1
|
Nayak I, Biondo R, Stewart WC, Fulton RJ, Möker N, Zhang C, Khakoo SI, Das J. Modeling the response to interleukin-21 to inform natural killer cell immunotherapy. Immunol Cell Biol 2025; 103:192-212. [PMID: 39865344 PMCID: PMC11792776 DOI: 10.1111/imcb.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/15/2024] [Accepted: 12/15/2024] [Indexed: 01/28/2025]
Abstract
Natural killer (NK) cells are emerging agents for cancer therapy. Several different cytokines are used to generate NK cells for adoptive immunotherapy including interleukin (IL)-2, IL-12, IL-15 and IL-18 in solution, and membrane-bound IL-21. These cytokines drive NK cell activation through the integration of signal transducers and activators of transcription (STAT) and nuclear factor-kappa B (NF-κB) pathways, which overlap and synergize, making it challenging to predict optimal cytokine combinations for both proliferation and cytotoxicity. We integrated functional assays for NK cells cultured in a variety of cytokine combinations with mathematical modeling using feature selection and mechanistic regression models. Our regression model successfully predicts NK cell proliferation for different cytokine combinations and indicates synergy of activated STATs and NF-κB transcription factors between priming and post-priming phases. The use of IL-21 in solution in the priming of NK cell culture resulted in an improved NK cell proliferation, without compromising cytotoxicity potential or interferon gamma secretion against hepatocellular carcinoma cell lines. Our work provides an integrative framework for interrogating NK cell proliferation and activation for cancer immunotherapy.
Collapse
Affiliation(s)
- Indrani Nayak
- Steve and Cindy Rasmussen Institute for Genomic MedicineAbigail Wexner Research Institute, Nationwide Children's HospitalColumbusOHUSA
| | - Rosalba Biondo
- School of Clinical and Experimental SciencesUniversity of SouthamptonSouthamptonUK
| | | | - Rebecca J Fulton
- School of Clinical and Experimental SciencesUniversity of SouthamptonSouthamptonUK
| | - Nina Möker
- Miltenyi Biotec B.V. & Co. KGBergisch GladbachGermany
| | | | - Salim I Khakoo
- School of Clinical and Experimental SciencesUniversity of SouthamptonSouthamptonUK
| | - Jayajit Das
- Steve and Cindy Rasmussen Institute for Genomic MedicineAbigail Wexner Research Institute, Nationwide Children's HospitalColumbusOHUSA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOHUSA
- Department of PediatricsThe Ohio State UniversityColumbusOHUSA
- Pelotonia Institute for Immuno‐OncologyThe Ohio State UniversityColumbusOHUSA
- The Biophysics Graduate ProgramThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
2
|
Leonard WJ, Lin JX. Strategies to therapeutically modulate cytokine action. Nat Rev Drug Discov 2023; 22:827-854. [PMID: 37542128 DOI: 10.1038/s41573-023-00746-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 08/06/2023]
Abstract
Cytokines are secreted or membrane-presented molecules that mediate broad cellular functions, including development, differentiation, growth and survival. Accordingly, the regulation of cytokine activity is extraordinarily important both physiologically and pathologically. Cytokine and/or cytokine receptor engineering is being widely investigated to safely and effectively modulate cytokine activity for therapeutic benefit. IL-2 in particular has been extensively engineered, to create IL-2 variants that differentially exhibit activities on regulatory T cells to potentially treat autoimmune disease versus effector T cells to augment antitumour effects. Additionally, engineering approaches are being applied to many other cytokines such as IL-10, interferons and IL-1 family cytokines, given their immunosuppressive and/or antiviral and anticancer effects. In modulating the actions of cytokines, the strategies used have been broad, including altering affinities of cytokines for their receptors, prolonging cytokine half-lives in vivo and fine-tuning cytokine actions. The field is rapidly expanding, with extensive efforts to create improved therapeutics for a range of diseases.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Monaghan KL, Zheng W, Akhter H, Wang L, Ammer AG, Li P, Lin JX, Hu G, Leonard WJ, Wan ECK. Tetramerization of STAT5 regulates monocyte differentiation and the dextran sulfate sodium-induced colitis in mice. Front Immunol 2023; 14:1117828. [PMID: 37153611 PMCID: PMC10157487 DOI: 10.3389/fimmu.2023.1117828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
In response to external stimuli during immune responses, monocytes can have multifaceted roles such as pathogen clearance and tissue repair. However, aberrant control of monocyte activation can result in chronic inflammation and subsequent tissue damage. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces monocyte differentiation into a heterogenous population of monocyte-derived dendritic cells (moDCs) and macrophages. However, the downstream molecular signals that dictate the differentiation of monocytes under pathological conditions is incompletely understood. We report here that the GM-CSF-induced STAT5 tetramerization is a critical determinate of monocyte fate and function. Monocytes require STAT5 tetramers to differentiate into moDCs. Conversely, the absence of STAT5 tetramers results in a switch to a functionally distinct monocyte-derived macrophage population. In the dextran sulfate sodium (DSS) model of colitis, STAT5 tetramer-deficient monocytes exacerbate disease severity. Mechanistically, GM-CSF signaling in STAT5 tetramer-deficient monocytes results in the overexpression of arginase I and a reduction in nitric oxide synthesis following stimulation with lipopolysaccharide. Correspondingly, the inhibition of arginase I activity and sustained supplementation of nitric oxide ameliorates the worsened colitis in STAT5 tetramer-deficient mice. This study suggests that STAT5 tetramers protect against severe intestinal inflammation through the regulation of arginine metabolism.
Collapse
Affiliation(s)
- Kelly L. Monaghan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Wen Zheng
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, United States
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Amanda G. Ammer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Microscope Imaging Facility, West Virginia University, Morgantown, WV, United States
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Bioinformatics Core, West Virginia University, Morgantown, WV, United States
| | - Warren J. Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Edwin C. K. Wan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
4
|
Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 2022; 86:84-106. [PMID: 35995341 PMCID: PMC9714692 DOI: 10.1016/j.semcancer.2022.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.
Collapse
Affiliation(s)
- Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Genomic Mutations of the STAT5 Transcription Factor Are Associated with Human Cancer and Immune Diseases. Int J Mol Sci 2022; 23:ijms231911297. [PMID: 36232600 PMCID: PMC9569778 DOI: 10.3390/ijms231911297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Signal transducer and activation of transcription 5 (STAT5) is a key transcription factor that regulates various biological processes in mammalian development. Aberrant regulation of STAT5 has also been causally linked to many diseases, including cancers and immune-related diseases. Although persistent activation of STAT5 due to dysregulation of the signaling cascade has been reported to be associated with the progression of solid tumors and leukemia, various genomic mutations of STAT5 have also been found to cause a wide range of diseases. The present review comprehensively summarizes results of recent studies evaluating the intrinsic function of STAT5 and the link between STAT5 mutations and human diseases. This review also describes the types of disease models useful for investigating the mechanism underlying STAT5-driven disease progression. These findings provide basic knowledge for understanding the regulatory mechanisms of STAT5 and the progression of various diseases resulting from aberrant regulation of STAT5. Moreover, this review may provide insights needed to create optimal disease models that reflect human disease associated STAT5 mutations and to design gene therapies to correct STAT5 mutations.
Collapse
|
6
|
Menon PR, Staab J, Gregus A, Wirths O, Meyer T. An inhibitory effect on the nuclear accumulation of phospho-STAT1 by its unphosphorylated form. Cell Commun Signal 2022; 20:42. [PMID: 35361236 PMCID: PMC8974011 DOI: 10.1186/s12964-022-00841-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unphosphorylated signal transducer and activator of transcription 1 (U-STAT1) has been reported to elicit a distinct gene expression profile as compared to tyrosine-phosphorylated STAT1 (P-STAT1) homodimers. However, the impact of U-STAT1 on the IFNγ-induced immune response mediated by P-STAT1 is unknown. By generating a double mutant of STAT1 with mutation R602L in the Src-homology 2 (SH2) domain and Y701F in the carboxy-terminal transactivation domain mimicking U-STAT1, we investigated the effects of U-STAT1 on P-STAT1-mediated signal transduction. RESULTS In this study, we discovered a novel activity of U-STAT1 that alters the nucleo-cytoplasmic distribution of cytokine-stimulated P-STAT1. While the dimerization-deficient mutant R602L/Y701F was not able to display cytokine-induced nuclear accumulation, it inhibited the nuclear accumulation of co-expressed IFNγ-stimulated wild-type P-STAT1. Disruption of the anti-parallel dimer interface in the R602L/Y701F mutant via additional R274W and T385A mutations did not rescue the impaired nuclear accumulation of co-expressed P-STAT1. The mutant U-STAT1 affected neither the binding of co-expressed P-STAT1 to gamma-activated sites in vitro, nor the transcription of reporter constructs and the activation of STAT1 target genes. However, the nuclear accumulation of P-STAT1 was diminished in the presence of mutant U-STAT1, which was not restored by mutations reducing the DNA affinity of mutant U-STAT1. Whereas single mutations in the amino-terminus of dimerization-deficient U-STAT1 similarly inhibited the nuclear accumulation of co-expressed P-STAT1, a complete deletion of the amino-terminus restored cytokine-stimulated nuclear accumulation of P-STAT1. Likewise, the disruption of a dimer-specific nuclear localization signal also rescued the U-STAT1-mediated inhibition of P-STAT1 nuclear accumulation. CONCLUSION Our data demonstrate a novel role of U-STAT1 in affecting nuclear accumulation of P-STAT1, such that a high intracellular concentration of U-STAT1 inhibits the detection of nuclear P-STAT1 in immunofluorescence assays. These observations hint at a possible physiological function of U-STAT1 in buffering the nuclear import of P-STAT1, while preserving IFNγ-induced gene expression. Based on these results, we propose a model of a hypothetical import structure, the assembly of which is impaired under high concentrations of U-STAT1. This mechanism maintains high levels of cytoplasmic STAT1, while simultaneously retaining signal transduction by IFNγ. Video Abstract.
Collapse
Affiliation(s)
- Priyanka Rajeev Menon
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre Göttingen, and German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Julia Staab
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre Göttingen, and German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Anke Gregus
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre Göttingen, and German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Centre Göttingen, and German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
7
|
Monaghan KL, Aesoph D, Ammer AG, Zheng W, Rahimpour S, Farris BY, Spinner CA, Li P, Lin JX, Yu ZX, Lazarevic V, Hu G, Leonard WJ, Wan ECK. Tetramerization of STAT5 promotes autoimmune-mediated neuroinflammation. Proc Natl Acad Sci U S A 2021; 118:e2116256118. [PMID: 34934004 PMCID: PMC8719886 DOI: 10.1073/pnas.2116256118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Signal tranducer and activator of transcription 5 (STAT5) plays a critical role in mediating cellular responses following cytokine stimulation. STAT proteins critically signal via the formation of dimers, but additionally, STAT tetramers serve key biological roles, and we previously reported their importance in T and natural killer (NK) cell biology. However, the role of STAT5 tetramerization in autoimmune-mediated neuroinflammation has not been investigated. Using the STAT5 tetramer-deficient Stat5a-Stat5b N-domain double knockin (DKI) mouse strain, we report here that STAT5 tetramers promote the pathogenesis of experimental autoimmune encephalomyelitis (EAE). The mild EAE phenotype observed in DKI mice correlates with the impaired extravasation of pathogenic T-helper 17 (Th17) cells and interactions between Th17 cells and monocyte-derived cells (MDCs) in the meninges. We further demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated STAT5 tetramerization regulates the production of CCL17 by MDCs. Importantly, CCL17 can partially restore the pathogenicity of DKI Th17 cells, and this is dependent on the activity of the integrin VLA-4. Thus, our study reveals a GM-CSF-STAT5 tetramer-CCL17 pathway in MDCs that promotes autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Kelly L Monaghan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Drake Aesoph
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506
| | - Amanda G Ammer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Microscope Imaging Facility, West Virginia University, Morgantown, WV 26506
| | - Wen Zheng
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Shokofeh Rahimpour
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Breanne Y Farris
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Camille A Spinner
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Peng Li
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Warren J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892;
| | - Edwin C K Wan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506;
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
8
|
Jones DM, Read KA, Oestreich KJ. Dynamic Roles for IL-2-STAT5 Signaling in Effector and Regulatory CD4 + T Cell Populations. THE JOURNAL OF IMMUNOLOGY 2021; 205:1721-1730. [PMID: 32958706 DOI: 10.4049/jimmunol.2000612] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
CD4+ Th cells are responsible for orchestrating diverse, pathogen-specific immune responses through their differentiation into a number of subsets, including TH1, TH2, TH9, T follicular helper, T follicular regulatory, and regulatory T cells. The differentiation of each subset is guided by distinct regulatory requirements, including those derived from extracellular cytokine signals. IL-2 has emerged as a critical immunomodulatory cytokine that both positively and negatively affects the differentiation of individual Th cell subsets. IL-2 signals are propagated, in part, via activation of STAT5, which functions as a key regulator of CD4+ T cell gene programs. In this review, we discuss current understanding of the mechanisms that allow IL-2-STAT5 signaling to exert divergent effects across CD4+ T cell subsets and highlight specific roles for this pathway in the regulation of individual Th cell differentiation programs.
Collapse
Affiliation(s)
- Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and
| |
Collapse
|
9
|
Elucidating the Role of Ezh2 in Tolerogenic Function of NOD Bone Marrow-Derived Dendritic Cells Expressing Constitutively Active Stat5b. Int J Mol Sci 2020; 21:ijms21186453. [PMID: 32899608 PMCID: PMC7554732 DOI: 10.3390/ijms21186453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022] Open
Abstract
Tolerogenic dendritic cells (toDCs) are crucial to controlling the development of autoreactive T cell responses and the prevention of autoimmunity. We have reported that NOD.CD11cStat5b-CA transgenic mice expressing a constitutively active (CA) form of Stat5b under the control of a CD11c promoter are protected from diabetes and that Stat5b-CA-expressing DCs are tolerogenic and halt ongoing diabetes in NOD mice. However, the molecular mechanisms by which Stat5b-CA modulates DC tolerogenic function are not fully understood. Here, we used bone marrow-derived DCs (BMDCs) from NOD.CD11cStat5b-CA transgenic mice (Stat5b-CA.BMDCs) and found that Stat5b-CA.BMDCs displayed high levels of MHC class II, CD80, CD86, PD-L1, and PD-L2 and produced elevated amounts of TGFβ but low amounts of TNFα and IL-23. Stat5b-CA.BMDCs upregulated Irf4 and downregulated Irf8 genes and protein expression and promoted CD11c+CD11b+ DC2 subset differentiation. Interestingly, we found that the histone methyltransferase Ezh2 and Stat5b-CA bound gamma-interferon activated site (GAS) sequences in the Irf8 enhancer IRF8 transcription, whereas Stat5b but not Ezh2 bound GAS sequences in the Irf4 promoter to enhance IRF4 transcription. Injection of Stat5b-CA.BMDCs into prediabetic NOD mice halted progression of islet inflammation and protected against diabetes. Importantly, inhibition of Ezh2 in tolerogenic Stat5b-CA.BMDCs reduced their ability to prevent diabetes development in NOD recipient mice. Taken together, our data suggest that the active form of Stat5b induces tolerogenic DC function by modulating IRF4 and IRF8 expression through recruitment of Ezh2 and highlight the fundamental role of Ezh2 in Stat5b-mediated induction of tolerogenic DC function.
Collapse
|
10
|
Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C, Prenen H, Pauwels P, Trinh XB, Wouters A, Smits EL, Lardon F, van Dam PA. The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol 2020; 60:41-56. [DOI: 10.1016/j.semcancer.2019.10.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
|
11
|
Kennedy SA, Jarboui MA, Srihari S, Raso C, Bryan K, Dernayka L, Charitou T, Bernal-Llinares M, Herrera-Montavez C, Krstic A, Matallanas D, Kotlyar M, Jurisica I, Curak J, Wong V, Stagljar I, LeBihan T, Imrie L, Pillai P, Lynn MA, Fasterius E, Al-Khalili Szigyarto C, Breen J, Kiel C, Serrano L, Rauch N, Rukhlenko O, Kholodenko BN, Iglesias-Martinez LF, Ryan CJ, Pilkington R, Cammareri P, Sansom O, Shave S, Auer M, Horn N, Klose F, Ueffing M, Boldt K, Lynn DJ, Kolch W. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRAS G13D. Nat Commun 2020; 11:499. [PMID: 31980649 PMCID: PMC6981206 DOI: 10.1038/s41467-019-14224-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Protein-protein-interaction networks (PPINs) organize fundamental biological processes, but how oncogenic mutations impact these interactions and their functions at a network-level scale is poorly understood. Here, we analyze how a common oncogenic KRAS mutation (KRASG13D) affects PPIN structure and function of the Epidermal Growth Factor Receptor (EGFR) network in colorectal cancer (CRC) cells. Mapping >6000 PPIs shows that this network is extensively rewired in cells expressing transforming levels of KRASG13D (mtKRAS). The factors driving PPIN rewiring are multifactorial including changes in protein expression and phosphorylation. Mathematical modelling also suggests that the binding dynamics of low and high affinity KRAS interactors contribute to rewiring. PPIN rewiring substantially alters the composition of protein complexes, signal flow, transcriptional regulation, and cellular phenotype. These changes are validated by targeted and global experimental analysis. Importantly, genetic alterations in the most extensively rewired PPIN nodes occur frequently in CRC and are prognostic of poor patient outcomes.
Collapse
Affiliation(s)
- Susan A Kennedy
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Mohamed-Ali Jarboui
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany
| | - Sriganesh Srihari
- EMBL Australia Group, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Cinzia Raso
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Kenneth Bryan
- EMBL Australia Group, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Layal Dernayka
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Theodosia Charitou
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- EMBL Australia Group, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Manuel Bernal-Llinares
- EMBL Australia Group, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | | | | | - David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Max Kotlyar
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jasna Curak
- Donnelly Centre, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Thierry LeBihan
- Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - Lisa Imrie
- Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - Priyanka Pillai
- EMBL Australia Group, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Miriam A Lynn
- EMBL Australia Group, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Erik Fasterius
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Cristina Al-Khalili Szigyarto
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - James Breen
- School of Biological Sciences, University of Adelaide Bioinformatics Hub, Adelaide, SA, Australia
- Computational & Systems Biology Program, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Christina Kiel
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Luis Serrano
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nora Rauch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- School of Computer Science, University College Dublin, Dublin, Ireland
| | - Ruth Pilkington
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Owen Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Studies, Glasgow University, Glasgow, UK
| | - Steven Shave
- School of Biological Sciences and School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Manfred Auer
- School of Biological Sciences and School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Nicola Horn
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Franziska Klose
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | - David J Lynn
- EMBL Australia Group, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland.
- Conway Institute, University College Dublin, Dublin, Ireland.
- School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Swiatek-Machado K, Kaminska B. STAT Signaling in Glioma Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:203-222. [PMID: 32034715 DOI: 10.1007/978-3-030-30651-9_10] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
STAT (signal transducers and activators of transcription) are latent cytoplasmic transcription factors that function as downstream effectors of cytokine and growth factor receptor signaling. The canonical JAK/STAT signaling pathway involves the activation of Janus kinases (JAK) or growth factors receptor kinases, phosphorylation of STAT proteins, their dimerization and translocation into the nucleus where STATs act as transcription factors with pleiotropic downstream effects. STAT signaling is tightly controlled with restricted kinetics due to action of its negative regulators. While STAT1 is believed to play an important role in growth arrest and apoptosis, and to act as a tumor suppressor, STAT3 and 5 are involved in promoting cell cycle progression, cellular transformation, and preventing apoptosis. Aberrant activation of STATs, in particular STAT3 and STAT5, have been found in a large number of human tumors, including gliomas and may contribute to oncogenesis. In this chapter, we have (1) summarized the mechanisms of STAT activation in normal and malignant signaling; (2) discussed evidence for the critical role of constitutively activated STAT3 and STAT5 in glioma pathobiology; (3) disclosed molecular and pharmacological strategies to interfere with STAT signaling for potential therapeutic intervention in gliomas.
Collapse
Affiliation(s)
- Karolina Swiatek-Machado
- Laboratory of Transcription Regulation, Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, PL 02-093, Warsaw, Poland.
| | - Bozena Kaminska
- Laboratory of Transcription Regulation, Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, PL 02-093, Warsaw, Poland
| |
Collapse
|
13
|
Lyons JJ, Milner JD. The clinical and mechanistic intersection of primary atopic disorders and inborn errors of growth and metabolism. Immunol Rev 2019; 287:135-144. [PMID: 30565252 DOI: 10.1111/imr.12727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/26/2022]
Abstract
Dynamic changes in metabolism have long been understood as critical for both the initiation and maintenance of innate and adaptive immune responses. A number of recent advances have clarified details of how metabolic pathways can specifically affect cellular function in immune cells. Critical to this understanding is ongoing study of the congenital disorders of glycosylation and other genetic disorders of metabolism that lead to altered immune function in humans. While there are a number of immune phenotypes associated with metabolic derangements caused by single gene disorders, several genetic mutations have begun to link discrete alterations in metabolism and growth specifically with allergic disease. This subset of primary atopic disorders is of particular interest as they illuminate how hypomorphic mutations which allow for some residual function of mutated protein products permit the "abnormal" allergic response. This review will highlight how mutations altering sugar metabolism and mTOR activation place similar constraints on T lymphocyte metabolism to engender atopy, and how alterations in JAK/STAT signaling can impair growth and cellular metabolism while concomitantly promoting allergic diseases and reactions in humans.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Zhang Z, Gothe F, Pennamen P, James JR, McDonald D, Mata CP, Modis Y, Alazami AM, Acres M, Haller W, Bowen C, Döffinger R, Sinclair J, Brothers S, Zhang Y, Matthews HF, Naudion S, Pelluard F, Alajlan H, Yamazaki Y, Notarangelo LD, Thaventhiran JE, Engelhardt KR, Al-Mousa H, Hambleton S, Rooryck C, Smith KGC, Lenardo MJ. Human interleukin-2 receptor β mutations associated with defects in immunity and peripheral tolerance. J Exp Med 2019; 216:1311-1327. [PMID: 31040185 PMCID: PMC6547869 DOI: 10.1084/jem.20182304] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022] Open
Abstract
Zhang et al. identify human IL-2Rβ deficiency as a cause of severe immune dysregulation. The hypomorphic gene mutations reveal variable IL-2Rβ expression and function between different lymphocyte subsets as a means of selectively modulating immune responses. Interleukin-2, which conveys essential signals for immunity, operates through a heterotrimeric receptor. Here we identify human interleukin-2 receptor (IL-2R) β chain (IL2RB) gene defects as a cause of life-threatening immune dysregulation. We report three homozygous mutations in the IL2RB gene of eight individuals from four consanguineous families that cause disease by distinct mechanisms. Nearly all patients presented with autoantibodies, hypergammaglobulinemia, bowel inflammation, dermatological abnormalities, lymphadenopathy, and cytomegalovirus disease. Patient T lymphocytes lacked surface expression of IL-2Rβ and were unable to respond to IL-2 stimulation. By contrast, natural killer cells retained partial IL-2Rβ expression and function. IL-2Rβ loss of function was recapitulated in a recombinant system in which IL2RB mutations caused reduced surface expression and IL-2 binding. Stem cell transplant ameliorated clinical symptoms in one patient; forced expression of wild-type IL-2Rβ also increased the IL-2 responsiveness of patient T lymphocytes in vitro. Insights from these patients can inform the development of IL-2–based therapeutics for immunological diseases and cancer.
Collapse
Affiliation(s)
- Zinan Zhang
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, and the Department of Medicine, University of Cambridge, Cambridge, UK.,Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Harvard Medical School, Boston, MA
| | - Florian Gothe
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK.,Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Perrine Pennamen
- University of Bordeaux, Maladies Rares: Génétique et Métabolisme Institut National de la Santé et de la Recherche Médicale U1211, Centre Hospitalier Universitaire de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - John R James
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - David McDonald
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - Carlos P Mata
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, and the Department of Medicine, University of Cambridge, Cambridge, UK.,Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Yorgo Modis
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, and the Department of Medicine, University of Cambridge, Cambridge, UK.,Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Meghan Acres
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | | | | | - Rainer Döffinger
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospital, Cambridge, UK
| | - Jan Sinclair
- Starship Children's Hospital, Auckland, New Zealand
| | | | - Yu Zhang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Helen F Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sophie Naudion
- University of Bordeaux, Maladies Rares: Génétique et Métabolisme Institut National de la Santé et de la Recherche Médicale U1211, Centre Hospitalier Universitaire de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Fanny Pelluard
- Department of Pathology, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Huda Alajlan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Yasuhiro Yamazaki
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - James E Thaventhiran
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, and the Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Hamoud Al-Mousa
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sophie Hambleton
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK .,Great North Children's Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle, UK
| | - Caroline Rooryck
- University of Bordeaux, Maladies Rares: Génétique et Métabolisme Institut National de la Santé et de la Recherche Médicale U1211, Centre Hospitalier Universitaire de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, and the Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
15
|
Butler RM, McKenzie RC, Jones CL, Flanagan CE, Woollard WJ, Demontis M, Ferreira S, Tosi I, John S, Whittaker SJ, Mitchell TJ. Contribution of STAT3 and RAD23B in Primary Sézary Cells to Histone Deacetylase Inhibitor FK228 Resistance. J Invest Dermatol 2019; 139:1975-1984.e2. [PMID: 30910759 DOI: 10.1016/j.jid.2019.03.1130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/23/2019] [Accepted: 03/06/2019] [Indexed: 01/12/2023]
Abstract
FK228 (romidepsin) and suberoylanilide hydroxamic acid (vorinostat) are histone deacetylase inhibitors (HDACi) approved by the US Food and Drug Administration for cutaneous T-cell lymphoma (CTCL), including the leukemic subtype Sézary syndrome. This study investigates RAD23B and STAT3 gene perturbations in a large cohort of primary Sézary cells and the effect of FK228 treatment on tyrosine phosphorylation of STAT3 (pYSTAT3) and RAD23B expression. We report RAD23B copy number variation in 10% (12/119, P ≤ 0.01) of SS patients, associated with reduced mRNA expression (P = 0.04). RAD23B knockdown in a CTCL cell line led to a reduction in FK228-induced apoptosis. Histone deacetylase inhibitor treatment significantly reduced pYSTAT3 in primary Sézary cells and was partially mediated by RAD23B. A distinct pattern of RAD23B-pYSTAT3 co-expression in primary Sézary cells was detected. Critically, Sézary cells harboring the common STAT3 Y640F variant were less sensitive to FK228-induced apoptosis and exogenous expression of STAT3 Y640F, and D661Y conferred partial resistance to STAT3 transcriptional inhibition by FK228 (P ≤ 0.0024). These findings suggest that RAD23B and STAT3 gene perturbations could reduce sensitivity to histone deacetylase inhibitors in SS patients.
Collapse
Affiliation(s)
- Rosie M Butler
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Robert C McKenzie
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Christine L Jones
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Charlotte E Flanagan
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Wesley J Woollard
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Maria Demontis
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Silvia Ferreira
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Isabella Tosi
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Susan John
- Department of Immunology, Infection and Inflammatory Disease, King's College London, Guy's Hospital, London, UK
| | - Sean J Whittaker
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - Tracey J Mitchell
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK.
| |
Collapse
|
16
|
Nabavi SM, Ahmed T, Nawaz M, Devi KP, Balan DJ, Pittalà V, Argüelles-Castilla S, Testai L, Khan H, Sureda A, de Oliveira MR, Vacca RA, Xu S, Yousefi B, Curti V, Daglia M, Sobarzo-Sánchez E, Filosa R, Nabavi SF, Majidinia M, Dehpour AR, Shirooie S. Targeting STATs in neuroinflammation: The road less traveled! Pharmacol Res 2018; 141:73-84. [PMID: 30550953 DOI: 10.1016/j.phrs.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/01/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022]
Abstract
JAK/STAT transduction pathway is a highly conserved pathway implicated in regulating cellular proliferation, differentiation, survival and apoptosis. Dysregulation of this pathway is involved in the onset of autoimmune, haematological, oncological, metabolic and neurological diseases. Over the last few years, the research of anti-neuroinflammatory agents has gained considerable attention. The ability to diminish the STAT-induced transcription of inflammatory genes is documented for both natural compounds (such as polyphenols) and chemical drugs. Among polyphenols, quercetin and curcumin directly inhibit STAT, while Berberis vulgaris L. and Sophora alopecuroides L extracts act indirectly. Also, the Food and Drug Administration has approved several JAK/STAT inhibitors (direct or indirect) for treating inflammatory diseases, indicating STAT can be considered as a therapeutic target for neuroinflammatory pathologies. Considering the encouraging data obtained so far, clinical trials are warranted to demonstrate the effectiveness and potential use in the clinical practice of STAT inhibitors to treat inflammation-associated neurodegenerative pathologies.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Maheen Nawaz
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, via Bonanno 6 - 56126, Pisa, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, E-07122 Palma de Mallorca, Spain.
| | - Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, I-70126, Bari, Italy
| | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Valeria Curti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain; Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Rosanna Filosa
- Consorzio Sannio Tech, Appia Str, Apollosa, BN 82030, Italy
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
Li S, Huang S, Qiao S, Jiang J, Shi D, Li X. Cloning and functional characterization of STAT5a and STAT5b genes in buffalo mammary epithelial cells. Anim Biotechnol 2018; 31:59-66. [DOI: 10.1080/10495398.2018.1538014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuye Qiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Jianrong Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
18
|
A high-throughput fluorescence polarization assay for discovering inhibitors targeting the DNA-binding domain of signal transducer and activator of transcription 3 (STAT3). Oncotarget 2018; 9:32690-32701. [PMID: 30220975 PMCID: PMC6135694 DOI: 10.18632/oncotarget.26013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/31/2018] [Indexed: 11/25/2022] Open
Abstract
Anti-cancer drug discovery efforts to directly inhibit the signal transducer and activator of transcription 3 (STAT3) have been active for over a decade following the discovery that 70% of cancers exhibit elevated STAT3 activity. The majority of research has focused on attenuating STAT3 activity through preventing homo-dimerization by targeting the SH2 or transcriptional activation domains. Such dimerization inhibitors have not yet reached the market. However, an alternative strategy focussed on preventing STAT3 DNA-binding through targeting the DNA-binding domain (DBD) offers new drug design opportunities. Currently, only EMSA and ELISA-based methods have been implemented with suitable reliability to characterize STAT3 DBD inhibitors. Herein, we present a new orthogonal, fluorescence polarization (FP) assay suitable for high-throughput screening of molecules. This assay, using a STAT3127-688 construct, was developed and optimized to screen molecules that attenuate the STAT3:DNA association with good reliability (Z’ value > 0.6) and a significant contrast (signal-to-noise ratio > 15.0) at equilibrium. The assay system was stable over a 48 hour period. Significantly, the assay is homogeneous and simple to implement for high-throughput screening compared to EMSA and ELISA. Overall, this FP assay offers a new way to identify and characterize novel molecules that inhibit STAT3:DNA association.
Collapse
|
19
|
Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia 2018; 32:1713-1726. [PMID: 29728695 PMCID: PMC6087715 DOI: 10.1038/s41375-018-0117-x] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
STAT3 and STAT5 proteins are oncogenic downstream mediators of the JAK–STAT pathway. Deregulated STAT3 and STAT5 signaling promotes cancer cell proliferation and survival in conjunction with other core cancer pathways. Nuclear phosphorylated STAT3 and STAT5 regulate cell-type-specific transcription profiles via binding to promoter elements and exert more complex functions involving interaction with various transcriptional coactivators or corepressors and chromatin remodeling proteins. The JAK–STAT pathway can rapidly reshape the chromatin landscape upon cytokine, hormone, or growth factor stimulation and unphosphorylated STAT proteins also appear to be functional with respect to regulating chromatin accessibility. Notably, cancer genome landscape studies have implicated mutations in various epigenetic modifiers as well as the JAK–STAT pathway as underlying causes of many cancers, particularly acute leukemia and lymphomas. However, it is incompletely understood how mutations within these pathways can interact and synergize to promote cancer. We summarize the current knowledge of oncogenic STAT3 and STAT5 functions downstream of cytokine signaling and provide details on prerequisites for DNA binding and gene transcription. We also discuss key interactions of STAT3 and STAT5 with chromatin remodeling factors such as DNA methyltransferases, histone modifiers, cofactors, corepressors, and other transcription factors.
Collapse
|
20
|
Majri SS, Fritz JM, Villarino AV, Zheng L, Kanellopoulou C, Chaigne-Delalande B, Grönholm J, Niemela JE, Afzali B, Biancalana M, Pittaluga S, Sun A, Cohen JL, Holland SM, O'Shea JJ, Uzel G, Lenardo MJ. STAT5B: A Differential Regulator of the Life and Death of CD4 + Effector Memory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 200:110-118. [PMID: 29187589 DOI: 10.4049/jimmunol.1701133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
Understanding the control of Ag restimulation-induced T cell death (RICD), especially in cancer immunotherapy, where highly proliferating T cells will encounter potentially large amounts of tumor Ags, is important now more than ever. It has been known that growth cytokines make T cells susceptible to RICD, but the precise molecular mediators that govern this in T cell subsets is unknown until now. STAT proteins are a family of transcription factors that regulate gene expression programs underlying key immunological processes. In particular, STAT5 is known to favor the generation and survival of memory T cells. In this study, we report an unexpected role for STAT5 signaling in the death of effector memory T (TEM) cells in mice and humans. TEM cell death was prevented with neutralizing anti-IL-2 Ab or STAT5/JAK3 inhibitors, indicating that STAT5 signaling drives RICD in TEM cells. Moreover, we identified a unique patient with a heterozygous missense mutation in the coiled-coil domain of STAT5B that presented with autoimmune lymphoproliferative syndrome-like features. Similar to Stat5b-/- mice, this patient exhibited increased CD4+ TEM cells in the peripheral blood. The mutant STAT5B protein dominantly interfered with STAT5-driven transcriptional activity, leading to global downregulation of STAT5-regulated genes in patient T cells upon IL-2 stimulation. Notably, CD4+ TEM cells from the patient were strikingly resistant to cell death by in vitro TCR restimulation, a finding that was recapitulated in Stat5b-/- mice. Hence, STAT5B is a crucial regulator of RICD in memory T cells in mice and humans.
Collapse
Affiliation(s)
- Sonia S Majri
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Universitè Paris-Diderot, Paris, France 75475.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892
| | - Jill M Fritz
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892
| | - Alejandro V Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892
| | - Chrysi Kanellopoulou
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892
| | - Benjamin Chaigne-Delalande
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892
| | - Juha Grönholm
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892
| | - Julie E Niemela
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Behdad Afzali
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Matthew Biancalana
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ashleigh Sun
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - José L Cohen
- Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France 94000
| | - Steven M Holland
- National Institute of Allergy and Infectious Diseases Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892.,Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Gulbu Uzel
- National Institute of Allergy and Infectious Diseases Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892.,Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; .,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
21
|
Lin JX, Du N, Li P, Kazemian M, Gebregiorgis T, Spolski R, Leonard WJ. Critical functions for STAT5 tetramers in the maturation and survival of natural killer cells. Nat Commun 2017; 8:1320. [PMID: 29105654 PMCID: PMC5673064 DOI: 10.1038/s41467-017-01477-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/20/2017] [Indexed: 01/04/2023] Open
Abstract
Interleukin-15 (IL-15) is essential for the development and maintenance of natural killer (NK) cells. IL-15 activates STAT5 proteins, which can form dimers or tetramers. We previously found that NK cell numbers are decreased in Stat5a-Stat5b tetramer-deficient double knockin (DKI) mice, but the mechanism was not investigated. Here we show that STAT5 dimers are sufficient for NK cell development, whereas STAT5 tetramers mediate NK cell maturation and the expression of maturation-associated genes. Unlike the defective proliferation of Stat5 DKI CD8+ T cells, Stat5 DKI NK cells have normal proliferation to IL-15 but are susceptible to death upon cytokine withdrawal, with lower Bcl2 and increased active caspases. These findings underscore the importance of STAT5 tetramers in maintaining NK cell homoeostasis. Moreover, defective STAT5 tetramer formation could represent a cause of NK cell immunodeficiency, and interrupting STAT5 tetramer formation might serve to control NK leukaemia.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA.
| | - Ning Du
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
| | - Majid Kazemian
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
- Department of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, 47906, USA
| | - Tesfay Gebregiorgis
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA.
| |
Collapse
|
22
|
Qiu F, Fu Y, Lu C, Feng Y, Wang Q, Huo Z, Jia X, Chen C, Chen S, Xu A. Small Nuclear Ribonucleoprotein Polypeptide A-Mediated Alternative Polyadenylation of STAT5B during Th1 Cell Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3106-3115. [PMID: 28954886 DOI: 10.4049/jimmunol.1601872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 08/22/2017] [Indexed: 11/19/2022]
Abstract
T cells are activated and differentiated into Th cells depending on the rapid and accurate changes in the cell transcriptome. In addition to changes in mRNA expression, the sequences of many transcripts are altered by alternative splicing and alternative polyadenylation (APA). We profiled the APA sites of human CD4+ T cell subsets with high-throughput sequencing and found that Th1 cells harbored more genes with shorter tandem 3' untranslated regions (UTRs) than did naive T cells. We observed that STAT5B, a key regulator of Th1 differentiation, possessed three major APA sites and preferred shorter 3' UTRs in Th1 cells. In addition, small nuclear ribonucleoprotein polypeptide A (SNRPA) was found to bind directly to STAT5B 3' UTR and facilitate its APA switching. We also found that p65 activation triggered by TCR signaling could promote SNRPA transcription and 3' UTR shortening of STAT5B. Thus we propose that the APA switching of STAT5B induced by TCR activation is mediated by SNRPA.
Collapse
Affiliation(s)
- Feifei Qiu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Yonggui Fu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Chan Lu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Yuchao Feng
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Qiong Wang
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Zhanfeng Huo
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Xin Jia
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Chengyong Chen
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Shangwu Chen
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Anlong Xu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
23
|
STAT5-mediated chromatin interactions in superenhancers activate IL-2 highly inducible genes: Functional dissection of the Il2ra gene locus. Proc Natl Acad Sci U S A 2017; 114:12111-12119. [PMID: 29078395 DOI: 10.1073/pnas.1714019114] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cytokines critically control immune responses, but how regulatory programs are altered to allow T cells to differentially respond to distinct cytokine stimuli remains poorly understood. Here, we have globally analyzed enhancer elements bound by IL-2-activated STAT5 and IL-21-activated STAT3 in T cells and identified Il2ra as the top-ranked gene regulated by an IL-2-activated STAT5-bound superenhancer and one of the top genes regulated by STAT3-bound superenhancers. Moreover, we found that STAT5 binding was rapidly superenriched at genes highly induced by IL-2 and that IL-2-activated STAT5 binding induces new and augmented chromatin interactions within superenhancer-containing genes. Based on chromatin interaction analysis by paired-end tag (ChIA-PET) sequencing data, we used CRISPR-Cas9 gene editing to target three of the STAT5 binding sites within the Il2ra superenhancer in mice. Each mutation decreased STAT5 binding and altered IL-2-induced Il2ra gene expression, revealing that individual elements within the superenhancer were not functionally redundant and that all were required for normal gene expression. Thus, we demonstrate cooperative utilization of superenhancer elements to optimize gene expression and show that STAT5 mediates IL-2-induced chromatin looping at superenhancers to preferentially regulate highly inducible genes, thereby providing new insights into the mechanisms underlying cytokine-dependent superenhancer function.
Collapse
|
24
|
Roy B, Zuo Z, Stormo GD. Quantitative specificity of STAT1 and several variants. Nucleic Acids Res 2017; 45:8199-8207. [PMID: 28510715 PMCID: PMC5737217 DOI: 10.1093/nar/gkx393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/12/2017] [Indexed: 01/09/2023] Open
Abstract
The quantitative specificity of the STAT1 transcription factor was determined by measuring the relative affinity to hundreds of variants of the consensus binding site including variations in the length of the site. The known consensus sequence is observed to have the highest affinity, with all variants decreasing binding affinity considerably. There is very little loss of binding affinity when the CpG within the consensus binding site is methylated. Additionally, the specificity of mutant proteins, with variants of amino acids that interact with the DNA, was determined and nearly all of them are observed to lose specificity across the entire binding site. The change of Asn at position 460 to His, which corresponds to the natural amino acid at the homologous position in STAT6, does not change the specificity nor does it change the length preference to match that of STAT6. These results provide the first quantitative analysis of changes in binding affinity for the STAT1 protein, and several variants of it, to hundreds of different binding sites including different spacer lengths, and the effect of CpG methylation.
Collapse
Affiliation(s)
- Basab Roy
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108-8510, USA
| | - Zheng Zuo
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108-8510, USA
| | - Gary D Stormo
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108-8510, USA
| |
Collapse
|
25
|
Villarino AV, Kanno Y, O'Shea JJ. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol 2017; 18:374-384. [PMID: 28323260 PMCID: PMC11565648 DOI: 10.1038/ni.3691] [Citation(s) in RCA: 836] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Kinases of the Jak ('Janus kinase') family and transcription factors (TFs) of the STAT ('signal transducer and activator of transcription') family constitute a rapid membrane-to-nucleus signaling module that affects every aspect of the mammalian immune system. Research on this paradigmatic pathway has experienced breakneck growth in the quarter century since its discovery and has yielded a stream of basic and clinical insights that have profoundly influenced modern understanding of human health and disease, exemplified by the bench-to-bedside success of Jak inhibitors ('jakinibs') and pathway-targeting drugs. Here we review recent advances in Jak-STAT biology, focusing on immune cell function, disease etiology and therapeutic intervention, as well as broader principles of gene regulation and signal-dependent TFs.
Collapse
Affiliation(s)
- Alejandro V Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Strategies for over-expression and purification of recombinant full length STAT5B in Escherichia coli. Protein Expr Purif 2017; 129:1-8. [DOI: 10.1016/j.pep.2016.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 11/21/2022]
|
27
|
Sathyanarayana BK, Li P, Lin JX, Leonard WJ, Lee B. Molecular Models of STAT5A Tetramers Complexed to DNA Predict Relative Genome-Wide Frequencies of the Spacing between the Two Dimer Binding Motifs of the Tetramer Binding Sites. PLoS One 2016; 11:e0160339. [PMID: 27537504 PMCID: PMC4990345 DOI: 10.1371/journal.pone.0160339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
STAT proteins bind DNA as dimers and tetramers to control cellular development, differentiation, survival, and expansion. The tetramer binding sites are comprised of two dimer-binding sites repeated in tandem. The genome-wide distribution of the spacings between the dimer binding sites shows a distinctive, non-random pattern. Here, we report on estimating the feasibility of building possible molecular models of STAT5A tetramers bound to a DNA double helix with all possible spacings between the dimer binding sites. We found that the calculated feasibility estimates correlated well with the experimentally measured frequency of tetramer-binding sites. This suggests that the feasibility of forming the tetramer complex was a major factor in the evolution of this DNA sequence variation.
Collapse
Affiliation(s)
- Bangalore K. Sathyanarayana
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892–4264, United States of America
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892–1674, United States of America
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892–1674, United States of America
| | - Warren J. Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892–1674, United States of America
- * E-mail: (WJL); (BL)
| | - Byungkook Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892–4264, United States of America
- * E-mail: (WJL); (BL)
| |
Collapse
|
28
|
Quantifying the dynamics of the oligomeric transcription factor STAT3 by pair correlation of molecular brightness. Nat Commun 2016; 7:11047. [PMID: 27009358 PMCID: PMC4820838 DOI: 10.1038/ncomms11047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/16/2016] [Indexed: 12/21/2022] Open
Abstract
Oligomerization of transcription factors controls their translocation into the nucleus and DNA-binding activity. Here we present a fluorescence microscopy analysis termed pCOMB (pair correlation of molecular brightness) that tracks the mobility of different oligomeric species within live cell nuclear architecture. pCOMB amplifies the signal from the brightest species present and filters the dynamics of the extracted oligomeric population based on arrival time between two locations. We use this method to demonstrate a dependence of signal transducer and activator of transcription 3 (STAT3) mobility on oligomeric state. We find that on entering the nucleus STAT3 dimers must first bind DNA to form STAT3 tetramers, which are also DNA-bound but exhibit a different mobility signature. Examining the dimer-to-tetramer transition by a cross-pair correlation analysis (cpCOMB) reveals that chromatin accessibility modulates STAT3 tetramer formation. Thus, the pCOMB approach is suitable for mapping the impact oligomerization on transcription factor dynamics.
Collapse
|
29
|
Colitti M, Pulina G. Expression profile of caseins, estrogen and prolactin receptors in mammary glands of dairy ewes. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2010.e55] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Abstract
Signal transducers and activators of transcription 5 (STAT5a and STAT5b) are highly homologous proteins that are encoded by 2 separate genes and are activated by Janus-activated kinases (JAK) downstream of cytokine receptors. STAT5 proteins are activated by a wide variety of hematopoietic and nonhematopoietic cytokines and growth factors, all of which use the JAK-STAT signalling pathway as their main mode of signal transduction. STAT5 proteins critically regulate vital cellular functions such as proliferation, differentiation, and survival. The physiological importance of STAT5 proteins is underscored by the plethora of primary human tumors that have aberrant constitutive activation of these proteins, which significantly contributes to tumor cell survival and malignant progression of disease. STAT5 plays an important role in the maintenance of normal immune function and homeostasis, both of which are regulated by specific members of IL-2 family of cytokines, which share a common gamma chain (γ(c)) in their receptor complex. STAT5 critically mediates the biological actions of members of the γ(c) family of cytokines in the immune system. Essentially, STAT5 plays a critical role in the function and development of Tregs, and consistently activated STAT5 is associated with a suppression in antitumor immunity and an increase in proliferation, invasion, and survival of tumor cells. Thus, therapeutic targeting of STAT5 is promising in cancer.
Collapse
Affiliation(s)
- Aradhana Rani
- Department of Biomedical Sciences, University of Westminster , London, United Kingdom
| | - John J Murphy
- Department of Biomedical Sciences, University of Westminster , London, United Kingdom
| |
Collapse
|
31
|
Hu T, Yeh JE, Pinello L, Jacob J, Chakravarthy S, Yuan GC, Chopra R, Frank DA. Impact of the N-Terminal Domain of STAT3 in STAT3-Dependent Transcriptional Activity. Mol Cell Biol 2015; 35:3284-300. [PMID: 26169829 PMCID: PMC4561728 DOI: 10.1128/mcb.00060-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/09/2015] [Accepted: 07/02/2015] [Indexed: 01/25/2023] Open
Abstract
The transcription factor STAT3 is constitutively active in many cancers, where it mediates important biological effects, including cell proliferation, differentiation, survival, and angiogenesis. The N-terminal domain (NTD) of STAT3 performs multiple functions, such as cooperative DNA binding, nuclear translocation, and protein-protein interactions. However, it is unclear which subsets of STAT3 target genes depend on the NTD for transcriptional regulation. To identify such genes, we compared gene expression in STAT3-null mouse embryonic fibroblasts (MEFs) stably expressing wild-type STAT3 or STAT3 from which NTD was deleted. NTD deletion reduced the cytokine-induced expression of specific STAT3 target genes by decreasing STAT3 binding to their regulatory regions. To better understand the potential mechanisms of this effect, we determined the crystal structure of the STAT3 NTD and identified a dimer interface responsible for cooperative DNA binding in vitro. We also observed an Ni(2+)-mediated oligomer with an as yet unknown biological function. Mutations on both dimer and Ni(2+)-mediated interfaces affected the cytokine induction of STAT3 target genes. These studies shed light on the role of the NTD in transcriptional regulation by STAT3 and provide a structural template with which to design STAT3 NTD inhibitors with potential therapeutic value.
Collapse
Affiliation(s)
- Tiancen Hu
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA Postdoctoral Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Jennifer E Yeh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Jaison Jacob
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Srinivas Chakravarthy
- Biophysical Collaborative Access Team/Illinois Institute of Technology, Sector 18ID (Advanced Photon Source, Argonne National Laboratory), Lemont, Illinois, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Rajiv Chopra
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA Biophysical Collaborative Access Team/Illinois Institute of Technology, Sector 18ID (Advanced Photon Source, Argonne National Laboratory), Lemont, Illinois, USA Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Lai PS, Rosa DA, Magdy Ali A, Gómez-Biagi RF, Ball DP, Shouksmith AE, Gunning PT. A STAT inhibitor patent review: progress since 2011. Expert Opin Ther Pat 2015; 25:1397-421. [PMID: 26394986 DOI: 10.1517/13543776.2015.1086749] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The clinical utility of effective direct STAT inhibitors, particularly STAT3 and STAT5, for treating cancer and other diseases is well studied and known. AREAS COVERED This review will highlight the STAT inhibitor patent literature from 2011 to 2015 inclusive. Emphasis will be placed on inhibitors of the STAT3, STAT5a/b, and STAT1 proteins for cancer treatment. The review will, where suitably investigated, describe the mode and the site of inhibition, list indications that were evaluated, and rank the inhibitor's relative potency among compounds in the same class. The reader will gain an understanding of the diverse set of approaches, used both in academia and industry, to target STAT proteins. EXPERT OPINION There is still much work to be done to directly target the STAT3 and STAT5 proteins. As yet, there is still no direct STAT3 inhibitor in the clinic. While the SH2 domain remains a popular target for therapeutic intervention, the DNA-binding domain and N-terminal region are now attracting attention as possible sites for inhibition. Multiple putative STAT3 and STAT5 inhibitors have now been patented across a broad spectrum of chemotypes, each with their own advantages and limitations.
Collapse
Affiliation(s)
- Ping-Shan Lai
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - David A Rosa
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Ahmed Magdy Ali
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Rodolfo F Gómez-Biagi
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Daniel P Ball
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Andrew E Shouksmith
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Patrick T Gunning
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| |
Collapse
|
33
|
The two interfaces of the STAT1 N-terminus exhibit opposite functions in IFNγ-regulated gene expression. Mol Immunol 2015; 67:596-606. [PMID: 26275341 DOI: 10.1016/j.molimm.2015.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/13/2015] [Accepted: 07/13/2015] [Indexed: 01/07/2023]
Abstract
Defective cooperative DNA binding of STAT1 (signal transducer and activator of transcription 1) transcription factor has impact on interferon-γ(IFNγ)-regulated transcriptional responses. In this study, we generated N-terminal gain-of-function mutants of this protein which exhibited hyperactive cooperativity and assessed their functional consequences on gene expression. Our data show that four negatively charged, surface-exposed amino acid residues in the N-terminal domain dimer are engaged in the disassembly of tyrosine-phosphorylated tetrameric complexes on DNA and prevent the occurrence of higher-order STAT1 oligomers on low-affinity DNA binding sites. Owing to their improved tetramer stability, the N-terminal mutants showed relaxed sequence requirements for the binding to DNA as compared to the wild-type protein. Similarly to a STAT1 mutant with impaired tetramerization, the N-terminal gain-of-function mutants showed elevated tyrosine-phosphorylation levels and prolonged nuclear accumulation upon stimulation of cells with IFNγ. However, in contrast to the global impairment of IFNγ signalling in tetramerization-deficient mutants, the transcriptional consequences of the N-terminal gain-of-function mutants are rather distinct and affect gene expression locally in a promoter-specific manner. Thus, we conclude that the STAT1 N-domain acts as a double-edged sword: while one interface is crucial for the formation of tetrameric complexes on IFNγ-regulated promoters, the opposite interface harbours an inhibitory mechanism that limits the accumulation of higher-order oligomers simply by disrupting cooperative DNA binding.
Collapse
|
34
|
Pinz S, Unser S, Buob D, Fischer P, Jobst B, Rascle A. Deacetylase inhibitors repress STAT5-mediated transcription by interfering with bromodomain and extra-terminal (BET) protein function. Nucleic Acids Res 2015; 43:3524-45. [PMID: 25769527 PMCID: PMC4402521 DOI: 10.1093/nar/gkv188] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/23/2015] [Indexed: 12/21/2022] Open
Abstract
Signal transducer and activator of transcription STAT5 is essential for the regulation of proliferation and survival genes. Its activity is tightly regulated through cytokine signaling and is often upregulated in cancer. We showed previously that the deacetylase inhibitor trichostatin A (TSA) inhibits STAT5-mediated transcription by preventing recruitment of the transcriptional machinery at a step following STAT5 binding to DNA. The mechanism and factors involved in this inhibition remain unknown. We now show that deacetylase inhibitors do not target STAT5 acetylation, as we initially hypothesized. Instead, they induce a rapid increase in global histone acetylation apparently resulting in the delocalization of the bromodomain and extra-terminal (BET) protein Brd2 and of the Brd2-associated factor TBP to hyperacetylated chromatin. Treatment with the BET inhibitor (+)-JQ1 inhibited expression of STAT5 target genes, supporting a role of BET proteins in the regulation of STAT5 activity. Accordingly, chromatin immunoprecipitation demonstrated that Brd2 is associated with the transcriptionally active STAT5 target gene Cis and is displaced upon TSA treatment. Our data therefore indicate that Brd2 is required for the proper recruitment of the transcriptional machinery at STAT5 target genes and that deacetylase inhibitors suppress STAT5-mediated transcription by interfering with Brd2 function.
Collapse
Affiliation(s)
- Sophia Pinz
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Samy Unser
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Dominik Buob
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Philipp Fischer
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Belinda Jobst
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Anne Rascle
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
35
|
Feere DA, Velenosi TJ, Urquhart BL. Effect of erythropoietin on hepatic cytochrome P450 expression and function in an adenine-fed rat model of chronic kidney disease. Br J Pharmacol 2015; 172:201-13. [PMID: 25219905 PMCID: PMC4280978 DOI: 10.1111/bph.12932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Erythropoietin (EPO) is used to treat anaemia associated with chronic kidney disease (CKD). Hypoxia is associated with anaemia and is known to cause a decrease in cytochrome P450 (P450) expression. As EPO production is regulated by hypoxia, we investigated the role of EPO on P450 expression and function. EXPERIMENTAL APPROACH Male Wistar rats were subjected to a 0.7% adenine diet for 4 weeks to induce CKD. The diet continued for an additional 2 weeks while rats received EPO by i.p. injection every other day. Following euthanasia, hepatic P450 mRNA and protein expression were determined. Hepatic enzyme activity of selected P450s was determined and chromatin immunoprecipitation was used to characterize binding of nuclear receptors involved in the transcriptional regulation of CYP2C and CYP3A. KEY RESULTS EPO administration decreased hepatic mRNA and protein expression of CYP3A2 (P < 0.05), but not CYP2C11. Similarly, EPO administration decreased CYP3A2 protein expression by 81% (P < 0.001). A 32% decrease (P < 0.05) in hepatic CYP3A enzymatic activity (Vmax ) was observed for the formation of 6βOH-testosterone in the EPO-treated group. Decreases in RNA pol II recruitment (P < 0.01), hepatocyte nuclear factor 4α binding (P < 0.05) and pregnane X receptor binding (P < 0.01) to the promoter region of CYP3A were also observed in EPO-treated rats. CONCLUSIONS AND IMPLICATIONS Our data show that EPO decreases the expression and function of CYP3A, but not CYP2C in rat liver.
Collapse
MESH Headings
- Adenine
- Animals
- Constitutive Androstane Receptor
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Diet
- Disease Models, Animal
- Erythropoietin/pharmacology
- Hepatocyte Nuclear Factor 4/genetics
- Hepatocyte Nuclear Factor 4/metabolism
- Kidney/pathology
- Liver/drug effects
- Liver/metabolism
- Male
- Microsomes, Liver/drug effects
- Microsomes, Liver/enzymology
- Pregnane X Receptor
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Messenger/metabolism
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Recombinant Proteins/pharmacology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
Collapse
Affiliation(s)
- D A Feere
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | | | | |
Collapse
|
36
|
Zhao Y, Zeng C, Tarasova NI, Chasovskikh S, Dritschilo A, Timofeeva OA. A new role for STAT3 as a regulator of chromatin topology. Transcription 2014; 4:227-31. [DOI: 10.4161/trns.27368] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
37
|
Kavarthapu R, Morris CHT, Dufau ML. Prolactin induces up-regulation of its cognate receptor in breast cancer cells via transcriptional activation of its generic promoter by cross-talk between ERα and STAT5. Oncotarget 2014; 5:9079-91. [PMID: 25193864 PMCID: PMC4253420 DOI: 10.18632/oncotarget.2376] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/20/2014] [Indexed: 02/01/2023] Open
Abstract
Prolactin (PRL) serves a critical role in breast cancer progression via activation of its cognate receptor. These studies reveal up-regulation of PRLR gene expression by PRL in absence of estradiol in MCF-7 and T47D breast cancer cells. PRL/PRLR via activation of STAT5 that binds a GAS-element in the PRLR gene and the participation of ERα stimulates PRLR transcription/expression. PRL/PRLR induces phosphorylation of ERα through the JAK2/PI3K/MAPK/ERK and JAK2/HER2 activated pathways. The increased recruitment of phospho-ERα, induced by PRL to Sp1 and C/EBPβ at PRLR promoter sites is essential for PRL-induced PRLR transcription. This recruitment is prevented by blockade of PRL expression using RNA interference or ERα phosphorylation using specific inhibitors of PI3K and ERK. Direct evidence is provided for local actions of PRL, independent of estradiol, in the up-regulation of PRLR transcription/expression by an activation-loop between STAT5 and the phospho-ERα/Sp1/C/EBPβ complex with requisite participation of signaling mechanisms. PRL's central role in the up-regulation of PRLR maximizes the action of the endogenous hormone. This study offers mechanistically rational basis for invasiveness fueled by prolactin in refractory states to adjuvant therapies in breast cancer.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Chon-Hwa Tsai Morris
- Section on Molecular Endocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Maria L. Dufau
- Section on Molecular Endocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
38
|
PIM inhibitors target CD25-positive AML cells through concomitant suppression of STAT5 activation and degradation of MYC oncogene. Blood 2014; 124:1777-89. [DOI: 10.1182/blood-2014-01-551234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Key Points
CD25 is a predictive biomarker for sensitivity to PIM inhibitors in AML cells. PIM inhibitors may prolong overall/relapse-free survival through attenuating STAT5 activation and destabilizing MYC in CD25+ AML cells.
Collapse
|
39
|
Wang Z, Li G, Bunting KD. STAT5 N-domain deleted isoforms are naturally occurring hypomorphs partially rescued in hematopoiesis by transgenic Bcl-2 expression. AMERICAN JOURNAL OF BLOOD RESEARCH 2014; 4:20-26. [PMID: 25232501 PMCID: PMC4165113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/05/2014] [Indexed: 06/03/2023]
Abstract
Signal transducer and activator of transcription 5 (STAT5) is a critical regulator of normal and leukemic lympho-myeloid development through activation downstream of early-acting cytokines, their receptors, and JAKs. Truncation of STAT5 can be mediated through alternative translation initiation from an internal start codon giving rise to N-terminally deleted isoforms. To determine whether these isoforms could be detected naturally in normal murine tissues, Western blot analyses were performed on heart, lung, brain, spleen, liver, and kidney. Relative expression of full-length to truncated STAT5 was variable among tissues. Since we have previously demonstrated that STAT5abΔN lacks the ability to effectively upregulate pro-survival signals and bcl-2 expression, we used a transgenic mouse approach to next determine whether constitutive expression of human Bcl-2 in STAT5ab(ΔN/ΔN) mouse hematopoietic cells could restore normal hematopoiesis. Transgenic H2K-Bcl-2 expression in hypomorphic STAT5ab(ΔN/ΔN) mice largely rescued peripheral B and T lymphocyte numbers whereas multilineage donor contribution was only rescued to levels about 10% of normal. At the hematopoietic stem cell level, direct competitive repopulation with H2K-Bcl-2/STAT5ab(ΔN/ΔN) against STAT5ab(ΔN/ΔN) competitor showed a corrective effect of Bcl-2 expression whether the STAT5ab(ΔN/ΔN) genotype was competed as the donor or as the host versus H2K-Bcl-2/STAT5ab(ΔN/ΔN) genotype bone marrow cells. Therefore, STAT5abΔN isoforms are heterogeneously expressed and lack key functional activities that can be partially rescued by adding back Bcl-2.
Collapse
Affiliation(s)
- Zhengqi Wang
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta and Emory University School of MedicineAtlanta, GA, USA
| | - Geqiang Li
- Department of Medicine, Division of Hematology-Oncology, Case Western Reserve UniversityCleveland, OH, USA
| | - Kevin D Bunting
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta and Emory University School of MedicineAtlanta, GA, USA
| |
Collapse
|
40
|
Timofeeva OA, Tarasova NI. Alternative ways of modulating JAK-STAT pathway: Looking beyond phosphorylation. JAKSTAT 2014; 1:274-84. [PMID: 24058784 PMCID: PMC3670285 DOI: 10.4161/jkst.22313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Most attempts to develop inhibitors of STAT transcription factors target either activating phosphorylation of tyrosine residue or SH2 domains. However, all six domains of STATs are highly conserved between the species and play important roles in the function of this family of transcription factors. STATs are involved in numerous protein-protein interactions that are likely to regulate and fine tune transcriptional activity. Targeting these interactions can provide plentiful opportunities for the discovery of novel drug candidates and powerful chemical biology tools. Using N-terminal domains as an example we describe alternative rational approaches to the development of modulators of JAK-STAT signaling.
Collapse
Affiliation(s)
- Olga A Timofeeva
- Departments of Oncology; Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington, DC USA ; Department of Radiation Medicine; Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington, DC USA
| | | |
Collapse
|
41
|
Delgoffe GM, Vignali DAA. STAT heterodimers in immunity: A mixed message or a unique signal? JAKSTAT 2014; 2:e23060. [PMID: 24058793 PMCID: PMC3670269 DOI: 10.4161/jkst.23060] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/14/2023] Open
Abstract
Cytokine signals are essential for generating a robust and specialized immune response. These signals are typically transmitted via canonical STAT homodimers. However, the number of STAT molecules utilized by cytokine signaling cascades within immune cells are limited, and so the mechanism used to deliver complex signals remains elusive. Heterodimerization of STAT proteins is one potential mechanism for signals to be modified downstream of the receptor and may play an important role in dictating the targets of specific cytokine signaling. In this review, we discuss our current understanding of the prevalence of STAT heterodimers, how they are formed and what their physiologic role may be in vivo.
Collapse
Affiliation(s)
- Greg M Delgoffe
- Department of Immunology; St. Jude Children's Research Hospital; Memphis, TN USA
| | | |
Collapse
|
42
|
Schaller-Schönitz M, Barzan D, Williamson AJK, Griffiths JR, Dallmann I, Battmer K, Ganser A, Whetton AD, Scherr M, Eder M. BCR-ABL affects STAT5A and STAT5B differentially. PLoS One 2014; 9:e97243. [PMID: 24836440 PMCID: PMC4023949 DOI: 10.1371/journal.pone.0097243] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/16/2014] [Indexed: 11/21/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) are latent cytoplasmic transcription factors linking extracellular signals to target gene transcription. Hematopoietic cells express two highly conserved STAT5-isoforms (STAT5A/STAT5B), and STAT5 is directly activated by JAK2 downstream of several cytokine receptors and the oncogenic BCR-ABL tyrosine kinase. Using an IL-3-dependent cell line with inducible BCR-ABL-expression we compared STAT5-activation by IL-3 and BCR-ABL in a STAT5-isoform specific manner. RNAi targeting of STAT5B strongly inhibits BCR-ABL-dependent cell proliferation, and STAT5B but not STAT5A is essential for BCL-XL-expression in the presence of BCR-ABL. Although BCR-ABL induces STAT5-tyrosine phosphorylation independent of JAK2-kinase activity, BCR-ABL is less efficient in inducing active STAT5A:STAT5B-heterodimerization than IL-3, leaving constitutive STAT5A and STAT5B-homodimerization unaffected. In comparison to IL-3, nuclear accumulation of a STAT5A-eGFP fusion protein is reduced by BCR-ABL, and BCR-ABL tyrosine kinase activity induces STAT5A-eGFP translocation to the cell membrane and co-localization with the IL-3 receptor. Furthermore, BCR-ABL-dependent phosphorylation of Y682 in STAT5A was detected by mass-spectrometry. Finally, RNAi targeting STAT5B but not STAT5A sensitizes human BCR-ABL-positive cell lines to imatinib-treatment. These data demonstrate differences between IL-3 and BCR-ABL-mediated STAT5-activation and isoform-specific effects, indicating therapeutic options for isoform-specific STAT5-inhibition in BCR-ABL-positive leukemia.
Collapse
Affiliation(s)
- Michael Schaller-Schönitz
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - David Barzan
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - Andrew J. K. Williamson
- Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, United Kingdom
| | - John R. Griffiths
- Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, United Kingdom
| | - Iris Dallmann
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - Karin Battmer
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - Arnold Ganser
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - Anthony D. Whetton
- Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, United Kingdom
| | - Michaela Scherr
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - Matthias Eder
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
- * E-mail:
| |
Collapse
|
43
|
Pinz S, Unser S, Brueggemann S, Besl E, Al-Rifai N, Petkes H, Amslinger S, Rascle A. The synthetic α-bromo-2',3,4,4'-tetramethoxychalcone (α-Br-TMC) inhibits the JAK/STAT signaling pathway. PLoS One 2014; 9:e90275. [PMID: 24595334 PMCID: PMC3940872 DOI: 10.1371/journal.pone.0090275] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 01/27/2014] [Indexed: 11/30/2022] Open
Abstract
Signal transducer and activator of transcription STAT5 and its upstream activating kinase JAK2 are essential mediators of cytokine signaling. Their activity is normally tightly regulated and transient. However, constitutive activation of STAT5 is found in numerous cancers and a driving force for malignant transformation. We describe here the identification of the synthetic chalcone α-Br-2′,3,4,4′-tetramethoxychalcone (α-Br-TMC) as a novel JAK/STAT inhibitor. Using the non-transformed IL-3-dependent B cell line Ba/F3 and its oncogenic derivative Ba/F3-1*6 expressing constitutively activated STAT5, we show that α-Br-TMC targets the JAK/STAT pathway at multiple levels, inhibiting both JAK2 and STAT5 phosphorylation. Moreover, α-Br-TMC alters the mobility of STAT5A/B proteins in SDS-PAGE, indicating a change in their post-translational modification state. These alterations correlate with a decreased association of STAT5 and RNA polymerase II with STAT5 target genes in chromatin immunoprecipitation assays. Interestingly, expression of STAT5 target genes such as Cis and c-Myc was differentially regulated by α-Br-TMC in normal and cancer cells. While both genes were inhibited in IL-3-stimulated Ba/F3 cells, expression of the oncogene c-Myc was down-regulated and that of the tumor suppressor gene Cis was up-regulated in transformed Ba/F3-1*6 cells. The synthetic chalcone α-Br-TMC might therefore represent a promising novel anticancer agent for therapeutic intervention in STAT5-associated malignancies.
Collapse
Affiliation(s)
- Sophia Pinz
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Samy Unser
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Susanne Brueggemann
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Elisabeth Besl
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Nafisah Al-Rifai
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | - Hermina Petkes
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | - Sabine Amslinger
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
- * E-mail: (AR); (SA)
| | - Anne Rascle
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
- * E-mail: (AR); (SA)
| |
Collapse
|
44
|
Rani A, Greenlaw R, Runglall M, Jurcevic S, John S. FRA2 is a STAT5 target gene regulated by IL-2 in human CD4 T cells. PLoS One 2014; 9:e90370. [PMID: 24587342 PMCID: PMC3938719 DOI: 10.1371/journal.pone.0090370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/29/2014] [Indexed: 01/05/2023] Open
Abstract
Signal transducers and activators of transcription 5(STAT5) are cytokine induced signaling proteins, which regulate key immunological processes, such as tolerance induction, maintenance of homeostasis, and CD4 T-effector cell differentiation. In this study, transcriptional targets of STAT5 in CD4 T cells were studied by Chromatin Immunoprecipitation (ChIP). Genomic mapping of the sites cloned and identified in this study revealed the striking observation that the majority of STAT5-binding sites mapped to intergenic (>50 kb upstream) or intronic, rather than promoter proximal regions. Of the 105 STAT5 responsive binding sites identified, 94% contained the canonical (IFN-γ activation site) GAS motifs. A number of putative target genes identified here are associated with tumor biology. Here, we identified Fos-related antigen 2 (FRA2) as a transcriptional target of IL-2 regulated STAT5. FRA2 is a basic -leucine zipper (bZIP) motif ‘Fos’ family transcription factor that is part of the AP-1 transcription factor complex and is also known to play a critical role in the progression of human tumours and more recently as a determinant of T cell plasticity. The binding site mapped to an internal intron within the FRA2 gene. The epigenetic architecture of FRA2, characterizes a transcriptionally active promoter as indicated by enrichment for histone methylation marks H3K4me1, H3K4me2, H3K4me3, and transcription/elongation associated marks H2BK5me1 and H4K20me1. FRA2 is regulated by IL-2 in activated CD4 T cells. Consistently, STAT5 bound to GAS sequence in the internal intron of FRA2 and reporter gene assays confirmed IL-2 induced STAT5 binding and transcriptional activation. Furthermore, addition of JAK3 inhibitor (R333) or Daclizumab inhibited the induction in TCR stimulated cells. Taken together, our data suggest that FRA2 is a novel STAT5 target gene, regulated by IL-2 in activated CD4 T cells.
Collapse
Affiliation(s)
- Aradhana Rani
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London, United Kingdom
| | - Roseanna Greenlaw
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London, United Kingdom
| | - Manohursingh Runglall
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London, United Kingdom
| | - Stipo Jurcevic
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London, United Kingdom
- * E-mail: (SJurcevic); (SJohn)
| | - Susan John
- Department of Immunobiology, King's College London, London, United Kingdom
- * E-mail: (SJurcevic); (SJohn)
| |
Collapse
|
45
|
Espinosa-Soto C, Immink RGH, Angenent GC, Alvarez-Buylla ER, de Folter S. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network. BMC SYSTEMS BIOLOGY 2014; 8:9. [PMID: 24468197 PMCID: PMC3913338 DOI: 10.1186/1752-0509-8-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/02/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. RESULTS We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. CONCLUSIONS Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins.
Collapse
Affiliation(s)
- Carlos Espinosa-Soto
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km 9.6 Libramiento Norte Carretera León, C.P. 36821 Irapuato, Mexico
- Current address: Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, C.P. 78290 San Luis Potosí, Mexico
| | | | - Gerco C Angenent
- Plant Research International, 6700 AA Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Elena R Alvarez-Buylla
- Departamento de Ecología Funcional. Instituto de Ecología, Universidad Nacional Autónoma de México, Ap. Postal 70-275, 3er Circ. Ext. Jto. Jard. Bot., CU, C.P. 04510 Mexico, D.F., Mexico
| | - Stefan de Folter
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km 9.6 Libramiento Norte Carretera León, C.P. 36821 Irapuato, Mexico
| |
Collapse
|
46
|
Tan D, Chen KE, Deng C, Tang P, Huang J, Mansour T, Luben RA, Walker AM. An N-terminal splice variant of human Stat5a that interacts with different transcription factors is the dominant form expressed in invasive ductal carcinoma. Cancer Lett 2013; 346:148-57. [PMID: 24384092 DOI: 10.1016/j.canlet.2013.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/04/2013] [Accepted: 12/20/2013] [Indexed: 01/02/2023]
Abstract
We have identified a new variant of human Stat5a, found at higher ratios to full-length Stat5a in invasive ductal carcinoma versus contiguous normal tissue. The variant, missing exon 5, inhibits p21 and Bax production and increases cell number. After prolactin stimulation, only full-length Stat5a interacts with the vitamin D and retinoid X receptors, whereas only Δ5 Stat5a interacts with activating protein 1-2 and specificity protein 1. Prolactin also oppositely regulates interaction of the two Stat5a forms with β-catenin. We propose that a change in splicing leading to upregulation of this new isoform is a pathogenic aspect of invasive ductal carcinoma.
Collapse
Affiliation(s)
- Dunyong Tan
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521-0121, United States; College of Medicine/Institute of Medical Sciences, Jishou University, Jishou 416000, Hunan, PR China
| | - KuanHui E Chen
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521-0121, United States
| | - Changhui Deng
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521-0121, United States; Department of Biochemistry, University of California, Riverside, Riverside, CA 92521-0121, United States
| | - Peizhi Tang
- People's Hospital of Xiangxi Autonomous Region, Jishou University, Jishou 416000, Hunan, PR China
| | - Jianjun Huang
- People's Hospital of Xiangxi Autonomous Region, Jishou University, Jishou 416000, Hunan, PR China
| | - Trina Mansour
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521-0121, United States
| | - Richard A Luben
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521-0121, United States; Department of Biochemistry, University of California, Riverside, Riverside, CA 92521-0121, United States
| | - Ameae M Walker
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521-0121, United States.
| |
Collapse
|
47
|
Kosan C, Ginter T, Heinzel T, Krämer OH. STAT5 acetylation: Mechanisms and consequences for immunological control and leukemogenesis. JAKSTAT 2013; 2:e26102. [PMID: 24416653 PMCID: PMC3876427 DOI: 10.4161/jkst.26102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 12/30/2022] Open
Abstract
The cytokine-inducible transcription factors signal transducer and activator of transcription 5A and 5B (STAT5A and STAT5B) are important for the proper development of multicellular eukaryotes. Disturbed signaling cascades evoking uncontrolled expression of STAT5 target genes are associated with cancer and immunological failure. Here, we summarize how STAT5 acetylation is integrated into posttranslational modification networks within cells. Moreover, we focus on how inhibitors of deacetylases and tyrosine kinases can correct leukemogenic signaling nodes involving STAT5. Such small molecules can be exploited in the fight against neoplastic diseases and immunological disorders.
Collapse
Affiliation(s)
- Christian Kosan
- Center for Molecular Biomedicine (CMB); Institute of Biochemistry and Biophysics; University of Jena; Jena, Germany
| | - Torsten Ginter
- Center for Molecular Biomedicine (CMB); Institute of Biochemistry and Biophysics; University of Jena; Jena, Germany
| | - Thorsten Heinzel
- Center for Molecular Biomedicine (CMB); Institute of Biochemistry and Biophysics; University of Jena; Jena, Germany
| | - Oliver H Krämer
- Center for Molecular Biomedicine (CMB); Institute of Biochemistry and Biophysics; University of Jena; Jena, Germany ; Institute of Toxicology; Medical Center of the University Mainz; Mainz, Germany
| |
Collapse
|
48
|
|
49
|
Subramaniam A, Shanmugam MK, Perumal E, Li F, Nachiyappan A, Dai X, Swamy SN, Ahn KS, Kumar AP, Tan BKH, Hui KM, Sethi G. Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2012; 1835:46-60. [PMID: 23103770 DOI: 10.1016/j.bbcan.2012.10.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/18/2012] [Accepted: 10/21/2012] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, and is also the fourth most common cancer worldwide with around 700,000 new cases each year. Currently, first line chemotherapeutic drugs used for HCC include fluorouracil, cisplatin, doxorubicin, paclitaxel and mitomycin, but most of these are non-selective cytotoxic molecules with significant side effects. Sorafenib is the only approved targeted therapy by the U.S. Food and Drug Administration for HCC treatment, but patients suffer from various kinds of adverse effects, including hypertension. The signal-transducer-and-activator-of-transcription 3 (STAT3) protein, one of the members of STATs transcription factor family, has been implicated in signal transduction by different cytokines, growth factors and oncogenes. In normal cells, STAT3 activation is tightly controlled to prevent dysregulated gene transcription, whereas constitutively activated STAT3 plays an important role in tumorigenesis through the upregulation of genes involved in anti-apoptosis, proliferation and angiogenesis. Thus, pharmacologically safe and effective agents that can block STAT3 activation have the potential both for the prevention and treatment of HCC. In the present review, we discuss the possible role of STAT3 signaling cascade and its interacting partners in the initiation of HCC and also analyze the role of various STAT3 regulated genes in HCC progression, inflammation, survival, invasion and angiogenesis.
Collapse
Affiliation(s)
- Aruljothi Subramaniam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kanai T, Jenks J, Nadeau KC. The STAT5b Pathway Defect and Autoimmunity. Front Immunol 2012; 3:234. [PMID: 22912632 PMCID: PMC3418548 DOI: 10.3389/fimmu.2012.00234] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/15/2012] [Indexed: 01/05/2023] Open
Abstract
The signal transducer and activator of transcription (STAT) 5b is a universal transcription factor that plays key biological roles in allergic diseases, immunodeficiencies, autoimmunities, cancers, hematological diseases, growth disorders, and lung diseases. The identification of distinct pathological manifestations of STAT5b deficiency in humans has highlighted the critical role of the STAT5b pathway. Proper gene transcription at IL-2R α, FOXP3, Bcl-2, and growth hormone (GH) associated loci are thought to be associated with normal STAT5b transcriptional activity. These genes are thought to play important roles in allergy/autoimmunity, immunodeficiency, cancer/anemia, and growth, respectively. The STAT5A and STAT5B genes are collocated on 17q11. Although these two monomeric proteins exhibit peptide sequence similarities of >90%, it is known through observations of STAT5b deficient subjects that STAT5a and STAT5b are not fully redundant in humans. Patients with STAT5b deficiency have decreased numbers of regulatory CD4+CD25high T cell (Treg) despite their STAT5a levels being normal. Prior studies on STAT5b deficient subjects have revealed immunological aberrations associated with the following disease phenotype: modest lymphopenia and decreased populations of Treg, γ−δ T cells, and natural killer (NK) cells. Most subjects with STAT5b deficiency show severe eczema, and autoimmune disease (juvenile idiopathic arthritis, autoimmune thyroiditis, idiopathic thrombocytic purpura) which are thought to be associated with Treg dysfunction. We will review the likely pathophysiological mechanisms associated with STAT5b deficiency.
Collapse
Affiliation(s)
- Takahiro Kanai
- Division of Immunology and Allergy, Department of Pediatrics, School of Medicine, Stanford University Stanford, CA, USA
| | | | | |
Collapse
|