes, respectively. TRKs can regulate cell proliferation, differentiation and even apoptosis through the RAS/MAPKs, PI3K/AKT and PLCγ pathways. Gene fusions involving NTRK act as oncogenic drivers of a broad diversity of adult and pediatric tumors, and TRKs have become promising antitumor targets. Therefore, achieving a comprehensive understanding of TRKs and relevant TRK inhibitors should be urgently pursued for the further development of novel TRK inhibitors for potential clinical applications. This review focuses on summarizing the biological functions of TRKs and NTRK fusion proteins, the development of small-molecule TRK inhibitors with different chemotypes and their activity and selectivity, and the potential therapeutic applications of these inhibitors for future cancer drug discovery efforts.
Collapse
Key Words
- AFAP1, actin filament-associated protein 1
- AML, acute myeloid leukemia
- ARHGEF2, Rho/Rac guanine nucleotide exchange factor 2
- BCAN, brevican
- BDNF, brain-derived neurotrophic factor
- BTBD1, BTB (POZ) domain containing 1
- CDK-2, cyclin-dependent kinase 2
- CR, complete response
- CRC, colorectal cancer
- CTCs, sequencing of circulating tumor cells
- DFG, Asp-Phe-Gly
- DOR, durable objective responses
- ETV6, ETS translocation variant 6
- EWG, electron-withdrawing group
- FDA, U.S. Food and Drug Administration
- FISH, fluorescence in situ hybridization
- GBM, glioblastoma multiforme
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, intrahepatic cholangiocarcinoma
- IG-C2, Ig-like C2 type I
- LMNA, lamin A/C
- MASC, mammary analogue secretory carcinoma
- MPRIP, myosin phosphatase Rho interacting protein
- NACC2, NACC family member 2
- NCCN, National Comprehensive Cancer Network
- NFASC, neurofascin
- NGF, nerve growth factor
- NGS, next-generation sequencing of tumor tissue
- NSCLC, non-small cell lung cancer
- NT3, neurotrophin-3
- NTRK fusion cancer
- NTRK, neurotrophic receptor tyrosine kinase
- Neurotrophic receptor tyrosine kinase fusions
- OAK, osteoarthritis of the knee
- ORR, overall response rate
- PAN3, poly(A) nuclease 3
- PPL, periplakin
- PROTAC proteolysis targeting chimera, QKI
- RABGTPase activating protein 1-like, RFWD2
- RTK, receptor tyrosine kinase
- SAR, structure–activity relationship
- SBC, secretory breast carcinoma
- SCYL3, SCY1 like pseudokinase 3
- SQSTM1, sequestosome 1
- Small-molecule inhibitor
- TFG, TRK-fused gene
- TP53, tumor protein P53
- TPM3, tropomyosin 3
- TPR, translocated promoter region
- TRIM24, tripartite motif containing 24
- TRK, tropomyosin receptor kinase
- Tropomyosin receptor kinase
- VCL, vinculin
- VEGFR2, vascular endothelial growth factor receptor 2
- quaking I protein, RABGAP1L
- ring finger and WD repeat domain 2, E3 ubiquitin protein ligase
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Bebb DG, Banerji S, Blais N, Desmeules P, Gill S, Grin A, Feilotter H, Hansen AR, Hyrcza M, Krzyzanowska M, Melosky B, Noujaim J, Purgina B, Ruether D, Simmons CE, Soulieres D, Torlakovic EE, Tsao MS. Canadian Consensus for Biomarker Testing and Treatment of TRK Fusion Cancer in Adults. Curr Oncol 2021; 28:523-548. [PMID: 33467570 PMCID: PMC7903287 DOI: 10.3390/curroncol28010053] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The tyrosine receptor kinase (TRK) inhibitors larotrectinib and entrectinib were recently approved in Canada for the treatment of solid tumours harbouring neurotrophic tyrosine receptor kinase (NTRK) gene fusions. These NTRK gene fusions are oncogenic drivers found in most tumour types at a low frequency (<5%), and at a higher frequency (>80%) in a small number of rare tumours (e.g., secretory carcinoma of the salivary gland and of the breast). They are generally mutually exclusive of other common oncogenic drivers. Larotrectinib and entrectinib have demonstrated impressive overall response rates and tolerability in Phase I/II trials in patients with TRK fusion cancer with no other effective treatment options. Given the low frequency of TRK fusion cancer and the heterogeneous molecular testing landscape in Canada, identifying and optimally managing such patients represents a new challenge. We provide a Canadian consensus on when and how to test for NTRK gene fusions and when to consider treatment with a TRK inhibitor. We focus on five tumour types: thyroid carcinoma, colorectal carcinoma, non-small cell lung carcinoma, soft tissue sarcoma, and salivary gland carcinoma. Based on the probability of the tumour harbouring an NTRK gene fusion, we also suggest a tumour-agnostic consensus for NTRK gene fusion testing and treatment. We recommend considering a TRK inhibitor in all patients with TRK fusion cancer with no other effective treatment options.
Collapse
Affiliation(s)
- D. Gwyn Bebb
- Tom Baker Cancer Centre and University of Calgary, Calgary, AB T2N 4N2, Canada
| | - Shantanu Banerji
- Research Institute in Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Normand Blais
- Centre Hospitalier Universitaire de Montreal, Department of Medicine, University of Montreal, Montreal, QC H2X 3E4, Canada; (N.B.); (D.S.)
| | - Patrice Desmeules
- Service D’Anatomopathologie et de Cytologie, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Sharlene Gill
- BC Cancer, Vancouver, BC V5Z 4E6, Canada; (S.G.); (B.M.); (C.E.S.)
| | - Andrea Grin
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.G.); (H.F.)
| | - Harriet Feilotter
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.G.); (H.F.)
| | - Aaron R. Hansen
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; (A.R.H.); (M.K.)
| | - Martin Hyrcza
- Department of Pathology and Laboratory Medicine, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada;
| | - Monika Krzyzanowska
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; (A.R.H.); (M.K.)
| | - Barbara Melosky
- BC Cancer, Vancouver, BC V5Z 4E6, Canada; (S.G.); (B.M.); (C.E.S.)
| | | | - Bibiana Purgina
- The Ottawa Hospital, Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Dean Ruether
- Department of Oncology, Tom Baker Cancer Centre, Calgary, AB T2N 4N2, Canada;
| | | | - Denis Soulieres
- Centre Hospitalier Universitaire de Montreal, Department of Medicine, University of Montreal, Montreal, QC H2X 3E4, Canada; (N.B.); (D.S.)
| | - Emina Emilia Torlakovic
- Department of Pathology and Laboratory Medicine, Saskatchewan Health Authority and University of Saskatchewan, Saskatoon, SK S7N 5B5, Canada;
| | - Ming-Sound Tsao
- Department of Pathology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
20
|
Khan KA, Marineau A, Doyon P, Acevedo M, Durette É, Gingras AC, Servant MJ. TRK-Fused Gene (TFG), a protein involved in protein secretion pathways, is an essential component of the antiviral innate immune response. PLoS Pathog 2021; 17:e1009111. [PMID: 33411856 PMCID: PMC7790228 DOI: 10.1371/journal.ppat.1009111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response. Antiviral innate immune response is the first line of defence against the invading viruses through type I interferon (IFN) signaling. However, viruses have devised ways to target signaling molecules for aberrant IFN response and worsen the disease outcome. As such, deciphering the roles of new regulators of innate immunity could transform the antiviral treatment paradigm by introducing novel panviral therapeutics designed to reinforce antiviral host responses. This could be of great use in fighting recent outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome MERS-CoV, and the more recent SARS-CoV-2 causing the COVID-19 pandemic. However, aberrant activation of such pathways can lead to detrimental consequences, including autoimmune diseases. Regulation of type I IFN responses is thus of paramount importance. To prevent an uncontrolled response, signaling events happen in discrete subcellular compartments, therefore, distinguishing sites involved in recognition of pathogens and those permitting downstream signaling. Here, we show TFG as a new regulator of type I IFN response allowing the efficient organization of signaling molecules. TFG, thus, further substantiates the importance of the protein trafficking machinery in the regulation of optimal antiviral responses. Our findings have implications for both antiviral immunity and autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Priscilla Doyon
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Mariana Acevedo
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Étienne Durette
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marc J. Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
21
|
Liu M, Chen P, Hu HY, Ou-Yang DJ, Khushbu RA, Tan HL, Huang P, Chang S. Kinase gene fusions: roles and therapeutic value in progressive and refractory papillary thyroid cancer. J Cancer Res Clin Oncol 2021; 147:323-337. [PMID: 33387037 DOI: 10.1007/s00432-020-03491-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
The incidence of papillary thyroid cancer (PTC), the major type of thyroid cancer, is increasing rapidly around the world, and its pathogenesis is still unclear. There is poor prognosis for PTC involved in rapidly progressive tumors and resistance to radioiodine therapy. Kinase gene fusions have been discovered to be present in a wide variety of malignant tumors, and an increasing number of novel types have been detected in PTC, especially progressive tumors. As a tumor-driving event, kinase fusions are constitutively activated or overexpress their kinase function, conferring oncogenic potential, and their frequency is second only to BRAFV600E mutation in PTC. Diverse forms of kinase fusions have been observed and are associated with specific pathological features of PTC (usually at an advanced stage), and clinical trials of therapeutic strategies targeting kinase gene fusions are feasible for radioiodine-resistant PTC. This review summarizes the roles of kinase gene fusions in PTC and the value of clinical therapy of targeting fusions in progressive or refractory PTC, and discusses the future perspectives and challenges related to kinase gene fusions in PTC patients.
Collapse
Affiliation(s)
- Mian Liu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Pei Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hui-Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Deng-Jie Ou-Yang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rooh-Afza Khushbu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hai-Long Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
22
|
Colozza G, Jami-Alahmadi Y, Dsouza A, Tejeda-Muñoz N, Albrecht LV, Sosa EA, Wohlschlegel JA, De Robertis EM. Wnt-inducible Lrp6-APEX2 interacting proteins identify ESCRT machinery and Trk-fused gene as components of the Wnt signaling pathway. Sci Rep 2020; 10:21555. [PMID: 33299006 PMCID: PMC7726150 DOI: 10.1038/s41598-020-78019-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
The canonical Wnt pathway serves as a hub connecting diverse cellular processes, including β-catenin signaling, differentiation, growth, protein stability, macropinocytosis, and nutrient acquisition in lysosomes. We have proposed that sequestration of β-catenin destruction complex components in multivesicular bodies (MVBs) is required for sustained canonical Wnt signaling. In this study, we investigated the events that follow activation of the canonical Wnt receptor Lrp6 using an APEX2-mediated proximity labeling approach. The Wnt co-receptor Lrp6 was fused to APEX2 and used to biotinylate targets that are recruited near the receptor during Wnt signaling at different time periods. Lrp6 proximity targets were identified by mass spectrometry, and revealed that many endosomal proteins interacted with Lrp6 within 5 min of Wnt3a treatment. Interestingly, we found that Trk-fused gene (TFG), previously known to regulate the cell secretory pathway and to be rearranged in thyroid and lung cancers, was strongly enriched in the proximity of Lrp6. TFG depletion with siRNA, or knock-out with CRISPR/Cas9, significantly reduced Wnt/β-catenin signaling in cell culture. In vivo, studies in the Xenopus system showed that TFG is required for endogenous Wnt-dependent embryonic patterning. The results suggest that the multivesicular endosomal machinery and the novel player TFG have important roles in Wnt signaling.
Collapse
Affiliation(s)
- Gabriele Colozza
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA. .,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA. .,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, 1030, Austria.
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Alyssa Dsouza
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA.,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA
| | - Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA.,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA
| | - Lauren V Albrecht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA.,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA
| | - Eric A Sosa
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Edward M De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA. .,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA.
| |
Collapse
|
23
|
Dermawan JK, Cheng YW, Tu ZJ, Meyer A, Habeeb O, Zou Y, Goldblum JR, Billings SD, Kilpatrick SE, Reith JD, Shurtleff SA, Farkas DH, Rubin BP, Azzato EM. Diagnostic Utility of a Custom 34-Gene Anchored Multiplex PCR-Based Next-Generation Sequencing Fusion Panel for the Diagnosis of Bone and Soft Tissue Neoplasms With Identification of Novel USP6 Fusion Partners in Aneurysmal Bone Cysts. Arch Pathol Lab Med 2020; 145:851-863. [PMID: 33147323 DOI: 10.5858/arpa.2020-0336-oa] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Bone and soft tissue tumors are heterogeneous, diagnostically challenging, and often defined by gene fusions. OBJECTIVE.— To present our experience using a custom 34-gene targeted sequencing fusion panel. DESIGN.— Total nucleic acid extracted from formalin-fixed, paraffin-embedded (FFPE) tumor specimens was subjected to open-ended, nested anchored multiplex polymerase chain reaction and enrichment of 34 gene targets, thus enabling detection of known and novel fusion partners. RESULTS.— During a 12-month period, 147 patients were tested as part of routine clinical care. Tumor percentage ranged from 10% to 100% and turnaround time ranged from 3 to 15 (median, 7.9) days. The most common diagnostic groups were small round blue cell tumors, tumors of uncertain differentiation, fibroblastic/myofibroblastic tumors, and adipocytic tumors. In-frame fusion transcripts were identified in 64 of 142 cases sequenced (45%): in 62 cases, the detection of a disease-defining fusion confirmed the morphologic impression; in 2 cases, a germline TFG-GPR128 polymorphic fusion variant was detected. Several genes in the panel partnered with multiple fusion partners specific for different diagnoses, for example, EWSR1, NR4A3, FUS, NCOA2, and TFE3. Interesting examples are presented to highlight how fusion detection or lack thereof was instrumental in establishing accurate diagnoses. Novel fusion partners were detected for 2 cases of solid aneurysmal bone cysts (PTBP1-USP6, SLC38A2-USP6). CONCLUSIONS.— Multiplex detection of fusions in total nucleic acid purified from FFPE specimens facilitates diagnosis of bone and soft tissue tumors. This technology is particularly useful for morphologically challenging entities and in the absence of prior knowledge of fusion partners, and has the potential to discover novel fusion partners.
Collapse
Affiliation(s)
- Josephine K Dermawan
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Yu Wei Cheng
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Zheng Jin Tu
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Anders Meyer
- The Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City (Meyer)
| | - Omar Habeeb
- The Department of Anatomic Pathology, Middlemore Hospital, Counties Manukau District Health Board, Auckland, New Zealand (Habeeb)
| | - Youran Zou
- The Department of Pathology, Kaiser Permanente Oakland Medical Center, Oakland, California (Zou)
| | - John R Goldblum
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Steven D Billings
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Scott E Kilpatrick
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - John D Reith
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Sheila A Shurtleff
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Daniel H Farkas
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Brian P Rubin
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| | - Elizabeth M Azzato
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Dermawan, Cheng, Tu, Goldblum, Billings, Kilpatrick, Reith, Shurtleff, Farkas, Rubin, Azzato)
| |
Collapse
|
24
|
Ma C, Hokutan K, Shen Y, Nepal M, Kim JH, Zhang J, Fei P. TFG-maintaining stability of overlooked FANCD2 confers early DNA-damage response. Aging (Albany NY) 2020; 12:20268-20284. [PMID: 33099537 PMCID: PMC7655164 DOI: 10.18632/aging.103782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
Emerging Fanconi Anemia (FA) signaling in the field of cancer research annotates the extreme importance of its center player, Fanconi Anemia complementation group D2 (FANCD2) in protecting human cells from going awry. However, a previously-unrecognized form of FANCD2, namely FANCD2-V2, is understudied. We report TRK-Fused Gene (TFG) is critical for roles played by FANCD2-V2 in early responses to DNA damage, but not for FANCD2-V1, the long-known form of FANCD2. FANCD2-V2 forms nuclear foci upon DNA damage, and both its focus appearance and disappearance are earlier than FANCD2-V1. The amino acid/aa 5-100 of TFG and the aa1437-1442 of FANCD2-V2 were identified to contribute to their interaction, which maintains the steady-state level of FANCD2-V2 protein. TFGΔaa5-100 or FANCD2-V2Δaa1437-1442-carrying cells could not show timely focus formation of FANCD2-V2 upon DNA damage and gained carcinogenicity over time. This study provides a previously-unknown key to unlock in-depth insights into maintaining genome stability, fostering translational studies on preventing, diagnosing and/or treating related diseases.
Collapse
Affiliation(s)
- Chi Ma
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA
| | - Kanani Hokutan
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA.,Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA
| | - Yihang Shen
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA
| | - Manoj Nepal
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA.,Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA
| | - Jin-Hee Kim
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, Phoenix, AZ 85054, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA.,Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
25
|
dBMHCC: A comprehensive hepatocellular carcinoma (HCC) biomarker database provides a reliable prediction system for novel HCC phosphorylated biomarkers. PLoS One 2020; 15:e0234084. [PMID: 32497121 PMCID: PMC7272086 DOI: 10.1371/journal.pone.0234084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC), which is associated with an absence of obvious symptoms and poor prognosis, is the second leading cause of cancer death worldwide. Genome-wide molecular biology studies should provide biological insights into HCC development. Based on the importance of phosphorylation for signal transduction, several protein kinase inhibitors have been developed that improve the survival of cancer patients. However, a comprehensive database of HCC-related phosphorylated biomarkers (HCCPMs) and novel HCCPMs prediction platform has been lacking. We have thus constructed the dBMHCC databases to provide expression profiles, phosphorylation and drug information, and evidence type; gathered information on HCC-related pathways and their involved genes as candidate HCC biomarkers; and established a system for evaluating protein phosphorylation and HCC-related biomarkers to improve the reliability of biomarker prediction. The resulting dBMHCC contains 611 notable HCC-related genes, 234 HCC-related pathways, 17 phosphorylation-related motifs and their 255 corresponding protein kinases, 5955 HCC biomarkers, and 1077 predicted HCCPMs. Methionine adenosyltransferase 2B (MAT2B) and acireductone dioxygenase 1 (ADI1), which regulate HCC development and hepatitis C virus infection, respectively, were among the top 10 HCCPMs predicted by dBMHCC. Platelet-derived growth factor receptor alpha (PDGFRA), which had the highest evaluation score, was identified as the target of one HCC drug (Regorafenib), five cancer drugs, and four non-cancer drugs. dBMHCC is an open resource for HCC phosphorylated biomarkers, which supports researchers investigating the development of HCC and designing novel diagnosis methods and drug treatments. Database URL:http://predictor.nchu.edu.tw/dBMHCC.
Collapse
|
26
|
Shimura K, Shibata H, Mizuno Y, Amano N, Hoshino K, Kuroda T, Kameyama K, Matsuse M, Mitsutake N, Sugino K, Yoshimura Noh J, Hasegawa T, Ishii T. Rapid Growth and Early Metastasis of Papillary Thyroid Carcinoma in an Adolescent Girl with Graves' Disease. Horm Res Paediatr 2019; 91:210-215. [PMID: 30092570 DOI: 10.1159/000491102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/20/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The risk factors for rapid growth and early metastasis of papillary thyroid carcinoma (PTC) and the role of coexisting Graves' disease in the clinical course of PTC remain uncertain in children. CASE DESCRIPTION We report on a Japanese girl, whose PTC rapidly grew and metastasized within 4 years. Graves' disease was diagnosed by the presence of serum TSH receptor antibodies at 8 years of age when thyroid ultrasonography detected no nodules. After 4 years of effective treatment with thiamazole, multifocal nodules - up to 47 mm in diameter - were detected on thyroid ultrasonography. Chest CT scan revealed multiple metastatic lesions in the lung. After total thyroidectomy, PTC was pathologically diagnosed. The patient underwent two courses of radioactive iodine (RAI) treatment, but the pulmonary metastatic lesions did not take up the RAI. Molecular analyses of the PTC tissue identified a TFG/NTRK1 chimeric gene and disclosed the preserved expression of TSHR and the reduced expression of SLC5A5 compared with non-tumor thyroid tissue. CONCLUSIONS Rapid growth and early metastasis of PTC with coexisting Graves' disease in this patient can be related to a combination of multiple factors including preserved TSHR expression, reduced SLC5A5 expression, and TFG/NTRK1 rearrangement.
Collapse
Affiliation(s)
- Kazuhiro Shimura
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan.,Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Hironori Shibata
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Mizuno
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Naoko Amano
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Ken Hoshino
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kaori Kameyama
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Michiko Matsuse
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | | | | | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan,
| |
Collapse
|
27
|
Abstract
Oncogenic somatic chromosomal rearrangements involving the NTRK1, NTRK2 or NTRK3 genes (NTRK gene fusions) occur in up to 1% of all solid tumors, and have been reported across a wide range of tumor types. The fusion proteins encoded by such rearranged sequences have constitutively activated TRK tyrosine kinase domains, providing novel therapeutic anticancer targets. The potential clinical effectiveness of TRK inhibition in patients with tumors harboring NTRK gene fusions is being assessed in phase I and II trials of TRK inhibitors, such as larotrectinib and entrectinib. Clinical trial results have demonstrated that larotrectinib is generally well tolerated and has shown high response rates that are durable across tumor types. These data validate NTRK gene fusions as actionable genomic alterations. In this review, we present the clinical data, discuss the different approaches that might be used to routinely screen tumors to indicate the presence of NTRK gene fusions, explore the issue of acquired resistance to TRK inhibition, and reflect on the wider regulatory considerations for tumor site agnostic TRK inhibitor drug development.
Collapse
Affiliation(s)
- Shivaani Kummar
- Division of Medical Oncology, Stanford University School of Medicine, 780 Welch Road, Rm CJ250L, Palo Alto, CA, 94305, USA.
| | - Ulrik N Lassen
- Department of Oncology, Rigshospitalet, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
28
|
Yamashita S, Kimura E, Zhang Z, Tawara N, Hara K, Yoshimura A, Takashima H, Ando Y. Muscle pathology of hereditary motor and sensory neuropathy with proximal dominant involvement with TFG mutation. Muscle Nerve 2019; 60:739-744. [PMID: 31449671 DOI: 10.1002/mus.26683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 11/12/2022]
Abstract
BACKGROUND Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is characterized by adult onset, a slowly progressive course and autosomal dominant inheritance. It remains unclear whether myopathic changes occur histopathologically. METHODS We encountered 2 patients in a family with a heterozygous p.P285L mutation in TRK-fused gene (TFG), which is known to cause HMSN-P. The affected individuals developed proximal-dominant muscle weakness in their 40s, which slowly progressed to a motor neuron disease-like phenotype. RESULTS Muscle biopsy showed myopathic pathology including fiber size variability, increased internal nuclei, fiber splitting, and core-like structures, associated with neurogenic changes: large groups of atrophic fibers and fiber type-grouping. Immunohistochemistry revealed sarcoplasmic aggregates of TFG, TDP-43, and p62 without congophilic material. CONCLUSIONS The present study demonstrates myopathic changes in HMSN-P. Although the mechanisms underlying the skeletal muscle involvement remain to be elucidated, immunohistochemistry suggests that abnormal protein aggregation may be involved in the myopathic pathology.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - En Kimura
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ziwei Zhang
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Nozomu Tawara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kentaro Hara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
29
|
Peotter J, Kasberg W, Pustova I, Audhya A. COPII-mediated trafficking at the ER/ERGIC interface. Traffic 2019; 20:491-503. [PMID: 31059169 PMCID: PMC6640837 DOI: 10.1111/tra.12654] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022]
Abstract
Coat proteins play multiple roles in the life cycle of a membrane-bound transport intermediate, functioning in lipid bilayer remodeling, cargo selection and targeting to an acceptor compartment. The Coat Protein complex II (COPII) coat is known to act in each of these capacities, but recent work highlights the necessity for numerous accessory factors at all stages of transport carrier existence. Here, we review recent findings that highlight the roles of COPII and its regulators in the biogenesis of tubular COPII-coated carriers in mammalian cells that enable cargo transport between the endoplasmic reticulum and ER-Golgi intermediate compartments, the first step in a series of trafficking events that ultimately allows for the distribution of biosynthetic secretory cargoes throughout the entire endomembrane system.
Collapse
Affiliation(s)
- Jennifer Peotter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Iryna Pustova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
30
|
Penault-Llorca F, Rudzinski ER, Sepulveda AR. Testing algorithm for identification of patients with TRK fusion cancer. J Clin Pathol 2019; 72:460-467. [PMID: 31072837 PMCID: PMC6589488 DOI: 10.1136/jclinpath-2018-205679] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
The neurotrophic tyrosine receptor kinase (NTRK) gene family encodes three tropomyosin receptor kinases (TRKA, TRKB, TRKC) that contribute to central and peripheral nervous system development and function. NTRK gene fusions are oncogenic drivers of various adult and paediatric tumours. Several methods have been used to detect NTRK gene fusions including immunohistochemistry, fluorescence in situ hybridisation, reverse transcriptase polymerase chain reaction, and DNA- or RNA-based next-generation sequencing. For patients with TRK fusion cancer, TRK inhibition is an important therapeutic target. Following the FDA approval of the selective TRK inhibitor, larotrectinib, as well as the ongoing development of multi-kinase inhibitors with activity in TRK fusion cancer, testing for NTRK gene fusions should become part of the standard diagnostic process. In this review we discuss the biology of NTRK gene fusions, and we present a testing algorithm to aid detection of these gene fusions in clinical practice and guide treatment decisions.
Collapse
Affiliation(s)
- Frédérique Penault-Llorca
- Department of Pathology and Molecular Pathology, Centre Jean Perrin, Clermont-Ferrand, France .,UMR INSERM 1240, Universite Clermont Auvergne, Clermont-Ferrand, France
| | - Erin R Rudzinski
- Department of Laboratories, Seattle Children's Hospital and University of Washington Medical Center, Seattle, Washington, USA
| | - Antonia R Sepulveda
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
31
|
Hsiao SJ, Zehir A, Sireci AN, Aisner DL. Detection of Tumor NTRK Gene Fusions to Identify Patients Who May Benefit from Tyrosine Kinase (TRK) Inhibitor Therapy. J Mol Diagn 2019; 21:553-571. [PMID: 31075511 PMCID: PMC7456740 DOI: 10.1016/j.jmoldx.2019.03.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 01/04/2023] Open
Abstract
Chromosomal rearrangements involving the NTRK1, NTRK2, and NTRK3 genes (NTRK genes), which encode the high-affinity nerve growth factor receptor (TRKA), brain-derived neurotrophic factor/neurotrophin-3 (BDNF/NT-3) growth factor receptor (TRKB), and neurotrophin-3 (NT-3) growth factor receptor (TRKC) tyrosine kinases (TRK proteins), act as oncogenic drivers in a broad range of pediatric and adult tumor types. NTRK gene fusions have been shown to be actionable genomic events that are predictive of response to TRK kinase inhibitors, making their routine detection an evolving clinical priority. In certain exceedingly rare tumor types, NTRK gene fusions may be seen in the overwhelming majority of cases, whereas in a range of common cancers, reported incidences are in the range of 0.1% to 2%. Herein, we review the structure of the three NTRK genes and the nature and incidence of NTRK gene fusions in different solid tumor types, and we summarize the clinical data showing the importance of identifying tumors harboring such genomic events. We also outline the laboratory techniques that can be used to diagnose NTRK gene fusions in clinical samples. Finally, we propose a diagnostic algorithm for solid tumors to facilitate the identification of patients with TRK fusion cancer. This algorithm accounts for the widely varying frequencies by tumor histology and the underlying prevalence of TRK expression in the absence of NTRK gene fusions and is based on a combination of fluorescence in situ hybridization, next-generation sequencing, and immunohistochemistry assays.
Collapse
Affiliation(s)
- Susan J Hsiao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthony N Sireci
- Department of Medical Affairs, Loxo Oncology, Inc., Stamford, Connecticut
| | - Dara L Aisner
- Department of Pathology, University of Colorado, Aurora, Colorado.
| |
Collapse
|
32
|
Choi SR, Hwang YL, Kim SJ, Sohn KC, Choi CW, Park KD, Lee Y, Seo YJ, Lee JH, Hong SP, Seo SJ, Kim SJ, Kim CD. Tropomyosin-receptor kinase fused gene (TFG) regulates lipid production in human sebocytes. Sci Rep 2019; 9:6587. [PMID: 31036933 PMCID: PMC6488642 DOI: 10.1038/s41598-019-43209-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/17/2019] [Indexed: 11/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is an organelle in which important cellular events such as protein synthesis and lipid production occur. Although many lipid molecules are produced in the ER, the effect of ER-organizing proteins on lipid synthesis in sebocytes has not been completely elucidated. Tropomyosin-receptor kinase fused gene (TFG) is located in ER exit sites and participates in COPII-coated vesicle formation along with many scaffold proteins, such as Sec. 13 and Sec. 16. In this study, we investigated the putative role of TFG in lipid production in sebocytes using an immortalized human sebocyte line. During IGF-1-induced lipogenesis, the level of the TFG protein was increased in a time- and dose-dependent manner. When TFG was over-expressed using recombinant adenovirus, lipid production in sebocytes was increased along with an up-regulation of the expression of lipogenic regulators, such as PPAR-γ, SREBP-1 and SCD. Conversely, down-regulation of TFG using a microRNA (miR) decreased lipid production and the expression of lipogenic regulators. Based on these data, TFG is a novel regulator of lipid synthesis in sebocytes.
Collapse
Affiliation(s)
- So-Ra Choi
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Yul-Lye Hwang
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Soo Jung Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung-Cheol Sohn
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chong Won Choi
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung Duck Park
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Lee
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Seung-Phil Hong
- Department of Dermatology, Dankook University College of Medicine, Cheonan, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seong-Jin Kim
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Chang Deok Kim
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea. .,Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea.
| |
Collapse
|
33
|
Li J, Meng L, Wu R, Xie Z, Gang Q, Zhang W, Wang Z, Yuan Y. Sural nerve pathology in TFG-associated motor neuron disease with sensory neuropathy. Neuropathology 2019; 39:194-199. [PMID: 30957313 DOI: 10.1111/neup.12555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
The tropomyosin-receptor kinase fused gene (TFG) functions in vesicles formation and egress at the endoplasmic reticulum (ER). A heterozygous missense mutation c.854C > T (p.Pro285Leu) within TFG has been reported as causative for hereditary motor and sensory neuropathy with proximal predominance. Here, we describe two unrelated Chinese pedigrees with 13 affected members harboring the same variant. The clinical, electrophysiological and pathological findings are consistent with motor neuron disease with sensory neuropathy. The main symptoms were painful muscle cramps, slowly progressive proximal predominant weakness, muscle atrophy, fasciculation and distal sensory disturbance. Electromyography revealed widespread denervation and reinnervation. Sural nerve biopsy revealed severe loss of myelinated fibers. Electron microscopy revealed aggregation of ER with enlarged lumen and small vesicles in the remaining myelinated and unmyelinated axons. The mitochondria are smaller in Schwann cells and axons. Some unmyelinated axons showed disappearance of neurofilament and microtubular structures. This is the first report of c.854C > T mutation within TFG in Chinese population. Our findings not only extend the geographical and phenotypic spectrum of TFG-related neurological disorders, but also confirm the abnormalities of ER and mitochondria in sural nerves.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Rui Wu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Qiang Gang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
34
|
Jiang W, Ji M. Receptor tyrosine kinases in PI3K signaling: The therapeutic targets in cancer. Semin Cancer Biol 2019; 59:3-22. [PMID: 30943434 DOI: 10.1016/j.semcancer.2019.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/09/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway, one of the most commonly activated signaling pathways in human cancers, plays a crucial role in the regulation of cell proliferation, differentiation, and survival. This pathway is usually activated by receptor tyrosine kinases (RTKs), whose constitutive and aberrant activation is via gain-of-function mutations, chromosomal rearrangement, gene amplification and autocrine. Blockage of PI3K pathway by targeted therapy on RTKs with tyrosine kinases inhibitors (TKIs) and monoclonal antibodies (mAbs) has achieved great progress in past decades; however, there still remain big challenges during their clinical application. In this review, we provide an overview about the most frequently encountered alterations in RTKs and focus on current therapeutic agents developed to counteract their aberrant functions, accompanied with discussions of two major challenges to the RTKs-targeted therapy in cancer - resistance and toxicity.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
35
|
Valvo V, Nucera C. Coding Molecular Determinants of Thyroid Cancer Development and Progression. Endocrinol Metab Clin North Am 2019; 48:37-59. [PMID: 30717910 PMCID: PMC6366338 DOI: 10.1016/j.ecl.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy. Its incidence and mortality rates have increased for patients with advanced-stage papillary thyroid cancer. The characterization of the molecular pathways essential in thyroid cancer initiation and progression has made huge progress, underlining the role of intracellular signaling to promote clonal evolution, dedifferentiation, metastasis, and drug resistance. The discovery of genetic alterations that include mutations (BRAF, hTERT), translocations, deletions (eg, 9p), and copy-number gain (eg, 1q) has provided new biological insights with clinical applications. Understanding how molecular pathways interplay is one of the key strategies to develop new therapeutic treatments and improve prognosis.
Collapse
Affiliation(s)
- Veronica Valvo
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Department of Pathology, Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| | - Carmelo Nucera
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Department of Pathology, Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
36
|
Pfeifer A, Rusinek D, Żebracka-Gala J, Czarniecka A, Chmielik E, Zembala-Nożyńska E, Wojtaś B, Gielniewski B, Szpak-Ulczok S, Oczko-Wojciechowska M, Krajewska J, Polańska J, Jarząb B. Novel TG-FGFR1 and TRIM33-NTRK1 transcript fusions in papillary thyroid carcinoma. Genes Chromosomes Cancer 2019; 58:558-566. [PMID: 30664823 PMCID: PMC6594006 DOI: 10.1002/gcc.22737] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is most common among all thyroid cancers. Multiple genomic alterations occur in PTC, and gene rearrangements are one of them. Here we screened 14 tumors for novel fusion transcripts by RNA‐Seq. Two samples harboring RET/PTC1 and RET/PTC3 rearrangements were positive controls whereas the remaining ones were negative regarding the common PTC alterations. We used Sanger sequencing to validate potential fusions. We detected 2 novel potentially oncogenic transcript fusions: TG‐FGFR1 and TRIM33‐NTRK1. We detected 4 novel fusion transcripts of unknown significance accompanying the TRIM33‐NTRK1 fusion: ZSWIM5‐TP53BP2, TAF4B‐WDR1, ABI2‐MTA3, and ARID1B‐PSMA1. Apart from confirming the presence of RET/PTC1 and RET/PTC3 in positive control samples, we also detected known oncogenic fusion transcripts in remaining samples: TFG‐NTRK1, ETV6‐NTRK3, MKRN1‐BRAF, EML4‐ALK, and novel isoform of CCDC6‐RET.
Collapse
Affiliation(s)
- Aleksandra Pfeifer
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Dagmara Rusinek
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Jadwiga Żebracka-Gala
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Agnieszka Czarniecka
- Department of Oncological and Reconstructive Surgery, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Ewa Chmielik
- Tumor Pathology Department, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Ewa Zembala-Nożyńska
- Tumor Pathology Department, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Bartosz Wojtaś
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartłomiej Gielniewski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Sylwia Szpak-Ulczok
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Małgorzata Oczko-Wojciechowska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Jolanta Krajewska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Joanna Polańska
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Barbara Jarząb
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| |
Collapse
|
37
|
Childress MA, Himmelberg SM, Chen H, Deng W, Davies MA, Lovly CM. ALK Fusion Partners Impact Response to ALK Inhibition: Differential Effects on Sensitivity, Cellular Phenotypes, and Biochemical Properties. Mol Cancer Res 2018; 16:1724-1736. [PMID: 30002191 PMCID: PMC6214753 DOI: 10.1158/1541-7786.mcr-18-0171] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/25/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022]
Abstract
Oncogenic tyrosine kinase fusions involving the anaplastic lymphoma kinase (ALK) are detected in numerous tumor types. Although more than 30 distinct 5' fusion partner genes have been reported, treatment of ALK-rearranged cancers is decided without regard to which 5' partner is present. There is little data addressing how the 5' partner affects the biology of the fusion or responsiveness to ALK tyrosine kinase inhibitors (TKI). On the basis of the hypothesis that the 5' partner influences the intrinsic properties of the fusion protein, cellular functions that impact oncogenic potential, and sensitivity to ALK TKIs, clonal 3T3 cell lines stably expressing seven different ALK fusion variants were generated. Biochemical and cellular assays were used to assess the efficacy of various ALK TKIs in clinical use, transformative phenotypes, and biochemical properties of each fusion. All seven ALK fusions induced focus formation and colonies in soft agar, albeit to varying degrees. IC50s were calculated for different ALK TKIs (crizotinib, ensartinib, alectinib, lorlatinib) and consistent differences (5-10 fold) in drug sensitivity were noted across the seven ALK fusions tested. Finally, biochemical analyses revealed negative correlations between kinase activity and protein stability. These results demonstrate that the 5' fusion partner plays an important biological role that affects sensitivity to ALK TKIs.Implications: This study shows that the 5' ALK fusion partner influences ALK TKI drug sensitivity. As many other kinase fusions are found in numerous cancers, often with overlapping fusion partners, these studies have ramifications for other kinase-driven malignancies. Mol Cancer Res; 16(11); 1724-36. ©2018 AACR.
Collapse
Affiliation(s)
| | - Stephen M Himmelberg
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Huiqin Chen
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wanleng Deng
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christine M Lovly
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee.
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
38
|
Shibata H. Adaptor functions of the Ca 2+-binding protein ALG-2 in protein transport from the endoplasmic reticulum. Biosci Biotechnol Biochem 2018; 83:20-32. [PMID: 30259798 DOI: 10.1080/09168451.2018.1525274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptosis-linked gene 2 (ALG-2) is a Ca2+-binding protein with five repetitive EF-hand motifs, named penta-EF-hand (PEF) domain. It interacts with various target proteins and functions as a Ca2+-dependent adaptor in diverse cellular activities. In the cytoplasm, ALG-2 is predominantly localized to a specialized region of the endoplasmic reticulum (ER), called the ER exit site (ERES), through its interaction with Sec31A. Sec31A is an outer coat protein of coat protein complex II (COPII) and is recruited from the cytosol to the ERES to form COPII-coated transport vesicles. I will overview current knowledge of the physiological significance of ALG-2 in regulating ERES localization of Sec31A and the following adaptor functions of ALG-2, including bridging Sec31A and annexin A11 to stabilize Sec31A at the ERES, polymerizing the Trk-fused gene (TFG) product, and linking MAPK1-interacting and spindle stabilizing (MISS)-like (MISSL) and microtubule-associated protein 1B (MAP1B) to promote anterograde transport from the ER.
Collapse
Affiliation(s)
- Hideki Shibata
- a Department of Applied Biosciences, Graduate School of Bioagricultural Sciences , Nagoya University , Chikusa-ku , Nagoya , Japan
| |
Collapse
|
39
|
Yan W, Lakkaniga NR, Carlomagno F, Santoro M, McDonald NQ, Lv F, Gunaganti N, Frett B, Li HY. Insights into Current Tropomyosin Receptor Kinase (TRK) Inhibitors: Development and Clinical Application. J Med Chem 2018; 62:1731-1760. [PMID: 30188734 DOI: 10.1021/acs.jmedchem.8b01092] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy.,Istituto di Endocrinologia e Oncologia Sperimentale del CNR , Via S Pansini 5 , 80131 Naples , Italy
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy
| | - Neil Q McDonald
- Signaling and Structural Biology Laboratory , The Francis Crick Institute , London NW1 1AT , U.K.,Institute of Structural and Molecular Biology, Department of Biological Sciences , Birkbeck College , Malet Street , London WC1E 7HX , U.K
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| |
Collapse
|
40
|
Kheder ES, Hong DS. Emerging Targeted Therapy for Tumors with NTRK Fusion Proteins. Clin Cancer Res 2018; 24:5807-5814. [PMID: 29986850 DOI: 10.1158/1078-0432.ccr-18-1156] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/18/2018] [Accepted: 07/05/2018] [Indexed: 11/16/2022]
Abstract
The oncogenesis-promoting role of chromosomal rearrangements for several hematologic and solid malignancies is well recognized. However, identifying targetable, actionable, and druggable chromosomal rearrangements remains a challenge. Targeting gene fusions and chromosomal rearrangements is an effective strategy in treating gene rearrangement-driven tumors. The NTRK (Neurotrophic Tyrosine Receptor Kinase) gene family encodes three tropomyosin-related kinase (TRK) receptors that preserve central and peripheral nervous system development and function. NTRK genes, similar to other genes, are subject to alterations, including fusions. Preclinical studies have demonstrated that TRK fusion proteins promote oncogenesis by mediating constitutive cell proliferation and survival. Several clinical trials have estimated the safety and efficacy of TRK fusion kinase receptor inhibitors and have demonstrated encouraging antitumor activity in patients with NTRK-rearranged malignancies. Specifically, larotrectinib and entrectinib have emerged as potent, safe, and promising TRK inhibitors. Herein, we discuss the potential oncogenic characteristics of TRK fusion proteins in various malignancies and highlight ongoing clinical trials of kinase inhibitors targeting them.
Collapse
Affiliation(s)
- Ed S Kheder
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
41
|
Pesenti C, Muzza M, Colombo C, Proverbio MC, Farè C, Ferrero S, Miozzo M, Fugazzola L, Tabano S. MassARRAY-based simultaneous detection of hotspot somatic mutations and recurrent fusion genes in papillary thyroid carcinoma: the PTC-MA assay. Endocrine 2018; 61:36-41. [PMID: 29214440 PMCID: PMC5997117 DOI: 10.1007/s12020-017-1483-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE We exploited the MassARRAY (MA) genotyping platform to develop the "PTC-MA assay", which allows the simultaneous detection of 13 hotspot mutations, in the BRAF, KRAS, NRAS, HRAS, TERT, AKT1, PIK3CA, and EIF1AX genes, and six recurrent genetic rearrangements, involving the RET and TRK genes in papillary thyroid cancer (PTC). METHODS The assay was developed using DNA and cDNA from 12 frozen and 11 formalin-fixed paraffin embedded samples from 23 PTC cases, together with positive and negative controls. RESULTS The PTC-MA assay displays high sensitivity towards point mutations and gene rearrangements, detecting their presence at frequencies as low as 5%. Moreover, this technique allows quantification of the mutated alleles identified at each tested locus. CONCLUSIONS The PTC-MA assay is a novel MA test, which is able to detect fusion genes generated by genomic rearrangements concomitantly with the analysis of hotspot point mutations, thus allowing the evaluation of key diagnostic, prognostic, and therapeutic markers of PTC in a single experiment without any informatics analysis. As the assay is sensitive, robust, easily achievable, and affordable, it is suitable for the diagnostic practice. Finally, the PTC-MA assay can be easily implemented and updated by adding novel genetic markers, according to clinical requirements.
Collapse
Affiliation(s)
- Chiara Pesenti
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Marina Muzza
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Carla Colombo
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maria Carla Proverbio
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Claudia Farè
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monica Miozzo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Laura Fugazzola
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milano, Italy.
| | - Silvia Tabano
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
42
|
Takeuchi S, Tooyama I. TRK-fused Gene Protein Localization Is Prominent in Serotonergic and Noradrenergic Cell Groups, and Some Lower Motor Neurons in the Corticospinal Tract of the Rat Brainstem. Acta Histochem Cytochem 2018; 51:111-118. [PMID: 30083019 PMCID: PMC6066645 DOI: 10.1267/ahc.18006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/04/2018] [Indexed: 11/22/2022] Open
Abstract
The TRK-fused gene (TFG) is reported to be involved in the regulation of cell size, apoptosis, cell growth, ER-Golgi protein secretion, NF-κβ pathway signaling, the ubiquitin-proteasome system, and pancreatic β-cell mass and function. TFG mutations were reported in some neurodegenerative diseases affecting sensory and motor functions. However, the function of TFG in the nervous system and how TFG mutations lead to neurodegeneration remain unclear. In this study, we employed double immunohistochemistry to investigate the details of TFG localization patterns in monoaminergic and cholinergic neurons in the brainstem. Intense TFG immunoreactivity was observed in the dorsal raphe nucleus, the locus coeruleus, and the ventral horn of the spinal cord. TFG immunoreactivity was observed in some serotonergic neurons in all B1–B9 cell groups, and some noradrenergic neurons in all A1–A7 cell groups in the rat brainstem, while no immunoreactivity was observed in the dopaminergic neurons in A8–A10 cell groups. TFG immunoreactivity was observed in all ChAT-positive motor nuclei in the lower corticospinal tract of the rat brainstem.
Collapse
Affiliation(s)
- Shigeko Takeuchi
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| |
Collapse
|
43
|
Farina AR, Cappabianca L, Ruggeri P, Gneo L, Pellegrini C, Fargnoli MC, Mackay AR. The oncogenic neurotrophin receptor tropomyosin-related kinase variant, TrkAIII. J Exp Clin Cancer Res 2018; 37:119. [PMID: 29914559 PMCID: PMC6006588 DOI: 10.1186/s13046-018-0786-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022] Open
Abstract
Oncogenes derived from the neurotrophin receptor tropomyosin-related kinase TrkA act as drivers in sub-populations of a wide-range of human cancers. This, combined with a recent report that both adult and childhood cancers driven by novel oncogenic TrkA chimeric-fusions exhibit profound, long-lived therapeutic responses to the Trk inhibitor Larotrectinib, highlights the need to improve clinical detection of TrkA oncogene-driven cancers in order to maximise this novel therapeutic potential. Cancers potentially driven by TrkA oncogenes include a proportion of paediatric neuroblastomas (NBs) that express the alternative TrkA splice variant TrkAIII, which exhibits exon 6, 7 and 9 skipping and oncogenic-activity that depends upon deletion of the extracellular D4 Ig-like domain. In contrast to fully spliced TrkA, which exhibits tumour suppressor activity in NB and associates with good prognosis, TrkAIII associates with advanced stage metastatic disease, post therapeutic relapse and worse prognosis, induces malignant transformation of NIH-3T3 cells and exhibits oncogenic activity in NB models. TrkAIII induction in NB cells is stress-regulated by conditions that mimic hypoxia or perturbate the ER with potential to change TrkA tumour-suppressing signals into oncogenic TrkAIII signals within the stressful tumour microenvironment. In contrast to cell surface TrkA, TrkAIII re-localises to intracellular pre-Golgi membranes, centrosomes and mitochondria, within which it exhibits spontaneous ligand-independent activation, triggering a variety of mechanisms that promote tumorigenicity and malignant behaviour, which impact the majority of cancer hallmarks. In this review, we present updates on TrkAIII detection and association with human malignancies, the multiple ways TrkAIII exerts oncogenic activity and potential therapeutic approaches for TrkAIII expressing cancers, with particular reference to NB.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Pierdomenico Ruggeri
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Luciana Gneo
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Cristina Pellegrini
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Maria-Concetta Fargnoli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
44
|
Smith KM, Fagan PC, Pomari E, Germano G, Frasson C, Walsh C, Silverman I, Bonvini P, Li G. Antitumor Activity of Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor, in ETV6-NTRK3-Positive Acute Myeloid Leukemia. Mol Cancer Ther 2017; 17:455-463. [PMID: 29237803 DOI: 10.1158/1535-7163.mct-17-0419] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/10/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
Abstract
Activation of tropomyosin receptor kinase (TRK) family tyrosine kinases by chromosomal rearrangement has been shown to drive a wide range of solid tumors and hematologic malignancies. TRK fusions are actionable targets as evidenced by recent clinical trial results in solid tumors. Entrectinib (RXDX-101) is an investigational, orally available, CNS-active, highly potent, and selective kinase inhibitor against TRKA/B/C, ROS1, and ALK kinase activities. Here, we demonstrate that TRK kinase inhibition by entrectinib selectively targets preclinical models of TRK fusion-driven hematologic malignancies. In acute myelogenous leukemia (AML) cell lines with endogenous expression of the ETV6-NTRK3 fusion gene, entrectinib treatment blocked cell proliferation and induced apoptotic cell death in vitro with subnanomolar IC50 values. Phosphorylation of the ETV6-TRKC fusion protein and its downstream signaling effectors was inhibited by entrectinib treatment in a dose-dependent manner. In animal models, entrectinib treatment at clinically relevant doses resulted in tumor regression that was accompanied by elimination of residual cancer cells from the bone marrow. Our preclinical data demonstrate the potential of entrectinib as an effective treatment for patients with TRK fusion-driven AML and other hematologic malignancies. Mol Cancer Ther; 17(2); 455-63. ©2017 AACR.
Collapse
Affiliation(s)
| | | | - Elena Pomari
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy.,Department of Woman and Child Health, University-Hospital of Padova, Padova, Italy
| | - Giuseppe Germano
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Chiara Frasson
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | | | | | - Paolo Bonvini
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Gang Li
- Ignyta, Inc., San Diego, California
| |
Collapse
|
45
|
Zaballos MA, Santisteban P. Key signaling pathways in thyroid cancer. J Endocrinol 2017; 235:R43-R61. [PMID: 28838947 DOI: 10.1530/joe-17-0266] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
Abstract
Whole genome sequencing approaches have provided unprecedented insights into the genetic lesions responsible for the onset, progression and dedifferentiation of various types of thyroid carcinomas. Through these efforts, the MAPK and PI3K signaling cascades have emerged as the main activation pathways implicated in thyroid tumorigenesis. The nature of these essential pathways is highly complex, with hundreds of components, multiple points of crosstalk, different subcellular localizations and with the ability to potentially regulate many cellular processes. Small-molecule inhibitors targeting key kinases of these pathways hold great promise as novel therapeutics and several have reached clinical trials. However, while some remarkable responses have been reported, the development of resistance remains a matter of concern and limits the benefit for patients. In this review, we discuss the latest findings on the major components of the MAPK and PI3K pathways, including their mechanisms of activation in physiological and pathological contexts, their genetic alterations with respect to the different types of thyroid carcinomas and the more relevant drugs designed to block their activity.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas 'Alberto Sols'Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas 'Alberto Sols'Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
46
|
Trk-fused gene (TFG) regulates pancreatic β cell mass and insulin secretory activity. Sci Rep 2017; 7:13026. [PMID: 29026155 PMCID: PMC5638802 DOI: 10.1038/s41598-017-13432-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
The Trk-fused gene (TFG) is reportedly involved in the process of COPII-mediated vesicle transport and missense mutations in TFG cause several neurodegenerative diseases including hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P). The high coincidence ratio between HMSN-P and diabetes mellitus suggests TFG to have an important role(s) in glucose homeostasis. To examine this possibility, β-cell specific TFG knockout mice (βTFG KO) were generated. Interestingly, βTFG KO displayed marked glucose intolerance with reduced insulin secretion. Immunohistochemical analysis revealed smaller β-cell masses in βTFG KO than in controls, likely attributable to diminished β-cell proliferation. Consistently, β-cell expansion in response to a high-fat, high-sucrose (HFHS) diet was significantly impaired in βTFG KO. Furthermore, glucose-induced insulin secretion was also markedly impaired in islets isolated from βTFG KO. Electron microscopic observation revealed endoplasmic reticulum (ER) dilatation, suggestive of ER stress, and smaller insulin crystal diameters in β-cells of βTFG KO. Microarray gene expression analysis indicated downregulation of NF-E2 related factor 2 (Nrf2) and its downstream genes in TFG depleted islets. Collectively, TFG in pancreatic β-cells plays a vital role in maintaining both the mass and function of β-cells, and its dysfunction increases the tendency to develop glucose intolerance.
Collapse
|
47
|
Drilon A, Siena S, Ou SHI, Patel M, Ahn MJ, Lee J, Bauer TM, Farago AF, Wheler JJ, Liu SV, Doebele R, Giannetta L, Cerea G, Marrapese G, Schirru M, Amatu A, Bencardino K, Palmeri L, Sartore-Bianchi A, Vanzulli A, Cresta S, Damian S, Duca M, Ardini E, Li G, Christiansen J, Kowalski K, Johnson AD, Patel R, Luo D, Chow-Maneval E, Hornby Z, Multani PS, Shaw AT, De Braud FG. Safety and Antitumor Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib: Combined Results from Two Phase I Trials (ALKA-372-001 and STARTRK-1). Cancer Discov 2017; 7:400-409. [PMID: 28183697 DOI: 10.1158/2159-8290.cd-16-1237] [Citation(s) in RCA: 602] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/14/2022]
Abstract
Entrectinib, a potent oral inhibitor of the tyrosine kinases TRKA/B/C, ROS1, and ALK, was evaluated in two phase I studies in patients with advanced or metastatic solid tumors, including patients with active central nervous system (CNS) disease. Here, we summarize the overall safety and report the antitumor activity of entrectinib in a cohort of patients with tumors harboring NTRK1/2/3, ROS1, or ALK gene fusions, naïve to prior TKI treatment targeting the specific gene, and who were treated at doses that achieved therapeutic exposures consistent with the recommended phase II dose. Entrectinib was well tolerated, with predominantly Grades 1/2 adverse events that were reversible with dose modification. Responses were observed in non-small cell lung cancer, colorectal cancer, mammary analogue secretory carcinoma, melanoma, and renal cell carcinoma, as early as 4 weeks after starting treatment and lasting as long as >2 years. Notably, a complete CNS response was achieved in a patient with SQSTM1-NTRK1-rearranged lung cancer.Significance: Gene fusions of NTRK1/2/3, ROS1, and ALK (encoding TRKA/B/C, ROS1, and ALK, respectively) lead to constitutive activation of oncogenic pathways. Entrectinib was shown to be well tolerated and active against those gene fusions in solid tumors, including in patients with primary or secondary CNS disease. Cancer Discov; 7(4); 400-9. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 339.
Collapse
Affiliation(s)
- Alexander Drilon
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York.
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dipartimento di Oncologia e Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
| | - Manish Patel
- Sarah Cannon Research Institute/Florida Cancer Specialists, Sarasota, Florida
| | | | | | - Todd M Bauer
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, Tennessee
| | - Anna F Farago
- Massachusetts General Hospital, Boston, Massachusetts
| | | | - Stephen V Liu
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC
| | | | - Laura Giannetta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giulio Cerea
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giovanna Marrapese
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Michele Schirru
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Katia Bencardino
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Palmeri
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Angelo Vanzulli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dipartimento di Oncologia e Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Sara Cresta
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Damian
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Duca
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Gang Li
- Ignyta, Inc., San Diego, California
| | | | | | | | | | | | | | | | | | - Alice T Shaw
- Massachusetts General Hospital, Boston, Massachusetts
| | - Filippo G De Braud
- Dipartimento di Oncologia e Emato-Oncologia, Università degli Studi di Milano, Milan, Italy.,Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
48
|
Kanadome T, Shibata H, Kuwata K, Takahara T, Maki M. The calcium-binding protein ALG-2 promotes endoplasmic reticulum exit site localization and polymerization of Trk-fused gene (TFG) protein. FEBS J 2017; 284:56-76. [PMID: 27813252 DOI: 10.1111/febs.13949] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/28/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022]
Abstract
Apoptosis-linked gene 2 (ALG-2), which is a gene product of PDCD6, is a 22-kDa Ca2+ -binding protein. Accumulating evidence points to a role for ALG-2 as a Ca2+ -responsive adaptor protein. On binding to Ca2+ , ALG-2 undergoes a conformational change that facilitates its interaction with various proteins. It also forms a homodimer and heterodimer with peflin, a paralog of ALG-2. However, the differences in cellular roles for the ALG-2 homodimer and ALG-2/peflin heterodimer are unclear. In the present study, we found that Trk-fused gene (TFG) protein interacted with the ALG-2 homodimer. Immunostaining analysis revealed that TFG and ALG-2 partially overlapped at endoplasmic reticulum exit sites (ERES), a platform for COPII-mediated protein transport from the endoplasmic reticulum. Time-lapse live-cell imaging demonstrated that both green fluorescent protein-fused TFG and mCherry-fused ALG-2 are recruited to ERES after thapsigargin treatment, which raises intracellular Ca2+ levels. Furthermore, overexpression of ALG-2 induced the accumulation of TFG at ERES. TFG has an ALG-2-binding motif and deletion of the motif decreased TFG binding to ALG-2 and shortened its half-life at ERES, suggesting a critical role for ALG-2 in retaining TFG at ERES. We also demonstrated, by in vitro cross-linking assays, that ALG-2 promoted the polymerization of TFG in a Ca2+ -dependent manner. Collectively, the results suggest that ALG-2 acts as a Ca2+ -sensitive adaptor to concentrate and polymerize TFG at ERES, supporting a potential role for ALG-2 in COPII-dependent trafficking from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Takashi Kanadome
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Hideki Shibata
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Japan
| | - Terunao Takahara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Masatoshi Maki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| |
Collapse
|
49
|
Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat Med 2016; 22:1314-1320. [PMID: 27748748 DOI: 10.1038/nm.4204] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 09/15/2016] [Indexed: 12/18/2022]
Abstract
Pediatric glioblastoma is one of the most common and most deadly brain tumors in childhood. Using an integrative genetic analysis of 53 pediatric glioblastomas and five in vitro model systems, we identified previously unidentified gene fusions involving the MET oncogene in ∼10% of cases. These MET fusions activated mitogen-activated protein kinase (MAPK) signaling and, in cooperation with lesions compromising cell cycle regulation, induced aggressive glial tumors in vivo. MET inhibitors suppressed MET tumor growth in xenograft models. Finally, we treated a pediatric patient bearing a MET-fusion-expressing glioblastoma with the targeted inhibitor crizotinib. This therapy led to substantial tumor shrinkage and associated relief of symptoms, but new treatment-resistant lesions appeared, indicating that combination therapies are likely necessary to achieve a durable clinical response.
Collapse
|
50
|
Khani M, Shamshiri H, Alavi A, Nafissi S, Elahi E. Identification of novel TFG mutation in HMSN-P pedigree: Emphasis on variable clinical presentations. J Neurol Sci 2016; 369:318-323. [DOI: 10.1016/j.jns.2016.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/23/2016] [Accepted: 08/16/2016] [Indexed: 01/22/2023]
|