1
|
Innocenti F, Fiorentino G, Cimadomo D, Soscia D, Garagna S, Rienzi L, Ubaldi FM, Zuccotti M. Maternal effect factors that contribute to oocytes developmental competence: an update. J Assist Reprod Genet 2022; 39:861-871. [PMID: 35165782 PMCID: PMC9051001 DOI: 10.1007/s10815-022-02434-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
Oocyte developmental competence is defined as the capacity of the female gamete to be fertilized and sustain development to the blastocyst stage. Epigenetic reprogramming, a correct cell division pattern, and an efficient DNA damage response are all critical events that, before embryonic genome activation, are governed by maternally inherited factors such as maternal-effect gene (MEG) products. Although these molecules are stored inside the oocyte until ovulation and exert their main role during fertilization and preimplantation development, some of them are already functioning during folliculogenesis and oocyte meiosis resumption. This mini review summarizes the crucial roles played by MEGs during oocyte maturation, fertilization, and preimplantation development with a direct/indirect effect on the acquisition or maintenance of oocyte competence. Our aim is to inspire future research on a topic with potential clinical perspectives for the prediction and treatment of female infertility.
Collapse
Affiliation(s)
- Federica Innocenti
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | - Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Danilo Cimadomo
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy.
| | - Daria Soscia
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Laura Rienzi
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | | | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | | |
Collapse
|
2
|
Boni R. Heat stress, a serious threat to reproductive function in animals and humans. Mol Reprod Dev 2019; 86:1307-1323. [PMID: 30767310 DOI: 10.1002/mrd.23123] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/18/2022]
Abstract
Global warming represents a major stressful environmental condition that compromises the reproductive efficiency of animals and humans via a rise of body temperature above its physiological homeothermic point (heat stress [HS]). The injuries caused by HS on reproductive function involves both male and female components, fertilization mechanisms as well as the early and late stages of embryo-fetal development. This occurrence causes great economic damage in livestock, and, in wild animals creates selective pressure towards the advantages of better-adapted genotypes to the detriment of others. Humans undergo several types of stress, including heat, and these represent putative causes of ongoing progressive decay in procreation; an increasing number of remedies in the form of antioxidant preparations are now being proposed to counteract the effects of stress. This review aims to describe the results of the most recent studies that aimed to highlight these effects and to draw information on the mechanisms acting as the basis of this problem from a comparative analysis.
Collapse
Affiliation(s)
- Raffaele Boni
- Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
3
|
Girard PM, Peynot N, Lelièvre JM. Differential correlations between changes to glutathione redox state, protein ubiquitination, and stress-inducible HSPA chaperone expression after different types of oxidative stress. Cell Stress Chaperones 2018; 23:985-1002. [PMID: 29754332 PMCID: PMC6111089 DOI: 10.1007/s12192-018-0909-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 04/04/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
In primary bovine fibroblasts with an hspa1b/luciferase transgene, we examined the intensity of heat-shock response (HSR) following four types of oxidative stress or heat stress (HS), and its putative relationship with changes to different cell parameters, including reactive oxygen species (ROS), the redox status of the key molecules glutathione (GSH), NADP(H) NAD(H), and the post-translational protein modifications carbonylation, S-glutathionylation, and ubiquitination. We determined the sub-lethal condition generating the maximal luciferase activity and inducible HSPA protein level for treatments with hydrogen peroxide (H2O2), UVA-induced oxygen photo-activation, the superoxide-generating agent menadione (MN), and diamide (DA), an electrophilic and sulfhydryl reagent. The level of HSR induced by oxidative stress was the highest after DA and MN, followed by UVA and H2O2 treatments, and was not correlated to the level of ROS production nor to the extent of protein S-glutathionylation or carbonylation observed immediately after stress. We found a correlation following oxidative treatments between HSR and the level of GSH/GSSG immediately after stress, and the increase in protein ubiquitination during the recovery period. Conversely, HS treatment, which led to the highest HSR level, did not generate ROS nor modified or depended on GSH redox state. Furthermore, the level of protein ubiquitination was maximum immediately after HS and lower than after MN and DA treatments thereafter. In these cells, heat-induced HSR was therefore clearly different from oxidative stress-induced HSR, in which conversely early redox changes of the major cellular thiol predicted the level of HSR and polyubiquinated proteins.
Collapse
Affiliation(s)
- Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS UMR3347, INSERM U1021, 91405, Orsay, France
- Université Paris-Sud, Université Paris-Saclay, Rue Georges Clémenceau, 91405, Orsay, France
| | - Nathalie Peynot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Marc Lelièvre
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France.
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
4
|
Lelièvre JM, Peynot N, Ruffini S, Laffont L, Le Bourhis D, Girard PM, Duranthon V. Regulation of heat-inducible HSPA1A gene expression during maternal-to-embryo transition and in response to heat in in vitro-produced bovine embryos. Reprod Fertil Dev 2018; 29:1868-1881. [PMID: 27851888 DOI: 10.1071/rd15504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
In in vitro-produced (IVP) bovine embryos, a burst in transcriptional activation of the embryonic genome (EGA) occurs at the 8-16-cell stage. To examine transcriptional regulation prior to EGA, notably in response to heat stress, we asked (1) whether the spontaneous expression of a luciferase transgene that is driven by the minimal mouse heat-shock protein 1b (hspa1b) gene promoter paralleled that of HSPA1A during EGA in IVP bovine embryo and (2) whether expression of the endogenous heat-inducible iHSPA group member HSPA1A gene and the hspa1b/luciferase transgene were induced by heat stress (HS) prior to EGA. Using two culture systems, we showed that luciferase activity levels rose during the 40-h long EGA-associated cell cycle. In contrast, iHSPA proteins were abundant in matured oocytes and in blastomeres from the two-cell to the 16-cell stages. However, normalised results detected a rise in the level of HSPA1A and luciferase mRNA during EGA, when transcription was required for their protein expression. Prior to EGA, HS-induced premature luciferase activity and transgene expression were clearly inhibited. We could not, however, establish whether this was also true for HSPA1A expression because of the decay of the abundant maternal transcripts prior to EGA. In bovine embryos, heat-induced expression of hspa1b/luciferase, and most likely of HSPA1A, was therefore strictly dependent on EGA. The level of the heat-shock transcription factor 1 molecules that were found in cell nuclei during embryonic development correlated better with the embryo's capacity for heat-shock response than with EGA-associated gene expression.
Collapse
Affiliation(s)
- Jean-Marc Lelièvre
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Nathalie Peynot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Sylvie Ruffini
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Ludivine Laffont
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Daniel Le Bourhis
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
| | | |
Collapse
|
5
|
Heat Shock Proteins and Maternal Contribution to Oogenesis and Early Embryogenesis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 222:1-27. [PMID: 28389748 DOI: 10.1007/978-3-319-51409-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early embryos develop from fertilized eggs using materials that are stored during oocyte growth and which can be defined as maternal contribution (molecules, factors, or determinants). Several heat shock proteins (HSPs) and the heat shock transcriptional factor (HSF) are part of the maternal contribution that is critical for successful embryogenesis and reproduction. A maternal role for heat shock-related genes was mainly demonstrated in genetic experimental organisms (e.g., fly, nematode, mouse). Nowadays, an increasing number of "omics" data are produced from a large panel of organisms implementing a catalog of maternal and/or embryonic HSPs and HSFs. However, for most of them, it remains to better understand their potential roles in this context. Existing and future genome-wide screens mainly set up to create loss-of-function are likely to improve this situation. This chapter will discuss available data from various experimental organisms following the developmental steps from egg production to early embryogenesis.
Collapse
|
6
|
Chen J, Lian X, Du J, Xu S, Wei J, Pang L, Song C, He L, Wang S. Inhibition of phosphorylated Ser473-Akt from translocating into the nucleus contributes to 2-cell arrest and defective zygotic genome activation in mouse preimplantation embryogenesis. Dev Growth Differ 2016; 58:280-92. [DOI: 10.1111/dgd.12273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Junming Chen
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Xiuli Lian
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Juan Du
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Songhua Xu
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Jianen Wei
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Lili Pang
- Cellular and Developmental Engineering Center; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Chanchan Song
- Cellular and Developmental Engineering Center; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Lin He
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Shie Wang
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
- Cellular and Developmental Engineering Center; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| |
Collapse
|
7
|
Herbomel G, Kloster-Landsberg M, Folco EG, Col E, Usson Y, Vourc’h C, Delon A, Souchier C. Dynamics of the full length and mutated heat shock factor 1 in human cells. PLoS One 2013; 8:e67566. [PMID: 23861773 PMCID: PMC3704536 DOI: 10.1371/journal.pone.0067566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 05/23/2013] [Indexed: 11/24/2022] Open
Abstract
Heat shock factor 1 is the key transcription factor of the heat shock response. Its function is to protect the cell against the deleterious effects of stress. Upon stress, HSF1 binds to and transcribes hsp genes and repeated satellite III (sat III) sequences present at the 9q12 locus. HSF1 binding to pericentric sat III sequences forms structures known as nuclear stress bodies (nSBs). nSBs represent a natural amplification of RNA pol II dependent transcription sites. Dynamics of HSF1 and of deletion mutants were studied in living cells using multi-confocal Fluorescence Correlation Spectroscopy (mFCS) and Fluorescence Recovery After Photobleaching (FRAP). In this paper, we show that HSF1 dynamics modifications upon heat shock result from both formation of high molecular weight complexes and increased HSF1 interactions with chromatin. These interactions involve both DNA binding with Heat Shock Element (HSE) and sat III sequences and a more transient sequence-independent binding likely corresponding to a search for more specific targets. We find that the trimerization domain is required for low affinity interactions with chromatin while the DNA binding domain is required for site-specific interactions of HSF1 with DNA.
Collapse
Affiliation(s)
- Gaëtan Herbomel
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
| | | | - Eric G. Folco
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
| | - Edwige Col
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
| | - Yves Usson
- University Grenoble I, CNRS, TIMC-IMAG UMR5525, La Tronche, France
| | - Claire Vourc’h
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
| | - Antoine Delon
- University Grenoble 1, CNRS, LIPhy UMR 5588, St Martin d’Hères, France
| | - Catherine Souchier
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
- * E-mail:
| |
Collapse
|
8
|
Sodhi M, Mukesh M, Kishore A, Mishra BP, Kataria RS, Joshi BK. Novel polymorphisms in UTR and coding region of inducible heat shock protein 70.1 gene in tropically adapted Indian zebu cattle (Bos indicus) and riverine buffalo (Bubalus bubalis). Gene 2013; 527:606-15. [PMID: 23792016 DOI: 10.1016/j.gene.2013.05.078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022]
Abstract
Due to evolutionary divergence, cattle (taurine, and indicine) and buffalo are speculated to have different responses to heat stress condition. Variation in candidate genes associated with a heat-shock response may provide an insight into the dissimilarity and suggest targets for intervention. The present work was undertaken to characterize one of the inducible heat shock protein genes promoter and coding regions in diverse breeds of Indian zebu cattle and buffaloes. The genomic DNA from a panel of 117 unrelated animals representing 14 diversified native cattle breeds and 6 buffalo breeds were utilized to determine the complete sequence and gene diversity of HSP70.1 gene. The coding region of HSP70.1 gene in Indian zebu cattle, Bos taurus and buffalo was similar in length (1,926 bp) encoding a HSP70 protein of 641 amino acids with a calculated molecular weight (Mw) of 70.26 kDa. However buffalo had a longer 5' and 3' untranslated region (UTR) of 204 and 293 nucleotides respectively, in comparison to Indian zebu cattle and Bos taurus wherein length of 5' and 3'-UTR was 172 and 286 nucleotides, respectively. The increased length of buffalo HSP70.1 gene compared to indicine and taurine gene was due to two insertions each in 5' and 3'-UTR. Comparative sequence analysis of cattle (taurine and indicine) and buffalo HSP70.1 gene revealed a total of 54 gene variations (50 SNPs and 4 INDELs) among the three species in the HSP70.1 gene. The minor allele frequencies of these nucleotide variations varied from 0.03 to 0.5 with an average of 0.26. Among the 14 B. indicus cattle breeds studied, a total of 19 polymorphic sites were identified: 4 in the 5'-UTR and 15 in the coding region (of these 2 were non-synonymous). Analysis among buffalo breeds revealed 15 SNPs throughout the gene: 6 at the 5' flanking region and 9 in the coding region. In bubaline 5'-UTR, 2 additional putative transcription factor binding sites (Elk-1 and C-Re1) were identified, other than three common sites (CP2, HSE and Pax-4) observed across all the analyzed animals. No polymorphism was found within the 3'-UTR of Indian cattle or buffalo as it was found to be monomorphic. The promoter sequences generated in 117 individuals showed a rich array of sequence elements known to be involved in transcription regulation. A total of 11 nucleotide changes were observed in the promoter sequence across the analyzed species, 3 of these changes were located within the potential transcription factor binding domains. We also identified 4 microsatellite markers within the buffalo HSP70.1 gene and 3 microsatellites within bovine HSP70.1. The present study identified several distinct changes across indicine, taurine and bubaline HSP70.1 genes that could further be evaluated as molecular markers for thermotolerance.
Collapse
Affiliation(s)
- M Sodhi
- National Bureau of Animal Genetic resources, Karnal 132001, India.
| | | | | | | | | | | |
Collapse
|
9
|
Reina CP, Nabet BY, Young PD, Pittman RN. Basal and stress-induced Hsp70 are modulated by ataxin-3. Cell Stress Chaperones 2012; 17:729-42. [PMID: 22777893 PMCID: PMC3468683 DOI: 10.1007/s12192-012-0346-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/11/2012] [Accepted: 06/07/2012] [Indexed: 12/24/2022] Open
Abstract
Regulation of basal and induced levels of hsp70 is critical for cellular homeostasis. Ataxin-3 is a deubiquitinase with several cellular functions including transcriptional regulation and maintenance of protein homeostasis. While investigating potential roles of ataxin-3 in response to cellular stress, it appeared that ataxin-3 regulated hsp70. Basal levels of hsp70 were lower in ataxin-3 knockout (KO) mouse brain from 2 to 63 weeks of age and hsp70 was also lower in fibroblasts from ataxin-3 KO mice. Transfecting KO cells with ataxin-3 rescued basal levels of hsp70 protein. Western blots of representative chaperones including hsp110, hsp90, hsp70, hsc70, hsp60, hsp40/hdj2, and hsp25 indicated that only hsp70 was appreciably altered in KO fibroblasts and KO mouse brain. Turnover of hsp70 protein was similar in wild-type (WT) and KO cells; however, basal hsp70 promoter reporter activity was decreased in ataxin-3 KO cells. Transfecting ataxin-3 restored hsp70 basal promoter activity in KO fibroblasts to levels of promoter activity in WT cells; however, mutations that inactivated deubiquitinase activity or the ubiquitin interacting motifs did not restore full activity to hsp70 basal promoter activity. Hsp70 protein and promoter activity were higher in WT compared to KO cells exposed to heat shock and azetidine-2-carboxylic acid, but WT and KO cells had similar levels in response to cadmium. Heat shock factor-1 had decreased levels and increased turnover in ataxin-3 KO fibroblasts. Data in this study are consistent with ataxin-3 regulating basal level of hsp70 as well as modulating hsp70 in response to a subset of cellular stresses.
Collapse
Affiliation(s)
- Christopher P. Reina
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
- Present Address: Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854 USA
| | - Barzin Y. Nabet
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
- Present Address: Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Peter D. Young
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Randall N. Pittman
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
10
|
Pennarossa G, Maffei S, Rahman MM, Berruti G, Brevini TA, Gandolfi F. Characterization of the Constitutive Pig Ovary Heat Shock Chaperone Machinery and Its Response to Acute Thermal Stress or to Seasonal Variations1. Biol Reprod 2012; 87:119. [DOI: 10.1095/biolreprod.112.104018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
11
|
Le Masson F, Razak Z, Kaigo M, Audouard C, Charry C, Cooke H, Westwood JT, Christians ES. Identification of heat shock factor 1 molecular and cellular targets during embryonic and adult female meiosis. Mol Cell Biol 2011; 31:3410-23. [PMID: 21690297 PMCID: PMC3147796 DOI: 10.1128/mcb.05237-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 06/07/2011] [Indexed: 01/18/2023] Open
Abstract
Heat shock factor 1 (HSF1), while recognized as the major regulator of the heat shock transcriptional response, also exerts important functions during mammalian embryonic development and gametogenesis. In particular, HSF1 is required for oocyte maturation, the adult phase of meiosis preceding fertilization. To identify HSF1 target genes implicated in this process, comparative transcriptomic analyses were performed with wild-type and HSF-deficient oocytes. This revealed a network of meiotic genes involved in cohesin and synaptonemal complex (SC) structures, DNA recombination, and the spindle assembly checkpoint (SAC). All of them were found to be regulated by HSF1 not only during adult but also in embryonic phases of female meiosis. Additional investigations showed that SC, recombination nodules, and DNA repair were affected in Hsf1(-/-) oocytes during prenatal meiotic prophase I. However, targeting Hsf1 deletion to postnatal oocytes (using Zp3 Cre; Hsf1(loxP/loxP)) did not fully rescue the chromosomal anomalies identified during meiotic maturation, which possibly caused a persistent SAC activation. This would explain the metaphase I arrest previously described in HSF1-deficient oocytes since SAC inhibition circumvented this block. This work provides new insights into meiotic gene regulation and points out potential links between cellular stress and the meiotic anomalies frequently observed in humans.
Collapse
Affiliation(s)
- Florent Le Masson
- Université Toulouse 3, UPS, UMR 5547, Centre de Biologie du Développement, 118 route de Narbonne (Bat 4R3B3), 31062 Toulouse Cedex 09, France
| | - Zak Razak
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Mo Kaigo
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Christophe Audouard
- Université Toulouse 3, UPS, UMR 5547, Centre de Biologie du Développement, 118 route de Narbonne (Bat 4R3B3), 31062 Toulouse Cedex 09, France
| | - Colette Charry
- Université Toulouse 3, UPS, UMR 5547, Centre de Biologie du Développement, 118 route de Narbonne (Bat 4R3B3), 31062 Toulouse Cedex 09, France
| | - Howard Cooke
- Institute of Genetic and Molecular Medicine, MRC Human Genetics Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - J. Timothy Westwood
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Elisabeth S. Christians
- Université Toulouse 3, UPS, UMR 5547, Centre de Biologie du Développement, 118 route de Narbonne (Bat 4R3B3), 31062 Toulouse Cedex 09, France
| |
Collapse
|
12
|
Le Masson F, Christians E. HSFs and regulation of Hsp70.1 (Hspa1b) in oocytes and preimplantation embryos: new insights brought by transgenic and knockout mouse models. Cell Stress Chaperones 2011; 16:275-85. [PMID: 21053113 PMCID: PMC3077227 DOI: 10.1007/s12192-010-0239-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/17/2010] [Accepted: 10/14/2010] [Indexed: 11/25/2022] Open
Abstract
Gene encoding heat shock protein (Hsps) are induced following a thermal stress thanks to the activation of heat shock transcription factor (HSF) which interacts with heat shock elements (HSE) located within the sequence of Hsp promoters. This cellular and protective response (heat shock response (HSR)) is well known and evolutionarily conserved. Nevertheless, HSR does not function in all the cells produced during the life of a multicellular organism, e.g., early mouse embryos. Taking advantage of mouse transgenic and knockout models, we investigated the roles of trans (HSF 1 and 2) and cis (HSE) regulatory elements in the control of Hsp70.1 (Hspa1b) through several developmental steps from oocytes to blastocysts. Our studies confirm that, even in absence of any stress, HSF1 regulates Hsp70.1 in oocytes and early embryos. Our data emphasize the role of maternal and paternal HSFs in the developmentally regulated expression of Hsp70.1 observed when the zygotic genome activation occurs. Furthermore, in this unstressed developmental condition, affinity and binding to HSEs might be more permissive than in the stress response. Finally, submitting blastocyst to different stress conditions, we show that HSF2 is differentially required for Hsp expression and cell survival. Taken together, our findings indicate that the role of heat shock trans and cis regulatory elements evolve along the successive steps of early embryonic development.
Collapse
Affiliation(s)
- Florent Le Masson
- Université Toulouse3, UPS, UMR 5547, Centre de Biologie du Développement, 118 route de Narbonne (Bat 4R3B3), 31062 Toulouse Cedex 09, France
| | - Elisabeth Christians
- Université Toulouse3, UPS, UMR 5547, Centre de Biologie du Développement, 118 route de Narbonne (Bat 4R3B3), 31062 Toulouse Cedex 09, France
| |
Collapse
|
13
|
Oocyte-targeted deletion reveals that hsp90b1 is needed for the completion of first mitosis in mouse zygotes. PLoS One 2011; 6:e17109. [PMID: 21358806 PMCID: PMC3039677 DOI: 10.1371/journal.pone.0017109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 01/20/2011] [Indexed: 11/19/2022] Open
Abstract
Background Hsp90b1 is an endoplasmic reticulum (ER) chaperone (also named Grp94, ERp99, gp96,Targ2, Tra-1, Tra1, Hspc4) (MGI:98817) contributing with Hspa5 (also named Grp78, BIP) (MGI:95835) to protein folding in ER compartment. Besides its high protein expression in mouse oocytes, little is known about Hsp90b1 during the transition from oocyte-to-embryo. Because the constitutive knockout of Hsp90b1 is responsible for peri-implantation embryonic lethality, it was not yet known whether Hsp90b1 is a functionally important maternal factor. Methodology/Findings To circumvent embryonic lethality, we established an oocyte-specific conditional knockout line taking advantage of the more recently created floxed Hsp90b1 line (Hsp90b1flox, MGI:3700023) in combination with the transgenic mouse line expressing the cre recombinase under the control of zona pellucida 3 (ZP3) promoter (Zp3-cre, MGI:2176187). Altered expression of Hsp90b1 in growing oocytes provoked a limited, albeit significant reduction of the zona pellucida thickness but no obvious anomalies in follicular growth, meiotic maturation or fertilization. Interestingly, mutant zygotes obtained from oocytes lacking Hsp90b1 were unable to reach the 2-cell stage. They exhibited either a G2/M block or, more frequently an abnormal mitotic spindle leading to developmental arrest. Despite the fact that Hspa5 displayed a similar profile of expression as Hsp90b1, we found that HSPA5 and HSP90B1 did not fully colocalize in zygotes suggesting distinct function for the two chaperones. Consequently, even if HSPA5 was overexpressed in Hsp90b1 mutant embryos, it did not compensate for HSP90B1 deficiency. Finally, further characterization of ER compartment and cytoskeleton revealed a defective organization of the cytoplasmic region surrounding the mutant zygotic spindle. Conclusions Our findings demonstrate that the maternal contribution of Hsp90b1 is critical for the development of murine zygotes. All together our data indicate that Hsp90b1 is involved in unique and specific aspects of the first mitosis, which brings together the maternal and paternal genomes on a single spindle.
Collapse
|
14
|
Abstract
Heat shock factors form a family of transcription factors (four in mammals), which were named according to the first discovery of their activation by heat shock. As a result of the universality and robustness of their response to heat shock, the stress-dependent activation of heat shock factor became a ‘paradigm’: by binding to conserved DNA sequences (heat shock elements), heat shock factors trigger the expression of genes encoding heat shock proteins that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stress and in several pathological conditions. Besides their roles in the stress response, heat shock factors perform crucial roles during gametogenesis and development in physiological conditions. First, during these process, in stress conditions, they are either proactive for survival or, conversely, for apoptotic process, allowing elimination or, inversely, protection of certain cell populations in a way that prevents the formation of damaged gametes and secure future reproductive success. Second, heat shock factors display subtle interplay in a tissue- and stage-specific manner, in regulating very specific sets of heat shock genes, but also many other genes encoding growth factors or involved in cytoskeletal dynamics. Third, they act not only by their classical transcription factor activities, but are necessary for the establishment of chromatin structure and, likely, genome stability. Finally, in contrast to the heat shock gene paradigm, heat shock elements bound by heat shock factors in developmental process turn out to be extremely dispersed in the genome, which is susceptible to lead to the future definition of ‘developmental heat shock element’.
Collapse
Affiliation(s)
- Ryma Abane
- CNRS, UMR7216 Epigenetics and Cell Fate, Paris, France
| | | |
Collapse
|
15
|
Gade N, Mahapatra RK, Sonawane A, Singh VK, Doreswamy R, Saini M. Molecular Characterization of Heat Shock Protein 70-1 Gene of Goat (Capra hircus). Mol Biol Int 2010; 2010:108429. [PMID: 22110953 PMCID: PMC3218308 DOI: 10.4061/2010/108429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/14/2010] [Indexed: 01/24/2023] Open
Abstract
Heat shock protein 70 (HSP 70) plays a vital role by bestowing cytoprotection against diverse kinds of stresses. The ubiquitous HSP 70 proteins are the most abundant and temperature sensitive among all the HSPs. The present paper has characterized HSP70-1 cDNA in goat (Capra hircus). Total RNA isolated from goat peripheral blood mononuclear cells was reverse transcribed to cDNA that was used for amplification of HSP 70-1 gene. PCR product (1926 bp) was cloned in pGEM-T easy vector and sequenced. Sequence analysis revealed 1926-bp-long open reading frame of HSP 70-1 gene encoding 641 amino acids in goat, as reported in cattle. At nucleotide level, goat HSP 70-1 was found to be 96-99% similar to that of sheep (partial), cattle, and buffalo whereas the similarity at amino acid level was 95-100%. Nonsynonymous substitutions exceeding synonymous substitutions indicate the evolution of this protein through positive selection among domestic animals. Goat and sheep appear to have diverged from a common ancestor in phylogenetic analysis. Predicted protein structures of goat HSP 70 protein obtained from deduced amino acid sequence indicated that the functional amino acids involved in chaperoning through ATPase hydrolytic cycle and in uncoating of clathrin coated vesicles are highly conserved.
Collapse
Affiliation(s)
- Nitin Gade
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India
| | | | | | | | | | | |
Collapse
|
16
|
Lack of maternal Heat Shock Factor 1 results in multiple cellular and developmental defects, including mitochondrial damage and altered redox homeostasis, and leads to reduced survival of mammalian oocytes and embryos. Dev Biol 2010; 339:338-53. [PMID: 20045681 DOI: 10.1016/j.ydbio.2009.12.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/12/2009] [Accepted: 12/23/2009] [Indexed: 11/24/2022]
Abstract
Heat Shock Factor 1 (HSF1) is a transcription factor whose loss of function results in the inability of Hsf1(-/-) females to produce viable embryos, as a consequence of early developmental arrest. We previously demonstrated that maternal HSF1 is required in oocytes to regulate expression of chaperones, in particular Hsp90alpha, and is essential for the progression of meiotic maturation. In the present work, we used comparative morphological and biochemical analytic approaches to better understand how Hsf1(-/-) oocytes undergo irreversible cell death. We found that the metaphase II arrest in mature oocytes, cortical granule exocytosis and formation of pronuclei in zygotes were all impaired in Hsf1(-/-) mutants. Although oogenesis generated fully grown oocytes in follicles, intra-ovarian Hsf1(-/-) oocytes displayed ultrastructural abnormalities and contained dysfunctional mitochondria as well as elevated oxidant load. Finally, the apoptotic effector, caspase-3, was activated in most mutant oocytes and embryos, reflecting their commitment to apoptosis. In conclusion, our study shows that early post-ovulation events are particularly sensitive to oxidant insult, which abrogates the developmental competence of HSF1-depleted oocytes. They also reveal that Hsf1 knock-out mice constitute a genetic model that can be used to evaluate the importance of redox homeostasis in oocytes.
Collapse
|
17
|
Abstract
Heat stress can have large effects on most aspects of reproductive function in mammals. These include disruptions in spermatogenesis and oocyte development, oocyte maturation, early embryonic development, foetal and placental growth and lactation. These deleterious effects of heat stress are the result of either the hyperthermia associated with heat stress or the physiological adjustments made by the heat-stressed animal to regulate body temperature. Many effects of elevated temperature on gametes and the early embryo involve increased production of reactive oxygen species. Genetic adaptation to heat stress is possible both with respect to regulation of body temperature and cellular resistance to elevated temperature.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL 32611-0910, USA.
| |
Collapse
|
18
|
Wilkerson DC, Sarge KD. RNA polymerase II interacts with the Hspa1b promoter in mouse epididymal spermatozoa. Reproduction 2009; 137:923-9. [PMID: 19336471 DOI: 10.1530/rep-09-0015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Hspa1b (Hsp70.1) gene is one of the first genes expressed after fertilization, with expression occurring during the minor zygotic genome activation (ZGA) in the absence of stress. This expression can take place in the male pronucleus as early as the one-cell stage of embryogenesis. The importance of HSPA1B for embryonic viability during times of stress is supported by studies showing that depletion of this protein results in a significant reduction in embryos developing to the blastocyte stage. Recently, we have begun addressing the mechanism responsible for allowing expression of Hspa1b during the minor ZGA and found that heat shock transcription factor (HSF) 1 and 2 bind the Hspa1b promoter during late spermatogenesis. In this report, we have extended those studies using western blots and chromatin immunoprecipitation assays and found that RNA polymerase II (Pol II) is present in epididymal spermatozoa and bound to the Hspa1b promoter. These present results, in addition to our previous results, support a model in which the binding of HSF1, HSF2, SP1, and Pol II to the promoter of Hspa1b would allow the rapid formation of a transcription-competent state during the minor ZGA, thereby allowing Hspa1b expression.
Collapse
Affiliation(s)
- Donald C Wilkerson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
19
|
Bettegowda A, Lee KB, Smith GW. Cytoplasmic and nuclear determinants of the maternal-to-embryonic transition. Reprod Fertil Dev 2008; 20:45-53. [PMID: 18154697 DOI: 10.1071/rd07156] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although improvements in culture systems have greatly enhanced in vitro embryo production, success rates under the best conditions are still far from ideal. The reasons for developmental arrest of the majority of in vitro produced embryos are unclear, but likely attributable, in part, to intrinsic and extrinsic influences on the cytoplasmic and/or nuclear environment of an oocyte and/or early embryo that impede normal progression through the maternal-to-embryonic transition. The maternal-to-embryonic transition is the time period during embryonic development spanning from fertilisation until when control of early embryogenesis changes from regulation by oocyte-derived factors to regulation by products of the embryonic genome. The products of numerous maternal effect genes transcribed and stored during oogenesis mediate this transition. Marked epigenetic changes to chromatin during this window of development significantly modulate embryonic gene expression. Depletion of maternal mRNA pools is also an obligatory event during the maternal-to-embryonic transition critical to subsequent development. An increased knowledge of the fundamental mechanisms and mediators of the maternal-to-embryonic transition is foundational to understanding the regulation of oocyte quality and future breakthroughs relevant to embryo production.
Collapse
Affiliation(s)
- Anilkumar Bettegowda
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
20
|
Wilkerson DC, Murphy LA, Sarge KD. Interaction of HSF1 and HSF2 with the Hspa1b promoter in mouse epididymal spermatozoa. Biol Reprod 2008; 79:283-8. [PMID: 18434628 DOI: 10.1095/biolreprod.107.066241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The Hspa1b gene is one of the first genes expressed after fertilization, with expression observed in the male pronucleus as early as the one-cell stage of embryogenesis. This expression can occur in the absence of stress and is initiated during the minor zygotic genome activation. There is a significant reduction in the number of embryos developing to the blastocyte stage when HSPA1B levels are depleted, which supports the importance of this protein for embryonic viability. However, the mechanism responsible for allowing expression of Hspa1b during the minor zygotic genome activation (ZGA) is unknown. In this report, we investigated the role of HSF1 and HSF2 in bookmarking Hspa1b during late spermatogenesis. Western blot results show that both HSF1 and HSF2 are present in epididymal spermatozoa, and immunofluorescence analysis revealed that some of the HSF1 and HSF2 proteins in these cells overlap the 4',6'-diamidino-2-phenylindole-stained DNA region. Results from chromatin immunoprecipitation assays showed that HSF1, HSF2, and SP1 are bound to the Hspa1b promoter in epididymal spermatozoa. Furthermore, we observed an increase in HSF2 binding to the Hspa1b promoter in late spermatids versus early spermatids, suggesting a likely period during spermatogenesis when transcription factor binding could occur. These results support a model in which the binding of HSF1, HSF2, and SP1 to the promoter of Hspa1b would allow the rapid formation of a transcription-competent state during the minor ZGA, thereby allowing Hspa1b expression.
Collapse
Affiliation(s)
- Donald C Wilkerson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
21
|
Hartshorn C, Anshelevich A, Jia Y, Wangh LJ. Early onset of heat-shock response in mouse embryos revealed by quantification of stress-inducible hsp70i RNA. GENE REGULATION AND SYSTEMS BIOLOGY 2007; 1:365-73. [PMID: 19936098 PMCID: PMC2759146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heat shock response is fully established in mouse embryos at the blastocyst stage, but it is unclear when this response first arises during development. To shed light on this question, we used a single-tube method to quantify mRNA levels of the heat shock protein genes hsp70.1 and hsp70.3 (hsp70i) in individual cleavage-stage embryos that had or had not been heat-shocked. While untreated, healthy embryos contained very low copy numbers of hsp70i RNA, heat shock rapidly induced the synthesis of hundreds of hsp70i transcripts per blastomere at both the 4-cell and the 8-cell stages. In addition, we performed hsp70i measurements in embryos that had not been heat-shocked but had been very slow in developing. Quantification of hsp70i RNA and genomic DNA copy numbers in these slow-growing embryos demonstrated the presence of two distinct populations. Some of the embryos contained considerable levels of hsp70i RNA, a finding consistent with the hypothesis of endogenous metabolic stress accompanied by cell cycle arrest and delayed development. Other slow-growing embryos contained no hsp70i RNA and fewer than expected hsp70i gene copies, suggesting the possibility of ongoing apoptosis. In conclusion, this study demonstrates that mouse embryos can activate hsp70i expression in response to sub-lethal levels of stress as early as at the 4-cell stage. Our results also indicate that quantification of hsp70i DNA and RNA copy numbers may provide a diagnostic tool for embryonic health.
Collapse
Affiliation(s)
- Cristina Hartshorn
- Correspondence: Cristina Hartshorn, Biology Department, M.S., 008, Brandeis University, 415 South Street, Waltham MA 02454-9110, U.S.A. Tel: 781-736-3111; FAX: 781-736-3107;
| | | | | | | |
Collapse
|
22
|
Boyault C, Zhang Y, Fritah S, Caron C, Gilquin B, Kwon SH, Garrido C, Yao TP, Vourc’h C, Matthias P, Khochbin S. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev 2007; 21:2172-81. [PMID: 17785525 PMCID: PMC1950856 DOI: 10.1101/gad.436407] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A cellular defense mechanism counteracts the deleterious effects of misfolded protein accumulation by eliciting a stress response. The cytoplasmic deacetylase HDAC6 (histone deacetylase 6) was previously shown to be a key element in this response by coordinating the clearance of protein aggregates through aggresome formation and their autophagic degradation. Here, for the first time, we demonstrate that HDAC6 is involved in another crucial cell response to the accumulation of ubiquitinated protein aggregates, and unravel its molecular basis. Indeed, our data show that HDAC6 senses ubiquitinated cellular aggregates and consequently induces the expression of major cellular chaperones by triggering the dissociation of a repressive HDAC6/HSF1 (heat-shock factor 1)/HSP90 (heat-shock protein 90) complex and a subsequent HSF1 activation. HDAC6 therefore appears as a master regulator of the cell protective response to cytotoxic protein aggregate formation.
Collapse
Affiliation(s)
- Cyril Boyault
- Institut National de la Santé et de la Recherche Médicale (INSERM), U823, Institut Albert Bonniot, Grenoble F-38706, France
- Université Joseph Fourier, Institut Albert Bonniot, Grenoble F-38700, France
| | - Yu Zhang
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, 4058 Basel, Switzerland
| | - Sabrina Fritah
- Institut National de la Santé et de la Recherche Médicale (INSERM), U823, Institut Albert Bonniot, Grenoble F-38706, France
- Université Joseph Fourier, Institut Albert Bonniot, Grenoble F-38700, France
| | - Cécile Caron
- Institut National de la Santé et de la Recherche Médicale (INSERM), U823, Institut Albert Bonniot, Grenoble F-38706, France
- Université Joseph Fourier, Institut Albert Bonniot, Grenoble F-38700, France
| | - Benoit Gilquin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U823, Institut Albert Bonniot, Grenoble F-38706, France
- Université Joseph Fourier, Institut Albert Bonniot, Grenoble F-38700, France
| | - So Hee Kwon
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, 4058 Basel, Switzerland
| | - Carmen Garrido
- INSERM, U517, Dijon F-21079, France
- Université de Bourgogne, Faculté de Médecine de Dijon, Dijon F-21079, France
| | - Tso-Pang Yao
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA
| | - Claire Vourc’h
- Institut National de la Santé et de la Recherche Médicale (INSERM), U823, Institut Albert Bonniot, Grenoble F-38706, France
- Université Joseph Fourier, Institut Albert Bonniot, Grenoble F-38700, France
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, 4058 Basel, Switzerland
| | - Saadi Khochbin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U823, Institut Albert Bonniot, Grenoble F-38706, France
- Université Joseph Fourier, Institut Albert Bonniot, Grenoble F-38700, France
- Corresponding author.E-MAIL ; FAX 33-4-76-54-95-95
| |
Collapse
|
23
|
Abstract
Elevated temperature can reduce developmental competence of the preimplantation embryo. Whether an embryo survives elevated temperature depends on its genotype, stage of development, exposure to regulatory molecules and redox status. Following fertilization, the embryo is very sensitive to heat shock. By Days 4-5 after insemination, however, the embryo has acquired increased resistance to elevated temperature. One system that may potentiate embryonic survival at later stages of embryonic development is the apoptosis response-inhibition of apoptosis responses at Day 4 exacerbated effects of heat shock on development. Embryo responses to heat shock at Days 4-5 also depend upon genotype because Bos indicus embryos are more resistant than embryos from non-adapted B. taurus. Some experiments (although not all) indicate that survival following heat shock can be increased by reducing oxygen tension, suggesting involvement of reactive oxygen species or hypoxia-induced factors. Embryonic responses to heat shock are also affected by regulatory molecules that act to modify cellular physiology and improve cell survival. The best characterized of these is insulin-like growth factor-1 (IGF-1). Actions of IGF-1 to allow development following heat shock are independent of its anti-apoptotic actions because inhibition of the phosphatidylinositol-3 kinase pathway through which IGF-1 blocks apoptosis does not prevent thermoprotective effects of IGF-1 on development. Identification of specific determinants of embryonic survival creates the opportunity for new strategies to improve pregnancy rates in animals exposed to heat stress. Many environmental perturbations activate similar cellular responses. Therefore, molecular and cellular systems that improve embryonic survival to heat shock may confer protection from other embryotoxic conditions.
Collapse
Affiliation(s)
- P J Hansen
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL 32611-0910, USA.
| |
Collapse
|
24
|
Early Onset of Heat-Shock Response in Mouse Embryos Revealed by Quantification of Stress-Inducible hsp70iRNA. GENE REGULATION AND SYSTEMS BIOLOGY 2007. [DOI: 10.1177/117762500700100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heat shock response is fully established in mouse embryos at the blastocyst stage, but it is unclear when this response first arises during development. To shed light on this question, we used a single-tube method to quantify mRNA levels of the heat shock protein genes hsp70.1 and hsp70.3 ( hsp70i) in individual cleavage-stage embryos that had or had not been heat-shocked. While untreated, healthy embryos contained very low copy numbers of hsp70i RNA, heat shock rapidly induced the synthesis of hundreds of hsp70i transcripts per blastomere at both the 4-cell and the 8-cell stages. In addition, we performed hsp70i measurements in embryos that had not been heat-shocked but had been very slow in developing. Quantification of hsp70i RNA and genomic DNA copy numbers in these slow-growing embryos demonstrated the presence of two distinct populations. Some of the embryos contained considerable levels of hsp70i RNA, a finding consistent with the hypothesis of endogenous metabolic stress accompanied by cell cycle arrest and delayed development. Other slow-growing embryos contained no hsp70i RNA and fewer than expected hsp70i gene copies, suggesting the possibility of ongoing apoptosis. In conclusion, this study demonstrates that mouse embryos can activate hsp70i expression in response to sub-lethal levels of stress as early as at the 4-cell stage. Our results also indicate that quantification of hsp70i DNA and RNA copy numbers may provide a diagnostic tool for embryonic health.
Collapse
|
25
|
Chang Y, Ostling P, Akerfelt M, Trouillet D, Rallu M, Gitton Y, El Fatimy R, Fardeau V, Le Crom S, Morange M, Sistonen L, Mezger V. Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev 2006; 20:836-47. [PMID: 16600913 PMCID: PMC1472286 DOI: 10.1101/gad.366906] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heat-shock factors (HSFs) are associated with multiple developmental processes, but their mechanisms of action in these processes remain largely enigmatic. Hsf2-null mice display gametogenesis defects and brain abnormalities characterized by enlarged ventricles. Here, we show that Hsf2-/- cerebral cortex displays mispositioning of neurons of superficial layers. HSF2 deficiency resulted in a reduced number of radial glia fibers, the architectural guides for migrating neurons, and of Cajal-Retzius cells, which secrete the positioning signal Reelin. Therefore, we focused on the radial migration signaling pathways. The levels of Reelin and Dab1 tyrosine phosphorylation were reduced, suggesting that the Reelin cascade is affected in Hsf2-/- cortices. The expression of p35, an activator of cyclin-dependent kinase 5 (Cdk5), essential for radial migration, was dependent on the amount of HSF2 in gain- and loss-of-function systems. p39, another Cdk5 activator, displayed reduced mRNA levels in Hsf2-/- cortices, which, together with the lowered p35 levels, decreased Cdk5 activity. We demonstrate in vivo binding of HSF2 to the p35 promoter and thereby identify p35 as the first target gene for HSF2 in cortical development. In conclusion, HSF2 affects cellular populations that assist in radial migration and directly regulates the expression of p35, a crucial actor of radial neuronal migration.
Collapse
Affiliation(s)
- Yunhua Chang
- Biologie Moléculaire du Stress, Centre National de la Recherche Scientifique (CNRS) UMR8541, Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vujanac M, Fenaroli A, Zimarino V. Constitutive nuclear import and stress-regulated nucleocytoplasmic shuttling of mammalian heat-shock factor 1. Traffic 2005; 6:214-29. [PMID: 15702990 DOI: 10.1111/j.1600-0854.2005.00266.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inducible expression of major cytosolic and nuclear chaperone proteins is mediated by the heat-shock transcription factor HSF1 that is activated by derepressive mechanisms triggered by transient heat stress and sustained proteotoxicity. Despite progress in defining essential aspects of HSF1 regulation, little is known about the cellular dynamics enabling this factor to mediate gene responses to cytosolic stress signals. We report that the inactive, stress-responsive form of HSF1 accumulates in the nucleus due to a relatively potent import signal, which can be recognized by importin-alpha/beta, and simultaneously undergoes continuous nucleocytoplasmic shuttling due to a comparatively weak, nonetheless efficient, export activity not involving the classical exportin-1 pathway. Strikingly, experimental stresses at physiological or elevated temperature reversibly inactivate the export competence of HSF1. Likewise, mutations mimicking stress-induced derepression impair export but not import. These findings are consistent with a dynamic process whereby exported molecules that are derepressed in an inductive cytosolic environment are recollected and pause in the nucleoplasm, replacing progressively the inactive pool. While steady-state nuclear distribution of the bulk of HSF1 ensures a rapid gene response to acute heat stress, our results suggest that the capture in the nucleus of molecules primed for activation in the cytosol may underlie responses to sustained proteotoxicity.
Collapse
Affiliation(s)
- Milos Vujanac
- DIBIT--San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | | | | |
Collapse
|
27
|
Paslaru L, Morange M, Mezger V. Phenotypic characterization of mouse embryonic fibroblasts lacking heat shock factor 2. J Cell Mol Med 2004; 7:425-35. [PMID: 14754511 PMCID: PMC6740138 DOI: 10.1111/j.1582-4934.2003.tb00245.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In murine cells, the heat shock response is regulated by a transcription factor, HSF1, which triggers the transcription of heat shock genes. HSF2 has been shown to be involved in meiosis and mouse brain development. We characterized the effects of the absence of HSF2 in mouse embryonic fibroblasts (MEFs). The temperature threshold of the heat shock response appeared lowered in Hsf2(-/-) MEFS as monitored by the synthesis of heat shock protein HSP70. In contrast to unstressed wild type MEFS, HSP70 and HSF1 are localized in the nucleus of unstressed Hsf2(-/-) MEFS, a characteristic of stressed cells. HSF1 is not activated for DNA-binding at unstressed temperature in Hsf2(-/-) MEFS. Therefore, the absence of HSF2 induces some but not all of the characteristics of the stress response. In addition, Hsf2(-/-) MEFS exhibited proliferation defects, altered morphology, remodeling of the fibronectin network.
Collapse
Affiliation(s)
- Liliana Paslaru
- Department of Biochemistry, "Carol Davila" University of Medicine and Pharmacy, Fundeni Hospital, Bucharest, Romania
| | | | | |
Collapse
|
28
|
McMillan DR, Christians E, Forster M, Xiao X, Connell P, Plumier JC, Zuo X, Richardson J, Morgan S, Benjamin IJ. Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function in mice. Mol Cell Biol 2002; 22:8005-14. [PMID: 12391166 PMCID: PMC134743 DOI: 10.1128/mcb.22.22.8005-8014.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the heat shock factor (HSF) family are evolutionarily conserved regulators that share a highly homologous DNA-binding domain. In mammals, HSF1 is the main factor controlling the stress-inducible expression of Hsp genes while the functions of HSF2 and HSF4 are less clear. Based on its developmental profile of expression, it was hypothesized that HSF2 may play an essential role in brain and heart development, spermatogenesis, and erythroid differentiation. To directly assess this hypothesis and better understand the underlying mechanisms that require HSF2, we generated Hsf2 knockout mice. Here, we report that Hsf2(-/-) mice are viable and fertile and exhibit normal life span and behavioral functions. We conclude that HSF2, most probably because its physiological roles are integrated into a redundant network of gene regulation and function, is dispensable for normal development, fertility, and postnatal psychomotor function.
Collapse
Affiliation(s)
- D Randy McMillan
- Departments of Internal Medicine. Pediatrics. Pathology. Division of Cell and Molecular Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yeh FL, Hsu T. Differential regulation of spontaneous and heat-induced HSP 70 expression in developing zebrafish (Danio rerio). THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 293:349-59. [PMID: 12210118 DOI: 10.1002/jez.10093] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A spontaneous high expression of heat shock protein 70 (HSP 70) was found to arise in zebrafish (Danio rerio) at the larval stage (84 hr after fertilization). The level of HSP 70 in 84-hr-old larvae was estimated to be six- to eightfold that of 12-hr-old embryos. As heat-induced HSP 70 synthesis in many eukaryotic organisms is known to be mediated by a transcriptional-dependent pathway activated by heat shock factor 1 (HSF-1), we then examined if the spontaneous and heat-induced HSP 70 synthesis in zebrafish were controlled by the same mechanism. Although the transient increase of a 62-kDa HSF-1-like polypeptide in 72- to 96-hr-old larvae seemed to correlate with the onset of the spontaneous HSP 70 production, an anti-HSF-1 antibody cocktail supershifted the heat shock element (HSE) binding complex induced by stressed but not by unstressed zebrafish extracts. Northern blot and quantitative RT-PCR analysis demonstrated the predominant presence of the cognate form of hsp 70 mRNA (hsc 70 mRNA) in developing zebrafish. The extent of heat-induced HSP 70 production in 84-hr-old larvae matched well with a dramatic increase in hsp 70 mRNA accumulation, while no apparent increase in total hsp 70 mRNA could be detected in 72- to 84-hr-old unstressed larvae by northern blot analysis. The stable expression of hsc 70 mRNA specific to beta-actin mRNA in normal zebrafish was confirmed by RT-PCR analysis. Hence, the spontaneous high expression of HSP 70 in zebrafish is believed to be controlled by a mechanism different from the HSF-1-dependent transcriptional activation of hsp 70 under heat stress. J. Exp. Zool. 293:349-359, 2002.
Collapse
Affiliation(s)
- Fu-Lung Yeh
- Institute of Marine Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China
| | | |
Collapse
|
30
|
Kallio M, Chang Y, Manuel M, Alastalo TP, Rallu M, Gitton Y, Pirkkala L, Loones MT, Paslaru L, Larney S, Hiard S, Morange M, Sistonen L, Mezger V. Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J 2002; 21:2591-601. [PMID: 12032072 PMCID: PMC125382 DOI: 10.1093/emboj/21.11.2591] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heat shock factor 2, one of the four vertebrate HSFs, transcriptional regulators of heat shock gene expression, is active during embryogenesis and spermatogenesis, with unknown functions and targets. By disrupting the Hsf2 gene, we show that, although the lack of HSF2 is not embryonic lethal, Hsf2(-/-) mice suffer from brain abnormalities, and meiotic and gameto genesis defects in both genders. The disturbances in brain are characterized by the enlargement of lateral and third ventricles and the reduction of hippocampus and striatum, in correlation with HSF2 expression in proliferative cells of the neuroepithelium and in some ependymal cells in adults. Many developing spermatocytes are eliminated via apoptosis in a stage-specific manner in Hsf2(-/-) males, and pachytene spermatocytes also display structural defects in the synaptonemal complexes between homologous chromosomes. Hsf2(-/-) females suffer from multiple fertility defects: the production of abnormal eggs, the reduction in ovarian follicle number and the presence of hemorrhagic cystic follicles are consistent with meiotic defects. Hsf2(-/-) females also display hormone response defects, that can be rescued by superovulation treatment, and exhibit abnormal rates of luteinizing hormone receptor mRNAs.
Collapse
Affiliation(s)
- Marko Kallio
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20520 Turku, Department of Biology, Abo Akademi University, Turku, Finland, UMR8541 and Animal Facilities, Ecole Normale Supérieure, F-75230 Paris cedex 05, France Present address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Present address: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK Present address: Developmental Genetics Program, Skirball Institute for Biomolecular Medicine, NYU Medical Center, New York,NY 10016, USA Corresponding author e-mail: M.Kallio, Y.Chang and M.Manuel contributed equally to this work
| | - Yunhua Chang
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20520 Turku, Department of Biology, Abo Akademi University, Turku, Finland, UMR8541 and Animal Facilities, Ecole Normale Supérieure, F-75230 Paris cedex 05, France Present address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Present address: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK Present address: Developmental Genetics Program, Skirball Institute for Biomolecular Medicine, NYU Medical Center, New York,NY 10016, USA Corresponding author e-mail: M.Kallio, Y.Chang and M.Manuel contributed equally to this work
| | - Martine Manuel
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20520 Turku, Department of Biology, Abo Akademi University, Turku, Finland, UMR8541 and Animal Facilities, Ecole Normale Supérieure, F-75230 Paris cedex 05, France Present address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Present address: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK Present address: Developmental Genetics Program, Skirball Institute for Biomolecular Medicine, NYU Medical Center, New York,NY 10016, USA Corresponding author e-mail: M.Kallio, Y.Chang and M.Manuel contributed equally to this work
| | - Tero-Pekka Alastalo
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20520 Turku, Department of Biology, Abo Akademi University, Turku, Finland, UMR8541 and Animal Facilities, Ecole Normale Supérieure, F-75230 Paris cedex 05, France Present address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Present address: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK Present address: Developmental Genetics Program, Skirball Institute for Biomolecular Medicine, NYU Medical Center, New York,NY 10016, USA Corresponding author e-mail: M.Kallio, Y.Chang and M.Manuel contributed equally to this work
| | - Murielle Rallu
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20520 Turku, Department of Biology, Abo Akademi University, Turku, Finland, UMR8541 and Animal Facilities, Ecole Normale Supérieure, F-75230 Paris cedex 05, France Present address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Present address: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK Present address: Developmental Genetics Program, Skirball Institute for Biomolecular Medicine, NYU Medical Center, New York,NY 10016, USA Corresponding author e-mail: M.Kallio, Y.Chang and M.Manuel contributed equally to this work
| | - Yorick Gitton
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20520 Turku, Department of Biology, Abo Akademi University, Turku, Finland, UMR8541 and Animal Facilities, Ecole Normale Supérieure, F-75230 Paris cedex 05, France Present address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Present address: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK Present address: Developmental Genetics Program, Skirball Institute for Biomolecular Medicine, NYU Medical Center, New York,NY 10016, USA Corresponding author e-mail: M.Kallio, Y.Chang and M.Manuel contributed equally to this work
| | - Lila Pirkkala
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20520 Turku, Department of Biology, Abo Akademi University, Turku, Finland, UMR8541 and Animal Facilities, Ecole Normale Supérieure, F-75230 Paris cedex 05, France Present address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Present address: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK Present address: Developmental Genetics Program, Skirball Institute for Biomolecular Medicine, NYU Medical Center, New York,NY 10016, USA Corresponding author e-mail: M.Kallio, Y.Chang and M.Manuel contributed equally to this work
| | - Marie-Thérèse Loones
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20520 Turku, Department of Biology, Abo Akademi University, Turku, Finland, UMR8541 and Animal Facilities, Ecole Normale Supérieure, F-75230 Paris cedex 05, France Present address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Present address: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK Present address: Developmental Genetics Program, Skirball Institute for Biomolecular Medicine, NYU Medical Center, New York,NY 10016, USA Corresponding author e-mail: M.Kallio, Y.Chang and M.Manuel contributed equally to this work
| | - Liliana Paslaru
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20520 Turku, Department of Biology, Abo Akademi University, Turku, Finland, UMR8541 and Animal Facilities, Ecole Normale Supérieure, F-75230 Paris cedex 05, France Present address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Present address: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK Present address: Developmental Genetics Program, Skirball Institute for Biomolecular Medicine, NYU Medical Center, New York,NY 10016, USA Corresponding author e-mail: M.Kallio, Y.Chang and M.Manuel contributed equally to this work
| | - Severine Larney
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20520 Turku, Department of Biology, Abo Akademi University, Turku, Finland, UMR8541 and Animal Facilities, Ecole Normale Supérieure, F-75230 Paris cedex 05, France Present address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Present address: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK Present address: Developmental Genetics Program, Skirball Institute for Biomolecular Medicine, NYU Medical Center, New York,NY 10016, USA Corresponding author e-mail: M.Kallio, Y.Chang and M.Manuel contributed equally to this work
| | - Sophie Hiard
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20520 Turku, Department of Biology, Abo Akademi University, Turku, Finland, UMR8541 and Animal Facilities, Ecole Normale Supérieure, F-75230 Paris cedex 05, France Present address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Present address: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK Present address: Developmental Genetics Program, Skirball Institute for Biomolecular Medicine, NYU Medical Center, New York,NY 10016, USA Corresponding author e-mail: M.Kallio, Y.Chang and M.Manuel contributed equally to this work
| | - Michel Morange
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20520 Turku, Department of Biology, Abo Akademi University, Turku, Finland, UMR8541 and Animal Facilities, Ecole Normale Supérieure, F-75230 Paris cedex 05, France Present address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Present address: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK Present address: Developmental Genetics Program, Skirball Institute for Biomolecular Medicine, NYU Medical Center, New York,NY 10016, USA Corresponding author e-mail: M.Kallio, Y.Chang and M.Manuel contributed equally to this work
| | - Lea Sistonen
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20520 Turku, Department of Biology, Abo Akademi University, Turku, Finland, UMR8541 and Animal Facilities, Ecole Normale Supérieure, F-75230 Paris cedex 05, France Present address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Present address: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK Present address: Developmental Genetics Program, Skirball Institute for Biomolecular Medicine, NYU Medical Center, New York,NY 10016, USA Corresponding author e-mail: M.Kallio, Y.Chang and M.Manuel contributed equally to this work
| | - Valérie Mezger
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20520 Turku, Department of Biology, Abo Akademi University, Turku, Finland, UMR8541 and Animal Facilities, Ecole Normale Supérieure, F-75230 Paris cedex 05, France Present address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Present address: Department of Biomedical Sciences, University of Edinburgh, Edinburgh, UK Present address: Developmental Genetics Program, Skirball Institute for Biomolecular Medicine, NYU Medical Center, New York,NY 10016, USA Corresponding author e-mail: M.Kallio, Y.Chang and M.Manuel contributed equally to this work
| |
Collapse
|
31
|
Kim M, Geum D, Khang I, Park YM, Kang BM, Lee KA, Kim K. Expression pattern of HSP25 in mouse preimplantation embryo: heat shock responses during oocyte maturation. Mol Reprod Dev 2002; 61:3-13. [PMID: 11774370 DOI: 10.1002/mrd.1125] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heat shock proteins (HSPs) are known to play an important role not only in various stress conditions such as exposure to heat shock, but also in normal development and/or differentiation. The role of small heat shock proteins such as HSP25 in early embryo development remains largely unknown. In the present study, we examined temporal and spatial expression patterns of HSP25 during mouse preimplantation embryo development. Reverse transcription-polymerase chain reaction (RT-PCR) showed that hsp25 mRNA was detected in unfertilized eggs. Hsp25 mRNA was induced by zygotic gene activation at 2-cell stage, decreased slightly at 4-cell, and re-increased at morula, with the highest level at blastocyst stage. Interestingly, another form of hsp25 variant of which 156 bp (52 a.a.) was truncated within the exon1 region was observed in all stages of preimplantation embryos. We also investigated the sub-cellular localization of HSP25 by fluorescence immunocytochemistry. HSP25 was detected in the cytoplasm under normal developmental condition. While acute heat shock (at 43 degrees C for 30 min) caused no significant changes in the sub-cellular localization of HSP25 in the developing mouse embryos, chronic heat shock (at 43 degrees C for 3 hr) resulted in a denser immunostaining of HSP25 in the nucleus than in the cytoplasm, indicating a nuclear translocation of HSP25 by heat shock. As hsp25 mRNA was detected in the unfertilized egg as a maternal transcript, we examined the expression of hsp25 mRNA with RT-PCR during oocyte maturation under normal and heat shock conditions. Hsp25 mRNA was detected at GV (germinal vesicle)-, GVBD (germinal vesicle breakdown)-, and MII (metaphase II)-oocytes. The expression of hsp25 mRNA was increased markedly by both acute (for 30 min and 1 hr) and chronic (for 4 hr) heat shock, but returned to the basal level during recovery from heat shock in a time-dependent manner, suggesting a thermo-protective role of HSP25. In contrast to preimplantation embryos, HSP25 was detected both in the cytoplasm and the nucleus except for the nucleolus, and the cellular localization was not altered by heat shock. Finally, we investigated the effect of heat shock on oocyte maturation. When GV-oocytes were exposed to acute heat shock (at 43 degrees C for 15 min to 1 hr), they underwent the GVBD and the PB (polar body) emission successfully. However, under more stringent heat shock conditions (at 43 degrees C for 2-4 hr), most oocytes were arrested at the GV-stage, and the first PB was not developed, indicating that chronic heat shock might be inhibitory to the mouse oocyte maturation. Taken together, these findings suggest that HSP25 is important for mouse preimplantation embryo development and oocyte maturation.
Collapse
Affiliation(s)
- Myungjin Kim
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Activation of zygotic gene expression in mammals. GENE EXPRESSION AT THE BEGINNING OF ANIMAL DEVELOPMENT 2002. [DOI: 10.1016/s1569-1799(02)12024-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Pirkkala L, Nykänen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 2001; 15:1118-31. [PMID: 11344080 DOI: 10.1096/fj00-0294rev] [Citation(s) in RCA: 709] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The heat shock response, characterized by increased expression of heat shock proteins (Hsps) is induced by exposure of cells and tissues to extreme conditions that cause acute or chronic stress. Hsps function as molecular chaperones in regulating cellular homeostasis and promoting survival. If the stress is too severe, a signal that leads to programmed cell death, apoptosis, is activated, thereby providing a finely tuned balance between survival and death. In addition to extracellular stimuli, several nonstressful conditions induce Hsps during normal cellular growth and development. The enhanced heat shock gene expression in response to various stimuli is regulated by heat shock transcription factors (HSFs). After the discovery of the family of HSFs (i.e., murine and human HSF1, 2, and 4 and a unique avian HSF3), the functional relevance of distinct HSFs is now emerging. HSF1, an HSF prototype, and HSF3 are responsible for heat-induced Hsp expression, whereas HSF2 is refractory to classical stressors. HSF4 is expressed in a tissue-specific manner; similar to HSF1 and HSF2, alternatively spliced isoforms add further complexity to its regulation. Recently developed powerful genetic models have provided evidence for both cooperative and specific functions of HSFs that expand beyond the heat shock response. Certain specialized functions of HSFs may even include regulation of novel target genes in response to distinct stimuli.
Collapse
Affiliation(s)
- L Pirkkala
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Finland
| | | | | |
Collapse
|
34
|
Christians E, Davis AA, Thomas SD, Benjamin IJ. Maternal effect of Hsf1 on reproductive success. Nature 2000; 407:693-4. [PMID: 11048707 DOI: 10.1038/35037669] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- E Christians
- Department of Histology and Embryology, Faculty of Veterinary Medecine, University of Liège, Belgium
| | | | | | | |
Collapse
|
35
|
Bevilacqua A, Fiorenza MT, Mangia F. A developmentally regulated GAGA box-binding factor and Sp1 are required for transcription of the hsp70.1 gene at the onset of mouse zygotic genome activation. Development 2000; 127:1541-51. [PMID: 10704399 DOI: 10.1242/dev.127.7.1541] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the onset of zygotic genome transcription in early two-cell mouse embryos by analyzing the regulation of hsp70.1, one of the first genes expressed after fertilization. The transcriptional activation of both an episomic hsp70 promoter and the endogenous hsp70.1 gene requires the contiguity of the GC box proximal to the TATA box with a GAGA box and involves GC box- and GAGA box-binding factors. In vivo transcription factor titrations with double-stranded oligodeoxyribonucleotides and antibodies pinpoint these factors as Sp1 and a novel murine GAGA box-binding factor, which is structurally related to the Drosophila GAGA factor and acts as transcriptional coactivator/potentiator of Sp1. Mouse unfertilized eggs and one-cell and two-cell embryos display a GAGA box-binding activity of maternal origin that disappears at the four-cell stage and is also abundant in the gonads, but is barely detectable in other adult tissues. In light of the well-established nucleosome-disruption role of the Drosophila GAGA factor, these findings suggest a novel mechanism of enhancer-independent gene derepression in early mouse embryos.
Collapse
Affiliation(s)
- A Bevilacqua
- Department of Psychology and Department of Histology and Medical Embryology, La Sapienza University of Rome, Via Borelli 50, Italy
| | | | | |
Collapse
|
36
|
Yeh FL, Hsu T. Detection of a spontaneous high expression of heat shock protein 70 in developing zebrafish (Danio rerio). Biosci Biotechnol Biochem 2000; 64:592-5. [PMID: 10803959 DOI: 10.1271/bbb.64.592] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A spontaneous high expression of heat shock protein 70 (HSP 70) was detected in zebrafish (Danio rerio) at early larval stage (84 h after fertilization), but the HSP 70 level was either low or barely detectable in 12, 24, 36, 60, and 108 h after fertilization. The extracts of zebrafish at 80 and 84 h after fertilization formed a clear protein-DNA complex with a probe containing heat shock elements (HSEs), suggesting that this spontaneous expression of HSP 70 may be turned on via the binding of stage-specific HSE-binding factors to HSP 70 gene promotor. The protein-HSE complexes produced by the spontaneous binding, however, were found to be different from those formed by the extracts of heat-treated zebrafish in electrophoretic mobility.
Collapse
Affiliation(s)
- F L Yeh
- Institute of Marine Biotechnology, National Taiwan Ocean University, Keelung, Republic of China
| | | |
Collapse
|
37
|
Christians E, Boiani M, Garagna S, Dessy C, Redi CA, Renard JP, Zuccotti M. Gene expression and chromatin organization during mouse oocyte growth. Dev Biol 1999; 207:76-85. [PMID: 10049566 DOI: 10.1006/dbio.1998.9157] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse oocytes can be classified according to their chromatin organization and the presence [surrounded nucleolus (SN) oocytes] or absence [nonsurrounded nucleolus (NSN) oocytes] of a ring of Hoechst-positive chromatin around the nucleolus. Following fertilization only SN oocytes are able to develop beyond the two-cell stage. These studies indicate a correlation between SN and NSN chromatin organization and the developmental competence of the female gamete, which may depend on gene expression. In the present study, we have used the HSP70.1Luc transgene (murine HSP70.1 promoter + reporter gene firefly luciferase) to analyze gene expression in oocytes isolated from ovaries of 2-day- to 13-week-old females. Luciferase was assayed on oocytes after classification as SN or NSN type. Our data show that SN oocytes always exhibit a higher level of luciferase activity, demonstrating a higher gene expression in this category. Only after meiotic resumption, metaphase II oocytes derived from NSN or SN oocytes acquire the same level of transgene expression. We suggest that the limited availability of transcripts and corresponding proteins, excluded from the cytoplasm until GVBD in NSN oocytes, could explain why these oocytes have a lower ability to sustain embryonic development beyond the two-cell stage at which major zygotic transcription occurs. With this study we have furthered our knowledge of epigenetic regulation of gene expression in oogenesis.
Collapse
Affiliation(s)
- E Christians
- Faculté de Médecine Vétérinaire, Université de Liège, 20, Boulevard de Colonster, Liège, 4000, Belgium
| | | | | | | | | | | | | |
Collapse
|
38
|
Muscarella DE, Rachlinski MK, Bloom SE. Expression of cell death regulatory genes and limited apoptosis induction in avian blastodermal cells. Mol Reprod Dev 1998; 51:130-42. [PMID: 9740320 DOI: 10.1002/(sici)1098-2795(199810)51:2<130::aid-mrd2>3.0.co;2-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Apoptosis is a well-established cellular mechanism for selective cell deletion during development. However, little is known about the expression of an apoptotic pathway and its role in determining the relative sensitivity of the early, pre-gastrula, avian embryo to stress-induced cell death. We examined the sensitivity of avian blastodermal cells to engage in apoptosis upon exposure to etoposide, a topoisomerase II-inhibitor that rapidly and efficiently induces apoptosis in many cell types. We found that while the blastodermal cells are capable of engaging in apoptosis, they are highly resistant to such induction with respect to both concentration of drug required and length of exposure, even when compared to a tumor cell line with a known multi-drug resistant phenotype. Additionally, we assessed the expression of several candidate regulatory genes in blastodiscs from infertile eggs (i.e., maternal RNA transcripts), blastodermal cells immediately following oviposition, and various stages of early development up to gastrulation. This analysis revealed that several genes whose products have anti-apoptotic activity, including bcl-2, bcl-xL, hsp70, grp78 and the glutathione S-transferases, are expressed as early as the stage 1 embryo in the newly oviposited egg. These transcripts are also found in the infertile blastodisc, suggesting a role for maternally derived transcripts in the protection of the oocyte and zygote. Significantly, constitutive levels of hsp70 mRNA exceeded those of the other anti-apoptotic genes in the blastodermal cells. These results contribute to an emerging picture of stress resistance at the earliest stages of avian embryo development which involves multiple anti-apoptotic genes that act at different regulatory points in the apoptotic cascade.
Collapse
Affiliation(s)
- D E Muscarella
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
39
|
Affiliation(s)
- I R Brown
- Division of Life Sciences, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
40
|
Morange M, Favet N, Loones MT, Manuel M, Mezger V, Michel E, Rallu M, Sage J. Heat-shock genes and development. Ann N Y Acad Sci 1998; 851:117-22. [PMID: 9668613 DOI: 10.1111/j.1749-6632.1998.tb08984.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M Morange
- Unité de Génétique Moléculaire, Ecole Normale Supérieure, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Alastalo TP, Lönnström M, Leppä S, Kaarniranta K, Pelto-Huikko M, Sistonen L, Parvinen M. Stage-specific expression and cellular localization of the heat shock factor 2 isoforms in the rat seminiferous epithelium. Exp Cell Res 1998; 240:16-27. [PMID: 9570917 DOI: 10.1006/excr.1997.3926] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat shock transcription factors (HSFs) are generally known as regulators of cellular stress response. The mammalian HSF1 functions as a classical stress factor, whereas HSF2 is active during certain developmental processes, including embryogenesis and spermatogenesis. In the present study, we examined HSF2 expression at specific stages of the rat seminiferous epithelial cycle. We found that expression of the alternatively spliced HSF2-alpha and HSF2-beta isoforms is developmentally regulated in a stage-specific manner. Studies on cellular localization demonstrated that HSF2 is present in the nuclei of early pachytene spermatocytes at stages I-IV and in the nuclei of round spermatids at stages V-VIIab. In contrast a strong HSF2 immunoreactivity was detected in small distinct cytoplasmic regions from zygotene spermatocytes to maturation phase spermatids. Immunoelectron microscopic analysis revealed that these structures are mainly cytoplasmic bridges between germ cells. Our results on cellular localization of HSF2 and stage-specific expression of the HSF2 isoforms indicate that HSF2, in addition to its function as a nuclear transcription factor, may be involved in other cellular processes during spermatogenesis, possibly in the sharing process of gene products between the germ cells.
Collapse
Affiliation(s)
- T P Alastalo
- Department of Anatomy, University of Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
42
|
De Sousa PA, Caveney A, Westhusin ME, Watson AJ. Temporal patterns of embryonic gene expression and their dependence on oogenetic factors. Theriogenology 1998; 49:115-28. [PMID: 10732125 DOI: 10.1016/s0093-691x(97)00406-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Successful development of a fertilized egg beyond early cleavage divisions requires the de novo initiation and subsequent regulation of embryonic transcription. The egg provides the specialized environment within which the newly formed zygotic nucleus initiates its developmental program and as a result plays an obligatory role in its regulation. Although the precise timing of the onset of embryonic transcription in mammals varies during early cleavage divisions, several common elements exist. In the present essay we review the current literature on the timing and control of embryonic gene expression in mammals, and discuss recent findings from our laboratory on gene expression patterns in bovine embryos and their relation to other species, and zygotic gene activation (ZGA). Lastly, we discuss the putative role of maternally inherited factors in conferring developmental competence to the blastocyst stage, and a method to identify such factors present in oocytes as mRNA.
Collapse
Affiliation(s)
- P A De Sousa
- Department of Obstetrics and Gynaecology, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|
43
|
Rallu M, Loones M, Lallemand Y, Morimoto R, Morange M, Mezger V. Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc Natl Acad Sci U S A 1997; 94:2392-7. [PMID: 9122205 PMCID: PMC20098 DOI: 10.1073/pnas.94.6.2392] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The spontaneous expression of heat shock genes during development is well documented in many animal species, but the mechanisms responsible for this developmental regulation are only poorly understood. In vertebrates, additional heat shock transcription factors, distinct from the heat shock factor 1 (HSF1) involved in the stress response, were suggested to be involved in this developmental control. In particular, the mouse HSF2 has been found to be active in testis and during preimplantation development. However, the role of HSF2 and its mechanism of activation have remained elusive due to the paucity of data on its expression during development. In this study, we have examined HSF2 expression during the postimplantation phase of mouse development. Our data show a developmental regulation of HSF2, which is expressed at least until 15.5 days of embryogenesis. It becomes restricted to the central nervous system during the second half of gestation. It is expressed in the ventricular layer of the neural tube which contains mitotically active cells but not in postmitotic neurons. Parallel results were obtained for mRNA, protein, and activity levels, demonstrating that the main level of control was transcriptional. The detailed analysis of the activity of a luciferase reporter gene under the control of the hsp70.1 promoter, as well as the description of the protein expression patterns of the major heat shock proteins in the central nervous system, show that HSF2 and heat shock protein expression domains do not coincide. This result suggests that HFS2 might be involved in other regulatory developmental pathways and paves the way to new functional approaches.
Collapse
MESH Headings
- Animals
- Blastocyst
- Brain/embryology
- Brain/metabolism
- Carcinoma, Embryonal
- Crosses, Genetic
- Embryo, Mammalian
- Embryonic and Fetal Development
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Gestational Age
- Heat-Shock Proteins/biosynthesis
- Luciferases/biosynthesis
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred Strains
- RNA, Messenger/biosynthesis
- Recombinant Fusion Proteins/biosynthesis
- Testis/embryology
- Transcription Factors/biosynthesis
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Rallu
- Laboratoire de Biologie Moleculaire du Stress, Ecole Normale Superieure, Paris, France.
| | | | | | | | | | | |
Collapse
|