1
|
Chen X, Gao M, Xia Y, Wang X, Qin J, He H, Liu W, Zhang X, Peng S, Zeng Z, Su Y, Zhang X. Phase separation of Nur77 mediates XS561-induced apoptosis by promoting the formation of Nur77/Bcl-2 condensates. Acta Pharm Sin B 2024; 14:1204-1221. [PMID: 38486987 PMCID: PMC10935061 DOI: 10.1016/j.apsb.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 03/17/2024] Open
Abstract
The orphan nuclear receptor Nur77 is a critical regulator of the survival and death of tumor cells. The pro-death effect of Nur77 can be regulated by its interaction with Bcl-2, resulting in conversion of Bcl-2 from a survival to killer. As Bcl-2 is overexpressed in various cancers preventing them from apoptosis and promoting their resistance to chemotherapy, targeting the apoptotic pathway of Nur77/Bcl-2 may lead to new cancer therapeutics. Here, we report our identification of XS561 as a novel Nur77 ligand that induces apoptosis of tumor cells by activating the Nur77/Bcl-2 pathway. In vitro and animal studies revealed an apoptotic effect of XS561 in a range of tumor cell lines including MDA-MB-231 triple-negative breast cancer (TNBC) and MCF-7/LCC2 tamoxifen-resistant breast cancer (TAMR) in a Nur77-dependent manner. Mechanistic studies showed XS561 potently induced the translocation of Nur77 from the nucleus to mitochondria, resulting in mitochondria-related apoptosis. Interestingly, XS561-induced accumulation of Nur77 at mitochondria was associated with XS561 induction of Nur77 phase separation and the formation of Nur77/Bcl-2 condensates. Together, our studies identify XS561 as a new activator of the Nur77/Bcl-2 apoptotic pathway and reveal a role of phase separation in mediating the apoptotic effect of Nur77 at mitochondria.
Collapse
Affiliation(s)
- Xiaohui Chen
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
- Department of Clinical Laboratory, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Meichun Gao
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Yongzhen Xia
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Xin Wang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Jingbo Qin
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Hongying He
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Weirong Liu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Xiaowei Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Shuangzhou Peng
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Zhiping Zeng
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Ying Su
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
- NucMito Pharmaceuticals Co., Ltd., Xiamen 361000, China
| | - Xiaokun Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| |
Collapse
|
2
|
Bopape M, Tiloke C, Ntsapi C. Moringa oleifera and Autophagy: Evidence from In Vitro Studies on Chaperone-Mediated Autophagy in HepG 2 Cancer Cells. Nutr Cancer 2023; 75:1822-1847. [PMID: 37850743 DOI: 10.1080/01635581.2023.2270215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer in Sub-Saharan African countries, including South Africa (SA). Given the limitations in current HCC therapeutics, there is an increasing need for alternative adjuvant therapeutic options. As such, several cell survival mechanisms, such as autophagy, have been identified as potential adjuvant therapeutic targets in HCC treatment. Of the three most established autophagic pathways, the upregulation of chaperone-mediated autophagy (CMA) has been extensively described in various cancer cells, including HCC cells. CMA promotes tumor growth and chemotherapeutic drug resistance, thus contributing to HCC tumorigenesis. Therefore, the modulation of CMA serves as a promising adjuvant target for current HCC therapeutic strategies. Phytochemical extracts found in the medicinal plant, Moringa oleifera (MO), have been shown to induce apoptosis in numerous cancer cells, including HCC. MO leaves have the greatest abundance of phytochemicals displaying anticancer potential. However, the potential interaction between the pro-apoptotic effects of MO aqueous leaf extract and the survival-promoting role of CMA in an in vitro model of HCC remains unclear. This review aims to summarize the latest findings on the role of CMA, and MO in the progression of HCC.
Collapse
Affiliation(s)
- Matlola Bopape
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Charlette Tiloke
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Claudia Ntsapi
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
3
|
Nur77 Serves as a Potential Prognostic Biomarker That Correlates with Immune Infiltration and May Act as a Good Target for Prostate adenocarcinoma. Molecules 2023; 28:molecules28031238. [PMID: 36770929 PMCID: PMC9921667 DOI: 10.3390/molecules28031238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Prostate adenocarcinoma (PRAD) is the most frequent malignancy, and is the second leading cause of death due to cancer in men. Thus, new prognostic biomarkers and drug targets for PRAD are urgently needed. As we know, nuclear receptor Nur77 is important in cancer development and changes in the tumor microenvironment; whereas, the function of Nur77 in PRAD remains to be elucidated. The TCGA database was used to explore the Nur77 expression and its role in the prognosis of PRAD. It was shown that Nur77 was down regulated in PRAD, and low Nur77 expression was correlated with advanced clinical pathologic characteristics (high grade, histological type, age) and poor prognosis. Furthermore, key genes screening was examined by univariate Cox analysis and Kaplan-Meier survival. Additionally, Nur77 was closely related to immune infiltration and some anti-tumor immune functions. The differentially expressed genes (DEGs) were presented by protein-protein interaction (PPI) network analysis. Therefore, the expression level of Nur77 might help predict the survival of PRAD cases, which presents a new insight and a new target for the treatment of PRAD. In vitro experiments verified that natural product malayoside targeting Nur77 exhibited significant therapeutic effects on PRAD and largely induced cell apoptosis by up-regulating the expression of Nur77 and its mitochondrial localization. Taken together, Nur77 is a prognostic biomarker for patients with PRAD, which may refresh the profound understanding of PRAD individualized treatment.
Collapse
|
4
|
Dahiya NR, Leibovitch BA, Kadamb R, Bansal N, Waxman S. The Sin3A/MAD1 Complex, through Its PAH2 Domain, Acts as a Second Repressor of Retinoic Acid Receptor Beta Expression in Breast Cancer Cells. Cells 2022; 11:cells11071179. [PMID: 35406744 PMCID: PMC8997856 DOI: 10.3390/cells11071179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
Retinoids are essential in balancing proliferation, differentiation and apoptosis, and they exert their effects through retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RARβ is a tumor-suppressor gene silenced by epigenetic mechanisms such as DNA methylation in breast, cervical and non-small cell lung cancers. An increased expression of RARβ has been associated with improved breast cancer-specific survival. The PAH2 domain of the scaffold protein SIN3A interacts with the specific Sin3 Interaction Domain (SID) of several transcription factors, such as MAD1, bringing chromatin-modifying proteins such as histone deacetylases, and it targets chromatin for specific modifications. Previously, we have established that blocking the PAH2-mediated Sin3A interaction with SID-containing proteins using SID peptides or small molecule inhibitors (SMI) increased RARβ expression and induced retinoic acid metabolism in breast cancer cells, both in in vitro and in vivo models. Here, we report studies designed to understand the mechanistic basis of RARβ induction and function. Using human breast cancer cells transfected with MAD1 SID or treated with the MAD SID peptide, we observed a dissociation of MAD1, RARα and RARβ from Sin3A in a coimmunoprecipitation assay. This was associated with increased RARα and RARβ expression and function by a luciferase assay, which was enhanced by the addition of AM580, a specific RARα agonist; EMSA showed that MAD1 binds to E-Box, similar to MYC, on the RARβ promoter, which showed a reduced enrichment of Sin3A and HDAC1 by ChIP and was required for the AM580-enhanced RARβ activation in MAD1/SID cells. These data suggest that the Sin3A/HDAC1/2 complex co-operates with the classical repressors in regulating RARβ expression. These data suggest that SIN3A/MAD1 acts as a second RARβ repressor and may be involved in fine-tuning retinoid sensitivity.
Collapse
Affiliation(s)
- Nisha Rani Dahiya
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (N.R.D.); (N.B.)
| | - Boris A. Leibovitch
- Department of Pathology, New York University School of Medicine, New York, NY 10029, USA;
| | - Rama Kadamb
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Nidhi Bansal
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (N.R.D.); (N.B.)
| | - Samuel Waxman
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (N.R.D.); (N.B.)
- Correspondence:
| |
Collapse
|
5
|
Li B, Cai SY, Boyer JL. The role of the retinoid receptor, RAR/RXR heterodimer, in liver physiology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166085. [PMID: 33497820 PMCID: PMC11152086 DOI: 10.1016/j.bbadis.2021.166085] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/31/2022]
Abstract
Activated by retinoids, metabolites of vitamin A, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs) play important roles in a wide variety of biological processes, including embryo development, homeostasis, cell proliferation, differentiation and death. In this review, we summarized the functional roles of nuclear receptor RAR/RXR heterodimers in liver physiology. Specifically, RAR/RXR modulate the synthesis and metabolism of lipids and bile acids in hepatocytes, regulate cholesterol transport in macrophages, and repress fibrogenesis in hepatic stellate cells. We have also listed the specific genes that carry these functions and how RAR/RXR regulate their expression in liver cells, providing a mechanistic view of their roles in liver physiology. Meanwhile, we pointed out many questions regarding the detailed signaling of RAR/RXR in regulating the expression of liver genes, and hope future studies will address these issues.
Collapse
Affiliation(s)
- Baixue Li
- Liver Center, Yale University School of Medicine, New Haven, CT 06520, United States; College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Shi-Ying Cai
- Liver Center, Yale University School of Medicine, New Haven, CT 06520, United States.
| | - James L Boyer
- Liver Center, Yale University School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
6
|
Xie L, Jiang F, Zhang X, Alitongbieke G, Shi X, Meng M, Xu Y, Ren A, Wang J, Cai L, Zhou Y, Xu Y, Su Y, Liu J, Zeng Z, Wang G, Zhou H, Chen QC, Zhang XK. Honokiol sensitizes breast cancer cells to TNF-α induction of apoptosis by inhibiting Nur77 expression. Br J Pharmacol 2015; 173:344-56. [PMID: 26505879 DOI: 10.1111/bph.13375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The orphan nuclear receptor Nur77 is implicated in the survival and apoptosis of cancer cells. The purpose of this study was to determine whether and how Nur77 serves to mediate the effect of the inflammatory cytokine TNF-α in cancer cells and to identify and characterize new agents targeting Nur77 for cancer therapy. EXPERIMENTAL APPROACH The effects of TNF-α on the expression and function of Nur77 were studied using in vitro and in vivo models. Nur77 expression was evaluated in tumour tissues from breast cancer patients. The anticancer effects of honokiol and its mechanism of action were assessed by in vitro, cell-based and animal studies. KEY RESULTS TNF-α rapidly and potently induced the expression of Nur77 in breast cancer cells through activation of IκB kinase and JNK. Knocking down Nur77 resulted in TNF-α-dependent apoptosis, while ectopic Nur77 expression in MCF-7 cells promoted their growth in animals. Levels of Nur77 were higher in tumour tissues than the corresponding tissues surrounding the tumour in about 50% breast cancer patients studied. Our in vitro and animal studies also identified honokiol as an effective sensitizer of TNF-α-induced apoptosis by inhibiting TNF-α-induced Nur77 mRNA expression, which could be attributed to its interference of TNFR1's interaction with receptor-interacting protein 1 (RIPK1). CONCLUSIONS AND IMPLICATIONS TNF-α-induced Nur77 serves as a survival factor to attenuate the death effect of TNF-α in cancer cells. With its proven human safety profile, honokiol represents a promising agent that warrants further clinical development.
Collapse
Affiliation(s)
- Lei Xie
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Fuquan Jiang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xindao Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | | | - Xinlei Shi
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - MinJun Meng
- Zhongshan Hospital, Xiamen University, Xiamen, 361102, China
| | - Yiming Xu
- Zhongshan Hospital, Xiamen University, Xiamen, 361102, China
| | - Anshi Ren
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Jing Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Lijun Cai
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yunxia Zhou
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yang Xu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Ying Su
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, 92037, USA
| | - Jie Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Guanghui Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Quan Cheng Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.,Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, 92037, USA
| |
Collapse
|
7
|
Photodecomposition, photomutagenicity and photocytotoxicity of retinyl palmitate under He-Ne laser photoirradiation and its effects on photodynamic therapy of cancer cells in vitro. Photodiagnosis Photodyn Ther 2015; 13:316-322. [PMID: 26365099 DOI: 10.1016/j.pdpdt.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/06/2015] [Accepted: 09/08/2015] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Our aim was to study photodecomposition, photomutagenicity and cytotoxicity of retinyl palmitate (RP), a principal storage form of vitamin A in humans and animals, under He-Ne laser photoirradiation. Moreover, the effect of different concentrations and timing protocol of antioxidants on photodynamic therapy (PDT) is contradictory, so the effect of RP (as antioxidant) on the PDT cytotoxicity was studied. METHODS Photomutagenicity was tested by Ames test. Photodecomposition was studied by UV-vis spectroscopy. Cytotoxicity was measured with MTT-assay. Moreover, the effect of PDT, using hematoporphyrin derivatives (HpD) as photosensitizer under He-Ne laser irradiation (10 J/cm(2)), was studied on HeLa cells either with or without RP (1-100 μM) which incubated with the cells for short or long incubation period (1 h or 24 h) prior to PDT. RESULTS No photodecomposition of RP alone was obseved whereas there is a little photodecomposition of RP only in presence of HpD under irradiation with He-Ne laser. Moreover, no photomutagenicity was observed in Salmonella typhimurium strains under laser irradiation in presence or absence of HpD. RP alone (1-100 μM) significantly decrease the viability of HeLa cells. Laser irradiation of HeLa cells pre-incubated with RP alone for 24 h showed further significant decrease in viability of the cells. While RP incubations for 1 h before PDT had slight effect on the cells, 24 h incubation before PDT enhanced the cytotoxicity of PDT on HeLa cells. CONCLUSIONS RP can be used 24 h before PDT to enhance its effects. RP is not mutagenic under irradiation with He-Ne laser.
Collapse
|
8
|
Khan S, Wall D, Curran C, Newell J, Kerin MJ, Dwyer RM. MicroRNA-10a is reduced in breast cancer and regulated in part through retinoic acid. BMC Cancer 2015; 15:345. [PMID: 25934412 PMCID: PMC4425901 DOI: 10.1186/s12885-015-1374-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/27/2015] [Indexed: 01/30/2023] Open
Abstract
Background MicroRNAs (miRNAs) are short non-coding RNA molecules that play a critical role in mRNA cleavage and translational repression, and are known to be altered in many diseases including breast cancer. MicroRNA-10a (miR-10a) has been shown to be deregulated in various cancer types. The aim of this study was to investigate miR-10a expression in breast cancer and to further delineate the role of retinoids and thyroxine in regulation of miR-10a. Methods Following informed patient consent and ethical approval, tissue samples were obtained during surgery. miR-10a was quantified in malignant (n = 103), normal (n = 30) and fibroadenoma (n = 35) tissues by RQ-PCR. Gene expression of Retinoic Acid Receptor beta (RARβ) and Thyroid Hormone receptor alpha (THRα) was also quantified in the same patient samples (n = 168). The in vitro effects of all-trans Retinoic acid (ATRA) and L-Thyroxine (T4) both individually and in combination, on miR-10a expression was investigated in breast cancer cell lines, T47D and SK-BR-3. Results The level of miR-10a expression was significantly decreased in tissues harvested from breast cancer patients (Mean (SEM) 2.1(0.07)) Log10 Relative Quantity (RQ)) compared to both normal (3.0(0.16) Log10 RQ, p < 0.001) and benign tissues (2.6(0.17) Log10 RQ, p < 0.05). The levels of both RARβ and THRα gene expression were also found to be decreased in breast cancer patients compared to controls (p < 0.001). A significant positive correlation was determined between miR-10a and RARβ (r = 0.31, p < 0.001) and also with THRα (r = 0.32, p < 0.001). In vitro stimulation assays revealed miR-10a expression was increased in both T47D and SK-BR-3 cells following addition of ATRA (2 fold (0.7)). While T4 alone did not stimulate miR-10a expression, the combination of T4 and ATRA was found to have a positive synergistic effect. Conclusion The data presented supports a potential tumour suppressor role for miR-10a in breast cancer, and highlights retinoic acid as a positive regulator of the microRNA. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1374-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sonja Khan
- Discipline of Surgery, School of Medicine, Clinical Science Institute, National University of Ireland, Galway, Galway, Ireland.
| | - Deirdre Wall
- Clinical Research Facility and School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Galway, Ireland.
| | - Catherine Curran
- Discipline of Surgery, School of Medicine, Clinical Science Institute, National University of Ireland, Galway, Galway, Ireland.
| | - John Newell
- Clinical Research Facility and School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Galway, Ireland.
| | - Michael J Kerin
- Discipline of Surgery, School of Medicine, Clinical Science Institute, National University of Ireland, Galway, Galway, Ireland.
| | - Roisin M Dwyer
- Discipline of Surgery, School of Medicine, Clinical Science Institute, National University of Ireland, Galway, Galway, Ireland.
| |
Collapse
|
9
|
Roshan-Moniri M, Hsing M, Butler MS, Cherkasov A, Rennie PS. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers. Cancer Treat Rev 2015; 40:1137-52. [PMID: 25455729 DOI: 10.1016/j.ctrv.2014.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs), a family of 48 transcriptional factors, have been studied intensively for their roles in cancer development and progression. The presence of distinctive ligand binding sites capable of interacting with small molecules has made NRs attractive targets for developing cancer therapeutics. In particular, a number of drugs have been developed over the years to target human androgen- and estrogen receptors for the treatment of prostate cancer and breast cancer. In contrast, orphan nuclear receptors (ONRs), which in many cases lack known biological functions or ligands, are still largely under investigated. This review is a summary on ONRs that have been implicated in prostate and breast cancers, specifically retinoic acid-receptor-related orphan receptors (RORs), liver X receptors (LXRs), chicken ovalbumin upstream promoter transcription factors (COUP-TFs), estrogen related receptors (ERRs), nerve growth factor 1B-like receptors, and ‘‘dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1’’ (DAX1). Discovery and development of small molecules that can bind at various functional sites on these ONRs will help determine their biological functions. In addition, these molecules have the potential to act as prototypes for future drug development. Ultimately, the therapeutic value of targeting the ONRs may go well beyond prostate and breast cancers.
Collapse
|
10
|
Wang XJ, Duan Y, Li ZT, Feng JH, Pan XP, Zhang XR, Shi LH, Zhang T. Preparation and antitumor activity of a tamibarotene-furoxan derivative. Asian Pac J Cancer Prev 2014; 15:6343-7. [PMID: 25124622 DOI: 10.7314/apjcp.2014.15.15.6343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Multi-target drug design, in which drugs are designed as single molecules to simultaneously modulate multiple physiological targets, is an important strategy in the field of drug discovery. QT-011, a tamibarotene-furoxan derivative, was here prepared and proposed to exert synergistic effects on antileukemia by releasing nitric oxide and tamibarotene. Compared with tamibarotene itself, QT-011 displayed stronger antiproliferative effects on U937 and HL-60 cells and was more effective evaluated in a nude mice U937 xenograft model in vivo. In addition, QT-011 could release nitric oxide which might contribute to the antiproliferative activity. Autodocking assays showed that QT-011 fits well with the hydrophobic pocket of retinoic acid receptors. Taken together, these results suggest that QT-011 might be a highly effective derivative of tamibarotene and a potential candidate compound as antileukemia agent.
Collapse
Affiliation(s)
- Xue-Jian Wang
- School of Pharmacy and Biology Science, Weifang Medical University, Weifang, China E-mail : ,
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Vasilatos SN, Katz TA, Oesterreich S, Wan Y, Davidson NE, Huang Y. Crosstalk between lysine-specific demethylase 1 (LSD1) and histone deacetylases mediates antineoplastic efficacy of HDAC inhibitors in human breast cancer cells. Carcinogenesis 2013; 34:1196-207. [PMID: 23354309 DOI: 10.1093/carcin/bgt033] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our previous studies demonstrated that lysine-specific demethylase 1 (LSD1) and histone deacetylases (HDACs) closely interact in controlling growth of breast cancer cells. However, the underlying mechanisms are largely unknown. In this study, we showed that knockdown of LSD1 expression (LSD1-KD) by RNAi decreased mRNA levels of HDAC isozymes in triple-negative breast cancer (TNBC) cells. Small interfering RNA (siRNA)-mediated depletion of HDAC5 expression induced the most significant accumulation of H3K4me2, a specific substrate of LSD1. Combined treatment with LSD1 inhibitor, pargyline, and HDAC inhibitor, SAHA (Vorinostat), led to superior growth inhibition and apoptotic death in TNBC cells, but exhibited additive or antagonistic effect on growth inhibition in non-TNBC counterparts or non-tumorigenic breast cells. Additionally, LSD1-KD enhanced SAHA-induced reexpression of a subset of aberrantly silenced genes, such as NR4A1, PCDH1, RGS16, BIK, and E-cadherin whose reexpression may be tumor suppressive. Genome-wide microarray study in MDA-MB-231 cells identified a group of tumor suppressor genes whose expression was induced by SAHA and significantly enhanced by LSD1-KD. We also showed that concurrent depletion of RGS16 by siRNA reduced overall cytotoxicity of SAHA and blocked the reexpression of E-cadherin, CDKN1C and ING1 in LSD1-deficient MDA-MB-231 cells. Furthermore, cotreatment with RGS16 siRNA reversed the downregulation of nuclear factor-kappaB expression induced by combined inhibition of LSD1 and HDACs, suggesting a crucial role of RGS16 in controlling key pathways of cell death in response to combination therapy. Taken together, these results provide novel mechanistic insight into the breast cancer subtype-dependent role of LSD1 in mediating HDAC activity and therapeutic efficacy of HDAC inhibitor.
Collapse
|
12
|
Sun DF, Gao ZH, Liu HP, Yuan Y, Qu XJ. Sphingosine 1-phosphate antagonizes the effect of all-trans retinoic acid (ATRA) in a human colon cancer cell line by modulation of RARβ expression. Cancer Lett 2012; 319:182-189. [PMID: 22261335 DOI: 10.1016/j.canlet.2012.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/24/2011] [Accepted: 01/10/2012] [Indexed: 01/03/2023]
Abstract
All-trans retinoic acid (ATRA) is a promising therapeutic agent, but exhibits low efficacy against human cancers. We investigated the effect of sphingosine-1-phosphate (S1P) on ATRA activity in human colon cancer HT-29 cells. S1P antagonized ATRA activity on HT-29 cell proliferation and retinoic acid receptor beta (RARβ) expression. S1P treatment or transient co-transfection with SphK2 expression vector antagonized ATRA-induced RARβ promoter activity. Proteasome inhibition prevented S1P-induced modulation of ATRA activity. Overall, S1P antagonized ATRA's inhibitory effects by down-regulating RARβ expression, likely via the proteasome-dependent pathway. Decreasing S1P production or inhibiting SphK2 activity could enhance the efficacy of retinoids in cancer treatments.
Collapse
Affiliation(s)
- De-Fu Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China; Department of Bioengineering, School of Life Science, Yan Tai University, Shandong, China
| | - Zu-Hua Gao
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada
| | - Hui-Ping Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yi Yuan
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xian-Jun Qu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
13
|
Sun Z, Cao X, Jiang MM, Qiu Y, Zhou H, Chen L, Qin B, Wu H, Jiang F, Chen J, Liu J, Dai Y, Chen HF, Hu QY, Wu Z, Zeng JZ, Yao XS, Zhang XK. Inhibition of β-catenin signaling by nongenomic action of orphan nuclear receptor Nur77. Oncogene 2011; 31:2653-67. [PMID: 21986938 PMCID: PMC3257393 DOI: 10.1038/onc.2011.448] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dysregulation of β-catenin turnover due to mutations of its regulatory proteins including adenomatous polyposis coli (APC) and p53 is implicated in the pathogenesis of cancer. Thus, intensive effort is being made to search for alternative approaches to reduce abnormally activated β-catenin in cancer cells. Nur77, an orphan member of the nuclear receptor superfamily, has a role in the growth and apoptosis of cancer cells. Here, we reported that Nur77 could inhibit transcriptional activity of β-catenin by inducing β-catenin degradation via proteasomal degradation pathway that is glycogen synthase kinase 3β and Siah-1 independent. Nur77 induction of β-catenin degradation required both the N-terminal region of Nur77, which was involved in Nur77 ubiquitination, and the C-terminal region, which was responsible for β-catenin binding. Nur77/ΔDBD, a Nur77 mutant lacking its DNA-binding domain, resided in the cytoplasm, interacted with β-catenin, and induced β-catenin degradation, demonstrating that Nur77-mediated β-catenin degradation was independent of its DNA binding and transactivation, and might occur in the cytoplasm. In addition, we reported our identification of two digitalis-like compounds (DLCs), H-9 and ATE-i2-b4, which potently induced Nur77 expression and β-catenin degradation in SW620 colon cancer cells expressing mutant APC protein in vitro and in animals. DLC-induced Nur77 protein was mainly found in the cytoplasm, and inhibition of Nur77 nuclear export by the CRM1-dependent nuclear export inhibitor leptomycin B or Jun N-terminal kinase inhibitor prevented the effect of DLC on inducing β-catenin degradation. Together, our results demonstrate that β-catenin can be degraded by cytoplasmic Nur77 through their interaction and identify H-9 and ATE-i2-b4 as potent activators of the Nur77-mediated pathway for β-catenin degradation.
Collapse
Affiliation(s)
- Z Sun
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Two different docetaxel resistant MCF-7 sublines exhibited different gene expression pattern. Mol Biol Rep 2011; 39:3505-16. [PMID: 21720762 DOI: 10.1007/s11033-011-1123-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/20/2011] [Indexed: 12/20/2022]
Abstract
The objective of the present study was to investigate gene expression pattern of two docetaxel resistant MCF-7 breast carcinoma sublines step wisely selected in 30 and 120 nM docetaxel. Cell proliferation assay was performed in order to demonstrate development of docetaxel resistance. cDNA microarray analysis was performed using Affymetrix(®) Human Genome U133 Plus 2.0 Arrays in duplicate experiments. Quantitative and semi-quantitative gene expression analysis was also performed to confirm gene expression analysis for selected genes. XTT results demonstrated that 30 (MCF-7/30nM DOC) and 120 nM (MCF-7/120nM DOC) docetaxel selected cells were 13- and 47-fold resistant, respectively. cDNA microarray analysis demonstrated that expression profiles of MCF-7 and MCF-7/30nM DOC were more similar to each other where expression profile of MCF-7/120nM DOC was different as examined by line graphs and scatter plots. 2,837 and 4,036 genes were significantly altered in 30 and 120 nM docetaxel resistant sublines, respectively. Among these, 849 genes were altered in common in two docetaxel resistant sublines. Antiapoptotic gene expression (e.g., Bcl-2 and APRIL) were noticeably altered in MCF-7/30nM DOC. However, docetaxel resistance in MCF-7/120nM DOC were more complicated with the involvement of ECM related gene expression, cytokine and growth factor signaling, ROS metabolism and EMT related gene expression together with higher level of MDR1 expression. Expression profiles in 30 and 120 nM docetaxel resistant sublines changed gradually with increasing resistance index. Drug resistance development seems to be step wise event in MCF-7 cells.
Collapse
|
15
|
Huang Y, Vasilatos SN, Boric L, Shaw PG, Davidson NE. Inhibitors of histone demethylation and histone deacetylation cooperate in regulating gene expression and inhibiting growth in human breast cancer cells. Breast Cancer Res Treat 2011; 131:777-89. [PMID: 21452019 DOI: 10.1007/s10549-011-1480-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 03/20/2011] [Indexed: 10/18/2022]
Abstract
Abnormal activities of histone lysine demethylases (KDMs) and lysine deacetylases (HDACs) are associated with aberrant gene expression in breast cancer development. However, the precise molecular mechanisms underlying the crosstalk between KDMs and HDACs in chromatin remodeling and regulation of gene transcription are still elusive. In this study, we showed that treatment of human breast cancer cells with inhibitors targeting the zinc cofactor dependent class I/II HDAC, but not NAD(+) dependent class III HDAC, led to significant increase of H3K4me2 which is a specific substrate of histone lysine-specific demethylase 1 (LSD1) and a key chromatin mark promoting transcriptional activation. We also demonstrated that inhibition of LSD1 activity by a pharmacological inhibitor, pargyline, or siRNA resulted in increased acetylation of H3K9 (AcH3K9). However, siRNA knockdown of LSD2, a homolog of LSD1, failed to alter the level of AcH3K9, suggesting that LSD2 activity may not be functionally connected with HDAC activity. Combined treatment with LSD1 and HDAC inhibitors resulted in enhanced levels of H3K4me2 and AcH3K9, and exhibited synergistic growth inhibition of breast cancer cells. Finally, microarray screening identified a unique subset of genes whose expression was significantly changed by combination treatment with inhibitors of LSD1 and HDAC. Our study suggests that LSD1 intimately interacts with histone deacetylases in human breast cancer cells. Inhibition of histone demethylation and deacetylation exhibits cooperation and synergy in regulating gene expression and growth inhibition, and may represent a promising and novel approach for epigenetic therapy of breast cancer.
Collapse
Affiliation(s)
- Yi Huang
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| | | | | | | | | |
Collapse
|
16
|
Lee SO, Li X, Khan S, Safe S. Targeting NR4A1 (TR3) in cancer cells and tumors. Expert Opin Ther Targets 2011; 15:195-206. [PMID: 21204731 DOI: 10.1517/14728222.2011.547481] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Nuclear receptor 4A1(NR4A1) (testicular receptor 3 (TR3), nuclear hormone receptor (Nur)77) is a member of the nuclear receptor superfamily of transcription factors and is highly expressed in multiple tumor types. RNA interference studies indicate that NR4A1 exhibits growth-promoting, angiogenic and prosurvival activity in most cancers. AREAS COVERED Studies on several apoptosis-inducing agents that activate nuclear export of NR4A1, which subsequently forms a mitochondrial NR4A1-bcl-2 complex that induces the intrinsic pathway for apoptosis are discussed. Cytosporone B and related compounds that induce NR4A1-dependent apoptosis in cancer cells through both modulation of nuclear NR4A1 and nuclear export are discussed. A relatively new class of diindolylmethane analogs (C-DIMs) including 1,1-bis(3'-indolyl)-1-(p-methoxyphenyl)methane (DIM-C-pPhOCH(3)) (NR4A1 activator) and 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) (NR4A1 deactivator) are discussed in more detail. These anticancer drugs (C-DIMs) act strictly through nuclear NR4A1 and induce apoptosis in cancer cells and tumors. EXPERT OPINION It is clear that NR4A1 plays an important pro-oncogenic role in cancer cells and tumors, and there is increasing evidence that this receptor can be targeted by anticancer drugs that induce cell death via NR4A1-dependent and -independent pathways. Since many of these compounds exhibit relatively low toxicity, they represent an important class of mechanism-based anticancer drugs with excellent potential for clinical applications.
Collapse
Affiliation(s)
- Syng-Ook Lee
- Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
17
|
Lustberg MB, Ramaswamy B. Epigenetic targeting in breast cancer: therapeutic impact and future direction. ACTA ACUST UNITED AC 2010; 22:369-81. [PMID: 19890494 DOI: 10.1358/dnp.2009.22.7.1405072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Breast carcinogenesis is a multistep process involving both genetic and epigenetic changes. Epigenetics is defined as a reversible and heritable change in gene expression that is not accompanied by alteration in gene sequence. DNA methylation and histone modifications are the two major epigenetic changes that influence gene expression in cancer. The interaction between methylation and histone modification is intricately orchestrated by the formation of repressor complexes. Several genes involved in proliferation, antiapoptosis, invasion and metastasis have been shown to be methylated in various malignant and premalignant breast neoplasms. The histone deacetylase inhibitors (HDi) have emerged as an important class of drugs to be used synergistically with other systemic therapies in the treatment of breast cancer. Since epigenetic changes are potentially reversible processes, much effort has been directed toward understanding this mechanism with the goal of finding novel therapies as well as more refined diagnostic and prognostic tools in breast cancer.
Collapse
Affiliation(s)
- M B Lustberg
- Division of Hematology and Oncology, Comprehensive Cancer Center, The Ohio State University Medical Center, USA
| | | |
Collapse
|
18
|
Dawson MI, Ye M, Cao X, Farhana L, Hu QY, Zhao Y, Xu LP, Kiselyuk A, Correa RG, Yang L, Hou T, Reed JC, Itkin-Ansari P, Levine F, Sanner MF, Fontana JA, Zhang XK. Derivation of a retinoid X receptor scaffold from peroxisome proliferator-activated receptor gamma ligand 1-Di(1H-indol-3-yl)methyl-4-trifluoromethylbenzene. ChemMedChem 2009; 4:1106-19. [PMID: 19378296 DOI: 10.1002/cmdc.200800447] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PPARgamma agonist DIM-Ph-4-CF(3), a template for RXRalpha agonist (E)-3-[5-di(1-methyl-1H-indol-3-yl)methyl-2-thienyl] acrylic acid: DIM-Ph-CF(3) is reported to inhibit cancer growth independent of PPARgamma and to interact with NR4A1. As both receptors dimerize with RXR, and natural PPARgamma ligands activate RXR, DIM-Ph-4-CF(3) was investigated as an RXR ligand. It displaces 9-cis-retinoic acid from RXRalpha but does not activate RXRalpha. Structure-based direct design led to an RXRalpha agonist.1-Di(1H-indol-3-yl)methyl-4-trifluoromethylbenzene (DIM-Ph-4-CF(3)) is reported to inhibit cancer cell growth and to act as a transcriptional agonist of peroxisome proliferator-activated receptor gamma (PPARgamma) and nuclear receptor 4A subfamily member 1 (NR4A1). In addition, DIM-Ph-4-CF(3) exerts anticancer effects independent of these receptors because PPARgamma antagonists do not block its inhibition of cell growth, and the small pocket in the NR4A1 crystal structure suggests no ligand can bind. Because PPARgamma and NR4A1 heterodimerize with retinoid X receptor (RXR), and several PPARgamma ligands transcriptionally activate RXR, DIM-Ph-4-CF(3) was investigated as an RXR ligand. DIM-Ph-4-CF(3) displaces 9-cis-retinoic acid from RXRalpha but does not transactivate RXRalpha. Structure-based design using DIM-Ph-4-CF(3) as a template led to the RXRalpha transcriptional agonist (E)-3-[5-di(1-methyl-1H-indol-3-yl)methyl-2-thienyl]acrylic acid. Its docked pose in the RXRalpha ligand binding domain suggests that binding is stabilized by interactions of its carboxylate group with arginine 316, its indoles with cysteines 269 and 432, and its 1-methyl groups with hydrophobic residues lining the binding pocket. As is expected of a selective activator of RXRalpha, but not of RARs and PPARgamma, this RXRalpha agonist, unlike DIM-Ph-4-CF(3), does not appreciably decrease cancer cell growth or induce apoptosis at pharmacologically relevant concentrations.
Collapse
Affiliation(s)
- Marcia I Dawson
- Cancer Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu L, Derguini F, Gudas LJ. Metabolism and regulation of gene expression by 4-oxoretinol versus all-trans retinoic acid in normal human mammary epithelial cells. J Cell Physiol 2009; 220:771-9. [PMID: 19492420 PMCID: PMC3315369 DOI: 10.1002/jcp.21824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We previously demonstrated that 4-oxoretinol (4-oxo-ROL) activated retinoic acid receptors (RARs) in F9 stem cells. We showed that 4-oxo-ROL inhibited the proliferation of normal human mammary epithelial cells (HMECs). To understand the mechanisms by which 4-oxo-ROL regulates HMEC growth we examined gene expression profiles following 4-oxo-ROL or all-trans retinoic acid (tRA). We also compared growth inhibition by tRA, 4-oxo-ROL, or 4-oxo-RA. All three retinoids inhibited HMEC proliferation. Gene expression analyses indicated that 4-oxo-ROL and tRA modulated gene expression in closely related pathways. The expression of many genes, e.g. ATP-binding cassette G1 (ABCG1); adrenergic receptorbeta2 (ADRB2); ras-related C3 botulinum toxin substrate (RAC2); and short-chain dehydrogenase/reductase 1 gene (SDR1) was changed after 4-oxo-ROL or tRA. Metabolism of these retinoids was analyzed by high-performance liquid chromatography (HPLC). In 1 microM tRA treated HMECs all of the tRA was found intracellularly, and tRA was the predominant intracellular retinoid. In 1 microM 4-oxo-ROL treated HMECs most 4-oxo-ROL was esterified to 4-oxoretinyl esters, no tRA was detected, and 4-oxo-ROL and 4-oxo-RA were observed intracellularly. In 1 microM 4-oxoretinoic acid (4-oxo-RA) treated HMECs little intracellular 4-oxo-RA was detected; most 4-oxo-RA was in the medium. Our results indicate that: (a) 4-oxo-ROL regulates gene expression and inhibits proliferation of HMECs; (b) 4-oxo-ROL and tRA regulate some of the same genes; (c) more tRA is found in cells, as compared to 4-oxoretinoic acid, when each drug is added at the same concentration in the medium; and (d) the mechanism by which 4-oxo-ROL exerts its biological activity does not involve intracellular tRA production.
Collapse
Affiliation(s)
- Limin Liu
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065
| | - Fadila Derguini
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065
| |
Collapse
|
20
|
Cytosporone B is an agonist for nuclear orphan receptor Nur77. Nat Chem Biol 2008; 4:548-56. [PMID: 18690216 DOI: 10.1038/nchembio.106] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 07/14/2008] [Indexed: 01/25/2023]
Abstract
Nuclear orphan receptor Nur77 has important roles in many biological processes. However, a physiological ligand for Nur77 has not been identified. Here, we report that the octaketide cytosporone B (Csn-B) is a naturally occurring agonist for Nur77. Csn-B specifically binds to the ligand-binding domain of Nur77 and stimulates Nur77-dependent transactivational activity towards target genes including Nr4a1 (Nur77) itself, which contains multiple consensus response elements allowing positive autoregulation in a Csn-B-dependent manner. Csn-B also elevates blood glucose levels in fasting C57 mice, an effect that is accompanied by induction of multiple genes involved in gluconeogenesis. These biological effects were not observed in Nur77-null (Nr4a1-/-) mice, which indicates that Csn-B regulates gluconeogenesis through Nur77. Moreover, Csn-B induced apoptosis and retarded xenograft tumor growth by inducing Nur77 expression, translocating Nur77 to mitochondria to cause cytochrome c release. Thus, Csn-B may represent a promising therapeutic drug for cancers and hypoglycemia, and it may also be useful as a reagent to increase understanding of Nur77 biological function.
Collapse
|
21
|
Chen H, Zhang H, Lee J, Liang X, Wu X, Zhu T, Lo PK, Zhang X, Sukumar S. HOXA5 acts directly downstream of retinoic acid receptor beta and contributes to retinoic acid-induced apoptosis and growth inhibition. Cancer Res 2007; 67:8007-13. [PMID: 17804711 DOI: 10.1158/0008-5472.can-07-1405] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The promise of retinoids as chemopreventive agents in breast cancer is based on the differentiation and apoptosis induced upon their binding to the retinoic acid (RA) receptor beta (RARbeta). We have previously shown that HOXA5 induces apoptosis in breast cancer cells. In this study, we investigated whether RA/RARbeta and HOXA5 actions intersect to induce apoptosis and differentiation in breast cancer cells. We found that HOXA5 expression can be induced by RA only in RARbeta-positive breast cancer cells. We have, for the first time, identified the RA response element in HOXA5, which was found to be located in the 3' end of the gene. Chromatin immunoprecipitation assays showed that RARbeta binds directly to this region in vivo. Overexpression of RARbeta strongly enhances RA responsiveness, and knocking down RARbeta expression abolishes RA-mediated induction of HOXA5 expression in breast cancer cells. In addition, there is coordinated loss of both HOXA5 and RARbeta expression during neoplastic transformation and progression in the breast epithelial cell model, MCF10A. Knockdown of HOXA5 expression partially abrogates retinoid-induced apoptosis and promotes cell survival upon RA treatment. These results strongly suggest that HOXA5 acts directly downstream of RARbeta and may contribute to retinoid-induced anticancer and chemopreventive effects.
Collapse
Affiliation(s)
- Hexin Chen
- The Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231-1000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Li GD, Fang JX, Chen HZ, Luo J, Zheng ZH, Shen YM, Wu Q. Negative regulation of transcription coactivator p300 by orphan receptor TR3. Nucleic Acids Res 2007; 35:7348-59. [PMID: 17962304 PMCID: PMC2175348 DOI: 10.1093/nar/gkm870] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
p300 regulates the transcriptional activity of a variety of transcription factors by forming an activation complex and/or promoting histone acetylation. Here, we show a unique characteristic of orphan receptor TR3 in negatively regulating the function of p300. TR3 was found to interact with p300 and inhibited the acetylation of transcription factors induced by p300, resulting in the repression of their transcriptional activity. Further analysis revealed that both a conserved transcriptional adapter motif (TRAM) in p300 and a specific sequence FLELFIL in TR3 were critical for their interaction. TR3 binding completely covered the histone acetyltransferase (HAT) domain of p300 and resulted in suppression of the HAT activity, as the p300-induced histone H3 acetylation and transcription were inhibited with the presence TR3. Furthermore, an agonist of TR3, a natural octaketide isolated from Dothiorella sp. HTF3 of an endophytical fungus, was shown to be a potent compound for inhibiting p300 HAT activity (IC50 = 1.5 μg/ml) in vivo. More importantly, this agonist could repress the transcriptional activity of transcription factors, and proliferation of cancer cells. Taken together, our results not only delineate a novel transcriptional repressor function for TR3, but also reveal its modulation on p300 HAT activity as the underlying mechanism.
Collapse
Affiliation(s)
- Gui-deng Li
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhao WX, Tian M, Zhao BX, Li GD, Liu B, Zhan YY, Chen HZ, Wu Q. Orphan receptor TR3 attenuates the p300-induced acetylation of retinoid X receptor-alpha. Mol Endocrinol 2007; 21:2877-89. [PMID: 17761950 DOI: 10.1210/me.2007-0107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Acetylation modification regulates the functions of histone and nonhistone proteins, including transcriptional activity, protein interaction, and subcellular localization. Although many nuclear receptors have been shown to be modified by acetylation, whether retinoid X receptors (RXRs) are acetylated and how the acetylation is regulated remains unknown. Here, we provide the first evidence of RXRalpha acetylation by p300 on lysine 145. Acetylation of RXRalpha by p300 facilitated its DNA binding and subsequently increased its transcriptional activity. Furthermore, we discovered that TR3, an orphan receptor, exerted a negative regulation on p300-induced RXRalpha acetylation. TR3 significantly reduced the p300-induced RXRalpha acetylation and transcriptional activity, and such inhibition required the interaction of TR3 with RXRalpha. Binding of TR3 to RXRalpha resulted in the sequestration of RXRalpha from p300. 9-cis retinoic acid, a ligand for RXRalpha, enhanced the association of RXRalpha with TR3, rather than acetylation of RXRalpha by p300. Biological function analysis revealed that the mitogenic activity of RXRalpha stimulated by p300 was acetylation dependent and could be repressed by TR3. Upon the treatment of 9-cis retinoic acid, RXRalpha was translocated with TR3 from the nucleus to the mitochondria, and apoptosis was induced. Taken together, our data demonstrate the distinct regulatory mechanisms of p300 and TR3 on RXRalpha acetylation and reveal a previously unrecognized role for orphan receptor in the transcriptional control of retinoid receptors.
Collapse
Affiliation(s)
- Wen-Xiu Zhao
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Amaral JD, Solá S, Steer CJ, Rodrigues CP. Function of nuclear steroid receptors in apoptosis: role of ursodeoxycholic acid. Expert Rev Endocrinol Metab 2007; 2:487-501. [PMID: 30290423 DOI: 10.1586/17446651.2.4.487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nuclear steroid receptors such as the glucocorticoid and the mineralocorticoid receptors modulate apoptosis in different cell types through transactivation-dependent and -independent mechanisms. They are involved in both the induction and prevention of apoptosis depending on cell type. However, it is unclear how nuclear steroid receptors can affect expression of the same gene in opposing ways for different cells. In addition to their function as modulators of gene expression, nuclear steroid receptors often act as nuclear transporters of other regulatory molecules, thus indirectly regulating several apoptosis-related genes. Curiously, nuclear steroid receptors are thought to cooperate with the antiapoptotic endogenous bile acid, ursodeoxycholic acid, to prevent programmed cell death. The next decade will almost certainly unveil the remarkable role of nuclear steroid receptors in modulating the life and death struggle of cells and organ systems in human development and function.
Collapse
Affiliation(s)
- Joana D Amaral
- a Research Institute for Medicines & Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Susana Solá
- b Research Institute for Medicines & Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Clifford J Steer
- c Departments of Medicine, & Genetics, Cell Biology, & Development, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Cecília P Rodrigues
- d Research Institute for Medicines & Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
25
|
Gorman GS, Coward L, Kerstner-Wood C, Cork L, Kapetanovic IM, Brouillette WJ, Muccio DD. In Vitro Metabolic Characterization, Phenotyping, and Kinetic Studies of 9cUAB30, a Retinoid X Receptor-Specific Retinoid. Drug Metab Dispos 2007; 35:1157-64. [PMID: 17446266 DOI: 10.1124/dmd.106.013938] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was conducted to compare the in vitro phase I and phase II metabolic profiles of (2E,4E,6Z,8E)-8-(3',4'-dihydro-1'(2'H)-naphthalen-1'-ylidene)-3,7-dimethyl-2,4,6-octatrienoic acid (9cUAB30) in human, rat, and dog microsomes and to characterize and identify the associated metabolic kinetics and specific isozymes from human liver microsomes (HLM) responsible for metabolism, respectively. Data from these experiments revealed that nine (M1-M9) phase I metabolites along with a single glucuronide conjugate were observed across the species investigated. With the exception of glucuronidation, no evidence of metabolism was detected for phase II enzymes (data not shown). Significant differences between species with regard to metabolic profile, stability, and gender were noted. For the eight phase I metabolites detected in HLM, the specific isozymes responsible for the biotransformations were CYP2C8, CYP2C9, and CYP2C19, with minor contributions from CYP1A2 and CYP2B6. For the glucuronide conjugate, UGT1A9 was the major catalyzing enzyme, with a minor contribution from UGT1A3. Kinetic analysis of eight of the detected metabolites indicated that four seemed to follow classical hyperbolic kinetics, whereas the remaining four showed evidence of either autoactivation or substrate inhibition.
Collapse
|
26
|
Affiliation(s)
- Hang-Zi Chen
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Fujian 361005, China
| | | |
Collapse
|
27
|
Hansen NJ, Wylie RC, Phipps SMO, Love WK, Andrews LG, Tollefsbol TO. The low-toxicity 9-cis UAB30 novel retinoid down-regulates the DNA methyltransferases and has anti-telomerase activity in human breast cancer cells. Int J Oncol 2007; 30:641-50. [PMID: 17273765 PMCID: PMC2435481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Retinoic acids and their derivatives potentiate anti-cancer effects in breast cancer cells. The aberrant expression of telomerase is critical to the continued proliferation of most cancer cells. Thus, telomerase is an attractive target for chemoprevention and treatment of breast cancer. 9cUAB30 is a novel synthetic retinoid X receptor-selective retinoic acid (RA) that effectively reduces the tumorigenic phenotype in mouse breast carcinoma with lower toxic effects than natural retinoid treatments. We have assessed 9cUAB30 retinoic acid treatment of human breast cancer cells to determine the potential of this drug as an effective telomerase inhibitor and its application to cancer therapy. 9cUAB30 was found to decrease DNA methyltransferase and telomerase expression in MDA-MB-361, T-47D, and MCF-7 human breast cancer cells and to inhibit the proliferation of these cells. This low-toxicity retinoid also reduced colony formation in soft agar assays in each of these cell types. Combination treatments of 9cUAB30 and all-trans RA proved to be synergistically more effective than either RA alone, further suggesting a possible general epigenetic mechanism that contributes to the anti-telomerase activity of the retinoids. Therefore, the novel retinoid, 9cUAB30, is effective in inhibiting the growth of human breast cancer cells, its anti-cancer effects appear to be related to telomerase inhibition and the mechanism for this process could be mediated through epigenetic modifications.
Collapse
Affiliation(s)
- Nathan J Hansen
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The ultimate growth of a tumour depends on not only the rate of tumour cell proliferation, but also the rate of tumour cell death (apoptosis). Nur77 (also known as TR3 or NGFI-B), an orphan member of the nuclear receptor superfamily, controls both survival and death of cancer cells. A wealth of recent experimental data demonstrates that the Nur77 activities are regulated through its subcellular localisation. In the nucleus, Nur77 functions as an oncogenic survival factor, promoting cancer cell growth. In contrast, it is a potent killer when migrating to mitochondria, where it binds to Bcl-2 and converts its survival phenotype, triggering cytochrome c release and apoptosis. Agents, such as 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (AHPN/CD437), which induce Nur77 migration from the nucleus to mitochondria, effectively induce apoptosis of cancer cells. Moreover, Nur77 translocation is highly controlled by retinoid X receptor (RXR), suggesting a role of RXR ligands in regulating the process. Thus, translocation of Nur77 from the nucleus to mitochondria represents a new paradigm in cancer cell apoptosis, and targeting the Nur77 translocation by AHPN/CD437 or RXR ligands promises to effectively restrict cancer cell growth by simultaneously promoting cancer cell death and suppressing cancer cell proliferation.
Collapse
Affiliation(s)
- Xiao-kun Zhang
- Burnham Institute for Medical Research, Cancer Center, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Zhao BX, Chen HZ, Lei NZ, Li GD, Zhao WX, Zhan YY, Liu B, Lin SC, Wu Q. p53 mediates the negative regulation of MDM2 by orphan receptor TR3. EMBO J 2006; 25:5703-15. [PMID: 17139261 PMCID: PMC1698882 DOI: 10.1038/sj.emboj.7601435] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 10/19/2006] [Indexed: 02/07/2023] Open
Abstract
MDM2 is an oncoprotein whose transforming potential is activated by overexpression. The expression level of MDM2 is negatively regulated by orphan receptor TR3 that mainly acts as a transcriptional factor to regulate gene expression. However, the underlying mechanism is largely unclear. Here, we present the first evidence that inhibition of TR3 on MDM2 is mediated by p53. We found that TR3 directly interacts with p53 but not MDM2, and such interaction is critical for TR3 to inhibit MDM2 expression. TR3 downregulates p53 transcriptional activity by blocking its acetylation, leading to a decrease on the transcription level of MDM2. Furthermore, TR3 binding to p53 obstructs its ubiquitination and degradation induced by MDM2, resulting in the MDM2 ubiquitination and degradation. In addition, TR3 could enhance p53-mediated apoptosis induced by UV irradiation. Taken together, our findings demonstrate that p53 mediates the suppression of TR3 on MDM2 at both transcriptional and post-transcriptional level and suggest TR3 as a potential target to develop new anticancer agents that restrict MDM2-induced tumor progression.
Collapse
Affiliation(s)
- Bi-xing Zhao
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hang-zi Chen
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Na-zi Lei
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gui-deng Li
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wen-xiu Zhao
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan-yan Zhan
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bo Liu
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Sheng-cai Lin
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qiao Wu
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China. Tel.: +86 592 2187959; Fax: +86 592 2086630; E-mail:
| |
Collapse
|
30
|
Moll UM, Marchenko N, Zhang XK. p53 and Nur77/TR3 - transcription factors that directly target mitochondria for cell death induction. Oncogene 2006; 25:4725-43. [PMID: 16892086 DOI: 10.1038/sj.onc.1209601] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The complex apoptotic functions of the p53 tumor suppressor are central to its antineoplastic activity in vivo. Conversely, p53 function is altered or attenuated in one way or another in the majority of human cancers. Besides its well-understood action as a transcriptional regulator of multiple apoptotic genes, p53 also exerts a direct pro-apoptotic role at the mitochondria by engaging in protein-protein interactions with anti- and pro-apoptotic Bcl2 family members, thereby executing the shortest known circuitry of p53 death signaling. Nur77, also known as TR3 or NGFI-B, is a unique transcription factor belonging to the orphan nuclear receptor superfamily. Even more extreme than p53, Nur77 can exert opposing biological activities of survival and death. Its activities are regulated by subcellular distribution, expression levels, protein modification and heterodimerization with retinoid X receptor. In cancer cells, Nur77 functions in the nucleus as an oncogenic survival factor, but becomes a potent killer when certain death stimuli induce its migration to mitochondria, where it binds to Bcl2 and conformationally converts it to a killer that triggers cytochrome c release and apoptosis. This review focuses on their unexpected transcription-independent pro-death programs at mitochondria and highlights the remarkable mechanistic similarities between them. Moreover, an accumulating body of evidence provides ample rationale to further investigate how these mitochondrial p53 and Nur77 pathways could become exploitable targets for new cancer therapeutics.
Collapse
Affiliation(s)
- U M Moll
- Department of Pathology Stony Brook University, Stony Brook, New York 11794-8691, USA.
| | | | | |
Collapse
|
31
|
Han YH, Cao X, Lin B, Lin F, Kolluri SK, Stebbins J, Reed JC, Dawson MI, Zhang XK. Regulation of Nur77 nuclear export by c-Jun N-terminal kinase and Akt. Oncogene 2006; 25:2974-86. [PMID: 16434970 DOI: 10.1038/sj.onc.1209358] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proapoptotic nuclear receptor family member Nur77 translocates from the nucleus to the mitochondria, where it interacts with Bcl-2 to trigger apoptosis. Nur77 translocation is induced by certain apoptotic stimuli, including the synthetic retinoid-related 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN)/CD437 class. In this study, we investigated the molecular mechanism by which AHPN/CD437 analog (E)-4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC) induces Nur77 nuclear export. Our results demonstrate that 3-Cl-AHPC effectively activated Jun N-terminal kinase (JNK), which phosphorylates Nur77. Inhibition of JNK activation by a JNK inhibitor suppressed 3-Cl-AHPC-induced Nur77 nuclear export and apoptosis. In addition, several JNK upstream activators, including the phorbol ester TPA, anisomycin and MAPK kinase kinase-1 (MEKK1), phosphorylated Nur77 and induced its nuclear export. However, Nur77 phosphorylation by JNK, although essential, was not sufficient for inducing Nur77 nuclear export. Induction of Nur77 nuclear export by MEKK1 required a prolonged MEKK1 activation and was attenuated by Akt activation. Expression of constitutively active Akt prevented MEKK1-induced Nur77 nuclear export. Conversely, transfection of dominant-negative Akt or treatment with a phosphatidylinositol 3-kinase (PI3-K) inhibitor accelerated MEKK1-induced Nur77 nuclear export. Furthermore, mutation of an Akt phosphorylation residue Ser351 in Nur77 abolished the effect of Akt or the PI3-K inhibitor. Together, our results demonstrate that both activation of JNK and inhibition of Akt play a role in translocation of Nur77 from the nucleus to the cytoplasm.
Collapse
MESH Headings
- Adamantane/analogs & derivatives
- Adamantane/pharmacology
- Anisomycin/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/metabolism
- Cell Line, Tumor/ultrastructure
- Cell Nucleus/metabolism
- Cinnamates/pharmacology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enzyme Activation/drug effects
- Flavonoids/pharmacology
- Humans
- Imidazoles/pharmacology
- JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors
- JNK Mitogen-Activated Protein Kinases/physiology
- MAP Kinase Kinase 7/genetics
- MAP Kinase Kinase 7/pharmacology
- MAP Kinase Kinase Kinase 1/physiology
- Mutagenesis, Site-Directed
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Protein Transport/drug effects
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/physiology
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Pyridines/pharmacology
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Recombinant Fusion Proteins/pharmacology
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Y-H Han
- Burnham Institute for Medical Research, Cancer Center, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stebbins JL, Jung D, Leone M, Zhang XK, Pellecchia M. A structure-based approach to retinoid X receptor-alpha inhibition. J Biol Chem 2006; 281:16643-8. [PMID: 16606625 DOI: 10.1074/jbc.m600318200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this paper we describe a structure-based approach designed to identify novel ligands for retinoid X receptor-alpha (RXRalpha). By using a virtual approach based on a modified scoring function, we have selected 200 potential candidates on the basis of their predicted ability of docking into the ligand-binding site of the target. Subsequent experimental verification of the compounds in in vitro and cell-based assays led to the identification of a number of novel high affinity ligands for RXRalpha. The compounds are capable of displacing 9-cis-retinoic acid with IC(50) values in the 10 nm and 5 mum range and exhibit marked antagonistic activity in cellular assays. The inhibitory scaffolds discovered with this method form the basis for the development of novel RXRalpha ligands with potential therapeutic properties.
Collapse
Affiliation(s)
- John L Stebbins
- Cancer Center, Burnham Institute for Medical Research, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
33
|
Szanto A, Narkar V, Shen Q, Uray IP, Davies PJA, Nagy L. Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ 2005; 11 Suppl 2:S126-43. [PMID: 15608692 DOI: 10.1038/sj.cdd.4401533] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Retinoid X receptor (RXR) belongs to a family of ligand-activated transcription factors that regulate many aspects of metazoan life. A class of nuclear receptors requires RXR as heterodimerization partner for their function. This places RXR in the crossroad of multiple distinct biological pathways. This and the fact that the debate on the endogenous ligand requirement for RXR is not yet settled make RXR still an enigmatic transcription factor. Here, we review some of the biology of RXR. We place RXR into the evolution of nuclear receptors, review structural details and ligands of the receptor. Then processes regulated by RXR are discussed focusing on the developmental roles deduced from studies on knockout animals and metabolic roles in diseases such as diabetes and atherosclerosis deduced from pharmacological studies. Finally, aspects of RXR's involvement in myeloid differentiation and apoptosis are summarized along with issues on RXR's suitability as a therapeutic target.
Collapse
Affiliation(s)
- A Szanto
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4012, Hungary
| | | | | | | | | | | |
Collapse
|
34
|
Lee KW, Ma L, Yan X, Liu B, Zhang XK, Cohen P. Rapid Apoptosis Induction by IGFBP-3 Involves an Insulin-like Growth Factor-independent Nucleomitochondrial Translocation of RXRα/Nur77. J Biol Chem 2005; 280:16942-8. [PMID: 15731112 DOI: 10.1074/jbc.m412757200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Insulin-like growth factor-binding protein-3 (IGFBP-3) induces apoptosis by its ability to bind insulin-like growth factors (IGFs) as well as its IGF-independent effects involving binding to other molecules including the retinoid X receptor-alpha (RXRalpha). Here we describe that in response to IGFBP-3, the RXRalpha binding partner nuclear receptor Nur77 rapidly undergoes translocation from the nucleus to the mitochondria, initiating an apoptotic cascade resulting in caspase activation within 6 h. This translocation is a type 1 IGF receptor-signaling independent event as IGFBP-3 induces Nur77 translocation in R-cells. IGFBP-3 and Nur77 are additive in inducing apoptosis. GFP-Nur77 transfection into RXRalpha wild-type and knock-out mouse embryonic fibroblasts and subsequent treatment with IGFBP-3 show that RXRalpha is required for IGFBP-3-induced Nur77 translocation and apoptosis. Addition of IGFBP-3 to 22RV1 cell lysates enhanced the ability of GST-RXRalpha to "pull down" Nur77, and overexpression of IGFBP-3 enhanced the accumulation of mitochondrial RXRalpha. This unique nongenotropic nuclear pathway supports an emerging role for IGFBP-3 as a novel, multicompartmental signaling molecule involved in induction of apoptosis in malignant cells.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Apoptosis
- Blotting, Western
- Caspases/metabolism
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- DNA-Binding Proteins/metabolism
- Densitometry
- Dimerization
- Enzyme Activation
- Enzyme-Linked Immunosorbent Assay
- Fibroblasts/metabolism
- Fluorescent Antibody Technique, Indirect
- Glutathione Transferase/metabolism
- Insulin-Like Growth Factor Binding Protein 3/metabolism
- Insulin-Like Growth Factor Binding Protein 3/physiology
- Mice
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Mutagenesis, Site-Directed
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Protein Transport
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/metabolism
- Retinoid X Receptor alpha/metabolism
- Signal Transduction
- Somatomedins/metabolism
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Kuk-Wha Lee
- Division of Pediatric Endocrinology, Mattel Children's Hospital at UCLA, David Geffen School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Cao X, Liu W, Lin F, Li H, Kolluri SK, Lin B, Han YH, Dawson MI, Zhang XK. Retinoid X receptor regulates Nur77/TR3-dependent apoptosis [corrected] by modulating its nuclear export and mitochondrial targeting. Mol Cell Biol 2004; 24:9705-25. [PMID: 15509776 PMCID: PMC525465 DOI: 10.1128/mcb.24.22.9705-9725.2004] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retinoid X receptor (RXR) plays a central role in the regulation of intracellular receptor signaling pathways by acting as a ubiquitous heterodimerization partner of many nuclear receptors, including the orphan receptor Nur77 (also known as TR3 [corrected] or NGFI-B), which translocates from the nucleus to mitochondria, where it interacts with Bcl-2 to induce apoptosis. Here, we report that RXRalpha is required for nuclear export and mitochondrial targeting of Nur77 through their unique heterodimerization that is mediated by dimerization interfaces located in their DNA-binding domain. The effects of RXRalpha are attributed to a putative nuclear export sequence (NES) present in its carboxyl-terminal region. RXRalpha ligands suppress NES activity by inducing RXRalpha homodimerization or altering RXRalpha/Nur77 heterodimerization. The RXRalpha NES is also silenced by RXRalpha heterodimerization with retinoic acid receptor or vitamin D receptor. Consistently, we were able to show that the mitochondrial targeting of the RXRalpha/Nur77 heterodimer and its induction of apoptosis are potently inhibited by RXR ligands. Together, our results reveal a novel nongenotropic function of RXRalpha and its involvement in the regulation of the Nur77-dependent apoptotic pathway [corrected]
Collapse
Affiliation(s)
- Xihua Cao
- The Burnham Institute, Cancer Center, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lin XF, Zhao BX, Chen HZ, Ye XF, Yang CY, Zhou HY, Zhang MQ, Lin SC, Wu Q. RXRalpha acts as a carrier for TR3 nuclear export in a 9-cis retinoic acid-dependent manner in gastric cancer cells. J Cell Sci 2004; 117:5609-21. [PMID: 15494375 DOI: 10.1242/jcs.01474] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Retinoid X receptor (RXR) plays a crucial role in the cross talk between retinoid receptors and other hormone receptors including the orphan receptor TR3, forming different heterodimers that transduce diverse steroid/thyroid hormone signaling. Here we show that RXRalpha exhibits nucleocytoplasmic shuttling in MGC80-3 gastric cancer cells and that RXRalpha shuttling is energy-dependent through a nuclear pore complex (NPC)-mediated pathway for its import and an intact DNA binding domain-mediated pathway for its export. In the presence of its ligand 9-cis retinoic acid, RXRalpha was almost exclusively located in the cytoplasm. More importantly, we also show that RXRalpha acts as a carrier to assist translocation of TR3, which plays an important role in apoptosis. Both RXRalpha and TR3 colocalized in the nucleus; however, upon stimulation by 9-cis retinoic acid they cotranslocated to the cytoplasm and then localized in the mitochondria. TR3 export depends on RXRalpha, as in living cells GFP-TR3 alone did not result in export from the nucleus even in the presence of 9-cis retinoic acid, whereas GFP-TR3 cotransfected with RXRalpha was exported out of the nucleus in response to 9-cis retinoic acid. Moreover, specific reduction of RXRalpha levels caused by anti-sense RXRalpha abolished TR3 nuclear export. In contrast, specific knockdown of TR3 by antisense-TR3 or TR3-siRNA did not affect RXRalpha shuttling. These results indicate that RXRalpha is responsible for TR3 nucleocytoplasmic translocation, which is facilitated by the RXRalpha ligand 9-cis retinoic acid. In addition, mitochondrial TR3, but not RXRalpha, was critical for apoptosis, as TR3 mutants that were distributed in the mitochondria induced apoptosis in the presence or absence of 9-cis retinoic acid. These data reveal a novel aspect of RXRalpha function, in which it acts as a carrier for nucleocytoplasmic translocation of orphan receptors.
Collapse
Affiliation(s)
- Xiao-Feng Lin
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Crowe DL, Chandraratna RAS. A retinoid X receptor (RXR)-selective retinoid reveals that RXR-alpha is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res 2004; 6:R546-55. [PMID: 15318936 PMCID: PMC549174 DOI: 10.1186/bcr913] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2003] [Revised: 06/15/2004] [Accepted: 06/24/2004] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Certain lipids have been shown to be ligands for a subgroup of the nuclear hormone receptor superfamily known as the peroxisome proliferator-activated receptors (PPARs). Ligands for these transcription factors have been used in experimental cancer therapies. PPARs heterodimerize and bind DNA with retinoid X receptors (RXRs), which have homology to other members of the nuclear receptor superfamily. Retinoids have been found to be effective in treating many types of cancer. However, many breast cancers become resistant to the chemotherapeutic effects of these drugs. Recently, RXR-selective ligands were discovered that inhibited proliferation of all-trans retinoic acid resistant breast cancer cells in vitro and caused regression of the disease in animal models. There are few published studies on the efficacy of combined therapy using PPAR and RXR ligands for breast cancer prevention or treatment. METHODS We determined the effects of selective PPAR and RXR ligands on established human breast cancer cell lines in vitro. RESULTS PPAR-alpha and PPAR-gamma ligands induced apoptotic and antiproliferative responses in human breast cancer cell lines, respectively, which were associated with specific changes in gene expression. These responses were potentiated by the RXR-selective ligand AGN194204. Interestingly, RXR-alpha-overexpressing retinoic acid resistant breast cancer cell lines were more sensitive to the effects of the RXR-selective compound. CONCLUSION RXR-selective retinoids can potentiate the antiproliferative and apoptotic responses of breast cancer cell lines to PPAR ligands.
Collapse
Affiliation(s)
- David L Crowe
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
39
|
Ye XF, Wu Q, Liu S, Lin XF, Zhang B, Wu JF, Cai JH, Zhang MQ, Su WJ. Distinct role and functional mode of TR3 and RARalpha in mediating ATRA-induced signalling pathway in breast and gastric cancer cells. Int J Biochem Cell Biol 2004; 36:98-113. [PMID: 14592536 DOI: 10.1016/s1357-2725(03)00143-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
All-trans retinoic acid (ATRA) affects cell proliferation, differentiation and apoptosis through its receptors, RARs and RXRs. Besides these, other receptors such as orphan receptor TR3, are also involved in the regulatory process of ATRA. However, how different receptors function in response to ATRA is still largely unknown. In the present study, we found that formation of TR3/RXRalpha heterodimers in the nucleus and their subsequent translocation into the cytoplasm, in association with regulation of apoptosis-related proteins Bcl-2, Bcl-xl and Bax, was critical for apoptosis induction by ATRA in breast cancer cells MCF-7. When such translocation was blocked by Leptomycin B (LMB), ATRA-induced apoptosis was consequently abolished. However, in ATRA-induced gastric cancer cells MGC80-3, RXRalpha heterodimerised with RARalpha but not with TR3, and remained in the nucleus exerting its effect on cell cycle regulation. When transfected with antisense-RARalpha, MGC80-3 cells changed from ATRA-sensitive to ATRA-resistant and most cells were arrested in the S phase, implying the importance of RARalpha in cell cycle regulation. Furthermore, we demonstrated that the effects of ATRA depend on the relative levels of TR3, RARalpha and RXRalpha expression in cancer cells. In ATRA-induced MCF-7 cells, highly expressed TR3 favours the formation of TR3/RXRalpha and promotes the TR3/RXRalpha signalling pathway causing apoptosis; while in ATRA-induced MGC80-3 cells, high expression of RARalpha favours the formation of RARalpha/RXRalpha and promotes the RXRalpha/RARalpha signalling pathway in mediating cell cycle regulation. In conclusion, these results reveal the novel mechanism that cellular expression and location of protein is associated with diverse signalling transduction pathways and the resultant physiological process.
Collapse
Affiliation(s)
- Xiao feng Ye
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tanaka T, Dancheck BL, Trifiletti LC, Birnkrant RE, Taylor BJ, Garfield SH, Thorgeirsson U, De Luca LM. Altered localization of retinoid X receptor alpha coincides with loss of retinoid responsiveness in human breast cancer MDA-MB-231 cells. Mol Cell Biol 2004; 24:3972-82. [PMID: 15082790 PMCID: PMC387734 DOI: 10.1128/mcb.24.9.3972-3982.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To understand the mechanism of retinoid resistance, we studied the subcellular localization and function of retinoid receptors in human breast cancer cell lines. Retinoid X receptor alpha (RXR alpha) localized throughout the nucleoplasm in retinoid-sensitive normal human mammary epithelial cells and in retinoid-responsive breast cancer cell line (MCF-7), whereas it was found in the splicing factor compartment (SFC) of the retinoid-resistant MDA-MB-231 breast cancer cell line and in human breast carcinoma tissue. In MDA-MB-231 cells, RXR alpha was not associated with active transcription site in the presence of ligand. Similarly, ligand-dependent RXR homo- or heterodimer-mediated transactivation on RXR response element or RARE showed minimal response to ligand in MDA-MB-231 cells. Infecting MDA-MB-231 cells with adenoviral RXR alpha induced nucleoplasmic overexpression of RXR alpha and resulted in apoptosis upon treatment with an RXR ligand. This suggests that nucleoplasmic RXR alpha restores retinoid sensitivity. Epitope-tagged RXR alpha and a C-terminus deletion mutant failed to localize to the SFC. Moreover, RXR alpha localization to the SFC was inhibited with RXR alpha C-terminus peptide. This peptide also induced ligand-dependent transactivation on RXRE. Therefore, the RXR alpha C terminus may play a role in the intranuclear localization of RXR alpha. Our results provide evidence that altered localization of RXR alpha to the SFC may be an important factor for the loss of retinoid responsiveness in MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- T Tanaka
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kolluri SK, Bruey-Sedano N, Cao X, Lin B, Lin F, Han YH, Dawson MI, Zhang XK. Mitogenic effect of orphan receptor TR3 and its regulation by MEKK1 in lung cancer cells. Mol Cell Biol 2003; 23:8651-67. [PMID: 14612408 PMCID: PMC262666 DOI: 10.1128/mcb.23.23.8651-8667.2003] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
TR3, also known as NGFI-B or nur77, is an immediate-early response gene and an orphan member of the steroid/thyroid/retinoid receptor superfamily. We previously reported that TR3 expression was induced by apoptotic stimuli and was required for their apoptotic effect in lung cancer cells. Here, we present evidence that TR3 was also induced by epidermal growth factor (EGF) and serum and was required for their mitogenic effect in lung cancer cells. Ectopic expression of TR3 in both H460 and Calu-6 lung cancer cell lines promoted their cell cycle progression and BrdU incorporation, while inhibition of TR3 expression by the small interfering RNA approach suppressed the mitogenic effect of EGF and serum. Analysis of TR3 mutants showed that both TR3 DNA binding and transactivation were required for its mitogenic effect. In contrast, they were dispensable for its apoptotic activity. Furthermore, confocal microscopy analysis demonstrated that TR3 functioned in the nucleus to induce cell proliferation, whereas it acted on mitochondria to induce apoptosis. In examining the signaling that regulates the mitogenic function of TR3, we observed that coexpression of constitutive-active MEKK1 inhibited TR3 transcriptional activity and TR3-induced proliferation. The inhibitory effect of MEKK1 was mediated through activation of Jun N-terminal kinase, which efficiently phosphorylated TR3, resulting in loss of its DNA binding. Together, our results demonstrate that TR3 is capable of inducing both proliferation and apoptosis in the same cells depending on the stimuli and its cellular localization.
Collapse
|
42
|
Scarlatti F, Sala G, Somenzi G, Signorelli P, Sacchi N, Ghidoni R. Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling. FASEB J 2003; 17:2339-41. [PMID: 14563682 DOI: 10.1096/fj.03-0292fje] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Resveratrol (3,4',5-trans-trihydroxystilbene), a phytoalexin present in grapes and red wine, is emerging as a natural compound with potential anticancer properties. Here we show that resveratrol can induce growth inhibition and apoptosis in MDA-MB-231, a highly invasive and metastatic breast cancer cell line, in concomitance with a dramatic endogenous increase of growth inhibitory/proapoptotic ceramide. We found that accumulation of ceramide derives from both de novo ceramide synthesis and sphingomyelin hydrolysis. More specifically we demonstrated that ceramide accumulation induced by resveratrol can be traced to the activation of serine palmitoyltransferase (SPT), the key enzyme of de novo ceramide biosynthetic pathway, and neutral sphingomyelinase (nSMase), a main enzyme involved in the sphingomyelin/ceramide pathway. However, by using specific inhibitors of SPT, myriocin and L-cycloserine, and nSMase, gluthatione and manumycin, we found that only the SPT inhibitors could counteract the biological effects induced by resveratrol. Thus, resveratrol seems to exert its growth inhibitory/apoptotic effect on the metastatic breast cancer cell line MDA-MB-231 by activating the de novo ceramide synthesis pathway.
Collapse
Affiliation(s)
- Francesca Scarlatti
- Laboratory of Biochemistry and Molecular Biology, San Paolo University Hospital, School of Medicine, University of Milan, 20142 Milan, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Ye XF, Liu S, Wu Q, Lin XF, Zhang B, Wu JF, Zhang MQ, Su WJ. Degradation of retinoid X receptor α by TPA through proteasome pathway in gastric cancer cells. World J Gastroenterol 2003; 9:1915-9. [PMID: 12970875 PMCID: PMC4656643 DOI: 10.3748/wjg.v9.i9.1915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate and determine the mechanism and signal pathway of tetradecanoylphorbol-1, 3-acetate (TPA) in degradation of RXRα.
METHODS: Gastric cancer cell line, BGC-823 was used in the experiments. The expression level of RXRα protein was detected by Western blot. Nuclear and cytoplasmic protein fractions were prepared through lysis of cell and centrifugation. Localization and translocation of RXRα were observed under laser-scanning confocal microscope through labeling specific anti-RXRα antibody and corresponding immunofluorescent antibody as secondary antibody. Different inhibitors were used as required.
RESULTS: In BGC-823 cells, RXRα was expressed in the nucleus. When cells were treated with TPA, expression of RXRα was repressed in a time-dependent and TPA-concentration-dependent manner. Meanwhile, translocation of RXRα from the nucleus to the cytoplasm occurred, also in a time-dependent manner. When cells were pre-incubated with proteasome inhibitor MG132 for 3 hrs, followed by TPA for another 12 hrs, TPA-induced RXRα degradation was inhibited. Further observation of RXRα translocation in the presence of MG132 showed that MG-132 could block TPA-induced RXRα redistribution. Conversely, when RXRα translocation was inhibited by LMB, an inhibitor for blocking protein export from the nucleus, TPA could not repress expression of RXRα.
CONCLUSION: TPA could induce the degradation of RXRα protein in BGC-823 cells, and this degradation is time- and TPA-concentration-dependent. Furthermore, the degradation of RXRα by TPA is via a proteasome pathway and associated with RXRα translocation from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Xiao-Feng Ye
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Nguyen T, Hocker JE, Thomas W, Smith SA, Norris MD, Haber M, Cheung B, Marshall GM. Combined RAR alpha- and RXR-specific ligands overcome N-myc-associated retinoid resistance in neuroblastoma cells. Biochem Biophys Res Commun 2003; 302:462-8. [PMID: 12615055 DOI: 10.1016/s0006-291x(03)00177-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinoids induce human neuroblastoma cells to undergo growth inhibition and neuritic differentiation in vitro, through interactions with nuclear retinoid receptor proteins. In this study, we found that three different neuroblastoma cell lines exhibited wide variation in their responsiveness to the growth inhibitory effects of the retinoic acid receptor (RAR) agonist, all-trans-retinoic acid (aRA). Resistance to the growth inhibitory effect of aRA correlated with the presence of N-myc gene amplification and not aRA-induced RAR beta levels. Over-expression of N-myc in a neuroblastoma cell line with no endogenous N-myc expression caused a marked reduction in retinoid-induced growth inhibition. Combination of receptor-specific retinoid agonists for RXR and RAR alpha significantly enhanced the sensitivity of N-myc-amplified neuroblastoma cells to the growth inhibitory effects of aRA. Our results indicate that combination receptor-specific retinoid therapy can overcome N-myc-mediated retinoid resistance and may be a more effective chemo-preventive strategy in the disease.
Collapse
Affiliation(s)
- Tue Nguyen
- Children's Cancer Institute Australia for Medical Research, P.O. Box 81, Randwick, NSW 2031, Australia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Samuel S, Bernstein LR. Adhesion, migration, transcriptional, interferon-inducible, and other signaling molecules newly implicated in cancer susceptibility and resistance of JB6 cells by cDNA microarray analyses. Mol Carcinog 2003; 39:34-60. [PMID: 14694446 DOI: 10.1002/mc.10163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Relative expression levels of 9500 genes were determined by cDNA microarray analyses in mouse skin JB6 cells susceptible (P+) and resistant (P-) to 12-O-tetradecanoyl phorbol-13 acetate (TPA)-induced neoplastic transformation. Seventy-four genes in 6 functional classes were differentially expressed: (I) extracellular matrix (ECM) and basement membrane (BM) proteins (20 genes). P+ cells express higher levels than P- cells of several collagens and proteases, and lower levels of protease inhibitors. Multiple genes encoding adhesion molecules are expressed preferentially in P- cells, including six genes implicated in axon guidance and adhesion. (II) Cytoskeletal proteins (13 genes). These include actin isoforms and regulatory proteins, almost all preferentially expressed in P- cells. (III) Signal transduction proteins (12 genes). Among these are Ras-GTPase activating protein (Ras-GAP), the deleted in oral cancer-1 and SLIT2 tumor suppressors, and connexin 43 (Cx43) gap junctional protein, all expressed preferentially in P- cells. (IV) Interferon-inducible proteins (3 genes). These include interferon-inducible protein (IFI)-16, an Sp1 transcriptional regulator expressed preferentially in P- cells. (V) Other transcription factors (4 genes). Paired related homeobox gene 2 (Prx2)/S8 homeobox, and retinoic acid (RA)-regulated nur77 and cellular retinoic acid-binding protein II (CRABPII) transcription factors are expressed preferentially in P- cells. The RIN-ZF Sp-transcriptional suppressor exhibits preferential P+ expression. (VI) Genes of unknown functions (22 sequences). Numerous mesenchymal markers are expressed in both cell types. Data for multiple genes were confirmed by real-time PCR. Overall, 26 genes were newly implicated in cancer. Detailed analyses of the functions of the genes and their interrelationships provided converging evidence for their possible roles in implementing genetic programs mediating cancer susceptibility and resistance. These results, in conjunction with cell wounding and phalloidin staining data, indicated that concerted genetic programs were implemented that were conducive to cell adhesion and tumor suppression in P- cells and that favored matrix turnover, cell motility, and abrogation of tumor suppression in P+ cells. Such genetic programs may in part be orchestrated by Sp-, RA-, and Hox-transcriptional regulatory pathways implicated in this study.
Collapse
Affiliation(s)
- Shaija Samuel
- Department of Pathology and Laboratory Medicine, Texas A & M University System Health Science Center, College Station, Texas, USA
| | | |
Collapse
|
46
|
Yang Q, Sakurai T, Kakudo K. Retinoid, retinoic acid receptor beta and breast cancer. Breast Cancer Res Treat 2002; 76:167-73. [PMID: 12452454 DOI: 10.1023/a:1020576606004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Retinoids have been reported to inhibit the growth of several breast cancer cell lines in culture and to reduce breast tumor growth in animal models. Furthermore, retinoic acid (RA) can augment the action of other breast cancer cell growth inhibitors both in vitro and in vivo. Clinically, interest has increased in the potential use of retinoids for the prevention and treatment of human breast cancer. The regulation of cell growth and differentiation of normal, premalignant, and malignant cells by retinoids is mediated by the RA receptors (RARs) and retinoid X receptor. One of the target genes of retinoid receptors is RARbeta2. A growing body of evidence supports the hypotheses that the RARbeta2 gene is a tumor suppressor gene and the chemopreventive effects of retinoids are due to induction of RARbeta2. RARbeta2 expression is reduced in many malignant tumors including breast carcinoma. This paper will briefly discuss basic aspects of retinoids and retinoid acid receptor. In particular, we review what is now known for inactivation mechanism of RARbeta2 and its role in tumor cell growth inhibition.
Collapse
Affiliation(s)
- Qifeng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Ji'nan, People's Republic of China
| | | | | |
Collapse
|
47
|
Wu Q, Chen ZM, Su WJ. Anticancer effect of retinoic acid via AP-1 activity repression is mediated by retinoic acid receptor alpha and beta in gastric cancer cells. Int J Biochem Cell Biol 2002; 34:1102-14. [PMID: 12009305 DOI: 10.1016/s1357-2725(02)00030-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To uncover the mechanisms relating to the anticancer effect of retinoic acids in gastric cancer cells, the mediation of activator protein-1 (AP-1) activity repression by retinoic acid receptors (RARs) was investigated. All-trans retinoic acid (ATRA) inhibited AP-1 activity in BGC-823 cells (RARalpha(+), RARbeta(+)), but not in MKN-45 cells (RARalpha(lo), RARbeta(-)). Transient transfection of RARbeta expression vector into MKN-45 cells significantly resulted in direct repression of AP-1 activity in a receptor concentration-dependent manner, and this could be strengthened by ATRA. Stable transfection of RARbeta into MKN-45 cells directly inhibited cell growth and colony formation, and ATRA also enhanced these effects. Transient transfection of RARalpha into MKN-45 cells however, displayed receptor concentration-dependent AP-1 activity inhibition only in the presence of ATRA. Stable transfection of RARalpha into MKN-45 cells resulted in ATRA-dependent inhibition of cell growth and colony formation. For AP-1 binding activity induced by TPA, the repressive effect of ATRA was only observed in BGC-823 and RARalpha and RARbeta stably transfected MKN-45 cells, but not in intact MKN-45 cells. This indicates the necessity for sufficient cellular RARalpha and/or RARbeta in order for AP-1 activity repression to occur. Deletion of DNA binding domain (DBD) of RARbeta, but not ligand binding domain (LBD), eliminated the anti-AP-1 function of RARbeta. It is therefore concluded that both RARalpha and RARbeta are mediators in the anticancer function of ATRA via AP-1 activity inhibition, and that RARbeta, not RARalpha, can inhibit AP-1 activity to a certain extent directly by itself. Thus DBD, not LBD, is critical for anti-AP-1 activity.
Collapse
Affiliation(s)
- Qiao Wu
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Fujian Province, China.
| | | | | |
Collapse
|
48
|
Rizvi NA, Marshall JL, Ness E, Hawkins MJ, Kessler C, Jacobs H, Brenckman WD, Lee JS, Petros W, Hong WK, Kurie JM. Initial clinical trial of oral TAC-101, a novel retinoic acid receptor-alpha selective retinoid, in patients with advanced cancer. J Clin Oncol 2002; 20:3522-32. [PMID: 12177113 DOI: 10.1200/jco.2002.02.090] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The goals of this study were to determine the safety, toxicity, and pharmacokinetics of TAC-101, a novel synthetic retinoic acid receptor-alpha (RAR-alpha) selective retinoid, in patients with advanced cancer. PATIENTS AND METHODS Twenty-nine patients at two centers received oral TAC-101 at doses ranging from 12 to 34 mg/m(2)/d. Pharmacokinetic sampling was performed on days 1 and 28. RESULTS The most frequent toxicities were myalgia/arthralgia, fatigue, and triglyceridemia. No dose-limiting toxicities were observed within the first 28 days up to 28 mg/m(2). However, seven of 21 patients experienced venous thromboembolic events (VTEs) during TAC-101 treatment. Eight additional patients who received 34 mg/m(2) were treated after a hypercoagulable work-up to exclude potential risk factors for VTE, and two of eight patients subsequently experienced VTEs. The maximum tolerated dose was exceeded at 34 mg/m(2)/d within the first 28 days, with one grade 3 hypertriglyceridemia, two grade 3 myalgia/arthralgia, and one grade 3 fatigue. One patient with advanced non-small-cell lung cancer had a complete response. No other responses were observed. No autoinduction of metabolism was observed with dosing over 28 days. CONCLUSION This is the first human clinical study with TAC-101, a RAR-alpha selective retinoid. Musculoskeletal toxicity and hypertriglyceridemia were observed characteristics of previously studied retinoids. The recommended phase II dose is 24 mg/m(2) with this treatment schedule. Alternative treatment schedules and prospective evaluation of thrombotic risk will be investigated in subsequent studies.
Collapse
Affiliation(s)
- Naiyer A Rizvi
- Developmental Therapeutics Program, Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu S, Wu Q, Ye XF, Cai JH, Huang ZW, Su WJ. Induction of apoptosis by TPA and VP-16 is through translocation of TR3. World J Gastroenterol 2002; 8:446-50. [PMID: 12046067 PMCID: PMC4656418 DOI: 10.3748/wjg.v8.i3.446] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of TR3 in induction of apoptosis in gastric cancer cells.
METHODS: Human gastric cancer cell line, MGC80-3, was used. Expression of TR3 mRNA and its protein was detected by Northern blot and Western blot. Localization of TR3 protein was showed by immunofluorescence analysis under laser-scanning confocal microscope. Apoptotic morphology was observed by DAPI fluorescence staining, and apoptotic index was counted among 1000 cells randomly. Stable transfection assay was carried out by Lipofectamine.
RESULTS: Treatment of MGC80-3 cells with TPA and VP-16 resulted in apoptosis, accompanied by the repression of Bcl-2 protein in a time-dependent manner. At the same time, TPA and VP-16 also up-regulated expression level of TR3 mRNA in MGC80-3 cells that expressed TR3 mRNA. When antisense-TR3 expression vector was transfected into the cells, expression of TR3 protein was repressed. In this case, TPA and VP-16 did not induce apoptosis. In addition, TPA and VP-16-induced apoptosis involved in translocation of TR3. In MGC80-3 cells, TR3 localized concentrative in nucleus, after treatment of cells with TPA and VP-16, TR3 translocated from nucleus to cytosol obviously. However, when this nuclear translocation was blocked by LMB, apoptosis was not occurred in MGC80-3 cells even in the presence of TPA and VP-16.
CONCLUSION: Induction of apoptosis by TPA and VP-16 is through induction of TR3 expression and translocation of TR3 from nucleus to cytosol, which may be a novel signal pathway for TR3, and represent the new biological function of TR3 to exert its effect on apoptosis in gastric cancer cells.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Apoptosis/drug effects
- Apoptosis/physiology
- DNA-Binding Proteins/genetics
- Etoposide/pharmacology
- Gene Expression
- Nuclear Receptor Subfamily 4, Group A, Member 1
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptors, Cytoplasmic and Nuclear
- Receptors, Steroid
- Signal Transduction
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/pathology
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Su Liu
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005,Fujian Province,China
| | | | | | | | | | | |
Collapse
|
50
|
Lin F, Kolluri SK, Chen GQ, Zhang XK. Regulation of retinoic acid-induced inhibition of AP-1 activity by orphan receptor chicken ovalbumin upstream promoter-transcription factor. J Biol Chem 2002; 277:21414-22. [PMID: 11934895 DOI: 10.1074/jbc.m201885200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoids are therapeutically effective in the treatment of various cancers, and some of the therapeutic action of retinoids can be ascribed to their potent inhibition of AP-1 activity that regulates transcription of genes associated with cell growth. We recently reported that the expression of orphan receptor chicken ovalbumin upstream promoter-transcription factor (COUP-TF) plays a role in mediating the growth inhibitory effect of trans-retinoic acid (trans-RA) in cancer cells. To gain insight into the molecular mechanism by which COUP-TF regulates trans-RA activity, we evaluated the effect of COUP-TF on antagonism of AP-1 activity by trans-RA. Our results demonstrated a positive correlation between COUP-TF expression and the ability of trans-RA to inhibit AP-1 activity in various cancer cell lines. In transient transfection assay, expression of COUP-TF strongly inhibited tumor promoter 12-O-tetradecanoylphorbol-13-acetate-induced AP-1 transactivation activity and transactivation of c-Jun/c-Fos in both a trans-RA-dependent and -independent manner. In vitro studies demonstrated that the addition of COUP-TF inhibited c-Jun DNA binding through a direct protein-protein interaction that is mediated by the DNA binding domain of COUP-TF and the leucine zipper of c-Jun. Stable expression of COUP-TF in COUP-TF-negative MDA-MB231 breast cancer cells restored the ability of trans-RA to inhibit 12-O-tetradecanoylphorbol-13-acetate-induced c-Jun expression. The effect of COUP-TF in enhancing the trans-RA-induced antagonism of AP-1 activity required expression of retinoic acid receptors (RARs), since stable expression of COUP-TF in COUP-TF-negative HT-1376 bladder cancer cells, which do not express RARalpha and RARbeta, failed to restore trans-RA-induced AP-1 repression. Thus, COUP-TF, through its physical interaction with AP-1, promotes anticancer effects of retinoids by potentiating their anti-AP-1 activity.
Collapse
Affiliation(s)
- Feng Lin
- Burnham Institute, Cancer Center, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|