1
|
Chen C, Huang FW, Huang SS, Huang JS. IGFBP-3 and TGF-β inhibit growth in epithelial cells by stimulating type V TGF-β receptor (TβR-V)-mediated tumor suppressor signaling. FASEB Bioadv 2021; 3:709-729. [PMID: 34485840 PMCID: PMC8409558 DOI: 10.1096/fba.2021-00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The TGF-β type V receptor (TβR-V) mediates growth inhibition by IGFBP-3 and TGF-β in epithelial cells and loss of TβR-V expression in these cells leads to development of carcinoma. The mechanisms by which TβR-V mediates growth inhibition (tumor suppressor) signaling remain elusive. Previous studies revealed that IGFBP-3 and TGF-β inhibit growth in epithelial cells by stimulating TβR-V-mediated IRS-1/2-dependent activation and cytoplasm-to-nucleus translocation of IGFBP-3- or TGF-β-stimulated protein phosphatase (PPase), resulting in dephosphorylation of pRb-related proteins (p107, p130) or pRb, and growth arrest. To define the signaling, we characterized/identified the IGFBP-3- and TGF-β-stimulated PPases in cell lysates and nucleus fractions in Mv1Lu cells treated with IGFBP-3 and TGF-β, using a cell-free assay with 32P-labeled casein as a substrate. Both IGFBP-3- and TGF-β-stimulated PPase activities in cell lysates are abolished when cells are co-treated with TGF-β/IGFBP-3 antagonist or RAP (LRP-1/TβR-V antagonist). However, the IGFBP-3-stimulated PPase activity, but not TGF-β-stimulated PPase activity, is sensitive to inhibition by okadaic acid (OA). In addition, OA or PP2Ac siRNA reverses IGFBP-3 growth inhibition, but not TGF-β growth inhibition, in Mv1Lu and 32D cells. These suggest that IGFBP-3- and TGF-β-stimulated PPases are identical to PP2A and PP1, respectively. By Western blot/phosphorimager/immunofluorescence-microscopy analyses, IGFBP-3 and TGF-β stimulate TβR-V-mediated IRS-2-dependent activation and cytoplasm-to-nucleus translocation of PP2Ac and PP1c, resulting in dephosphorylation of p130/p107 and pRb, respectively, and growth arrest. Small molecule TGF-β enhancers, which potentiate TGF-β growth inhibition by enhancing TβR-I-TβR-II-mediated canonical signaling and thus activating TβR-V-mediated tumor suppressor signaling cascade (TβR-V/IRS-2/PP1/pRb), could be used to prevent and treat carcinoma.
Collapse
Affiliation(s)
- Chun‐Lin Chen
- Department of Biological ScienceNational Sun Yat‐sen UniversityKaohsiungTaiwan
- Departments of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMOUSA
| | - Franklin W. Huang
- Division of Hematology and OncologyDepartment of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | | | - Jung San Huang
- Departments of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMOUSA
| |
Collapse
|
2
|
Yang Y, Ye WL, Zhang RN, He XS, Wang JR, Liu YX, Wang Y, Yang XM, Zhang YJ, Gan WJ. The Role of TGF- β Signaling Pathways in Cancer and Its Potential as a Therapeutic Target. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6675208. [PMID: 34335834 PMCID: PMC8321733 DOI: 10.1155/2021/6675208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway mediates various biological functions, and its dysregulation is closely related to the occurrence of malignant tumors. However, the role of TGF-β signaling in tumorigenesis and development is complex and contradictory. On the one hand, TGF-β signaling can exert antitumor effects by inhibiting proliferation or inducing apoptosis of cancer cells. On the other hand, TGF-β signaling may mediate oncogene effects by promoting metastasis, angiogenesis, and immune escape. This review summarizes the recent findings on molecular mechanisms of TGF-β signaling. Specifically, this review evaluates TGF-β's therapeutic potential as a target by the following perspectives: ligands, receptors, and downstream signaling. We hope this review can trigger new ideas to improve the current clinical strategies to treat tumors related to the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Yun Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Long Ye
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Ruo-Nan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Jing-Ru Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Xuan Liu
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Yi Wang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Xue-Mei Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Juan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Soochow University, Suzhou 215124, China
| |
Collapse
|
3
|
Brosinsky P, Bornbaum J, Warga B, Schulz L, Schlüter KD, Ghigo A, Hirsch E, Schulz R, Euler G, Heger J. PI3K as Mediator of Apoptosis and Contractile Dysfunction in TGFβ 1-Stimulated Cardiomyocytes. BIOLOGY 2021; 10:biology10070670. [PMID: 34356525 PMCID: PMC8301398 DOI: 10.3390/biology10070670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND TGFβ1 is a growth factor that plays a major role in the remodeling process of the heart by inducing cardiomyocyte dysfunction and apoptosis, as well as fibrosis thereby restricting heart function. TGFβ1 mediates its effect via the TGFβ receptor I (ALK5) and the activation of SMAD transcription factors, but TGFβ1 is also known as activator of phosphoinositide-3-kinase (PI3K) via the non-SMAD signaling pathway. The aim of this study was to investigate whether PI3K is also involved in TGFβ1-induced cardiomyocytes apoptosis and contractile dysfunction. METHODS AND RESULTS Incubation of isolated ventricular cardiomyocytes with TGFβ1 resulted in impaired contractile function. Pre-incubation of cells with the PI3K inhibitor Ly294002 or the ALK5 inhibitor SB431542 attenuated the decreased cell shortening in TGFβ1-stimulated cells. Additionally, TGFβ-induced apoptosis was significantly reduced by the PI3K inhibitor Ly294002. Administration of a PI3Kγ-specific inhibitor AS605240 abolished the TGFβ effect on apoptosis and cell shortening. This was also confirmed in cardiomyocytes from PI3Kγ KO mice. Induction of SMAD binding activity and the TGFβ target gene collagen 1 could be blocked by the PI3K inhibitor Ly294002, but not by the specific PI3Kγ inhibitor AS605240. CONCLUSIONS TGFβ1-induced SMAD activation, cardiomyocyte apoptosis, and impaired cell shortening are mediated via both, the ALK5 receptor and PI3K, in adult cardiomyocytes. PI3Kγ specifically contributes to apoptosis induction and impairment of contractile function independent of SMAD signaling.
Collapse
Affiliation(s)
- Paulin Brosinsky
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Julia Bornbaum
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Björn Warga
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Lisa Schulz
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Klaus-Dieter Schlüter
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy; (A.G.); (E.H.)
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy; (A.G.); (E.H.)
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Gerhild Euler
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Jacqueline Heger
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
- Correspondence: ; Tel.: +49-641-99-47215
| |
Collapse
|
4
|
Lee MS, Wan J, Goldman D. Tgfb3 collaborates with PP2A and notch signaling pathways to inhibit retina regeneration. eLife 2020; 9:55137. [PMID: 32396062 PMCID: PMC7250569 DOI: 10.7554/elife.55137] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Neuronal degeneration in the zebrafish retina stimulates Müller glia (MG) to proliferate and generate multipotent progenitors for retinal repair. Controlling this proliferation is critical to successful regeneration. Previous studies reported that retinal injury stimulates pSmad3 signaling in injury-responsive MG. Contrary to these findings, we report pSmad3 expression is restricted to quiescent MG and suppressed in injury-responsive MG. Our data indicates that Tgfb3 is the ligand responsible for regulating pSmad3 expression. Remarkably, although overexpression of either Tgfb1b or Tgfb3 can stimulate pSmad3 expression in the injured retina, only Tgfb3 inhibits injury-dependent MG proliferation; suggesting the involvement of a non-canonical Tgfb signaling pathway. Furthermore, inhibition of Alk5, PP2A or Notch signaling rescues MG proliferation in Tgfb3 overexpressing zebrafish. Finally, we report that this Tgfb3 signaling pathway is active in zebrafish MG, but not those in mice, which may contribute to the different regenerative capabilities of MG from fish and mammals.
Collapse
Affiliation(s)
- Mi-Sun Lee
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Jin Wan
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Daniel Goldman
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| |
Collapse
|
5
|
Slattery K, Gardiner CM. NK Cell Metabolism and TGFβ - Implications for Immunotherapy. Front Immunol 2019; 10:2915. [PMID: 31921174 PMCID: PMC6927492 DOI: 10.3389/fimmu.2019.02915] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
NK cells are innate lymphocytes which play an essential role in protection against cancer and viral infection. Their functions are dictated by many factors including the receptors they express, cytokines they respond to and changes in the external environment. These cell processes are regulated within NK cells at many levels including genetic, epigenetic and expression (RNA and protein) levels. The last decade has revealed cellular metabolism as another level of immune regulation. Specific immune cells adopt metabolic configurations that support their functions, and this is a dynamic process with cells undergoing metabolic reprogramming during the course of an immune response. Upon activation with pro-inflammatory cytokines, NK cells upregulate both glycolysis and oxphos metabolic pathways and this supports their anti-cancer functions. Perturbation of these pathways inhibits NK cell effector functions. Anti-inflammatory cytokines such as TGFβ can inhibit metabolic changes and reduce functional outputs. Although a lot remains to be learned, our knowledge of potential molecular mechanisms involved is growing quickly. This review will discuss our current knowledge on the role of TGFβ in regulating NK cell metabolism and will draw on a wider knowledge base regarding TGFβ regulation of cellular metabolic pathways, in order to highlight potential ways in which TGFβ might be targeted to contribute to the exciting progress that is being made in terms of adoptive NK cell therapies for cancer.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
6
|
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal 2019; 12:12/570/eaav5183. [PMID: 30808818 DOI: 10.1126/scisignal.aav5183] [Citation(s) in RCA: 494] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Encoded in mammalian cells by 33 genes, the transforming growth factor-β (TGF-β) family of secreted, homodimeric and heterodimeric proteins controls the differentiation of most, if not all, cell lineages and many aspects of cell and tissue physiology in multicellular eukaryotes. Deregulation of TGF-β family signaling leads to developmental anomalies and disease, whereas enhanced TGF-β signaling contributes to cancer and fibrosis. Here, we review the fundamentals of the signaling mechanisms that are initiated upon TGF-β ligand binding to its cell surface receptors and the dependence of the signaling responses on input from and cooperation with other signaling pathways. We discuss how cells exquisitely control the functional presentation and activation of heteromeric receptor complexes of transmembrane, dual-specificity kinases and, thus, define their context-dependent responsiveness to ligands. We also introduce the mechanisms through which proteins called Smads act as intracellular effectors of ligand-induced gene expression responses and show that the specificity and impressive versatility of Smad signaling depend on cross-talk from other pathways. Last, we discuss how non-Smad signaling mechanisms, initiated by distinct ligand-activated receptor complexes, complement Smad signaling and thus contribute to cellular responses.
Collapse
Affiliation(s)
- Rik Derynck
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Erine H Budi
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Prestigiacomo V, Suter-Dick L. Nrf2 protects stellate cells from Smad-dependent cell activation. PLoS One 2018; 13:e0201044. [PMID: 30028880 PMCID: PMC6054401 DOI: 10.1371/journal.pone.0201044] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatic stellate cells (HSC) orchestrate the deposition of extracellular matrix (ECM) and are the primary effector of liver fibrosis. Several factors, including TGF-β1, PDGF and oxidative stress, have been shown to trigger HSC activation. However, the involvement of cellular defence mechanisms, such as the activation of antioxidant response by Nrf2/Keap1 in the modulation of HSC activation is not known. The aim of this work was to elucidate the role of Nrf2 pathway in HSC trans-differentiation involved in the development of fibrosis. To this end, we repressed Nrf2 and Keap1 expression in HSC with specific siRNAs. We then assessed activation markers, as well as proliferation and migration, in both primary and immortalised human HSCs exposed to Smad inhibitors (SB-431542 hydrate and SB-525334), TGF-β1 and/or PDGF. Our results indicate that knocking down Nrf2 induces HSC activation, as shown by an increase in αSMA-positive cells and by gene expression induction of ECM components (collagens and fibronectin). HSC with reduced Nrf2-levels also showed an increase in migration and a decrease in proliferation. We could also demonstrate that the activation of Nrf2-deficient HSC involves the TGF-β1/Smad pathway, as the activation was successfully inhibited with the two tested Smad inhibitors. Moreover, TGF-β1 elicited a stronger induction of HSC activation markers in Nrf2 deficient cells than in wild type cells. Thus, our data suggest that Nrf2 limits HSCs activation, through the inhibition of the TGF-β1/Smad pathway in HSCs.
Collapse
Affiliation(s)
- Vincenzo Prestigiacomo
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
- University of Basel, Department of Pharmaceutical Sciences, Basel, Switzerland
- * E-mail:
| | - Laura Suter-Dick
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| |
Collapse
|
8
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
9
|
Kim GY, Lim HJ, Park HY. Binding of coronin 1B to TβRI negatively regulates the TGFβ1 signaling pathway. Biochem Biophys Res Commun 2017. [PMID: 28625921 DOI: 10.1016/j.bbrc.2017.06.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Coronin 1B is an actin-binding protein that regulates several actin-dependent cellular processes including migration and endocytosis. However, the role of coronin 1B in the tumor growth factor (TGF)β signaling pathway is largely unknown. Here, we investigated whether coronin 1B affects the TGFβ signaling cascade and found that coronin 1B negatively regulates the TGFβ signaling pathway. Immunoprecipitation and glutathione-S-transferase-pulldown assays revealed that coronin 1B directly associated with TGFβ receptor I (TβRI). Overexpression of coronin 1B inhibited the TGFβ1-induced interaction between TβRI and Smad2/3 in plasmid-transfected HEK293T cells. Coronin 1B was basally bound to TβRI in vascular smooth muscle cells (VSMCs), but TGFβ1 stimulation did not affect their association, suggesting constitutive binding between coronin 1B and TβRI. Overexpression of coronin 1B suppressed TGFβ1-induced activation of a Smad-binding element-luciferase reporter construct and a plasminogen activator inhibitor (PAI)-1 promoter-luciferase reporter construct in HEK293T cells. By contrast, depletion of coronin 1B by siRNA transfection increased TGFβ1-induced Smad2/3 phosphorylation and PAI-1 expression in VSMCs. These results suggest that coronin 1B regulates the TGFβ1 signaling cascade by constitutively interacting with TβRI and inhibiting the binding of Smad2/3 to TβRI in response to TGFβ1 stimulation.
Collapse
Affiliation(s)
- Geun-Young Kim
- Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Research Institute of Health, Cheongju, Republic of Korea; Jeju National Quarantine Station, Centers for Disease Control & Prevention, Jeju, Republic of Korea
| | - Hyun-Joung Lim
- Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Research Institute of Health, Cheongju, Republic of Korea
| | - Hyun-Young Park
- Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Research Institute of Health, Cheongju, Republic of Korea.
| |
Collapse
|
10
|
Lange L, Marks M, Liu J, Wittler L, Bauer H, Piehl S, Bläß G, Timmermann B, Herrmann BG. Patterning and gastrulation defects caused by the tw18 lethal are due to loss of Ppp2r1a. Biol Open 2017; 6:752-764. [PMID: 28619992 PMCID: PMC5483016 DOI: 10.1242/bio.023200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mouse t haplotype, a variant 20 cM genomic region on Chromosome 17, harbors 16 embryonic control genes identified by recessive lethal mutations isolated from wild mouse populations. Due to technical constraints so far only one of these, the tw5 lethal, has been cloned and molecularly characterized. Here we report the molecular isolation of the tw18 lethal. Embryos carrying the tw18 lethal die from major gastrulation defects commencing with primitive streak formation at E6.5. We have used transcriptome and marker gene analyses to describe the molecular etiology of the tw18 phenotype. We show that both WNT and Nodal signal transduction are impaired in the mutant epiblast, causing embryonic patterning defects and failure of primitive streak and mesoderm formation. By using a candidate gene approach, gene knockout by homologous recombination and genetic rescue, we have identified the gene causing the tw18 phenotype as Ppp2r1a, encoding the PP2A scaffolding subunit PR65alpha. Our work highlights the importance of phosphatase 2A in embryonic patterning, primitive streak formation, gastrulation, and mesoderm formation downstream of WNT and Nodal signaling.
Collapse
Affiliation(s)
- Lisette Lange
- Max Planck Institute for Molecular Genetics, Department Developmental Genetics, Ihnestraße 63-73, Berlin 14195, Germany.,Free University Berlin, Department of Biology, Chemistry and Pharmacy, Takustrasse 3, Berlin 14195, Germany
| | - Matthias Marks
- Max Planck Institute for Molecular Genetics, Department Developmental Genetics, Ihnestraße 63-73, Berlin 14195, Germany
| | - Jinhua Liu
- Max Planck Institute for Molecular Genetics, Department Developmental Genetics, Ihnestraße 63-73, Berlin 14195, Germany
| | - Lars Wittler
- Max Planck Institute for Molecular Genetics, Department Developmental Genetics, Ihnestraße 63-73, Berlin 14195, Germany
| | - Hermann Bauer
- Max Planck Institute for Molecular Genetics, Department Developmental Genetics, Ihnestraße 63-73, Berlin 14195, Germany
| | - Sandra Piehl
- Max Planck Institute for Molecular Genetics, Department Developmental Genetics, Ihnestraße 63-73, Berlin 14195, Germany
| | - Gabriele Bläß
- Max Planck Institute for Molecular Genetics, Department Developmental Genetics, Ihnestraße 63-73, Berlin 14195, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, Ihnestraße 63-73, Berlin 14195, Germany
| | - Bernhard G Herrmann
- Max Planck Institute for Molecular Genetics, Department Developmental Genetics, Ihnestraße 63-73, Berlin 14195, Germany .,Charité-University Medicine Berlin, Institute for Medical Genetics, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany
| |
Collapse
|
11
|
Molecular cloning, expression and functional analysis of three subunits of protein phosphatase 2A (PP2A) from black tiger shrimps (Penaeus monodon). Comp Biochem Physiol B Biochem Mol Biol 2017; 204:77-89. [DOI: 10.1016/j.cbpb.2016.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/24/2016] [Accepted: 11/28/2016] [Indexed: 01/17/2023]
|
12
|
Abstract
Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Abstract
Transforming growth factor β (TGF-β) family members signal via heterotetrameric complexes of type I and type II dual specificity kinase receptors. The activation and stability of the receptors are controlled by posttranslational modifications, such as phosphorylation, ubiquitylation, sumoylation, and neddylation, as well as by interaction with other proteins at the cell surface and in the cytoplasm. Activation of TGF-β receptors induces signaling via formation of Smad complexes that are translocated to the nucleus where they act as transcription factors, as well as via non-Smad pathways, including the Erk1/2, JNK and p38 MAP kinase pathways, and the Src tyrosine kinase, phosphatidylinositol 3'-kinase, and Rho GTPases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
14
|
The Discovery and Early Days of TGF-β: A Historical Perspective. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021865. [PMID: 27328871 DOI: 10.1101/cshperspect.a021865] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming growth factors (TGFs) were discovered as activities that were secreted by cancer cells, and later by normal cells, and had the ability to phenotypically and reversibly transform immortalized fibroblasts. TGF-β distinguished itself from TGF-α because it did not bind to the same epidermal growth factor (EGF) receptor as TGF-α and, therefore, acted through different cell-surface receptors and signaling mediators. This review summarizes the discovery of TGF-β, the early developments in its molecular and biological characterization with its many biological activities in different cell and tissue contexts and its roles in disease, the realization that there is a family of secreted TGF-β-related proteins with many differentiation functions in development and activities in normal cell and tissue physiology, and the subsequent identification and characterization of the receptors and effectors that mediate TGF-β family signaling responses.
Collapse
|
15
|
Abstract
Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| | - Yongna Xing
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
16
|
Abstract
TGF-β is a prototype of the TGF-β cytokine superfamily and exerts multiple regulatory effects on cell activities. It signals through two types of membrane-bound serine/threonine kinase receptors. Upon TGF-β binding, the type II receptor TβRII recruits the type I receptor TβRI and form a functional heterocomplex. TβRII trans-phosphorylates the GS region of TβRI, thus triggering its kinase activity. Activated TβRI proceeds to activate downstream Smad2/3. Signal intensity and duration through the availability, activity and destiny of TGF-β receptors are finely controlled by multiple posttranslational modifications such as phosphorylation, ubiquitination, and neddylation. This chapter introduces methods for examination of these modifications of TGF-β receptors.
Collapse
Affiliation(s)
- Xiaohua Yan
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Abstract
In cells responding to extracellular polypeptide ligands, regulatory mechanisms at the level of cell surface receptors are increasingly seen to define the nature of the ligand-induced signaling responses. Processes that govern the levels of receptors at the plasma membrane, including posttranslational modifications, are crucial to ensure receptor function and specify the downstream signals. Indeed, extracellular posttranslational modifications of the receptors help define stability and ligand binding, while intracellular modifications mediate interactions with signaling mediators and accessory proteins that help define the nature of the signaling response. The use of various molecular biology and biochemistry techniques, based on chemical crosslinking, e.g., biotin or radioactive labeling, immunofluorescence to label membrane receptors and flow cytometry, allows for quantification of changes of cell surface receptor presentation. Here, we discuss recent progress in our understanding of the regulation of TGF-β receptors, i.e., the type I (TβRI) and type II (TβRII) TGF-β receptors, and describe basic methods to identify and quantify TGF-β cell surface receptors.
Collapse
Affiliation(s)
- Erine H Budi
- Department of Cell and Tissue Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Programs in Cell Biology, and Developmental and Stem Cell Biology, University of California, San Francisco, CA, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, USA
| | - Rik Derynck
- Department of Cell and Tissue Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Programs in Cell Biology, and Developmental and Stem Cell Biology, University of California, San Francisco, CA, USA.
| |
Collapse
|
18
|
Kurimchak A, Graña X. PP2A: more than a reset switch to activate pRB proteins during the cell cycle and in response to signaling cues. Cell Cycle 2015; 14:18-30. [PMID: 25483052 PMCID: PMC4612414 DOI: 10.4161/15384101.2014.985069] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In their active hypophosphorylated state, members of the retinoblastoma family of pocket proteins negatively regulate cell cycle progression at least in part by repressing expression of E2F-dependent genes. Mitogen-dependent activation of G1 and G1/S Cyclin Dependent Kinases (CDKs) results in coordinated hyperphosphorylation and inactivation of these proteins, which no longer bind and repress E2Fs. S and G2/M CDKs maintain pocket protein hyperphosphorylated through the end of mitosis. The inactivating action of inducible CDKs is opposed by the Ser/Thr protein phosphatases PP2A and PP1. Various trimeric PP2A holoenzymes have been implicated in dephosphorylation of pocket proteins in response to specific cellular signals and stresses or as part of an equilibrium with CDKs throughout the cell cycle. PP1 has specifically been implicated in dephosphorylation of pRB in late mitosis and early G1. This review is particularly focused on the emerging role of PP2A as a major hub for integration of growth suppressor signals that require rapid inactivation of pocket proteins. Of note, activation of particular PP2A holoenzymes triggers differential activation of pocket proteins in the presence of active CDKs.
Collapse
Affiliation(s)
- Alison Kurimchak
- a Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry; Temple University School of Medicine ; Philadelphia , PA USA
| | | |
Collapse
|
19
|
Hepatocyte-specific ablation of PP2A catalytic subunit α attenuates liver fibrosis progression via TGF-β1/Smad signaling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:794862. [PMID: 25710025 PMCID: PMC4332469 DOI: 10.1155/2015/794862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 02/06/2023]
Abstract
Protein phosphatase 2A (PP2A), a family of the major serine/threonine phosphatases in cells, regulates many aspects of physiological processes. However, isoform-specific substrates and the biological role of each specific member of the PP2A family remain largely unknown. In this study, we investigated whether PP2A catalytic subunit Cα (PP2Acα) is involved in chronic hepatic injury and fibrosis. A hepatocyte-specific PP2Acα ablation mice model was established to examine the effect of PP2Acα on carbon tetrachloride- (CCl4-) induced chronic hepatic injury and fibrosis. Our results showed that PP2Acα knockout mice were less susceptible to chronic CCl4-induced liver injury as evidenced by lower levels of serum alanine aminotransferase and aspartate aminotransferase, decreased hepatocyte proliferation, and increased rate of apoptotic removal of the injured hepatocytes. PP2Acα knockout mice also displayed a lesser extent of liver fibrosis as a significant decrease in the proportion of α-smooth muscle actin-expressing cells and collagen deposition was observed in their liver tissues. Furthermore, the levels of serum TGF-β1 and hepatocytic Smad phosphorylation were reduced in the PP2Acα knockout mice. These data suggest that hepatocyte-specific ablation of PP2Acα protects against CCl4-induced chronic hepatic injury and fibrogenesis and the protective effect is mediated at least partially through the impaired TGF-β1/Smad signaling.
Collapse
|
20
|
Wheeler JB, Ikonomidis JS, Jones JA. Connective tissue disorders and cardiovascular complications: the indomitable role of transforming growth factor-beta signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 802:107-27. [PMID: 24443024 PMCID: PMC4410689 DOI: 10.1007/978-94-007-7893-1_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Marfan Syndrome (MFS) and Loeys-Dietz Syndrome (LDS) represent heritable connective tissue disorders that cosegregate with a similar pattern of cardiovascular defects (thoracic aortic aneurysm, mitral valve prolapse/regurgitation, and aortic root dilatation with regurgitation). This pattern of cardiovascular defects appears to be expressed along a spectrum of severity in many heritable connective tissue disorders and raises suspicion of a relationship between the normal development of connective tissues and the cardiovascular system. Given the evidence of increased transforming growth factor-beta (TGF-β) signaling in MFS and LDS, this signaling pathway may represent the common link in this relationship. To further explore this hypothetical link, this chapter will review the TGF-β signaling pathway, heritable connective tissue syndromes related to TGF-β receptor (TGFBR) mutations, and discuss the pathogenic contribution of TGF-β to these syndromes with a primary focus on the cardiovascular system.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/therapeutic use
- Angiotensin II Type 1 Receptor Blockers/therapeutic use
- Antibodies, Neutralizing/pharmacology
- Aortic Aneurysm, Thoracic/drug therapy
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/surgery
- Aortic Valve/pathology
- Aortic Valve/surgery
- Bicuspid Aortic Valve Disease
- Gene Expression Regulation
- Heart Defects, Congenital/drug therapy
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Heart Defects, Congenital/surgery
- Heart Valve Diseases/drug therapy
- Heart Valve Diseases/genetics
- Heart Valve Diseases/pathology
- Heart Valve Diseases/surgery
- Humans
- Loeys-Dietz Syndrome/drug therapy
- Loeys-Dietz Syndrome/genetics
- Loeys-Dietz Syndrome/pathology
- Loeys-Dietz Syndrome/surgery
- Marfan Syndrome/drug therapy
- Marfan Syndrome/genetics
- Marfan Syndrome/pathology
- Marfan Syndrome/surgery
- Mutation
- Receptors, Transforming Growth Factor beta/genetics
- Signal Transduction/genetics
- Smad Proteins/genetics
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/genetics
Collapse
Affiliation(s)
- Jason B. Wheeler
- Division of Cardiothoracic Surgery, Medical University of South Carolina
| | - John S. Ikonomidis
- Division of Cardiothoracic Surgery, Medical University of South Carolina
| | - Jeffrey A. Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| |
Collapse
|
21
|
Xu G, Barrios-Rodiles M, Jerkic M, Turinsky AL, Nadon R, Vera S, Voulgaraki D, Wrana JL, Toporsian M, Letarte M. Novel protein interactions with endoglin and activin receptor-like kinase 1: potential role in vascular networks. Mol Cell Proteomics 2013; 13:489-502. [PMID: 24319055 DOI: 10.1074/mcp.m113.033464] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoglin and activin receptor-like kinase 1 are specialized transforming growth factor-beta (TGF-β) superfamily receptors, primarily expressed in endothelial cells. Mutations in the corresponding ENG or ACVRL1 genes lead to hereditary hemorrhagic telangiectasia (HHT1 and HHT2 respectively). To discover proteins interacting with endoglin, ACVRL1 and TGF-β receptor type 2 and involved in TGF-β signaling, we applied LUMIER, a high-throughput mammalian interactome mapping technology. Using stringent criteria, we identified 181 novel unique and shared interactions with ACVRL1, TGF-β receptor type 2, and endoglin, defining potential novel important vascular networks. In particular, the regulatory subunit B-beta of the protein phosphatase PP2A (PPP2R2B) interacted with all three receptors. Interestingly, the PPP2R2B gene lies in an interval in linkage disequilibrium with HHT3, for which the gene remains unidentified. We show that PPP2R2B protein interacts with the ACVRL1/TGFBR2/endoglin complex and recruits PP2A to nitric oxide synthase 3 (NOS3). Endoglin overexpression in endothelial cells inhibits the association of PPP2R2B with NOS3, whereas endoglin-deficient cells show enhanced PP2A-NOS3 interaction and lower levels of endogenous NOS3 Serine 1177 phosphorylation. Our data suggest that endoglin regulates NOS3 activation status by regulating PPP2R2B access to NOS3, and that PPP2R2B might be the HHT3 gene. Furthermore, endoglin and ACVRL1 contribute to several novel networks, including TGF-β dependent and independent ones, critical for vascular function and potentially defective in HHT.
Collapse
Affiliation(s)
- Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Jeffrey L Wrana
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| |
Collapse
|
23
|
Nakerakanti S, Trojanowska M. The Role of TGF-β Receptors in Fibrosis. Open Rheumatol J 2012; 6:156-62. [PMID: 22802914 PMCID: PMC3396054 DOI: 10.2174/1874312901206010156] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 02/04/2023] Open
Abstract
Recent advances in defining TGF-β signaling pathways have provided a new level of understanding of the role of this pleiotropic growth factor in the development of fibrosis. Here, we review selected topics related to the profibrotic role of TGF-β . We will discuss new insights into the mechanisms of ligand activation and the contribution of Erk1/2 MAPK, PI3K/FAK, and Endoglin/Smad1 signaling pathways to the process of fibrosis. There is growing evidence of the disease-specific alterations of the downstream components of the TGF-β signaling pathway that may be explored for the future therapeutic interventions.
Collapse
Affiliation(s)
- Sashidhar Nakerakanti
- Arthritis Center, Boston University School of Medicine, 72 East Concord St, Boston, MA 02118, USA
| | | |
Collapse
|
24
|
Xu P, Liu J, Derynck R. Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Lett 2012; 586:1871-84. [PMID: 22617150 DOI: 10.1016/j.febslet.2012.05.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/06/2012] [Accepted: 05/07/2012] [Indexed: 01/17/2023]
Abstract
TGF-β family signaling through Smads is conceptually a simple and linear signaling pathway, driven by sequential phosphorylation, with type II receptors activating type I receptors, which in turn activate R-Smads. Nevertheless, TGF-β family proteins induce highly complex programs of gene expression responses that are extensively regulated, and depend on the physiological context of the cells. Regulation of TGF-β signaling occurs at multiple levels, including TGF-β activation, formation, activation and destruction of functional TGF-β receptor complexes, activation and degradation of Smads, and formation of Smad transcription complexes at regulatory gene sequences that cooperate with a diverse set of DNA binding transcription factors and coregulators. Here we discuss recent insights into the roles of post-translational modifications and molecular interaction networks in the functions of receptors and Smads in TGF-β signal responses. These layers of regulation demonstrate how a simple signaling system can be coopted to exert exquisitely regulated, complex responses.
Collapse
Affiliation(s)
- Pinglong Xu
- Department of Cell and Tissue Biology, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
25
|
Comprehensive analysis of TGF-β and BMP receptor interactomes. Eur J Cell Biol 2012; 91:287-93. [DOI: 10.1016/j.ejcb.2011.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 11/22/2022] Open
|
26
|
Kurimchak A, Graña X. PP2A holoenzymes negatively and positively regulate cell cycle progression by dephosphorylating pocket proteins and multiple CDK substrates. Gene 2012; 499:1-7. [PMID: 22387205 DOI: 10.1016/j.gene.2012.02.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/04/2012] [Accepted: 02/13/2012] [Indexed: 12/11/2022]
Abstract
Cell cycle progression is negatively regulated by the retinoblastoma family of pocket proteins and CDK inhibitors (CKIs). In contrast, CDKs promote progression through multiple phases of the cell cycle. One prominent way by which CDKs promote cell cycle progression is by inactivation of pocket proteins via hyperphosphorylation. Reactivation of pocket proteins to halt cell cycle progression requires dephosphorylation of multiple CDK-phosphorylated sites and is accomplished by PP2A and PP1 serine/threonine protein phosphatases. The same phosphatases are also implicated in dephosphorylation of multiple CDK substrates as cells exit mitosis and reenter the G1 phase of the cell cycle. This review is primarily focused on the role of PP2A and PP1 in the activation of pocket proteins during the cell cycle and in response to signaling cues that trigger cell cycle exit. Other functions of PP2A during the cell cycle will be discussed in brief, as comprehensive reviews on this topic have been published recently (De Wulf et al., 2009; Wurzenberger and Gerlich, 2011).
Collapse
Affiliation(s)
- Alison Kurimchak
- Fels Institute for Cancer Research and Molecular Biology, Philadelphia, PA 19140, USA
| | | |
Collapse
|
27
|
Kaminski S, Hermann-Kleiter N, Meisel M, Thuille N, Cronin S, Hara H, Fresser F, Penninger JM, Baier G. Coronin 1A is an essential regulator of the TGFβ receptor/SMAD3 signaling pathway in Th17 CD4(+) T cells. J Autoimmun 2011; 37:198-208. [PMID: 21700422 DOI: 10.1016/j.jaut.2011.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 12/24/2022]
Abstract
Transforming growth factor β (TGFβ) plays a central role in maintaining immune homeostasis by regulating the initiation and termination of immune responses and thus preventing the development of autoimmune diseases. In this study, we describe an essential mechanism by which the actin regulatory protein Coronin 1A (Coro1A) ensures the proper response of Th17 CD4(+) T cells to TGFβ. Coro1A has been established as a key player in T cell survival, migration, activation, and Ca(2+) regulation in naive T cells. We show that mice lacking Coro1a developed less severe experimental autoimmune encephalomyelitis (EAE). Unexpectedly, upon the re-induction of EAE, Coro1a(-/-) mice exhibited enhanced EAE signs that correlated with increased numbers of IL-17 producing CD4(+) cells in the central nervous system (CNS) compared to wild-type mice. In vitro differentiated Coro1a(-/-) Th17 CD4(+) T cells consistently produced more IL-17 than wild-type cells and displayed a Th17/Th1-like phenotype in regard to the expression of the Th1 markers T-bet and IFNγ. Mechanistically, the Coro1a(-/-) Th17 cell phenotype correlated with a severe defect in TGFβR-mediated SMAD3 activation. Taken together, these data provide experimental evidence of a non-redundant role of Coro1A in the regulation of Th17 CD4(+) cell effector functions and, subsequently, in the development of autoimmunity.
Collapse
Affiliation(s)
- Sandra Kaminski
- Experimental Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The level of TGF-β/bone morphogenetic protein (BMP) signaling through Smad is tightly regulated to ensure proper embryonic patterning and homeostasis. Here we show that Smad activation by TGF-β/BMP is blocked by a highly conserved phosphorylation event in the α-helix 1 region of Smad [T312 in Drosophila Smad1 (MAD)]. α-helix 1 phosphorylation reduces Smad interaction with TGF-β/BMP receptor kinase and affects all receptor-activated Smads except Smad3. Tissue culture and transgenic studies in Drosophila further demonstrate that the biological activity of MAD is repressed by T312 phosphorylation in vivo. Through RNAi screening of the kinome, we have identified Misshapen (Msn) and the mammalian orthologs TNIK, MINK1, and MAP4K4 as the kinases responsible for α-helix 1 phosphorylation. Targeted expression of an active form of Msn in the wing imaginal disk disrupted activation of endogenous MAD by Dpp and expression of the Dpp/MAD target gene. Msn kinases belong to the Ste20 kinase family that has been shown to act as MAP kinase kinase kinase kinase (MAP4K). Our findings thus reveal a function of Msn independent of its impact on MAP kinase cascades. This Smad inhibition mechanism by Msn likely has important implications for development and disease.
Collapse
|
29
|
Gharbi-Ayachi A, Labbé JC, Burgess A, Vigneron S, Strub JM, Brioudes E, Van-Dorsselaer A, Castro A, Lorca T. The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science 2010; 330:1673-1677. [PMID: 21164014 DOI: 10.1016/b978-0-12-374145-5.00168-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Initiation and maintenance of mitosis require the activation of protein kinase cyclin B-Cdc2 and the inhibition of protein phosphatase 2A (PP2A), which, respectively, phosphorylate and dephosphorylate mitotic substrates. The protein kinase Greatwall (Gwl) is required to maintain mitosis through PP2A inhibition. We describe how Gwl activation results in PP2A inhibition. We identified cyclic adenosine monophosphate-regulated phosphoprotein 19 (Arpp19) and α-Endosulfine as two substrates of Gwl that, when phosphorylated by this kinase, associate with and inhibit PP2A, thus promoting mitotic entry. Conversely, in the absence of Gwl activity, Arpp19 and α-Endosulfine are dephosphorylated and lose their capacity to bind and inhibit PP2A. Although both proteins can inhibit PP2A, endogenous Arpp19, but not α-Endosulfine, is responsible for PP2A inhibition at mitotic entry in Xenopus egg extracts.
Collapse
Affiliation(s)
- Aicha Gharbi-Ayachi
- Universités Montpellier 2 et 1, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, IFR 122, 1919 Route de Mende, 34293 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen G, Ghosh P, Longo DL. Distinctive mechanism for sustained TGF-β signaling and growth inhibition: MEK1 activation-dependent stabilization of type II TGF-β receptors. Mol Cancer Res 2010; 9:78-89. [PMID: 21131601 DOI: 10.1158/1541-7786.mcr-10-0216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There are multiple mechanisms by which cells evade TGF-β-mediated growth inhibitory effects. In this report, we describe a novel mechanism by which cells become resistant to TGF-β-mediated growth suppression. Although having all the components of the TGF-β signaling pathway, different cell lines, RL, HaCaT, and BJAB, have different sensitivities toward TGF-β-induced growth suppression. The TGF-β resistance of RL, a B-cell lymphoma cell line, was due to ligand-induced downregulation of TGF-β receptor II (TβRII) and only transient TGF-β induced nuclear translocation of Smad2 and Smad3. With low-dose phorbol 12-myristate 13-acetate (PMA) or anti-IgM treatment, TGF-β sensitivity was restored by stabilizing TβRII expression and sustaining TGF-β signaling. The MEK inhibitor, U0126, blocked both PMA- and anti-IgM-induced upregulation of TβRII. In HaCaT and BJAB, two TGF-β-sensitive cell lines, which had higher basal levels of phospho-MEK and TβRII compared with RL, U0126 induced downregulation of TβRII and blocked subsequent TGF-β signaling. Similar results were also obtained with normal B cells, where MEK1 inhibitor downregulated TβRII and subsequent TGF-β signaling. Constitutively active MEK1, but not constitutively active ERK2, induced upregulation of TβRII. Furthermore, TβRII physically interacted with the constitutively active MEK1, but not with wild-type MEK1, indicating involvement of active MEK1 in stabilizing TβRII. Collectively, our data suggest a novel mechanism for MEK1 in regulating the sensitivity to TGF-β signaling by stabilizing TβRII.
Collapse
Affiliation(s)
- Gang Chen
- Lymphocyte Cell Biology Section, Laboratory of Immunology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | | | | |
Collapse
|
31
|
Yu N, Kozlowski JM, Park II, Chen L, Zhang Q, Xu D, Doll JA, Crawford SE, Brendler CB, Lee C. Overexpression of transforming growth factor β1 in malignant prostate cells is partly caused by a runaway of TGF-β1 auto-induction mediated through a defective recruitment of protein phosphatase 2A by TGF-β type I receptor. Urology 2010; 76:1519.e8-13. [PMID: 21030067 DOI: 10.1016/j.urology.2010.03.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/02/2010] [Accepted: 03/26/2010] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To elucidate the mechanism of transforming growth factor (TGF)-β1 overexpression in prostate cancer cells. METHODS Malignant (PC3, DU145) and benign (RWPE1, BPH1) prostate epithelial cells were used. Phosphatase activity was measured using a commercial kit. Recruitment of the regulatory subunit, Bα, of protein phosphatase 2A (PP2A-Bα) by TGF-β type I receptor (TβRI) was monitored by coimmunoprecipitation. Blockade of TGF-β1 signaling in cells was accomplished either by using TGF-β-neutralizing monoclonal antibody or by transduction of a dominant negative TGF-β type II receptor retroviral vector. RESULTS Basal levels of TGF-β1 in malignant cells were significantly higher than those in benign cells. Blockade of TGF-β signaling resulted in a significant decrease in TGF-β1 expression in malignant cells, but not in benign cells. Upon TGF-β1 treatment (10 ng/mL), TGF-β1 expression was increased in malignant cells, but not in benign cells. This differential TGF-β1 auto-induction between benign and malignant cells correlated with differential activation of extracellular signal-regulated kinase (ERK). Following TGF-β1 treatment, the activity of serine/threonine phosphatase and recruitment of PP2A-Bα by TβRI increased in benign cells, but not in malignant cells. Inhibition of PP2A in benign cells resulted in an increase in ERK activation and in TGF-β1 auto-induction after TGF-β1 (10 ng/mL) treatment. CONCLUSIONS These results suggest that TGF-β1 overexpression in malignant cells is caused, at least in part, by a runaway of TGF-β1 auto-induction through ERK activation because of a defective recruitment of PP2A-Bα by TβRI.
Collapse
Affiliation(s)
- Nengwang Yu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Tight regulation of TGF-beta (transforming growth factor-beta) superfamily signalling is important for normal cellular functions and tissue homoeostasis. Since TGF-beta superfamily signalling pathways are activated by a short phosphorylation cascade, from receptor phosphorylation to subsequent phosphorylation and activation of downstream signal transducer R-Smads (receptor-activated Smads), reversible phosphorylation serves as a critical step to assure proper TGF-beta signalling. The present article will review the current progress on the understanding of dynamic phosphorylation in TGF-beta signalling and the essential role of protein phosphatases in this process.
Collapse
|
33
|
Cheng WT, Guo ZX, Lin CA, Lin MY, Tung LC, Fang K. Oxidative stress promotes autophagic cell death in human neuroblastoma cells with ectopic transfer of mitochondrial PPP2R2B (Bbeta2). BMC Cell Biol 2009; 10:91. [PMID: 20017961 PMCID: PMC2810296 DOI: 10.1186/1471-2121-10-91] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 12/18/2009] [Indexed: 11/21/2022] Open
Abstract
Background The multifunctional protein phosphatase 2A (PP2A) is a heterotrimeric serine/threonine protein phosphatase composed of a scaffolding, catalytic and regulatory subunits. By modifying various downstream signal transducers, the aberrant expression of the brain-targeted regulatory subunit PPP2R2B is associated with the onset of a panel of neuronal disorders. The alternatively splicing of PPP2R2B encodes two regulatory subunit isoforms that determine cellular distribution of the neuron-specific holoenzyme to mitochondria (Bβ2) and cytoplasm (Bβ1), respectively. Results Human neuroblastoma cells were transfected with PPP2R2B constructs encoding the complete sequences of Bβ2 and Bβ1, respectively. The colonies with antibiotic resistance were selected as stable cell lines. Both ectopic Bβ1 and Bβ2 clones exhibited characteristics of autophagy. To test how cells respond to reactive oxygen species generators, the cells were treated with either hydrogen peroxide or t-butyl hydroperoxide and Bβ2 clones induced cell death. Suppression of autophagy using either RNA interference of the essential autophagy gene or pharmacological inhibitor rescued cell death caused by oxidative stress. Conclusions Cells with ectopically expressed mitochondria-targeted regulatory subunit PPP2R2B of the holoenzyme PP2A were shown predisposed to autophagy and oxidative stress induced cell death that is related to apoptosis. The results promised a model for studying the mechanism and function of aberrant PPP2R2B expression in neuronal cells. The work provided a new target for understanding and prevention of neuropathogenesis.
Collapse
Affiliation(s)
- Wan-Ting Cheng
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
34
|
Kang JS, Liu C, Derynck R. New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol 2009; 19:385-94. [PMID: 19648010 DOI: 10.1016/j.tcb.2009.05.008] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 12/24/2022]
Abstract
Transforming growth factor-beta (TGF-beta) regulates cell proliferation, differentiation and apoptosis, and TGF-beta-related proteins have key roles in development, tissue homeostasis and disease. Upon binding to their cell surface receptors, TGF-beta family proteins signal through Smads to induce changes in gene expression. TGF-beta-induced Smad signaling and additional non-Smad pathways have been studied extensively in an effort to understand the complex and versatile responses to TGF-beta family proteins. Recently, it has become increasingly apparent that the signaling responses are also extensively defined by regulatory mechanisms at the level of the receptors themselves. Here, we discuss recent insights into the effects of post-translational modifications, protein associations and mode of internalization on the functions of the TGF-beta receptors and their signaling responses.
Collapse
Affiliation(s)
- Jong Seok Kang
- Department of Cell and Tissue Biology, University of California - San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
35
|
Bengtsson L, Schwappacher R, Roth M, Boergermann JH, Hassel S, Knaus P. PP2A regulates BMP signalling by interacting with BMP receptor complexes and by dephosphorylating both the C-terminus and the linker region of Smad1. J Cell Sci 2009; 122:1248-57. [PMID: 19339557 DOI: 10.1242/jcs.039552] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phosphorylation of Smads is a crucial regulatory step in the signal transduction pathway initiated by bone morphogenetic proteins (BMPs). Although the dephosphorylation events terminating the pathway in the nucleus have been characterized, little is known about the dephosphorylation of Smads in the cytoplasm. In a proteomic screen for proteins interacting with the BMP type-II receptor, we found the regulatory Bbeta subunit of PP2A. PP2A is one of the major serine/threonine phosphatases involved in cell-cycle regulation and signal transduction. Here, we present data showing that the Bbeta subunit of PP2A interacts with both BMP type-I and type-II receptors. Furthermore, we demonstrate that several B subunits can associate with the BMP type-II receptor, independently of the kinase activity of the receptor and the catalytic subunit of PP2A. By contrast, the PP2A catalytic subunit is required for PP2A function at the receptor complex. This function of PP2A is the dephosphorylation of Smad1, mainly in the linker region. PP2A-mediated dephosphorylation of the BMP-Smad linker region leads to increased nuclear translocation of Smads and overall amplification of the BMP signal. Although other phosphatases identified within the BMP pathway are all shown to inhibit signalling, PP2A is the first example for a signalling stimulatory phosphatase within this pathway.
Collapse
Affiliation(s)
- Luiza Bengtsson
- Institute of Chemistry and Biochemistry, FU Berlin, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Lin X, Chen Y, Meng A, Feng X. Termination of TGF-beta superfamily signaling through SMAD dephosphorylation--a functional genomic view. J Genet Genomics 2009; 34:1-9. [PMID: 17469772 DOI: 10.1016/s1673-8527(07)60001-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 10/31/2006] [Indexed: 12/11/2022]
Abstract
The transforming growth factor-beta (TGF-beta) and related growth factors activate a broad range of cellular responses in metazoan organisms via autocrine, paracrine, and endocrine modes. They play key roles in the pathogenesis of many diseases especially cancer, fibrotic diseases, autoimmune diseases and cardiovascular diseases. TGF-beta receptor-mediated phosphorylation of R-SMADs represents the most critical step in the TGF-beta signaling pathways that triggers a cascade of intracellular events from SMAD complex assembly in the cytoplasm to transcriptional control in the nucleus. Conversely, dephosphorylation of R-SMADs is a key mechanism for terminating TGF-beta signaling. Our labs have recently taken an integrated approach combining functional genomics, biochemistry and development biology to describe the isolation and functional characterization of protein phosphatase PPM1A in controlling TGF-beta signaling. This article briefly reviews how dynamic phosphorylation and dephosphorylation of SMADs control or fine-tune the signaling strength and duration and ultimately the physiological consequences in TGF-beta signaling.
Collapse
Affiliation(s)
- Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston TX 77030, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Members of the transforming growth factor-beta (TGF-beta) family control a broad range of cellular responses in metazoan organisms via autocrine, paracrine, and endocrine modes. Thus, aberrant TGF-beta signaling can play a key role in the pathogenesis of several diseases, including cancer. TGF-beta signaling pathways are activated by a short phospho-cascade, from receptor phosphorylation to the subsequent phosphorylation and activation of downstream signal transducers called R-Smads. R-Smad phosphorylation state determines Smad complex assembly/disassembly, nuclear import/export, transcriptional activity and stability, and is thus the most critical event in TGF-beta signaling. Dephosphorylation of R-Smads by specific phosphatases prevents or terminates TGF-beta signaling, highlighting the need to consider Smad (de)phosphorylation as a tightly controlled and dynamic event. This article illustrates the essential roles of reversible phosphorylation in controlling the strength and duration of TGF-beta signaling and the ensuing physiological responses.
Collapse
|
38
|
Abstract
Transforming growth factor-beta utilizes a multitude of intracellular signaling pathways in addition to Smads to regulate a wide array of cellular functions. These non-canonical, non-Smad pathways are activated directly by ligand-occupied receptors to reinforce, attenuate, or otherwise modulate downstream cellular responses. These non-Smad pathways include various branches of MAP kinase pathways, Rho-like GTPase signaling pathways, and phosphatidylinositol-3-kinase/AKT pathways. This review focuses on recent advances in the understanding of the molecular and biochemical mechanisms of non-Smad pathways. In addition, functions of these non-Smad pathways are also discussed.
Collapse
Affiliation(s)
- Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Batut J, Schmierer B, Cao J, Raftery LA, Hill CS, Howell M. Two highly related regulatory subunits of PP2A exert opposite effects on TGF-beta/Activin/Nodal signalling. Development 2008; 135:2927-37. [PMID: 18697906 DOI: 10.1242/dev.020842] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We identify Balpha (PPP2R2A) and Bdelta (PPP2R2D), two highly related members of the B family of regulatory subunits of the protein phosphatase PP2A, as important modulators of TGF-beta/Activin/Nodal signalling that affect the pathway in opposite ways. Knockdown of Balpha in Xenopus embryos or mammalian tissue culture cells suppresses TGF-beta/Activin/Nodal-dependent responses, whereas knockdown of Bdelta enhances these responses. Moreover, in Drosophila, overexpression of Smad2 rescues a severe wing phenotype caused by overexpression of the single Drosophila PP2A B subunit Twins. We show that, in vertebrates, Balpha enhances TGF-beta/Activin/Nodal signalling by stabilising the basal levels of type I receptor, whereas Bdelta negatively modulates these pathways by restricting receptor activity. Thus, these highly related members of the same subfamily of PP2A regulatory subunits differentially regulate TGF-beta/Activin/Nodal signalling to elicit opposing biological outcomes.
Collapse
Affiliation(s)
- Julie Batut
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | |
Collapse
|
40
|
Wu WJ, Lee CF, Hsin CH, Du JY, Hsu TC, Lin TH, Yao TY, Huang CH, Lee YJ. TGF-beta inhibits prolactin-induced expression of beta-casein by a Smad3-dependent mechanism. J Cell Biochem 2008; 104:1647-59. [PMID: 18335503 DOI: 10.1002/jcb.21734] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a multifunctional growth factor, affecting cell proliferation, apoptosis, and extracellular matrix homeostasis. It also plays critical roles in mammary gland development, one of which involves inhibition of the expression of milk proteins, such as beta-casein, during pregnancy. Here we further explore the underlying signaling mechanism for it. Our results show that TGF-beta suppresses prolactin-induced expression of beta-casein mRNA and protein in primary mouse mammary epithelial cells, but its effect on protein expression is more evident. We also find out that this inhibition is not due to the effect of TGF-beta on cell apoptosis. Furthermore, inhibition of TGF-beta type I receptor kinase activity by a pharmacological inhibitor SB431542 or overexpression of dominant negative Smad3 substantially restores beta-casein expression. By contrast, inhibition of p38 and Erk that are known to be activated by TGF-beta does not alleviate the inhibitory effect of TGF-beta. These results are consistent with our other observation that Smad but not MAPK pathway is activated by TGF-beta in mammary epithelial cells. Lastly, we show that prolactin-induced tyrosine phosphorylation of Jak2 and Stat5 as well as serine/threonine phosphorylation of p70S6K and S6 ribosomal protein are downregulated by TGF-beta, although the former event requires considerably long exposure to TGF-beta. We speculate that these events might be involved in repressing transcription and translation of beta-casein gene, respectively. Taken together, our results demonstrate that TGF-beta abrogates prolactin-stimulated beta-casein gene expression in mammary epithelial cells through, at least in part, a Smad3-dependent mechanism.
Collapse
Affiliation(s)
- Wen-Jun Wu
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wan YY, Flavell RA. TGF-beta and regulatory T cell in immunity and autoimmunity. J Clin Immunol 2008; 28:647-59. [PMID: 18792765 DOI: 10.1007/s10875-008-9251-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Accepted: 03/20/2008] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The immune response is controlled by several inhibitory mechanisms. These mechanisms include regulatory T cells, which exist in multiple classes. Notable among these are Foxp3-expressing regulatory T cells (Treg), NKT cells, and Tr1 cells. Common to these mechanisms are inhibitory cytokines such as interleukin-10 and transforming growth factor-beta (TGF-beta). TGF-beta and Foxp3-expressing Treg cells are critical in maintaining self-tolerance and immune homeostasis. DISCUSSIONS The immune suppressive functions of TGF-beta and Treg cells are widely acknowledged and extensively studied. Nonetheless, recent studies revealed the positive roles for TGF-beta and Treg cells in shaping the immune system and the inflammatory responses. In this paper, we will discuss the role of these mechanisms in the control of immunity and autoimmunity and the mechanisms that underlie how these molecules control these responses.
Collapse
Affiliation(s)
- Yisong Y Wan
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, School of Medicine, CB 7295, 450 West Drive, Chapel Hill, North Carolina, NC 27599-7295, USA.
| | | |
Collapse
|
42
|
Jones JA, Spinale FG, Ikonomidis JS. Transforming growth factor-beta signaling in thoracic aortic aneurysm development: a paradox in pathogenesis. J Vasc Res 2008; 46:119-37. [PMID: 18765947 DOI: 10.1159/000151766] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 03/24/2008] [Indexed: 12/16/2022] Open
Abstract
Thoracic aortic aneurysms (TAAs) are potentially devastating, and due to their asymptomatic behavior, pose a serious health risk characterized by the lack of medical treatment options and high rates of surgical morbidity and mortality. Independent of the inciting stimuli (biochemical/mechanical), TAA development proceeds by a multifactorial process influenced by both cellular and extracellular mechanisms, resulting in alterations of the structure and composition of the vascular extracellular matrix (ECM). While the role of enhanced ECM proteolysis in TAA formation remains undisputed, little attention has been focused on the upstream signaling events that drive the remodeling process. Recent evidence highlighting the dysregulation of transforming growth factor-beta (TGF-beta) signaling in ascending TAAs from Marfan syndrome patients has stimulated an interest in this intracellular signaling pathway. However, paradoxical discoveries have implicated both enhanced TGF-beta signaling and loss of function TGF-beta receptor mutations, in aneurysm formation; obfuscating a clear functional role for TGF-beta in aneurysm development. In an effort to elucidate this subject, TGF-beta signaling and its role in vascular remodeling and pathology will be reviewed, with the aim of identifying potential mechanisms of how TGF-beta signaling may contribute to the formation and progression of TAA.
Collapse
Affiliation(s)
- Jeffrey A Jones
- Department of Surgery, Division of Cardiothoracic Surgery Research, Medical University of South Carolina, Charleston, S.C. 29425, USA.
| | | | | |
Collapse
|
43
|
Eichhorn PJA, Creyghton MP, Bernards R. Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta Rev Cancer 2008; 1795:1-15. [PMID: 18588945 DOI: 10.1016/j.bbcan.2008.05.005] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 01/06/2023]
Abstract
The serine/threonine protein phosphatase (PP2A) is a trimeric holoenzyme that plays an integral role in the regulation of a number of major signaling pathways whose deregulation can contribute to cancer. The specificity and activity of PP2A are highly regulated through the interaction of a family of regulatory B subunits with the substrates. Accumulating evidence indicates that PP2A acts as a tumor suppressor. In this review we summarize the known effects of specific PP2A holoenzymes and their roles in cancer relevant pathways. In particular we highlight PP2A function in the regulation of MAPK and Wnt signaling.
Collapse
Affiliation(s)
- Pieter J A Eichhorn
- Division of Molecular Carcinogenesis, Center for Cancer Genomics and Center for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | |
Collapse
|
44
|
Stiening C, Hoying J, Abdallah M, Hoying A, Pandey R, Greer K, Collier R. The Effects of Endocrine and Mechanical Stimulation on Stage I Lactogenesis in Bovine Mammary Epithelial Cells. J Dairy Sci 2008; 91:1053-66. [DOI: 10.3168/jds.2007-0161] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Kim SI, Kwak JH, Wang L, Choi ME. Protein phosphatase 2A is a negative regulator of transforming growth factor-beta1-induced TAK1 activation in mesangial cells. J Biol Chem 2008; 283:10753-63. [PMID: 18299321 DOI: 10.1074/jbc.m801263200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TAK1 (transforming growth factor (TGF)-beta-activated kinase 1) is a serine/threonine kinase that is rapidly activated by TGF-beta1 and plays a vital function in its signal transduction. Once TAK1 is activated, efficient down-regulation of TAK1 activity is important to prevent excessive TGF-beta1 responses. The regulatory mechanism of TAK1 inactivation following TGF-beta1 stimulation has not been elucidated. Here we demonstrate that protein phosphatase 2A (PP2A) plays a pivotal role as a negative regulator of TAK1 activation in response to TGF-beta1 in mesangial cells. Treatment with okadaic acid (OA) induces autophosphorylation of Thr-187 in the activation loop of TAK1. In vitro dephosphorylation assay suggests that Thr-187 in TAK1 is a major dephosphorylation target of PP2A. TGF-beta1 stimulation rapidly activates TAK1 in a biphasic manner, indicating that TGF-beta1-induced TAK1 activation is tightly regulated. The association of PP2A(C) with TAK1 is enhanced in response to TGF-beta1 stimulation and closely parallels TGF-beta1-induced TAK1 activity. Attenuation of PP2A activity by OA treatment or targeted knockdown of PP2A(C) with small interfering RNA enhances TGF-beta1-induced phosphorylation of TAK1 at Thr-187 and MKK3 (MAPK kinase 3). Endogenous TAK1 co-precipitates with PP2A(C) but not PP6(C), another OA-sensitive protein phosphatase, and knockdown of PP6(C) by small interfering RNA does not affect TGF-beta1-induced phosphorylation of TAK1 at Thr-187 and MKK3. Moreover, ectopic expression of phosphatase-deficient PP2A(C) enhances TAK1-mediated MKK3 phosphorylation by TGF-beta1 stimulation, whereas the expression of wild-type PP2A(C) suppresses the MKK3 phosphorylation. Taken together, our data indicate that PP2A functions as a negative regulator in TGF-beta1-induced TAK1 activation.
Collapse
Affiliation(s)
- Sung Il Kim
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Transforming growth factor-beta (TGF-beta) regulates a wide variety of cellular processes including cell growth, apoptosis, differentiation, migration, and extracellular matrix production among others. The canonical signaling pathway induced by the TGF-beta receptor complex involves the phosphorylation of Smad proteins which upon activation accumulate in the nucleus and regulate transcription. Interestingly, the cellular response to TGF-beta can be extremely variable depending on the cell type and stimulation context. TGF-beta causes epithelial cells to undergo growth arrest and apoptosis, responses which are critical to suppressing carcinogenesis, whereas it can also induce epithelial-mesenchymal transition and mediate fibroblast activation, responses implicated in promoting carcinogenesis and fibrotic diseases. However, TGF-beta induces all these responses via the same receptor complex and Smad proteins. To address this apparent paradox, during the last few years a number of additional signaling pathways have been identified which potentially regulate the different cellular responses to TGF-beta. The identification of these signaling pathways has shed light onto the mechanisms whereby Smad and non-Smad pathways collaborate to induce a particular cellular phenotype. In this article, we review TGF-beta signaling in epithelial cells and fibroblasts with a focus on understanding the mechanisms of TGF-beta versatility.
Collapse
Affiliation(s)
- Rod A Rahimi
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
47
|
Wan YY, Flavell RA. 'Yin-Yang' functions of transforming growth factor-beta and T regulatory cells in immune regulation. Immunol Rev 2007; 220:199-213. [PMID: 17979848 PMCID: PMC2614905 DOI: 10.1111/j.1600-065x.2007.00565.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transforming growth factor-beta (TGF-beta) and forkhead box p3-expressing T-regulatory (Treg) cells are critical in maintaining self-tolerance and immune homeostasis. The immune suppressive functions of TGF-beta and Treg cells are widely acknowledged and extensively studied. Nonetheless, recent studies revealed the positive roles of TGF-beta and Treg cells in shaping the immune system and the inflammatory responses. This review discusses our and other's efforts in understanding the negative (Yin) as well as the positive (Yang) roles for TGF-beta and Treg cells in immune regulation.
Collapse
Affiliation(s)
- Yisong Y. Wan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, New Haven, CT, USA
| |
Collapse
|
48
|
Ross S, Hill CS. How the Smads regulate transcription. Int J Biochem Cell Biol 2007; 40:383-408. [PMID: 18061509 DOI: 10.1016/j.biocel.2007.09.006] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 09/19/2007] [Accepted: 09/20/2007] [Indexed: 01/01/2023]
Abstract
The primary signalling pathway downstream of ligands of the transforming growth factor beta (TGF-beta) superfamily is the Smad pathway. Activated receptors phosphorylate receptor-regulated Smads, which form homomeric complexes and heteromeric complexes with Smad4. These activated Smad complexes accumulate in the nucleus, where they are directly involved in the regulation of transcription of target genes. This apparently very simple pathway is subject to complex regulation, much of which is at the level of post-translational modifications of pathway components, in particular, the Smads. The enzymes responsible may be constitutively active, may be cell type-specific or may be regulated by other signalling pathways or by the cell cycle. In this way, signals from TGF-beta superfamily ligands are integrated with signals from other growth factors and cytokines, are regulated by the cell cycle and are dependent on cell type. This may go some way to explaining the pleiotropic nature of TGF-beta superfamily responses. In this review we focus on the mechanisms whereby the Smads are modified and regulated. We then go on to discuss how the activated Smad complexes regulate transcription.
Collapse
Affiliation(s)
- Sarah Ross
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | |
Collapse
|
49
|
Conrotto P, Yakymovych I, Yakymovych M, Souchelnytskyi S. Interactome of transforming growth factor-beta type I receptor (TbetaRI): inhibition of TGFbeta signaling by Epac1. J Proteome Res 2007; 6:287-97. [PMID: 17203972 DOI: 10.1021/pr060427q] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Transforming growth factor-beta (TGFbeta) is a potent regulator of cell growth, differentiation, and apoptosis. Type I TGFbeta receptor (TbetaRI) is the key receptor for initiation of intracellular signaling by TGFbeta. Here we report proteomics-based identification of proteins that form a complex with TbetaRI. Using 2D-GE and MALDI TOF mass spectrometry, we identified 16 proteins that specifically interacted with a GST-fused TbetaRI Thr204Asp construct with constitutively active serine/threonine kinase. We confirmed interactions of the receptor with cAMP regulated guanine nucleotide exchange factor 1 (Epac1), beta-spectrin, PIASy, and beta-catenin proteins using immunoblotting. Interaction of the receptor with Epac1 required intact kinase activity of TbetaRI but was not affected by deletion of cAMP-binding domain of Epac1. TGFbeta1-induced C-terminal phosphorylation of Smad2 was inhibited in vivo and in vitro in the presence of Epac1. Epac1 inhibited also TGFbeta1/TbetaRI-dependent transcriptional activation, as evaluated by luciferase reporter assays. We observed that expression of Epac1 counteracted TGFbeta/TbetaRI-dependent decrease of cell adhesion and TGFbeta/TbetaRI-induced stimulation of cell migration. Thus, we have reported novel TRI-interacting proteins and have shown that Epac1 inhibited TGFbeta-dependent regulation of cell migration and adhesion.
Collapse
Affiliation(s)
- Paolo Conrotto
- Ludwig Institute for Cancer Research, Uppsala University, Box 595, BMC, SE-751 24, Uppsala, Sweden
| | | | | | | |
Collapse
|
50
|
Sebestyén A, Hajdu M, Kis L, Barna G, Kopper L. Smad4-independent, PP2A-dependent apoptotic effect of exogenous transforming growth factor beta 1 in lymphoma cells. Exp Cell Res 2007; 313:3167-74. [PMID: 17643425 DOI: 10.1016/j.yexcr.2007.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 04/10/2007] [Accepted: 05/30/2007] [Indexed: 11/20/2022]
Abstract
B-lymphoid tumor cells are often less sensitive than their normal counterparts or insensitive to transforming growth factor beta1 (TGFb) effects. We studied the apoptotic effect of exogenous TGFb in B-lymphoma cells, focusing on the activity and the role of Smad and protein phosphatase/kinase signals. Recombinant TGFb treatment and Smad4 siRNA transfection were used in HT58 B-NHL lymphoma cells in vitro. Gene expression and apoptosis were detected by RT-PCR, Western blot analysis and flow cytometry. The role of MEK1 kinase and PP2A activity--measured with a phosphatase assay--were assessed with the help of specific inhibitors. Smad4 siRNA treatment completely abolished TGFb-induced early gene upregulation, indicating the absence of the rapid activation of Smad signaling. Moreover, functional inhibition of Smad4 had no influence on TGFb-induced apoptosis, but it was dependent on PP2A phosphatase activation, ERK1/2 and JNK inactivation in lymphoma cells. The results prove that exogenous TGFb uses Smad4-independent, alternative (PP2A/PP2A-like dependent) signaling pathways for apoptosis induction in lymphoma cells. Further studies are needed to clarify the possible role and involvement of Smad4-independent effects of TGFb in normal and malignant lymphoid cells and in cells of the tumor microenvironment.
Collapse
Affiliation(s)
- Anna Sebestyén
- Semmelweis University, I. Department of Pathology and Experimental Cancer Research, 1085 Budapest, Ulloi út 26, Hungary.
| | | | | | | | | |
Collapse
|