1
|
Ebert ET, Schwinghamer KM, Siahaan TJ. Delivery of Neuroregenerative Proteins to the Brain for Treatments of Neurodegenerative Brain Diseases. Life (Basel) 2024; 14:1456. [PMID: 39598254 PMCID: PMC11595909 DOI: 10.3390/life14111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Neurodegenerative brain diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), and Parkinson's disease (PD) are difficult to treat. Unfortunately, many therapeutic agents for neurodegenerative disease only halt the progression of these diseases and do not reverse neuronal damage. There is a demand for finding solutions to reverse neuronal damage in the central nervous system (CNS) of patients with neurodegenerative brain diseases. Therefore, the purpose of this review is to discuss the potential for therapeutic agents like specific neurotrophic and growth factors in promoting CNS neuroregeneration in brain diseases. We discuss how BDNF, NGF, IGF-1, and LIF could potentially be used for the treatment of brain diseases. The molecule's different mechanisms of action in stimulating neuroregeneration and methods to analyze their efficacy are described. Methods that can be utilized to deliver these proteins to the brain are also discussed.
Collapse
Affiliation(s)
| | | | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA; (E.T.E.); (K.M.S.)
| |
Collapse
|
2
|
Liu JY, Yin X, Dong YT. Exploration of the shared gene signatures and molecular mechanisms between Alzheimer's disease and intracranial aneurysm. Sci Rep 2024; 14:24628. [PMID: 39427050 PMCID: PMC11490550 DOI: 10.1038/s41598-024-75694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Although Alzheimer's disease (AD) and intracranial aneurysm (IA) were two different types of diseases that occurred in the brain, ruptured IA (RIA) survivors may experience varying degrees of cognitive dysfunction. Neither AD nor IA is easily recognizable by an early onset so that the incidence of adverse clinical outcomes would be on the rise. Therefore, we focused on the exploration of the shared genes and molecular mechanisms between AD and IA, which would be significant for the efficiency of co-screening and co-diagnosis. Two GEO datasets were selected for the weighted gene co-expression network analysis (WGCNA) and differentially expressed gene screening, obtaining 78 overlapped genes. Next, 9 hub genes were identified by the protein-protein interaction network, including PIK3CA, GAB1, IGF1R, PLCB1, PGR, PDGFRB, PLCE1, FGFR3, and SYNJ1. The interactions among the hub genes, miRNA, and TFs were also explored. Meanwhile, we performed GO and KEGG pathway enrichment analyses for the results of WGCNA and hub genes, which showed that the Ras signaling and Rap1 signaling were the main shared pathogenesis. In conclusion, the present bioinformatics analysis revealed that AD and IA had the shared genes and molecular mechanisms, and these outcomes were associated with inflammation and calcium homeostasis, which could provide research clues for further studies.
Collapse
Affiliation(s)
- Ji-Yun Liu
- Department of Clinical Laboratory, Guiyang Second People's Hospital, Guiyang, People's Republic of China
| | - Xuan Yin
- Department of Women Healthcare, Guiyang Maternal and Child Health Hospital, Guiyang, People's Republic of China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, No. 9, Beijing Road, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
3
|
Attiq A, Afzal S, Wahab HA, Ahmad W, Kandeel M, Almofti YA, Alameen AO, Wu YS. Cytokine Storm-Induced Thyroid Dysfunction in COVID-19: Insights into Pathogenesis and Therapeutic Approaches. Drug Des Devel Ther 2024; 18:4215-4240. [PMID: 39319193 PMCID: PMC11421457 DOI: 10.2147/dddt.s475005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Angiotensin-converting enzyme 2 receptors (ACE2R) are requisite to enter the host cells for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). ACE2R is constitutive and functions as a type I transmembrane metallo-carboxypeptidase in the renin-angiotensin system (RAS). On thyroid follicular cells, ACE2R allows SARS-CoV-2 to invade the thyroid gland, impose cytopathic effects and produce endocrine abnormalities, including stiff back, neck pain, muscle ache, lethargy, and enlarged, inflamed thyroid gland in COVID-19 patients. Further damage is perpetuated by the sudden bursts of pro-inflammatory cytokines, which is suggestive of a life-threatening syndrome known as a "cytokine storm". IL-1β, IL-6, IFN-γ, and TNF-α are identified as the key orchestrators of the cytokine storm. These inflammatory mediators upregulate transcriptional turnover of nuclear factor-kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), and mitogen-activated protein kinase (MAPK), paving the pathway for cytokine storm-induced thyroid dysfunctions including euthyroid sick syndrome, autoimmune thyroid diseases, and thyrotoxicosis in COVID-19 patients. Targeted therapies with corticosteroids (dexamethasone), JAK inhibitor (baricitinib), nucleotide analogue (remdesivir) and N-acetyl-cysteine have demonstrated effectiveness in terms of attenuating the severity and frequency of cytokine storm-induced thyroid dysfunctions, morbidity and mortality in severe COVID-19 patients. Here, we review the pathogenesis of cytokine storms and the mechanisms and pathways that establish the connection between thyroid disorder and COVID-19. Moreover, cross-talk interactions of signalling pathways and therapeutic strategies to address COVID-19-associated thyroid diseases are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrel Sheikh, 6860404, Egypt
| | - Yassir A Almofti
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Biochemistry, Molecular Biology and Bioinformatics, College of Veterinary Medicine, University of Bahri, Khartoum, 12217, Sudan
| | - Ahmed O Alameen
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314, Sudan
| | - Yuan Seng Wu
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
| |
Collapse
|
4
|
Deng Y, Zhao Z, Sheldon M, Zhao Y, Teng H, Martinez C, Zhang J, Lin C, Sun Y, Yao F, Curran MA, Zhu H, Ma L. LIFR regulates cholesterol-driven bidirectional hepatocyte-neutrophil cross-talk to promote liver regeneration. Nat Metab 2024; 6:1756-1774. [PMID: 39147934 PMCID: PMC11498095 DOI: 10.1038/s42255-024-01110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Liver regeneration is under metabolic and immune regulation. Despite increasing recognition of the involvement of neutrophils in regeneration, it is unclear how the liver signals to the bone marrow to release neutrophils after injury and how reparative neutrophils signal to hepatocytes to reenter the cell cycle. Here we report that loss of the liver tumour suppressor Lifr in mouse hepatocytes impairs, whereas overexpression of leukaemia inhibitory factor receptor (LIFR) promotes liver repair and regeneration after partial hepatectomy or toxic injury. In response to physical or chemical damage to the liver, LIFR from hepatocytes promotes the secretion of cholesterol and CXCL1 in a STAT3-dependent manner, leading to the efflux of bone marrow neutrophils to the circulation and damaged liver. Cholesterol, via its receptor ERRα, stimulates neutrophils to secrete hepatocyte growth factor to accelerate hepatocyte proliferation. Altogether, our findings reveal a LIFR-STAT3-CXCL1-CXCR2 axis and a LIFR-STAT3-cholesterol-ERRα-hepatocyte growth factor axis that form bidirectional hepatocyte-neutrophil cross-talk to repair and regenerate the liver.
Collapse
Affiliation(s)
- Yalan Deng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Consuelo Martinez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fan Yao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
5
|
Giudice L, Mohamed A, Malm T. StellarPath: Hierarchical-vertical multi-omics classifier synergizes stable markers and interpretable similarity networks for patient profiling. PLoS Comput Biol 2024; 20:e1012022. [PMID: 38607982 PMCID: PMC11042724 DOI: 10.1371/journal.pcbi.1012022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The Patient Similarity Network paradigm implies modeling the similarity between patients based on specific data. The similarity can summarize patients' relationships from high-dimensional data, such as biological omics. The end PSN can undergo un/supervised learning tasks while being strongly interpretable, tailored for precision medicine, and ready to be analyzed with graph-theory methods. However, these benefits are not guaranteed and depend on the granularity of the summarized data, the clarity of the similarity measure, the complexity of the network's topology, and the implemented methods for analysis. To date, no patient classifier fully leverages the paradigm's inherent benefits. PSNs remain complex, unexploited, and meaningless. We present StellarPath, a hierarchical-vertical patient classifier that leverages pathway analysis and patient similarity concepts to find meaningful features for both classes and individuals. StellarPath processes omics data, hierarchically integrates them into pathways, and uses a novel similarity to measure how patients' pathway activity is alike. It selects biologically relevant molecules, pathways, and networks, considering molecule stability and topology. A graph convolutional neural network then predicts unknown patients based on known cases. StellarPath excels in classification performances and computational resources across sixteen datasets. It demonstrates proficiency in inferring the class of new patients described in external independent studies, following its initial training and testing phases on a local dataset. It advances the PSN paradigm and provides new markers, insights, and tools for in-depth patient profiling.
Collapse
Affiliation(s)
- Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ahmed Mohamed
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Minagawa E, Yamauchi N, Taguchi Y, Umeda M. Photodynamic reactions using high-intensity red LED promotes gingival wound healing by ROS induction. Sci Rep 2023; 13:17081. [PMID: 37816801 PMCID: PMC10564724 DOI: 10.1038/s41598-023-43966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023] Open
Abstract
Photodynamic therapy is a treatment that combines a light source with a photosensitizer. LEDs have attracted considerable attention in clinical dentistry because they are inexpensive and safe to use. Although the interaction between photosensitizers and LEDs in dental practice is effective for treating periodontal disease by killing periodontopathic bacteria, little is known about the effects of LEDs on human gingival fibroblasts (HGnFs), which play an important role in gingival wound healing. In this study, we investigated the effects of high-intensity red LED irradiation on HGnFs after the addition of methylene blue (MB), one of the least harmful photosensitizers, on wound healing and reactive oxygen species (ROS) production induced by photodynamic reactions. We found that irradiation of MB with high-intensity red LED at controlled energy levels promoted cell proliferation, migration, and production of wound healing factors. Furthermore, ROS production by a photodynamic reaction enabled the translocation of phosphorylated Grb2-associated binder-1, activating Extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase signals. Our findings suggest that proper control of ROS production has a beneficial effect on gingival fibroblasts, which constitute periodontal tissue, from the perspective of gingival wound healing.
Collapse
Affiliation(s)
- Emika Minagawa
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| | - Nobuhiro Yamauchi
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan.
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| |
Collapse
|
7
|
Bryant D, Smith L, Rogers-Broadway KR, Karydis L, Woo J, Blunt MD, Forconi F, Stevenson FK, Goodnow C, Russell A, Humburg P, Packham G, Steele AJ, Strefford JC. Network analysis reveals a major role for 14q32 cluster miRNAs in determining transcriptional differences between IGHV-mutated and unmutated CLL. Leukemia 2023; 37:1454-1463. [PMID: 37169950 PMCID: PMC10317834 DOI: 10.1038/s41375-023-01918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) cells can express unmutated (U-CLL) or mutated (M-CLL) immunoglobulin heavy chain (IGHV) genes with differing clinical behaviours, variable B cell receptor (BCR) signalling capacity and distinct transcriptional profiles. As it remains unclear how these differences reflect the tumour cells' innate pre/post germinal centre origin or their BCR signalling competence, we applied mRNA/miRNA sequencing to 38 CLL cases categorised into three subsets by IGHV mutational status and BCR signalling capacity. We identified 492 mRNAs and 38 miRNAs differentially expressed between U-CLL and M-CLL, but only 9 mRNAs and 0 miRNAs associated with BCR competence within M-CLL. Of the IGHV-associated miRNAs, (14/38 (37%)) derived from chr14q32 clusters where all miRNAs were co-expressed with the MEG3 lncRNA from a cancer associated imprinted locus. Integrative analysis of miRNA/mRNA data revealed pronounced regulatory potential for the 14q32 miRNAs, potentially accounting for up to 25% of the IGHV-related transcriptome signature. GAB1, a positive regulator of BCR signalling, was potentially regulated by five 14q32 miRNAs and we confirmed that two of these (miR-409-3p and miR-411-3p) significantly repressed activity of the GAB1 3'UTR. Our analysis demonstrates a potential key role of the 14q32 miRNA locus in the regulation of CLL-related gene regulation.
Collapse
Affiliation(s)
- Dean Bryant
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Lindsay Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Laura Karydis
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jeongmin Woo
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthew D Blunt
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Francesco Forconi
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Freda K Stevenson
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Christopher Goodnow
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Amanda Russell
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Peter Humburg
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Graham Packham
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andrew J Steele
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonathan C Strefford
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
8
|
Deng Y, Zhao Z, Sheldon M, Zhao Y, Teng H, Martinez C, Zhang J, Lin C, Sun Y, Yao F, Zhu H, Ma L. LIFR recruits HGF-producing neutrophils to promote liver injury repair and regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533289. [PMID: 36993315 PMCID: PMC10055204 DOI: 10.1101/2023.03.18.533289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The molecular links between tissue repair and tumorigenesis remain elusive. Here, we report that loss of the liver tumor suppressor Lifr in mouse hepatocytes impairs the recruitment and activity of reparative neutrophils, resulting in the inhibition of liver regeneration after partial hepatectomy or toxic injuries. On the other hand, overexpression of LIFR promotes liver repair and regeneration after injury. Interestingly, LIFR deficiency or overexpression does not affect hepatocyte proliferation ex vivo or in vitro . In response to physical or chemical damage to the liver, LIFR from hepatocytes promotes the secretion of the neutrophil chemoattractant CXCL1 (which binds CXCR2 to recruit neutrophils) and cholesterol in a STAT3-dependent manner. Cholesterol, in turn, acts on the recruited neutrophils to secrete hepatocyte growth factor (HGF) to accelerate hepatocyte proliferation and regeneration. Altogether, our findings reveal a LIFR-STAT3- CXCL1-CXCR2 axis and a LIFR-STAT3-cholesterol-HGF axis that mediate hepatic damage- induced crosstalk between hepatocytes and neutrophils to repair and regenerate the liver.
Collapse
|
9
|
Ponde NO, Lortal L, Tsavou A, Hepworth OW, Wickramasinghe DN, Ho J, Richardson JP, Moyes DL, Gaffen SL, Naglik JR. Receptor-kinase EGFR-MAPK adaptor proteins mediate the epithelial response to Candida albicans via the cytolytic peptide toxin, candidalysin. J Biol Chem 2022; 298:102419. [PMID: 36037968 PMCID: PMC9530844 DOI: 10.1016/j.jbc.2022.102419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Candida albicans (C. albicans) is a dimorphic commensal human fungal pathogen that can cause severe oropharyngeal candidiasis (oral thrush) in susceptible hosts. During invasive infection, C. albicans hyphae invade oral epithelial cells (OECs) and secrete candidalysin, a pore-forming cytolytic peptide that is required for C. albicans pathogenesis at mucosal surfaces. Candidalysin is produced in the hyphal invasion pocket and triggers cell damage responses in OECs. Candidalysin also activates multiple MAPK-based signaling events that collectively drive the production of downstream inflammatory mediators that coordinate downstream innate and adaptive immune responses. The activities of candidalysin are dependent on signaling through the epidermal growth factor receptor (EGFR). Here, we interrogated known EGFR-MAPK signaling intermediates for their roles mediating the OEC response to C. albicans infection. Using RNA silencing and pharmacological inhibition, we identified five key adaptors, including growth factor receptor-bound protein 2 (Grb2), Grb2-associated binding protein 1 (Gab1), Src homology and collagen (Shc), SH2-containing protein tyrosine phosphatase-2 (Shp2), and casitas B-lineage lymphoma (c-Cbl). We determined that all of these signaling effectors were inducibly phosphorylated in response to C. albicans. These phosphorylation events occurred in a candidalysin-dependent manner and additionally required EGFR phosphorylation, matrix metalloproteinases (MMPs), and cellular calcium flux to activate a complete OEC response to fungal infection. Of these, Gab1, Grb2, and Shp2 were the dominant drivers of ERK1/2 activation and the subsequent production of downstream innate-acting cytokines. Together, these results identify the key adaptor proteins that drive the EGFR signaling mechanisms that underlie oral epithelial responses to C. albicans.
Collapse
Affiliation(s)
- Nicole O Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Antzela Tsavou
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Olivia W Hepworth
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Don N Wickramasinghe
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jemima Ho
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh Pennsylvania, USA.
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
10
|
Zhuo H, Zhang X, Li M, Zhang Q, Wang Y. Antibacterial and Anti-Inflammatory Properties of a Novel Antimicrobial Peptide Derived from LL-37. Antibiotics (Basel) 2022; 11:antibiotics11060754. [PMID: 35740160 PMCID: PMC9220503 DOI: 10.3390/antibiotics11060754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Peri-implantitis is a pathological condition involving tissues around dental implants that are characterized by inflammation of the peri-implant mucosa and progressive loss of supporting bone. We found that the antimicrobial peptide KR-12-3 (KRIVKWIKKFLR) derived from LL-37 had antibacterial properties against Streptococcus gordonii. The purpose of this study was to evaluate its antibacterial and anti-inflammatory activities and its underlying mechanisms. We evaluated the antibacterial activities of antimicrobial peptides in planktonic and biofilm states by measuring their minimum inhibitory concentration, minimum bactericidal concentration, and biofilm susceptibility. The effects of antimicrobial peptides on the production of IL-6 and IL-8 in LPS-stimulated RAW264.7 cells were detected by enzyme-linked immunosorbent assay and other experiments, and their toxicity to MC3T3-E1 cells was also studied. While maintaining low cytotoxicity, KR-12-3 exhibited growth inhibitory effects on S. gordonii in planktonic and biofilm states. Lower concentrations of KR-12-3 treatment reduced the production of inflammatory cytokines in LPS-stimulated RAW264.8 cells. The mechanisms underlying the inhibition of biofilm formation and anti-inflammatory effects have been associated with the low expression of related genes. KR-12-3 may be used to develop an antibacterial, anti-infective, and anti-inflammatory drugs for peri-implantitis.
Collapse
|
11
|
de Melo Madureira ÁN, de Oliveira JRS, de Menezes Lima VL. The Role of IL-6 Released During Exercise to Insulin Sensitivity and Muscle Hypertrophy. Mini Rev Med Chem 2022; 22:2419-2428. [PMID: 35264090 DOI: 10.2174/1389557522666220309161245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
Interleukin-6 (IL-6) influences both inflammatory response and anti-inflammatory processes. This cytokine can be released by the exercising skeletal muscle, which characterizes it as a myokine. Unlike what is observed in inflammation, IL-6 produced by skeletal muscle is not preceded by the release of other pro-inflammatory cytokines, but is seems to be dependent on the lactate produced during exercise, thus causing different effects from those of seen in inflammatory state. After binding to its receptor, myokine IL-6 activates the PI3K-Akt pathway. One consequence of this upregulation is the potentiation of insulin signaling, which enhances insulin sensitivity. IL-6 increases GLUT-4 vesicle mobilization to muscle cell periphery, increasing the glucose transport into the cell, and also glycogen synthesis. Muscle glycogen provides energy for the ATP resynthesis, and regulates Ca2+ release by the sarcoplasmic reticulum, influencing muscle contraction, and, hence, muscle function by multiple pathways. Another implication for the upregulation of PI3K-Akt pathway is the activation of mTORC1, which regulates mRNA translational efficiency by regulating translation machinery, and translational capacity by inducing ribosomal biogenesis. Thus, IL-6 may contribute for skeletal muscle hypertrophy and function by increasing contractile protein synthesis.
Collapse
Affiliation(s)
- Álvaro Nóbrega de Melo Madureira
- Laboratory of Lipids and Application of Biomolecules to Prevalent and Neglected Diseases (LAB-DPN), Department of Biochemistry, Federal University of Pernambuco (UFPE)
| | - João Ricardhis Saturnino de Oliveira
- Laboratory of Lipids and Application of Biomolecules to Prevalent and Neglected Diseases (LAB-DPN), Department of Biochemistry, Federal University of Pernambuco (UFPE)
| | - Vera Lúcia de Menezes Lima
- Laboratory of Lipids and Application of Biomolecules to Prevalent and Neglected Diseases (LAB-DPN), Department of Biochemistry, Federal University of Pernambuco (UFPE)
| |
Collapse
|
12
|
Omokehinde T, Jotte A, Johnson RW. gp130 Cytokines Activate Novel Signaling Pathways and Alter Bone Dissemination in ER+ Breast Cancer Cells. J Bone Miner Res 2022; 37:185-201. [PMID: 34477239 PMCID: PMC8828687 DOI: 10.1002/jbmr.4430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/09/2021] [Accepted: 08/29/2021] [Indexed: 02/03/2023]
Abstract
Breast cancer cells frequently home to the bone marrow, where they encounter signals that promote survival and quiescence or stimulate their proliferation. The interleukin-6 (IL-6) cytokines signal through the co-receptor glycoprotein130 (gp130) and are abundantly secreted within the bone microenvironment. Breast cancer cell expression of leukemia inhibitory factor (LIF) receptor (LIFR)/STAT3 signaling promotes tumor dormancy in the bone, but it is unclear which, if any of the cytokines that signal through LIFR, including LIF, oncostatin M (OSM), and ciliary neurotrophic factor (CNTF), promote tumor dormancy and which signaling pathways are induced. We first confirmed that LIF, OSM, and CNTF and their receptor components were expressed across a panel of breast cancer cell lines, although expression was lower in estrogen receptor-negative (ER- ) bone metastatic clones compared with parental cell lines. In estrogen receptor-positive (ER+ ) cells, OSM robustly stimulated phosphorylation of known gp130 signaling targets STAT3, ERK, and AKT, while CNTF activated STAT3 signaling. In ER- breast cancer cells, OSM alone stimulated AKT and ERK signaling. Overexpression of OSM, but not CNTF, reduced dormancy gene expression and increased ER+ breast cancer bone dissemination. Reverse-phase protein array revealed distinct and overlapping pathways stimulated by OSM, LIF, and CNTF with known roles in breast cancer progression and metastasis. In breast cancer patients, downregulation of the cytokines or receptors was associated with reduced relapse-free survival, but OSM was significantly elevated in patients with invasive disease and distant metastasis. Together these data indicate that the gp130 cytokines induce multiple signaling cascades in breast cancer cells, with a potential pro-tumorigenic role for OSM and pro-dormancy role for CNTF. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tolu Omokehinde
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alec Jotte
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Rachelle W Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
13
|
Yao F, Deng Y, Zhao Y, Mei Y, Zhang Y, Liu X, Martinez C, Su X, Rosato RR, Teng H, Hang Q, Yap S, Chen D, Wang Y, Chen MJM, Zhang M, Liang H, Xie D, Chen X, Zhu H, Chang JC, You MJ, Sun Y, Gan B, Ma L. A targetable LIFR-NF-κB-LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis. Nat Commun 2021; 12:7333. [PMID: 34921145 PMCID: PMC8683481 DOI: 10.1038/s41467-021-27452-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
The growing knowledge of ferroptosis has suggested the role and therapeutic potential of ferroptosis in cancer, but has not been translated into effective therapy. Liver cancer, primarily hepatocellular carcinoma (HCC), is highly lethal with limited treatment options. LIFR is frequently downregulated in HCC. Here, by studying hepatocyte-specific and inducible Lifr-knockout mice, we show that loss of Lifr promotes liver tumorigenesis and confers resistance to drug-induced ferroptosis. Mechanistically, loss of LIFR activates NF-κB signaling through SHP1, leading to upregulation of the iron-sequestering cytokine LCN2, which depletes iron and renders insensitivity to ferroptosis inducers. Notably, an LCN2-neutralizing antibody enhances the ferroptosis-inducing and anticancer effects of sorafenib on HCC patient-derived xenograft tumors with low LIFR expression and high LCN2 expression. Thus, anti-LCN2 therapy is a promising way to improve liver cancer treatment by targeting ferroptosis.
Collapse
Affiliation(s)
- Fan Yao
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yalan Deng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ying Mei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Consuelo Martinez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaohua Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Roberto R Rosato
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shannon Yap
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dahu Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mei-Ju May Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mutian Zhang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jenny C Chang
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms222011027. [PMID: 34681685 PMCID: PMC8540903 DOI: 10.3390/ijms222011027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.
Collapse
|
15
|
Fiebelkow J, Guendel A, Guendel B, Mehwald N, Jetka T, Komorowski M, Waldherr S, Schaper F, Dittrich A. The tyrosine phosphatase SHP2 increases robustness and information transfer within IL-6-induced JAK/STAT signalling. Cell Commun Signal 2021; 19:94. [PMID: 34530865 PMCID: PMC8444181 DOI: 10.1186/s12964-021-00770-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Background Cell-to-cell heterogeneity is an inherent feature of multicellular organisms and is central in all physiological and pathophysiological processes including cellular signal transduction. The cytokine IL-6 is an essential mediator of pro- and anti-inflammatory processes. Dysregulated IL-6-induced intracellular JAK/STAT signalling is associated with severe inflammatory and proliferative diseases. Under physiological conditions JAK/STAT signalling is rigorously controlled and timely orchestrated by regulatory mechanisms such as expression of the feedback-inhibitor SOCS3 and activation of the protein-tyrosine phosphatase SHP2 (PTPN11). Interestingly, the function of negative regulators seems not to be restricted to controlling the strength and timely orchestration of IL-6-induced STAT3 activation. Exemplarily, SOCS3 increases robustness of late IL-6-induced STAT3 activation against heterogenous STAT3 expression and reduces the amount of information transferred through JAK/STAT signalling. Methods Here we use multiplexed single-cell analyses and information theoretic approaches to clarify whether also SHP2 contributes to robustness of STAT3 activation and whether SHP2 affects the amount of information transferred through IL-6-induced JAK/STAT signalling. Results SHP2 increases robustness of both basal, cytokine-independent STAT3 activation and early IL-6-induced STAT3 activation against differential STAT3 expression. However, SHP2 does not affect robustness of late IL-6-induced STAT3 activation. In contrast to SOCS3, SHP2 increases the amount of information transferred through IL-6-induced JAK/STAT signalling, probably by reducing cytokine-independent STAT3 activation and thereby increasing sensitivity of the cells. These effects are independent of SHP2-dependent MAPK activation. Conclusion In summary, the results of this study extend our knowledge of the functions of SHP2 in IL-6-induced JAK/STAT signalling. SHP2 is not only a repressor of basal and cytokine-induced STAT3 activity, but also ensures robustness and transmission of information.![]() Plain English summary Cells within a multicellular organism communicate with each other to exchange information about the environment. Communication between cells is facilitated by soluble molecules that transmit information from one cell to the other. Cytokines such as interleukin-6 are important soluble mediators that are secreted when an organism is faced with infections or inflammation. Secreted cytokines bind to receptors within the membrane of their target cells. This binding induces activation of an intracellular cascade of reactions called signal transduction, which leads to cellular responses. An important example of intracellular signal transduction is JAK/STAT signalling. In healthy organisms signalling is controlled and timed by regulatory mechanisms, whose activation results in a controlled shutdown of signalling pathways. Interestingly, not all cells within an organism are identical. They differ in the amount of proteins involved in signal transduction, such as STAT3. These differences shape cellular communication and responses to intracellular signalling. Here, we show that an important negative regulatory protein called SHP2 (or PTPN11) is not only responsible for shutting down signalling, but also for steering signalling in heterogeneous cell populations. SHP2 increases robustness of STAT3 activation against variable STAT3 amounts in individual cells. Additionally, it increases the amount of information transferred through JAK/STAT signalling by increasing the dynamic range of pathway activation in heterogeneous cell populations. This is an amazing new function of negative regulatory proteins that contributes to communication in heterogeneous multicellular organisms in health and disease. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00770-7.
Collapse
Affiliation(s)
- Jessica Fiebelkow
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - André Guendel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Beate Guendel
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.,Karolinska Institutet, Clintec, Huddinge, Sweden
| | - Nora Mehwald
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Tomasz Jetka
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong, Hong Kong
| | - Michal Komorowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warszawa, Poland
| | | | - Fred Schaper
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Dynamic Systems: Systems Engineering (CDS), Otto-von-Guericke University, Magdeburg, Germany.,Magdeburg Center for Systems Biology (MACS), Otto-von-Guericke University, Magdeburg, Germany
| | - Anna Dittrich
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany. .,Center for Dynamic Systems: Systems Engineering (CDS), Otto-von-Guericke University, Magdeburg, Germany. .,Magdeburg Center for Systems Biology (MACS), Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
16
|
Christianson J, Oxford JT, Jorcyk CL. Emerging Perspectives on Leukemia Inhibitory Factor and its Receptor in Cancer. Front Oncol 2021; 11:693724. [PMID: 34395259 PMCID: PMC8358831 DOI: 10.3389/fonc.2021.693724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Tumorigenesis and metastasis have deep connections to inflammation and inflammatory cytokines, but the mechanisms underlying these relationships are poorly understood. Leukemia Inhibitory Factor (LIF) and its receptor (LIFR), part of the interleukin-6 (IL-6) cytokine family, make up one such ill-defined piece of the puzzle connecting inflammation to cancer. Although other members of the IL-6 family have been shown to be involved in the metastasis of multiple types of cancer, the role of LIF and LIFR has been challenging to determine. Described by others in the past as enigmatic and paradoxical, LIF and LIFR are expressed in a diverse array of cells in the body, and the narrative surrounding them in cancer-related processes has been vague, and at times even contradictory. Despite this, recent insights into their functional roles in cancer have highlighted interesting patterns that may allude to a broader understanding of LIF and LIFR within tumor growth and metastasis. This review will discuss in depth the signaling pathways activated by LIF and LIFR specifically in the context of cancer-the purpose being to summarize recent literature concerning the downstream effects of LIF/LIFR signaling in a variety of cancer-related circumstances in an effort to begin teasing out the intricate web of contradictions that have made this pair so challenging to define.
Collapse
Affiliation(s)
- Joe Christianson
- Department of Biological Sciences, Boise State University, Boise, ID, United States
- Biomolecular Sciences Program, Boise State University, Boise, ID, United States
| | - Julia Thom Oxford
- Department of Biological Sciences, Boise State University, Boise, ID, United States
- Biomolecular Sciences Program, Boise State University, Boise, ID, United States
| | - Cheryl L. Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID, United States
- Biomolecular Sciences Program, Boise State University, Boise, ID, United States
| |
Collapse
|
17
|
Mizutani N, Hikita H, Saito Y, Myojin Y, Sato K, Urabe M, Kurahashi T, Shiode Y, Sakane S, Murai K, Nozaki Y, Kodama T, Sakamori R, Yoshida Y, Tatsumi T, Takehara T. Gab1 in livers with persistent hepatocyte apoptosis has an antiapoptotic effect and reduces chronic liver injury, fibrosis, and tumorigenesis. Am J Physiol Gastrointest Liver Physiol 2021; 320:G958-G968. [PMID: 33787344 DOI: 10.1152/ajpgi.00370.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 01/31/2023]
Abstract
Grb2-associated binder 1 (Gab1) is an adaptor protein that is important for intracellular signal transduction by receptor tyrosine kinases that are receptors for various growth factors and plays an important role in rapid liver regeneration after partial hepatectomy and during acute hepatitis. On the other hand, mild liver regeneration is induced in livers of individuals with chronic hepatitis, where hepatocyte apoptosis is persistent; however, the impact of Gab1 on such livers remains unclear. We examined the role of Gab1 in chronic hepatitis. Gab1 knockdown enhanced the decrease in cell viability and apoptosis induced by ABT-737, a Bcl-2/-xL/-w inhibitor, in BNL.CL2 cells, while cell viability and caspase activity were unchanged in the absence of ABT-737. ABT-737 treatment induced Gab1 cleavage to form p35-Gab1. p35-Gab1 was also detected in the livers of mice with hepatocyte-specific Mcl-1 knockout (KO), which causes persistent hepatocyte apoptosis. Gab1 deficiency exacerbated hepatocyte apoptosis in Mcl-1 KO mice with posttranscriptional downregulation of Bcl-XL. In BNL.CL2 cells treated with ABT-737, Gab1 knockdown posttranscriptionally suppressed Bcl-xL expression, and p35-Gab1 overexpression enhanced Bcl-xL expression. Gab1 deficiency in Mcl-1 KO mice activated STAT3 signaling in hepatocytes, increased hepatocyte proliferation, and increased the incidence of liver cancer with the exacerbation of liver fibrosis. In conclusion, Gab1 is cleaved in the presence of apoptotic stimuli and forms p35-Gab1 in hepatocytes. In chronic liver injury, the role of Gab1 in suppressing apoptosis and reducing liver damage, fibrosis, and tumorigenesis is more important than its role in liver regeneration.NEW & NOTEWORTHY Grb2-associated binder 1 (Gab1) is known to contribute to liver regeneration after acute liver injury. However, in chronic liver diseases, Gab1 plays a greater role in suppressing hepatocyte apoptosis than in liver regeneration, resulting in suppression of hepatocyte proliferation, liver fibrosis, and liver carcinogenesis.
Collapse
Affiliation(s)
- Naoki Mizutani
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshinobu Saito
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuta Myojin
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Katsuhiko Sato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makiko Urabe
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohide Kurahashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuto Shiode
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sadatsugu Sakane
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasutoshi Nozaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
18
|
Tetrahydrocurcumin ameliorates Alzheimer's pathological phenotypes by inhibition of microglial cell cycle arrest and apoptosis via Ras/ERK signaling. Biomed Pharmacother 2021; 139:111651. [PMID: 34243602 DOI: 10.1016/j.biopha.2021.111651] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
1,7-bis(4-hydroxy-3-methoxyphenyl)heptane-3,5-dione (tetrahydrocurcumin, THC) is a major bioactive metabolite of curcumin, demonstrating the potential anti-inflammatory, antioxidant and neuroprotective properties, etc. In this study, it was found that Aβ induced decreased cell viability, cell cycle arrest and apoptosis in BV-2 cells, which were ameliorated by THC. In vivo, THC administration rescued learning and memory, and reduced Aβ burden in the hippocampus of APP/PS1 mice. By proteomic analysis of the hippocampus of mice, 157 differentially expressed proteins were identified in APP/PS1 mice treated with THC (comparing with APP/PS1 mice), which also suggested that the effects of THC on the cell cycle and apoptosis were mostly related to the "Ras signaling pathway", etc. In APP/PS1 mice, the down-regulation of Gab2 and K-Ras, and the up-regulation of caspase-3, TGF-β1 and TNF-ɑ were observed; THC attenuated the abnormal expression of Gab2, K-Ras, caspase-3 and TNF-ɑ, and up-regulated TGF-β1 and Bag1 expression. In BV-2 cells, Aβ induced the down-regulation of Gab2, K-Ras and TGF-β1, and the overexpression of caspase-3, PARP1, cleaved-PARP1 and TNF-ɑ, which were restored by THC. Moreover, THC up-regulated Bag1 expression in Aβ-treated BV-2 cells. The decreased transcriptional expression of Ccnd2 and Cdkn1a were also observed in Aβ-treated BV-2 cells, and THC alleviated the down-regulation of Ccnd2. For the first time, we identified that the action of THC in preventing AD was associated with inhibition of cell cycle arrest and apoptosis of microglia via the Ras/ERK signaling pathway, shedding new light on the role of THC in alleviating the progression of AD.
Collapse
|
19
|
FoxO1-GAB1 axis regulates homing capacity and tonic AKT activity in chronic lymphocytic leukemia. Blood 2021; 138:758-772. [PMID: 33786575 DOI: 10.1182/blood.2020008101] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/21/2021] [Indexed: 12/18/2022] Open
Abstract
Recirculation of chronic lymphocytic leukemia (CLL) cells between the peripheral blood and lymphoid niches plays a critical role in disease pathophysiology, and inhibiting this process is one of the major mechanisms of action for B-cell receptor (BCR) inhibitors such as ibrutinib and idelalisib. Migration is a complex process guided by chemokine receptors and integrins. However, it remains largely unknown how CLL cells integrate multiple migratory signals while balancing survival in the peripheral blood and the decision to return to immune niches. Our study provided evidence that CXCR4/CD5 intraclonal subpopulations can be used to study the regulation of migration of CLL cells. We performed RNA profiling of CXCR4dimCD5bright vs CXCR4brightCD5dim CLL cells and identified differential expression of dozens of molecules with a putative function in cell migration. GRB2-associated binding protein 1 (GAB1) positively regulated CLL cell homing capacity of CXCR4brightCD5dim cells. Gradual GAB1 accumulation in CLL cells outside immune niches was mediated by FoxO1-induced transcriptional GAB1 activation. Upregulation of GAB1 also played an important role in maintaining basal phosphatidylinositol 3-kinase (PI3K) activity and the "tonic" AKT phosphorylation required to sustain the survival of resting CLL B cells. This finding is important during ibrutinib therapy, because CLL cells induce the FoxO1-GAB1-pAKT axis, which represents an adaptation mechanism to the inability to home to immune niches. We have demonstrated that GAB1 can be targeted therapeutically by novel GAB1 inhibitors, alone or in combination with BTK inhibition. GAB1 inhibitors induce CLL cell apoptosis, impair cell migration, inhibit tonic or BCR-induced AKT phosphorylation, and block compensatory AKT activity during ibrutinib therapy.
Collapse
|
20
|
Abstract
IL-6 is involved both in immune responses and in inflammation, hematopoiesis, bone metabolism and embryonic development. IL-6 plays roles in chronic inflammation (closely related to chronic inflammatory diseases, autoimmune diseases and cancer) and even in the cytokine storm of corona virus disease 2019 (COVID-19). Acute inflammation during the immune response and wound healing is a well-controlled response, whereas chronic inflammation and the cytokine storm are uncontrolled inflammatory responses. Non-immune and immune cells, cytokines such as IL-1β, IL-6 and tumor necrosis factor alpha (TNFα) and transcription factors nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) play central roles in inflammation. Synergistic interactions between NF-κB and STAT3 induce the hyper-activation of NF-κB followed by the production of various inflammatory cytokines. Because IL-6 is an NF-κB target, simultaneous activation of NF-κB and STAT3 in non-immune cells triggers a positive feedback loop of NF-κB activation by the IL-6-STAT3 axis. This positive feedback loop is called the IL-6 amplifier (IL-6 Amp) and is a key player in the local initiation model, which states that local initiators, such as senescence, obesity, stressors, infection, injury and smoking, trigger diseases by promoting interactions between non-immune cells and immune cells. This model counters dogma that holds that autoimmunity and oncogenesis are triggered by the breakdown of tissue-specific immune tolerance and oncogenic mutations, respectively. The IL-6 Amp is activated by a variety of local initiators, demonstrating that the IL-6-STAT3 axis is a critical target for treating diseases.
Collapse
Affiliation(s)
- Toshio Hirano
- National Institutes for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba, Japan
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Abdollahi P, Köhn M, Børset M. Protein tyrosine phosphatases in multiple myeloma. Cancer Lett 2020; 501:105-113. [PMID: 33290866 DOI: 10.1016/j.canlet.2020.11.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Many cell signaling pathways are activated or deactivated by protein tyrosine phosphorylation and dephosphorylation, catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. Even though PTPs are as important as PTKs in this process, their role has been neglected for a long time. Multiple myeloma (MM) is a cancer of plasma cells, which is characterized by production of monoclonal immunoglobulin, anemia and destruction of bone. MM is still incurable with high relapse frequency after treatment. In this review, we highlight the PTPs that were previously described in MM or have a role that can be relevant in a myeloma context. Our purpose is to show that despite the importance of PTPs in MM pathogenesis, many unanswered questions in this field need to be addressed. This might help to detect novel treatment strategies for MM patients.
Collapse
Affiliation(s)
- Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Clinic of Medicine, St. Olavs Hospital, Trondheim, Norway; Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
22
|
Omokehinde T, Johnson RW. GP130 Cytokines in Breast Cancer and Bone. Cancers (Basel) 2020; 12:cancers12020326. [PMID: 32023849 PMCID: PMC7072680 DOI: 10.3390/cancers12020326] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer cells have a high predilection for skeletal homing, where they may either induce osteolytic bone destruction or enter a latency period in which they remain quiescent. Breast cancer cells produce and encounter autocrine and paracrine cytokine signals in the bone microenvironment, which can influence their behavior in multiple ways. For example, these signals can promote the survival and dormancy of bone-disseminated cancer cells or stimulate proliferation. The interleukin-6 (IL-6) cytokine family, defined by its use of the glycoprotein 130 (gp130) co-receptor, includes interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), among others. These cytokines are known to have overlapping pleiotropic functions in different cell types and are important for cross-talk between bone-resident cells. IL-6 cytokines have also been implicated in the progression and metastasis of breast, prostate, lung, and cervical cancer, highlighting the importance of these cytokines in the tumor–bone microenvironment. This review will describe the role of these cytokines in skeletal remodeling and cancer progression both within and outside of the bone microenvironment.
Collapse
Affiliation(s)
- Tolu Omokehinde
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-875-8965
| |
Collapse
|
23
|
Matoba H, Takamoto M, Fujii C, Kawakubo M, Kasuga E, Matsumura T, Natori T, Misawa K, Taniguchi S, Nakayama J. Cecal Tumorigenesis in Aryl Hydrocarbon Receptor-Deficient Mice Depends on Cecum-Specific Mitogen-Activated Protein Kinase Pathway Activation and Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:453-468. [PMID: 31734232 DOI: 10.1016/j.ajpath.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor known as a dioxin receptor. Recently, Ahr-/- mice were revealed to develop cecal tumors with inflammation and Wnt/β-catenin pathway activation. However, whether β-catenin degradation is AhR dependent remains unclear. To determine whether other signaling pathways function in Ahr-/- cecal tumorigenesis, we investigated histologic characteristics of the tumors and cytokine/chemokine production in tumors and Ahr-/- peritoneal macrophages. AhR expression was also assessed in human colorectal carcinomas. Of the 28 Ahr-/- mice, 10 developed cecal lesions by 50 weeks of age, an incidence significantly lower than previously reported. Cecal lesions of Ahr-/- mice developed from serrated hyperplasia to adenoma/dysplasia-like neoplasia with enhanced proliferation. Macrophage and neutrophil infiltration into the lesions was also observed early in serrated hyperplasia, although adjacent mucosa was devoid of inflammation. Il1b, Il6, Ccl2, and Cxcl5 were up-regulated at lesion sites, whereas only IL-6 production increased in Ahr-/- peritoneal macrophages after lipopolysaccharide + ATP stimulation. Neither Myc (alias c-myc) up-regulation nor β-catenin nuclear translocation was observed, unlike previously reported. Interestingly, enhanced phosphorylation of extracellular signal-regulated kinase, Src, and epidermal growth factor receptor and Amphiregulin up-regulation at Ahr-/- lesion sites were detected. In human serrated lesions, however, AhR expression in epithelial cells was up-regulated despite morphologic similarity to Ahr-/- cecal lesions. Our results suggest novel mechanisms underlying Ahr-/- cecal tumorigenesis, depending primarily on cecum-specific mitogen-activated protein kinase pathway activation and inflammation.
Collapse
Affiliation(s)
- Hisanori Matoba
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan; Department of Pathology, Ina Central Hospital, Ina, Japan
| | - Masaya Takamoto
- Department of Infection and Host Defense and Pathobiology, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Chifumi Fujii
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan; Department of Biotechnology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan.
| | - Masatomo Kawakubo
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eriko Kasuga
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | | | - Tatsuya Natori
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Ken Misawa
- Department of Pathology, Ina Central Hospital, Ina, Japan
| | - Shun'ichiro Taniguchi
- Comprehensive Cancer Therapy, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
24
|
Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci 2019; 11:30. [PMID: 31685798 PMCID: PMC6828663 DOI: 10.1038/s41368-019-0064-z] [Citation(s) in RCA: 348] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease involving the destruction of both soft and hard tissue in the periodontal region. Although dysbiosis of the local microbial community initiates local inflammation, over-activation of the host immune response directly activates osteoclastic activity and alveolar bone loss. Many studies have reported on the cytokine network involved in periodontitis and its crucial and pleiotropic effect on the recruitment of specific immunocytes, control of pathobionts and induction or suppression of osteoclastic activity. Nonetheless, particularities in the stimulation of pathogens in the oral cavity that lead to the specific and complex periodontal cytokine network are far from clarified. Thus, in this review, we begin with an up-to-date aetiological hypothesis of periodontal disease and summarize the roles of cytokines in the host immune response. In addition, we also summarize the latest cytokine-related therapeutic measures for periodontal disease.
Collapse
Affiliation(s)
- Weiyi Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Bongartz H, Gille K, Hessenkemper W, Mandel K, Lewitzky M, Feller SM, Schaper F. The multi-site docking protein Grb2-associated binder 1 (Gab1) enhances interleukin-6-induced MAPK-pathway activation in an SHP2-, Grb2-, and time-dependent manner. Cell Commun Signal 2019; 17:135. [PMID: 31651330 PMCID: PMC6814103 DOI: 10.1186/s12964-019-0451-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cytokine-dependent activation of signalling pathways is tightly orchestrated. The spatiotemporal activation of signalling pathways dictates the specific physiological responses to cytokines. Dysregulated signalling accounts for neoplastic, developmental, and inflammatory diseases. Grb2-associated binder (Gab) family proteins are multi-site docking proteins, which expand cytokine-induced signal transduction in a spatial- and time-dependent manner by coordinating the recruitment of proteins involved in mitogen activated protein kinase (MAPK)/extracellular-signal regulated kinase (ERK) and phosphatidyl-inositol-3-kinase (PI3K) signalling. Interaction of Gab family proteins with these signalling proteins determines strength, duration and localization of active signalling cascades. However, the underlying molecular mechanisms of signal orchestration by Gab family proteins in IL-6-induced signalling are only scarcely understood. Methods We performed kinetic analyses of interleukin-6 (IL-6)-induced MAPK activation and analysed downstream responses. We compared signalling in wild-type cells, Gab1 knock-out cells, those reconstituted to express Gab1 mutants, and cells expressing gp130 receptors or receptor mutants. Results Interleukin-6-induced MAPK pathway activation can be sub-divided into an early Gab1-independent and a subsequent Gab1-dependent phase. Early Gab1-independent MAPK activation is critical for the subsequent initiation of Gab1-dependent amplification of MAPK pathway activation and requires binding of SH2 domain-containing phosphatase 2 (SHP2) to the interleukin-6 receptor complex. Subsequent and coordinated recruitment of Grb2 and SHP2 to Gab1 is essential for Gab1-dependent amplification of IL-6-induced late MAPK pathway activation and subsequent gene expression. Conclusions Overall, we elaborated the molecular requirements for Gab1-dependent, spatiotemporal orchestration of interleukin-6-dependent MAPK signalling. We discriminated IL-6-induced Gab1-independent, early activation of MAPK signalling and Gab1-dependent, sustained activation of MAPK signalling.
Collapse
Affiliation(s)
- Hannes Bongartz
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Gebäude 28/Pfälzer Platz, 39106, Magdeburg, Germany
| | - Karen Gille
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Gebäude 28/Pfälzer Platz, 39106, Magdeburg, Germany
| | - Wiebke Hessenkemper
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Gebäude 28/Pfälzer Platz, 39106, Magdeburg, Germany
| | - Katharina Mandel
- Institute of Molecular Medicine, Charles Tanford Protein Research Center, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Marc Lewitzky
- Institute of Molecular Medicine, Charles Tanford Protein Research Center, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Stephan M Feller
- Institute of Molecular Medicine, Charles Tanford Protein Research Center, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Fred Schaper
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Gebäude 28/Pfälzer Platz, 39106, Magdeburg, Germany.
| |
Collapse
|
26
|
Idrees M, Xu L, Song SH, Joo MD, Lee KL, Muhammad T, El Sheikh M, Sidrat T, Kong IK. PTPN11 (SHP2) Is Indispensable for Growth Factors and Cytokine Signal Transduction During Bovine Oocyte Maturation and Blastocyst Development. Cells 2019; 8:cells8101272. [PMID: 31635340 PMCID: PMC6830097 DOI: 10.3390/cells8101272] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/05/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
This study was aimed to investigate the role of SHP2 (Src-homology-2-containing phosphotyrosine phosphatase) in intricate signaling networks invoked by bovine oocyte to achieve maturation and blastocyst development. PTPN11 (Protein Tyrosine Phosphatase, non-receptor type 11) encoding protein SHP2, a positive transducer of RTKs (Receptor Tyrosine Kinases) and cytokine receptors, can play a significant role in bovine oocyte maturation and embryo development, but this phenomenon has not yet been explored. Here, we used different growth factors, cytokines, selective activator, and a specific inhibitor of SHP2 to ascertain its role in bovine oocyte developmental stages in vitro. We found that SHP2 became activated by growth factors and cytokines treatment and was highly involved in the activation of oocyte maturation and embryo development pathways. Activation of SHP2 triggered MAPK (mitogen-activated protein kinases) and PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B) signaling cascades, which is not only important for GVBD (germinal vesical breakdown) induction but also for maternal mRNA translation. Inhibition of phosphatase activity of SHP2 with PHPS1 (Phenylhydrazonopyrazolone sulfonate 1) reduced oocytes maturation as well as bovine blastocyst ICM (inner cell mass) volume. Supplementation of LIF (Leukemia Inhibitory Factor) to embryos showed an unconventional direct relation between p-SHP2 and p-STAT3 (Signal transducer and activator of transcription 3) for blastocyst ICM development. Other than growth factors and cytokines, cisplatin was used to activate SHP2. Cisplatin activated SHP2 modulate growth factors effect and combine treatment significantly enhanced quality and rate of developed blastocysts.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Lianguang Xu
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Seok-Hwan Song
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | | | - Tahir Muhammad
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Marwa El Sheikh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Tabinda Sidrat
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
- The King Kong Ltd., Daegu 43017, Korea.
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| |
Collapse
|
27
|
Raghavan S, Singh NK, Gali S, Mani AM, Rao GN. Protein Kinase Cθ Via Activating Transcription Factor 2-Mediated CD36 Expression and Foam Cell Formation of Ly6C hi Cells Contributes to Atherosclerosis. Circulation 2019; 138:2395-2412. [PMID: 29991487 DOI: 10.1161/circulationaha.118.034083] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although the role of thrombin in atherothrombosis is well studied, its role in the pathogenesis of diet-induced atherosclerosis is not known. METHODS Using a mouse model of diet-induced atherosclerosis and molecular biological approaches, here we have explored the role of thrombin and its G protein-coupled receptor signaling in diet-induced atherosclerosis. RESULTS In exploring the role of G protein-coupled receptor signaling in atherogenesis, we found that thrombin triggers foam cell formation via inducing CD36 expression, and these events require Par1-mediated Gα12-Pyk2-Gab1-protein kinase C (PKC)θ-dependent ATF2 activation. Genetic deletion of PKCθ in apolipoprotein E (ApoE)-/- mice reduced Western diet-induced plaque formation. Furthermore, thrombin induced Pyk2, Gab1, PKCθ, and ATF2 phosphorylation, CD36 expression, and foam cell formation in peritoneal macrophages of ApoE-/- mice. In contrast, thrombin only stimulated Pyk2 and Gab1 but not ATF2 phosphorylation or its target gene CD36 expression in the peritoneal macrophages of ApoE-/-:PKCθ-/- mice, and it had no effect on foam cell formation. In addition, the aortic root cross-sections of Western diet-fed ApoE-/- mice showed increased Pyk2, Gab1, PKCθ, and ATF2 phosphorylation and CD36 expression as compared with ApoE-/-:PKCθ-/- mice. Furthermore, although the monocytes from peripheral blood and the aorta of Western diet-fed ApoE-/- mice were found to contain more of Ly6Chi cells than Ly6Clo cells, the monocytes from Western diet-fed ApoE-/-:PKCθ-/- mice were found to contain more Ly6Clo cells than Ly6Chi cells. It is interesting to note that the Ly6Chi cells showed higher CD36 expression with enhanced capacity to form foam cells as compared with Ly6Clo cells. CONCLUSIONS These findings reveal for the first time that thrombin-mediated Par1-Gα12 signaling via targeting Pyk2-Gab1-PKCθ-ATF2-dependent CD36 expression might be playing a crucial role in diet-induced atherogenesis.
Collapse
Affiliation(s)
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Sivaiah Gali
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Arul M Mani
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
28
|
Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019; 50:812-831. [DOI: 10.1016/j.immuni.2019.03.027] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
|
29
|
Ryu HH, Kim T, Kim JW, Kang M, Park P, Kim YG, Kim H, Ha J, Choi JE, Lee J, Lim CS, Kim CH, Kim SJ, Silva AJ, Kaang BK, Lee YS. Excitatory neuron-specific SHP2-ERK signaling network regulates synaptic plasticity and memory. Sci Signal 2019; 12:12/571/eaau5755. [PMID: 30837304 DOI: 10.1126/scisignal.aau5755] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in RAS signaling pathway components cause diverse neurodevelopmental disorders, collectively called RASopathies. Previous studies have suggested that dysregulation in RAS-extracellular signal-regulated kinase (ERK) activation is restricted to distinct cell types in different RASopathies. Some cases of Noonan syndrome (NS) are associated with gain-of-function mutations in the phosphatase SHP2 (encoded by PTPN11); however, SHP2 is abundant in multiple cell types, so it is unclear which cell type(s) contribute to NS phenotypes. Here, we found that expressing the NS-associated mutant SHP2D61G in excitatory, but not inhibitory, hippocampal neurons increased ERK signaling and impaired both long-term potentiation (LTP) and spatial memory in mice, although endogenous SHP2 was expressed in both neuronal types. Transcriptomic analyses revealed that the genes encoding SHP2-interacting proteins that are critical for ERK activation, such as GAB1 and GRB2, were enriched in excitatory neurons. Accordingly, expressing a dominant-negative mutant of GAB1, which reduced its interaction with SHP2D61G, selectively in excitatory neurons, reversed SHP2D61G-mediated deficits. Moreover, ectopic expression of GAB1 and GRB2 together with SHP2D61G in inhibitory neurons resulted in ERK activation. These results demonstrate that RAS-ERK signaling networks are notably different between excitatory and inhibitory neurons, accounting for the cell type-specific pathophysiology of NS and perhaps other RASopathies.
Collapse
Affiliation(s)
- Hyun-Hee Ryu
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - TaeHyun Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Minkyung Kang
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Pojeong Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Yong Gyu Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyopil Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Jiyeon Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ja Eun Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Jisu Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Chae-Seok Lim
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Chul-Hong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Alcino J Silva
- Department of Neurobiology, Integrative Center for Learning and Memory, Brain Research Institute, University of California Los Angeles, California, CA 90095, USA
| | - Bong-Kiun Kaang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
30
|
Dawidowska M, Jaksik R, Drobna M, Szarzyńska-Zawadzka B, Kosmalska M, Sędek Ł, Machowska L, Lalik A, Lejman M, Ussowicz M, Kałwak K, Kowalczyk JR, Szczepański T, Witt M. Comprehensive Investigation of miRNome Identifies Novel Candidate miRNA-mRNA Interactions Implicated in T-Cell Acute Lymphoblastic Leukemia. Neoplasia 2019; 21:294-310. [PMID: 30763910 PMCID: PMC6372882 DOI: 10.1016/j.neo.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 02/08/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy originating from T-cell precursors. The genetic landscape of T-ALL has been largely characterized by next-generation sequencing. Yet, the transcriptome of miRNAs (miRNome) of T-ALL has been less extensively studied. Using small RNA sequencing, we characterized the miRNome of 34 pediatric T-ALL samples, including the expression of isomiRs and the identification of candidate novel miRNAs (not previously annotated in miRBase). For the first time, we show that immunophenotypic subtypes of T-ALL present different miRNA expression profiles. To extend miRNome characteristics in T-ALL (to 82 T-ALL cases), we combined our small RNA-seq results with data available in Gene Expression Omnibus. We report on miRNAs most abundantly expressed in pediatric T-ALL and miRNAs differentially expressed in T-ALL versus normal mature T-lymphocytes and thymocytes, representing candidate oncogenic and tumor suppressor miRNAs. Using eight target prediction algorithms and pathway enrichment analysis, we identified differentially expressed miRNAs and their predicted targets implicated in processes (defined in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes) of potential importance in pathogenesis of T-ALL, including interleukin-6-mediated signaling, mTOR signaling, and regulation of apoptosis. We finally focused on hsa-mir-106a-363 cluster and functionally validated direct interactions of hsa-miR-20b-5p and hsa-miR-363-3p with 3' untranslated regions of their predicted targets (PTEN, SOS1, LATS2), overrepresented in regulation of apoptosis. hsa-mir-106a-363 is a paralogue of prototypic oncogenic hsa-mir-17-92 cluster with yet unestablished role in the pathogenesis of T-ALL. Our study provides a firm basis and data resource for functional analyses on the role of miRNA-mRNA interactions in T-ALL.
Collapse
Key Words
- all, acute lymphoblastic leukemia
- egil, european group for immunological classification of leukemias
- geo, gene expression omnibus
- go, gene ontology
- isomir, isoform of mirna
- kegg, kyoto encyclopedia of genes and genomes
- mirnome, transcriptome of mirnas
- mre, mirna response element
- or, odds ratio
- rt-qpcr, quantitative reverse transcription polymerase chain reaction
- small rna-seq, next-generation sequencing of small rnas
- t-all, t-cell acute lymphoblastic leukemia
- 3′utr, 3′ untranslated region
Collapse
Affiliation(s)
- Małgorzata Dawidowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Roman Jaksik
- Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
| | - Monika Drobna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Bronisława Szarzyńska-Zawadzka
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Maria Kosmalska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| | - Ludomiła Machowska
- Clinic of Pediatric Oncology Hematology and Transplantology, Poznań University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland.
| | - Anna Lalik
- Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Children's University Hospital, Gębali 6, 20-093 Lublin, Poland.
| | - Marek Ussowicz
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Krzysztof Kałwak
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Jerzy R Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland.
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia in Katowice, 3 Maja 13-15, 41-800 Zabrze, Poland.
| | - Michał Witt
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| |
Collapse
|
31
|
Lokau J, Garbers C. Activating mutations of the gp130/JAK/STAT pathway in human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:283-309. [PMID: 31036294 DOI: 10.1016/bs.apcsb.2018.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytokines of the interleukin-6 (IL-6) family are involved in numerous physiological and pathophysiological processes. Dysregulated and increased activities of its members can be found in practically all human inflammatory diseases including cancer. All cytokines activate several intracellular signaling cascades, including the Jak/STAT, MAPK, PI3K, and Src/YAP signaling pathways. Additionally, several mutations in proteins involved in these signaling cascades have been identified in human patients, which render these proteins constitutively active and result in a hyperactivation of the signaling pathway. Interestingly, some of these mutations are associated with or even causative for distinct human diseases, making them interesting targets for therapy. This chapter describes the basic biology of the gp130/Jak/STAT pathway, summarizes what is known about the molecular mechanisms of the activating mutations, and gives an outlook how this knowledge can be exploited for targeted therapy in human diseases.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
32
|
Sutherland L, Ruhe M, Gattegno-Ho D, Mann K, Greaves J, Koscielniak M, Meek S, Lu Z, Waterfall M, Taylor R, Tsakiridis A, Brown H, Maciver SK, Joshi A, Clinton M, Chamberlain LH, Smith A, Burdon T. LIF-dependent survival of embryonic stem cells is regulated by a novel palmitoylated Gab1 signalling protein. J Cell Sci 2018; 131:jcs.222257. [PMID: 30154213 PMCID: PMC6176924 DOI: 10.1242/jcs.222257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023] Open
Abstract
The cytokine leukaemia inhibitory factor (LIF) promotes self-renewal of mouse embryonic stem cells (ESCs) through activation of the transcription factor Stat3. However, the contribution of other ancillary pathways stimulated by LIF in ESCs, such as the MAPK and PI3K pathways, is less well understood. We show here that naive-type mouse ESCs express high levels of a novel effector of the MAPK and PI3K pathways. This effector is an isoform of the Gab1 (Grb2-associated binder protein 1) adaptor protein that lacks the N-terminal pleckstrin homology (PH) membrane-binding domain. Although not essential for rapid unrestricted growth of ESCs under optimal conditions, the novel Gab1 variant (Gab1β) is required for LIF-mediated cell survival under conditions of limited nutrient availability. This enhanced survival is absolutely dependent upon a latent palmitoylation site that targets Gab1β directly to ESC membranes. These results show that constitutive association of Gab1 with membranes through a novel mechanism promotes LIF-dependent survival of murine ESCs in nutrient-poor conditions.
Collapse
Affiliation(s)
- Linda Sutherland
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Madeleine Ruhe
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Daniela Gattegno-Ho
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Karanjit Mann
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Jennifer Greaves
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Magdalena Koscielniak
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Stephen Meek
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Zen Lu
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Martin Waterfall
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Ryan Taylor
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Anestis Tsakiridis
- Department of Biomedical Science, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Helen Brown
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | | | - Anagha Joshi
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Michael Clinton
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Luke H. Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QT, UK
| | - Tom Burdon
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
33
|
Gallaher ZR, Steward O. Modest enhancement of sensory axon regeneration in the sciatic nerve with conditional co-deletion of PTEN and SOCS3 in the dorsal root ganglia of adult mice. Exp Neurol 2018; 303:120-133. [PMID: 29458059 DOI: 10.1016/j.expneurol.2018.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/09/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
Axons within the peripheral nervous system are capable of regeneration, but full functional recovery is rare. Recent work has shown that conditional deletion of two key signaling inhibitors of the PI3K and Jak/Stat pathways-phosphatase and tensin homolog (PTEN) and suppressor of cytokine signaling-3 (SOCS3), respectively-promotes regeneration of normally non-regenerative central nervous system axons. Moreover, in studies of optic nerve regeneration, co-deletion of both PTEN and SOCS3 has an even greater effect. Here, we test the hypotheses (1) that PTEN deletion enhances axon regeneration following sciatic nerve crush and (2) that PTEN/SOCS3 co-deletion further promotes regeneration. PTENfl/fl and PTEN/SOCS3fl/fl mice received direct injections of AAV-Cre into the fourth and fifth lumbar dorsal root ganglia (DRG) two weeks prior to sciatic nerve crush. Western blot analysis of whole cell lysates from DRG using phospho-specific antibodies revealed that PTEN deletion did not enhance or prolong PI3K signaling following sciatic nerve crush. However, PTEN/SOCS3 co-deletion activated PI3K for at least 7 days post-injury in contrast to controls, where activation peaked at 3 days. Quantification of SCG10-expressing regenerating sensory axons in the sciatic nerve after crush injury revealed longer distance regeneration at 3 days post-injury with both PTEN and PTEN/SOCS3 co-deletion. Additionally, analysis of noxious thermosensation and mechanosensation with PTEN/SOCS3 co-deletion revealed enhanced sensation at 14 and 21 days after crush, respectively, after which all treatment groups reached the same functional plateau. These findings indicate that co-deletion of PTEN and SOCS3 results in modest but measureable enhancement of early regeneration of DRG axons following crush injury.
Collapse
Affiliation(s)
- Zachary R Gallaher
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| | - Oswald Steward
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, Department of Neurosurgery, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
34
|
Sewastianik T, Jiang M, Sukhdeo K, Patel SS, Roberts K, Kang Y, Alduaij A, Dennis PS, Lawney B, Liu R, Song Z, Xiong J, Zhang Y, Lemieux ME, Pinkus GS, Rich JN, Weinstock DM, Mullighan CG, Sharpless NE, Carrasco RD. Constitutive Ras signaling and Ink4a/Arf inactivation cooperate during the development of B-ALL in mice. Blood Adv 2017; 1:2361-2374. [PMID: 29296886 PMCID: PMC5729631 DOI: 10.1182/bloodadvances.2017012211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 11/20/2022] Open
Abstract
Despite recent advances in treatment, human precursor B-cell acute lymphoblastic leukemia (B-ALL) remains a challenging clinical entity. Recent genome-wide studies have uncovered frequent genetic alterations involving RAS pathway mutations and loss of the INK4A/ARF locus, suggesting their important role in the pathogenesis, relapse, and chemotherapy resistance of B-ALL. To better understand the oncogenic mechanisms by which these alterations might promote B-ALL and to develop an in vivo preclinical model of relapsed B-ALL, we engineered mouse strains with induced somatic KrasG12D pathway activation and/or loss of Ink4a/Arf during early stages of B-cell development. Although constitutive activation of KrasG12D in B cells induced prominent transcriptional changes that resulted in enhanced proliferation, it was not sufficient by itself to induce development of a high-grade leukemia/lymphoma. Instead, in 40% of mice, these engineered mutations promoted development of a clonal low-grade lymphoproliferative disorder resembling human extranodal marginal-zone lymphoma of mucosa-associated lymphoid tissue or lymphoplasmacytic lymphoma. Interestingly, loss of the Ink4a/Arf locus, apart from reducing the number of apoptotic B cells broadly attenuated KrasG12D-induced transcriptional signatures. However, combined Kras activation and Ink4a/Arf inactivation cooperated functionally to induce a fully penetrant, highly aggressive B-ALL phenotype resembling high-risk subtypes of human B-ALL such as BCR-ABL and CRFL2-rearranged. Ninety percent of examined murine B-ALL tumors showed loss of the wild-type Ink4a/Arf locus without acquisition of highly recurrent cooperating events, underscoring the role of Ink4a/Arf in restraining Kras-driven oncogenesis in the lymphoid compartment. These data highlight the importance of functional cooperation between mutated Kras and Ink4a/Arf loss on B-ALL.
Collapse
Affiliation(s)
- Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Meng Jiang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Surgical Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kumar Sukhdeo
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Sanjay S Patel
- Department of Pathology, Brigham & Women's Hospital, Boston, MA
| | - Kathryn Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Yue Kang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Ahmad Alduaij
- Pathology and Laboratory Medicine Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Peter S Dennis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Brian Lawney
- Center for Computational Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Ruiyang Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Zeyuan Song
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Jessie Xiong
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Yunyu Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; and
| | | | | | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; and
| | | | - Norman E Sharpless
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Ruben D Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, Brigham & Women's Hospital, Boston, MA
| |
Collapse
|
35
|
Beltra JC, Decaluwe H. Cytokines and persistent viral infections. Cytokine 2016; 82:4-15. [DOI: 10.1016/j.cyto.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
|
36
|
Pinno J, Bongartz H, Klepsch O, Wundrack N, Poli V, Schaper F, Dittrich A. Interleukin-6 influences stress-signalling by reducing the expression of the mTOR-inhibitor REDD1 in a STAT3-dependent manner. Cell Signal 2016; 28:907-16. [PMID: 27094713 DOI: 10.1016/j.cellsig.2016.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/05/2016] [Accepted: 04/09/2016] [Indexed: 11/30/2022]
Abstract
Interleukin 6 (IL-6) is a pleiotropic cytokine and a strong activator of Mammalian Target of Rapamycin (mTOR). In contrast, mTOR activity is negatively regulated by Regulated in Development and DNA Damage Responses 1 (REDD1). Expression of REDD1 is induced by cellular stressors such as glucocorticoids and DNA damaging agents. We show that the expression of basal as well as stress-induced REDD1 is reduced by IL-6. The reduction of REDD1 expression by IL-6 is independent of proteasomal or caspase-mediated degradation of REDD1 protein. Instead, induction of REDD1 mRNA is reduced by IL-6. The regulation of REDD1 expression by IL-6 is independent of Phosphatidylinositide-3-Kinase (PI3K) and Mitogen-Activated Protein Kinase (MAPK) signalling but depends on the expression and activation of Signal Transducer and Activator of Transcription 3 (STAT3). Furthermore, the reduction of basal REDD1 expression by IL-6 correlates with IL-6-induced activation of mTOR signalling. Inhibition of STAT3 activation blocks IL-6-induced mTOR activation. In summary, we present a novel STAT3-dependent mechanism of both IL-6-induced activation of mTOR and IL-6-dependent reversion of stress-induced inhibition of mTOR activity.
Collapse
Affiliation(s)
- Jessica Pinno
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Gebäude 28, 39106 Magdeburg, Germany.
| | - Hannes Bongartz
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Gebäude 28, 39106 Magdeburg, Germany.
| | - Oliver Klepsch
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Gebäude 28, 39106 Magdeburg, Germany.
| | - Nicole Wundrack
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Gebäude 28, 39106 Magdeburg, Germany.
| | - Valeria Poli
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy.
| | - Fred Schaper
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Gebäude 28, 39106 Magdeburg, Germany.
| | - Anna Dittrich
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Gebäude 28, 39106 Magdeburg, Germany.
| |
Collapse
|
37
|
Furuta K, Yoshida Y, Ogura S, Kurahashi T, Kizu T, Maeda S, Egawa M, Chatani N, Nishida K, Nakaoka Y, Kiso S, Kamada Y, Takehara T. Gab1 adaptor protein acts as a gatekeeper to balance hepatocyte death and proliferation during acetaminophen-induced liver injury in mice. Hepatology 2016; 63:1340-55. [PMID: 26680679 DOI: 10.1002/hep.28410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Acetaminophen (APAP) overdose is the leading cause of drug-induced acute liver failure. In APAP-induced acute liver failure, hepatocyte death and subsequent liver regeneration determines the prognosis of patients, making it necessary to identify suitable therapeutic targets based on detailed molecular mechanisms. Grb2-associated binder 1 (Gab1) adaptor protein plays a crucial role in transmitting signals from growth factor and cytokine receptors to downstream effectors. In this study, we hypothesized that Gab1 is involved in APAP-induced acute liver failure. Hepatocyte-specific Gab1 conditional knockout (Gab1CKO) and control mice were treated with 250 mg/kg of APAP. After APAP treatment, Gab1CKO mice had significantly higher mortality and elevated serum alanine aminotransferase levels compared to control mice. Gab1CKO mice had increased hepatocyte death and increased serum levels of high mobility group box 1, a marker of hepatocyte necrosis. In addition, Gab1CKO mice had reduced hepatocyte proliferation. The enhanced hepatotoxicity in Gab1CKO mice was associated with increased activation of stress-related c-Jun N-terminal kinase (JNK) and reduced activation of extracellular signal-regulated kinase and AKT. Furthermore, Gab1CKO mice showed enhanced mitochondrial translocation of JNK accompanied by an increase in the release of mitochondrial enzymes into the cytosol, which is indicative of increased mitochondrial dysfunction and subsequent nuclear DNA fragmentation. Finally, in vitro experiments showed that Gab1-deficient hepatocytes were more susceptible to APAP-induced mitochondrial dysfunction and cell death, suggesting that hepatocyte Gab1 is a direct target of APAP-induced hepatotoxicity. CONCLUSION Our current data demonstrate that hepatocyte Gab1 plays a critical role in controlling the balance between hepatocyte death and compensatory hepatocyte proliferation during APAP-induced liver injury.
Collapse
Affiliation(s)
- Kunimaro Furuta
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Ogura
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohide Kurahashi
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Takashi Kizu
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinichiro Maeda
- Department of Pharmacy, Osaka University Hospital, Suita, Osaka, Japan
| | - Mayumi Egawa
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Norihiro Chatani
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Keigo Nishida
- Laboratory of Immune Regulation, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Yoshikazu Nakaoka
- Department of Cardiovascular Medicine, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science Technology Agency, Kawaguchi, Saitama, Japan
| | - Shinichi Kiso
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Kamada
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan.,Departments of Molecular Biochemistry and Clinical Investigation, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
38
|
Keller R, Klein M, Thomas M, Dräger A, Metzger U, Templin MF, Joos TO, Thasler WE, Zell A, Zanger UM. Coordinating Role of RXRα in Downregulating Hepatic Detoxification during Inflammation Revealed by Fuzzy-Logic Modeling. PLoS Comput Biol 2016; 12:e1004431. [PMID: 26727233 PMCID: PMC4699813 DOI: 10.1371/journal.pcbi.1004431] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/05/2015] [Indexed: 12/31/2022] Open
Abstract
During various inflammatory processes circulating cytokines including IL-6, IL-1β, and TNFα elicit a broad and clinically relevant impairment of hepatic detoxification that is based on the simultaneous downregulation of many drug metabolizing enzymes and transporter genes. To address the question whether a common mechanism is involved we treated human primary hepatocytes with IL-6, the major mediator of the acute phase response in liver, and characterized acute phase and detoxification responses in quantitative gene expression and (phospho-)proteomics data sets. Selective inhibitors were used to disentangle the roles of JAK/STAT, MAPK, and PI3K signaling pathways. A prior knowledge-based fuzzy logic model comprising signal transduction and gene regulation was established and trained with perturbation-derived gene expression data from five hepatocyte donors. Our model suggests a greater role of MAPK/PI3K compared to JAK/STAT with the orphan nuclear receptor RXRα playing a central role in mediating transcriptional downregulation. Validation experiments revealed a striking similarity of RXRα gene silencing versus IL-6 induced negative gene regulation (rs = 0.79; P<0.0001). These results concur with RXRα functioning as obligatory heterodimerization partner for several nuclear receptors that regulate drug and lipid metabolism. During inflammation, circulating proinflammatory cytokines such as TNFα, IL-1ß, and IL-6, which are produced by, e.g., Kupffer cells, macrophages, or tumor cells, play important roles in hepatocellular signaling pathways and in the regulation of cellular homeostasis. In particular, these cytokines are responsible for the acute phase response (APR) but also for a dramatic reduction of drug detoxification capacity due to impaired expression of numerous genes coding for drug metabolic enzymes and transporters. Here we used high-throughput (phospho-)proteomic and gene expression data to investigate the impact of canonical signaling pathways in mediating IL-6-induced downregulation of drug metabolism related genes. We performed chemical inhibition perturbations to show that most of the IL-6 effects on gene expression are mediated through the MAPK and PI3K/AKT pathways. We constructed a prior knowledge network as basis for a fuzzy logic model that was trained with extensive gene expression data to identify critical regulatory nodes. Our results suggest that the nuclear receptor RXRα plays a central role, which was convincingly validated by RXRα gene silencing experiments. This work shows how computational modeling can support identifying decisive regulatory events from large-scale experimental data.
Collapse
Affiliation(s)
- Roland Keller
- Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Tuebingen, Germany
| | - Marcus Klein
- Dr. Margarete Fischer Bosch-Institute of Clinical Pharmacology, Stuttgart
- University of Tuebingen, Tuebingen, Germany
| | - Maria Thomas
- Dr. Margarete Fischer Bosch-Institute of Clinical Pharmacology, Stuttgart
- University of Tuebingen, Tuebingen, Germany
| | - Andreas Dräger
- Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Tuebingen, Germany
- Systems Biology Research Group, University of California, San Diego, La Jolla, California, United States of America
| | - Ute Metzger
- NMI Institute of Natural and Medical Sciences, Reutlingen, Germany
| | | | - Thomas O. Joos
- NMI Institute of Natural and Medical Sciences, Reutlingen, Germany
| | - Wolfgang E. Thasler
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich, Munich, Germany
| | - Andreas Zell
- Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Tuebingen, Germany
| | - Ulrich M. Zanger
- Dr. Margarete Fischer Bosch-Institute of Clinical Pharmacology, Stuttgart
- University of Tuebingen, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
39
|
The stabilization of hypoxia inducible factor modulates differentiation status and inhibits the proliferation of mouse embryonic stem cells. Chem Biol Interact 2016; 244:204-14. [DOI: 10.1016/j.cbi.2015.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/26/2015] [Accepted: 12/17/2015] [Indexed: 01/16/2023]
|
40
|
Coulombe G, Rivard N. New and Unexpected Biological Functions for the Src-Homology 2 Domain-Containing Phosphatase SHP-2 in the Gastrointestinal Tract. Cell Mol Gastroenterol Hepatol 2015; 2:11-21. [PMID: 28174704 PMCID: PMC4980741 DOI: 10.1016/j.jcmgh.2015.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Abstract
SHP-2 is a tyrosine phosphatase expressed in most embryonic and adult tissues. SHP-2 regulates many cellular functions including growth, differentiation, migration, and survival. Genetic and biochemical evidence show that SHP-2 is required for rat sarcoma viral oncogene/extracellular signal-regulated kinases mitogen-activated protein kinase pathway activation by most tyrosine kinase receptors, as well as by G-protein-coupled and cytokine receptors. In addition, SHP-2 can regulate the Janus kinase/signal transducers and activators of transcription, nuclear factor-κB, phosphatidyl-inositol 3-kinase/Akt, RhoA, Hippo, and Wnt/β-catenin signaling pathways. Emerging evidence has shown that SHP-2 dysfunction represents a key factor in the pathogenesis of gastrointestinal diseases, in particular in chronic inflammation and cancer. Variations within the gene locus encoding SHP-2 have been associated with increased susceptibility to develop ulcerative colitis and gastric atrophy. Furthermore, mice with conditional deletion of SHP-2 in intestinal epithelial cells rapidly develop severe colitis. Similarly, hepatocyte-specific deletion of SHP-2 induces hepatic inflammation, resulting in regenerative hyperplasia and development of tumors in aged mice. However, the SHP-2 gene initially was suggested to be a proto-oncogene because activating mutations of this gene were found in pediatric leukemias and certain forms of liver and colon cancers. Moreover, SHP-2 expression is up-regulated in gastric and hepatocellular cancers. Notably, SHP-2 functions downstream of cytotoxin-associated antigen A (CagA), the major virulence factor of Helicobacter pylori, and is associated with increased risks of gastric cancer. Further compounding this complexity, most recent findings suggest that SHP-2 also coordinates carbohydrate, lipid, and bile acid synthesis in the liver and pancreas. This review aims to summarize current knowledge and recent data regarding the biological functions of SHP-2 in the gastrointestinal tract.
Collapse
Key Words
- CagA, cytotoxin-associated gene A
- ERK, extracellular signal-regulated kinases
- FGF, fibroblast growth factor
- GI, gastrointestinal
- HCC, hepatocellular carcinoma
- IBD, inflammatory bowel disease
- IEC, intestinal epithelial cell
- JMML, juvenile myelomonocytic leukemia
- KO, knockout
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor-κB
- PI3K, phosphatidyl-inositol 3-kinase
- PTP, protein tyrosine phosphatase
- PTPN11
- RAS, rat sarcoma viral oncogene
- epithelium
- gastrointestinal cancer
- inflammation
Collapse
Affiliation(s)
| | - Nathalie Rivard
- Correspondence Address correspondence to: Nathalie Rivard, PhD, 3201, Jean Mignault, Sherbrooke, Quebec, Canada, J1E4K8.3201Jean Mignault, SherbrookeQuebecCanada, J1E4K8
| |
Collapse
|
41
|
Schaper F, Rose-John S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev 2015; 26:475-87. [DOI: 10.1016/j.cytogfr.2015.07.004] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023]
|
42
|
Yang P, Qin Y, Bian C, Zhao Y, Zhang W. Intrathecal delivery of IL-6 reactivates the intrinsic growth capacity of pyramidal cells in the sensorimotor cortex after spinal cord injury. PLoS One 2015; 10:e0127772. [PMID: 25992975 PMCID: PMC4437647 DOI: 10.1371/journal.pone.0127772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 04/20/2015] [Indexed: 01/23/2023] Open
Abstract
We have previously demonstrated the growth-promoting effect of intrathecal delivery of recombinant rat IL-6 immediately after corticospinal tract (CST) injury. Our present study aims to further clarify whether intrathecal delivery of IL-6 after CST injury could reactivate the intrinsic growth capacity of pyramidal cells in the sensorimotor cortex which project long axons to the spinal cord. We examined, by ELISA, levels of cyclic adenosine monophosphate (cAMP), adenylyl cyclase (AC, which synthesizes cAMP), phosphodiesterases (PDE, which degrades cAMP), and, by RT-PCR, the expression of regeneration-associated genes in the rat sensorimotor cortex after intrathecal delivery of IL-6 for 7 days, started immediately after CST injury. Furthermore, we injected retrograde neuronal tracer Fluorogold (FG) to the spinal cord to label pyramidal cells in the sensorimotor cortex, layers V and VI, combined with βIII-tubulin immunostaining, then we analyzed by immunohistochemisty and western blot the expression of the co-receptor gp-130 of IL-6 family, and pSTAT3 and mTOR, downstream IL-6/JAK/STAT3 and PI3K/AKT/mTOR signaling pathways respectively. We showed that intrathecal delivery of IL-6 elevated cAMP level and upregulated the expression of regeneration-associated genes including GAP-43, SPRR1A, CAP-23 and JUN-B, and the expression of pSTAT3 and mTOR in pyramidal cells of the sensorimotor cortex. In contrast, AG490, an inhibitor of JAK, partially blocked these effects of IL-6. All these results indicate that intrathecal delivery of IL-6 immediately after spinal cord injury can reactivate the intrinsic growth capacity of pyramidal cells in the sensorimotor cortex and these effects of IL-6 were partially JAK/STAT3-dependent.
Collapse
Affiliation(s)
- Ping Yang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, P.R China
- * E-mail:
| | - Yu Qin
- Cadet Brigade, Third Military Medical University, Chongqing, 400038, P.R China
| | - Chen Bian
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, P.R China
| | - Yandong Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, P.R China
| | - Wen Zhang
- Cadet Brigade, Third Military Medical University, Chongqing, 400038, P.R China
| |
Collapse
|
43
|
Kizu T, Yoshida Y, Furuta K, Ogura S, Egawa M, Chatani N, Hamano M, Takemura T, Ezaki H, Kamada Y, Nishida K, Nakaoka Y, Kiso S, Takehara T. Loss of Gab1 adaptor protein in hepatocytes aggravates experimental liver fibrosis in mice. Am J Physiol Gastrointest Liver Physiol 2015; 308:G613-24. [PMID: 25617348 DOI: 10.1152/ajpgi.00289.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/18/2015] [Indexed: 01/31/2023]
Abstract
Grb2-associated binder 1 (Gab1) adaptor protein amplifies signals downstream of a broad range of growth factors/receptor tyrosine kinases. Although these signals are implicated in liver fibrogenesis, the role of Gab1 remains unclear. To elucidate the role of Gab1, liver fibrosis was examined in hepatocyte-specific Gab1-conditional knockout (Gab1CKO) mice upon bile duct ligation (BDL). Gab1CKO mice developed exacerbated liver fibrosis with activation of hepatic myofibroblasts after BDL compared with control mice. The antifibrotic role of hepatocyte Gab1 was further confirmed by another well-established mouse model of liver fibrosis using chronic injections of carbon tetrachloride. After BDL, Gab1CKO mice also displayed exacerbated liver injury, decreased hepatocyte proliferation, and enhanced liver inflammation. Furthermore, cDNA microarray analysis was used to investigate the potential molecular mechanisms of the Gab1-mediated signal in liver fibrosis, and the fibrosis-promoting factor chemokine (C-C motif) ligand 5 (Ccl5) was identified as upregulated in the livers of Gab1CKO mice following BDL. Interestingly, in vitro studies using primary hepatocytes isolated from control and Gab1CKO mice revealed that the loss of Gab1 resulted in increased hepatocyte CCL5 synthesis upon lipopolysaccharide stimulation. Finally, pharmacological antagonism of CCL5 reduced BDL-induced liver fibrosis in Gab1CKO mice. In conclusion, our results demonstrate that hepatocyte Gab1 is required for liver fibrosis and that hepatocyte CCL5 could be an important contributor to this process. Thus, we present a novel antifibrotic function of hepatocyte Gab1 in liver fibrogenesis.
Collapse
Affiliation(s)
- Takashi Kizu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kunimaro Furuta
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Satoshi Ogura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mayumi Egawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Norihiro Chatani
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mina Hamano
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takayo Takemura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hisao Ezaki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshihiro Kamada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keigo Nishida
- Laboratory for Homeostatic Network, RCAI, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and
| | - Yoshikazu Nakaoka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shinichi Kiso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan;
| |
Collapse
|
44
|
MAPK-induced Gab1 translocation to the plasma membrane depends on a regulated intramolecular switch. Cell Signal 2015; 27:340-52. [DOI: 10.1016/j.cellsig.2014.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 01/17/2023]
|
45
|
Inflammatory cytokines: potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediators Inflamm 2015; 2015:531518. [PMID: 25729218 PMCID: PMC4333561 DOI: 10.1155/2015/531518] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/02/2015] [Indexed: 01/08/2023] Open
Abstract
Autism is a disorder of neurobiological origin characterized by problems in communication and social skills and repetitive behavior. After more than six decades of research, the etiology of autism remains unknown, and no biomarkers have been proven to be characteristic of autism. A number of studies have shown that the cytokine levels in the blood, brain, and cerebrospinal fluid (CSF) of autistic subjects differ from that of healthy individuals; for example, a series of studies suggests that interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) are significantly elevated in different tissues in autistic subjects. However, the expression of some cytokines, such as IL-1, IL-2, transforming growth factor-β (TGF-β), and granulocyte-macrophage colony-stimulating factor (GM-CSF), is controversial, and different studies have found various results in different tissues. In this review, we focused on several types of proinflammatory and anti-inflammatory cytokines that might affect different cell signal pathways and play a role in the pathophysiological mechanism of autistic spectrum disorders.
Collapse
|
46
|
Mauer J, Denson JL, Brüning JC. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol 2015; 36:92-101. [PMID: 25616716 DOI: 10.1016/j.it.2014.12.008] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/26/2014] [Accepted: 12/26/2014] [Indexed: 12/16/2022]
Abstract
Owing to its abundance in inflammatory settings, interleukin IL-6 is frequently viewed as a proinflammatory cytokine, with functions that parallel those of tumor necrosis factor (TNF) and IL-1β in the context of inflammation. However, accumulating evidence points to a broader role for IL-6 in a variety of (patho)physiological conditions, including functions related to the resolution of inflammation. We review recent findings on the complex biological functions governed by IL-6 signaling, focusing on its role in inflammation-associated cancer and metabolic disorders such as obesity and type 2 diabetes mellitus (T2DM). We propose that the anti-inflammatory functions of IL-6 may extend to multiple settings and cell types, and suggest that these dimensions should be incorporated in therapeutic approaches to these diseases. Finally, we outline important areas of inquiry towards understanding this pleiotropic cytokine.
Collapse
Affiliation(s)
- Jan Mauer
- Max Planck Institute for Metabolism Research, Cologne, Germany.
| | - Jesse L Denson
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany.
| |
Collapse
|
47
|
Kaneshiro S, Ebina K, Shi K, Higuchi C, Hirao M, Okamoto M, Koizumi K, Morimoto T, Yoshikawa H, Hashimoto J. IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. J Bone Miner Metab 2014; 32:378-92. [PMID: 24122251 DOI: 10.1007/s00774-013-0514-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/07/2013] [Indexed: 11/26/2022]
Abstract
It has been suggested that interleukin-6 (IL-6)plays a key role in the pathogenesis of rheumatoid arthritis(RA), including osteoporosis not only in inflamed joints but also in the whole body. However, previous in vitro studies regarding the effects of IL-6 on osteoblast differentiation are inconsistent. The aim of this study was to examine the effects and signal transduction of IL-6 on osteoblast differentiation in MC3T3-E1 cells and primary murine calvarial osteoblasts. IL-6 and its soluble receptor significantly reduced alkaline phosphatase (ALP) activity, the expression of osteoblastic genes (Runx2, osterix, and osteocalcin), and mineralization in a dose-dependent manner, which indicates negative effects of IL-6 on osteoblast differentiation. Signal transduction studies demonstrated that IL-6 activated not only two major signaling pathways, SHP2/MEK/ERK and JAK/STAT3, but also the SHP2/PI3K/Akt2 signaling pathway. The negative effect of IL-6 on osteoblast differentiation was restored by inhibition of MEK as well as PI3K, while it was enhanced by inhibition of STAT3. Knockdown of MEK2 and Akt2 transfected with siRNA enhanced ALP activity and gene expression of Runx2. These results indicate that IL-6 negatively regulates osteoblast differentiation through SHP2/MEK2/ERK and SHP2/PI3K/Akt2 pathways, while affecting it positively through JAK/STAT3. Inhibition of MEK2 and Akt2 signaling in osteoblasts might be of potential use in the treatment of osteoporosis in RA.
Collapse
|
48
|
Differential involvement of gp130 signalling pathways in modulating tobacco carcinogen-induced lung tumourigenesis. Oncogene 2014; 34:1510-9. [DOI: 10.1038/onc.2014.99] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 02/19/2014] [Accepted: 03/10/2014] [Indexed: 12/11/2022]
|
49
|
Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol 2014; 26:54-74. [PMID: 24552665 DOI: 10.1016/j.smim.2014.01.001] [Citation(s) in RCA: 504] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022]
Abstract
Inflammatory responses play pivotal roles in cancer development, including tumor initiation, promotion, progression, and metastasis. Cytokines are now recognized as important mediators linking inflammation and cancer, and are therefore potential therapeutic and preventive targets as well as prognostic factors. The interleukin (IL)-6 family of cytokines, especially IL-6 and IL-11, is highly up-regulated in many cancers and considered as one of the most important cytokine families during tumorigenesis and metastasis. This review discusses molecular mechanisms linking the IL-6 cytokine family to solid malignancies and their treatment.
Collapse
Affiliation(s)
- Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; UC San Diego Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
50
|
Kotasová H, Procházková J, Pacherník J. Interaction of Notch and gp130 signaling in the maintenance of neural stem and progenitor cells. Cell Mol Neurobiol 2014; 34:1-15. [PMID: 24132391 DOI: 10.1007/s10571-013-9996-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/30/2013] [Indexed: 01/10/2023]
Abstract
Notch and gp130 signaling are involved in the regulation of multiple cellular processes across various tissues during animal ontogenesis. In the developing nervous system, both signaling pathways intervene at many stages to determine cell fate-from the first neural lineage commitment and generation of neuronal precursors, to the terminal specification of cells as neurons and glia. In most cases, the effects of Notch and gp130 signaling in these processes are similar. The aim of the current review was to summarize the knowledge regarding the roles of Notch and gp130 signaling in the maintenance of neural stem and progenitor cells during animal ontogenesis, from early embryo to adult. Recent data show a direct crosstalk between these signaling pathways that seems to be specific for a particular type of neural progenitors.
Collapse
Affiliation(s)
- Hana Kotasová
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|