1
|
Teyssier V, Williamson CR, Shata E, Rosen SP, Jones N, Bisson N. Adapting to change: resolving the dynamic and dual roles of NCK1 and NCK2. Biochem J 2024; 481:1411-1435. [PMID: 39392452 DOI: 10.1042/bcj20230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Adaptor proteins play central roles in the assembly of molecular complexes and co-ordinated activation of specific pathways. Through their modular domain structure, the NCK family of adaptor proteins (NCK1 and NCK2) link protein targets via their single SRC Homology (SH) 2 and three SH3 domains. Classically, their SH2 domain binds to phosphotyrosine motif-containing receptors (e.g. receptor tyrosine kinases), while their SH3 domains bind polyproline motif-containing cytoplasmic effectors. Due to these functions being established for both NCK1 and NCK2, their roles were inaccurately assumed to be redundant. However, in contrast with this previously held view, NCK1 and NCK2 now have a growing list of paralog-specific functions, which underscores the need to further explore their differences. Here we review current evidence detailing how these two paralogs are unique, including differences in their gene/protein regulation, binding partners and overall contributions to cellular functions. To help explain these contrasting characteristics, we then discuss SH2/SH3 structural features, disordered interdomain linker regions and post-translational modifications. Together, this review seeks to highlight the importance of distinguishing NCK1 and NCK2 in research and to pave the way for investigations into the origins of their interaction specificity.
Collapse
Affiliation(s)
- Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Erka Shata
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie P Rosen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Mukherjee A, Islam S, Kieser RE, Kiss DL, Mukherjee C. Long noncoding RNAs are substrates for cytoplasmic capping enzyme. FEBS Lett 2023; 597:947-961. [PMID: 36856012 PMCID: PMC11119571 DOI: 10.1002/1873-3468.14603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 03/02/2023]
Abstract
Cytoplasmic capping returns a cap to specific mRNAs, thus protecting uncapped RNAs from decay. Prior to the identification of cytoplasmic capping, uncapped mRNAs were thought to be degraded. Here, we test whether long noncoding RNAs (lncRNAs) are substrates of the cytoplasmic capping enzyme (cCE). The subcellular localisation of 14 lncRNAs associated with sarcomas were examined in U2OS osteosarcoma cells. We used 5' rapid amplification of cDNA ends (RACE) to assay uncapped forms of these lncRNAs. Inhibiting cytoplasmic capping elevated uncapped forms of selected lncRNAs indicating a plausible role of cCE in targeting them. Analysis of published cap analysis of gene expression (CAGE) data shows increased prevalence of certain 5'-RACE cloned sequences, suggesting that these uncapped lncRNAs are targets of cytoplasmic capping.
Collapse
Affiliation(s)
- Avik Mukherjee
- Institute of Health Sciences, Presidency University, Kolkata, India
| | - Safirul Islam
- Institute of Health Sciences, Presidency University, Kolkata, India
| | - Rachel E Kieser
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Daniel L Kiss
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College, New York, NY, USA
- Houston Methodist Cancer Center, Houston, TX, USA
- Houston Methodist Academic Institute, Houston, TX, USA
| | | |
Collapse
|
3
|
Pham T, Najy AJ, Kim HRC. E3 ligase HUWE1 promotes PDGF D-mediated osteoblastic differentiation of mesenchymal stem cells by effecting polyubiquitination of β-PDGFR. J Biol Chem 2022; 298:101981. [PMID: 35472332 PMCID: PMC9133640 DOI: 10.1016/j.jbc.2022.101981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stem cell populations and exhibit great potential in regenerative medicine and oncology. Platelet-derived growth factors (PDGFs) are well known to regulate MSC biology through their chemotactic and mitogenic properties. However, their direct roles in the regulation of MSC lineage commitment are unclear. Here, we show that PDGF D promotes the differentiation of human bone marrow mesenchymal stem cells (hBMSCs) into osteoblasts and inhibits hBMSC differentiation into adipocytes. We demonstrate that PDGF D-induced β-actin expression and polymerization are essential for mediating this differential regulation of osteoblastogenesis and adipogenesis. Interestingly, we found that PDGF D induces massive upward molecular weight shifts of its cognate receptor, PDGF receptor beta (β-PDGFR) in hBMSCs, which was not observed in fibroblasts. Proteomic analysis indicated that the E3 ubiquitin ligase HECT, UBA, and WWE domain–containing protein 1 (HUWE1) associates with the PDGF D-activated β-PDGFR signaling complex in hBMSCs, resulting in β-PDGFR polyubiquitination. In contrast to the well-known role of ubiquitin in protein degradation, we provide evidence that HUWE1-mediated β-PDGFR polyubiquitination delays β-PDGFR internalization and degradation, thereby prolonging AKT signaling. Finally, we demonstrate that HUWE1-regulated β-PDGFR signaling is essential for osteoblastic differentiation of hBMSCs, while being dispensable for PDGF D-induced hBMSC migration and proliferation as well as PDGF D-mediated inhibition of hBMSC differentiation into adipocytes. Taken together, our findings provide novel insights into the molecular mechanism by which PDGF D regulates the commitment of hBMSCs into the osteoblastic lineage.
Collapse
Affiliation(s)
- Tri Pham
- Department of Pathology, Wayne State University School of Medicine and the Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201 USA
| | - Abdo J Najy
- Department of Pathology, Wayne State University School of Medicine and the Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201 USA
| | - Hyeong-Reh C Kim
- Department of Pathology, Wayne State University School of Medicine and the Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201 USA.
| |
Collapse
|
4
|
Paensuwan P, Ngoenkam J, Wangteeraprasert A, Pongcharoen S. Essential function of adaptor protein Nck1 in platelet-derived growth factor receptor signaling in human lens epithelial cells. Sci Rep 2022; 12:1063. [PMID: 35058548 PMCID: PMC8776929 DOI: 10.1038/s41598-022-05183-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
Binding of platelet-derived growth factor-BB (PDGF-BB) to its cognate receptor (PDGFR) promotes lens epithelial cell (LEC) proliferation and migration. After cataract surgery, these LEC behaviors have been proposed as an influential cause of posterior capsule opacification (PCO). Stimulated PDFGR undergoes dimerization and tyrosine phosphorylation providing docking sites for a SH2-domain-containing noncatalytic region of tyrosine kinase (Nck). Nck is an adaptor protein acting as a linker of the proximal and downstream signaling events. However, the functions of Nck1 protein in LEC have not been investigated so far. We reported here a crucial role of Nck1 protein in regulating PDGFR-mediated LEC activation using LEC with a silenced expression of Nck1 protein. The knockdown of Nck1 suppressed PDGF-BB-stimulated LEC proliferation and migration and disrupted the cell cycle progression especially G1/S transition. LEC lacking Nck1 protein failed to exhibit actin polymerization and membrane protrusions. The downregulation of Nck1 protein in LEC impaired PDGFR‐induced phosphorylation of intracellular signaling proteins, including Erk1/2, Akt, CREB and ATF1, which resulted in inhibition of LEC responses. Therefore, these data suggest that the loss of Nck1 expression may disturb LEC activation and Nck1 may potentially be a drug target to prevent PCO and lens-related disease.
Collapse
Affiliation(s)
- Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand.
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand
| | - Apirath Wangteeraprasert
- Department of Medicine, Faculty of Medicine, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand.
| |
Collapse
|
5
|
Abstract
The non-catalytic region of tyrosine kinase (Nck) family of adaptors, consisting of Nck1 and Nck2, contributes to selectivity and specificity in the flow of cellular information by recruiting components of signaling networks. Known to play key roles in cytoskeletal remodeling, Nck adaptors modulate host cell-pathogen interactions, immune cell receptor activation, cell adhesion and motility, and intercellular junctions in kidney podocytes. Genetic inactivation of both members of the Nck family results in embryonic lethality; however, viability of mice lacking either one of these adaptors suggests partial functional redundancy. In this Cell Science at a Glance and the accompanying poster, we highlight the molecular organization and functions of the Nck family, focusing on key interactions and pathways, regulation of cellular processes, development, homeostasis and pathogenesis, as well as emerging and non-redundant functions of Nck1 compared to those of Nck2. This article thus aims to provide a timely perspective on the biology of Nck adaptors and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Briana C. Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 7783, USA
| | - Gonzalo M. Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 7783, USA
| |
Collapse
|
6
|
Alfaidi M, Scott ML, Orr AW. Sinner or Saint?: Nck Adaptor Proteins in Vascular Biology. Front Cell Dev Biol 2021; 9:688388. [PMID: 34124074 PMCID: PMC8187788 DOI: 10.3389/fcell.2021.688388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
The Nck family of modular adaptor proteins, including Nck1 and Nck2, link phosphotyrosine signaling to changes in cytoskeletal dynamics and gene expression that critically modulate cellular phenotype. The Nck SH2 domain interacts with phosphotyrosine at dynamic signaling hubs, such as activated growth factor receptors and sites of cell adhesion. The Nck SH3 domains interact with signaling effectors containing proline-rich regions that mediate their activation by upstream kinases. In vascular biology, Nck1 and Nck2 play redundant roles in vascular development and postnatal angiogenesis. However, recent studies suggest that Nck1 and Nck2 differentially regulate cell phenotype in the adult vasculature. Domain-specific interactions likely mediate these isoform-selective effects, and these isolated domains may serve as therapeutic targets to limit specific protein-protein interactions. In this review, we highlight the function of the Nck adaptor proteins, the known differences in domain-selective interactions, and discuss the role of individual Nck isoforms in vascular remodeling and function.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States
| | - Matthew L Scott
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States.,Department of Cell Biology and Anatomy, LSU Health - Shreveport, Shreveport, LA, United States.,Department of Molecular & Cellular Physiology, LSU Health - Shreveport, Shreveport, LA, United States
| |
Collapse
|
7
|
Alfaidi M, Acosta CH, Wang D, Traylor JG, Orr AW. Selective role of Nck1 in atherogenic inflammation and plaque formation. J Clin Invest 2021; 130:4331-4347. [PMID: 32427580 DOI: 10.1172/jci135552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Although the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS) established the role of treating inflammation in atherosclerosis, our understanding of endothelial activation at atherosclerosis-prone sites remains limited. Disturbed flow at atheroprone regions primes plaque inflammation by enhancing endothelial NF-κB signaling. Herein, we demonstrate a role for the Nck adaptor proteins in disturbed flow-induced endothelial activation. Although highly similar, only Nck1 deletion, but not Nck2 deletion, limited flow-induced NF-κB activation and proinflammatory gene expression. Nck1-knockout mice showed reduced endothelial activation and inflammation in both models, disturbed flow- and high fat diet-induced atherosclerosis, whereas Nck2 deletion did not. Bone marrow chimeras confirmed that vascular Nck1, but not hematopoietic Nck1, mediated this effect. Domain-swap experiments and point mutations identified the Nck1 SH2 domain and the first SH3 domain as critical for flow-induced endothelial activation. We further characterized Nck1's proinflammatory role by identifying interleukin 1 type I receptor kinase-1 (IRAK-1) as a Nck1-selective binding partner, demonstrating that IRAK-1 activation by disturbed flow required Nck1 in vitro and in vivo, showing endothelial Nck1 and IRAK-1 staining in early human atherosclerosis, and demonstrating that disturbed flow-induced endothelial activation required IRAK-1. Taken together, our data reveal a hitherto unknown link between Nck1 and IRAK-1 in atherogenic inflammation.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology.,Center for Cardiovascular Diseases and Sciences
| | | | - Dongdong Wang
- Department of Pathology and Translational Pathobiology.,Center for Cardiovascular Diseases and Sciences
| | - James G Traylor
- Department of Pathology and Translational Pathobiology.,Center for Cardiovascular Diseases and Sciences
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology.,Center for Cardiovascular Diseases and Sciences.,Department of Cell Biology and Anatomy, and.,Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
8
|
CD99-PTPN12 Axis Suppresses Actin Cytoskeleton-Mediated Dimerization of Epidermal Growth Factor Receptor. Cancers (Basel) 2020; 12:cancers12102895. [PMID: 33050232 PMCID: PMC7599698 DOI: 10.3390/cancers12102895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The epidermal growth factor receptor (EGFR) is activated through growth factor-dependent dimerization accompanied by functional reorganization of the actin cytoskeleton. Lee et al. demonstrate that CD99 activation by agonist ligands inhibits epidermal growth factor (EGF)-induced EGFR dimerization through impairment of cytoskeletal reorganization by protein tyrosine phosphatase non-receptor type 12 (PTPN12)-dependent c-Src/focal adhesion kinase (FAK) inactivation, thereby suppressing breast cancer growth. Abstract The epidermal growth factor receptor (EGFR), a member of ErbB receptor tyrosine kinase (RTK) family, is activated through growth factor-induced reorganization of the actin cytoskeleton and subsequent dimerization. We herein explored the molecular mechanism underlying the suppression of ligand-induced EGFR dimerization by CD99 agonists and its relevance to tumor growth in vivo. Epidermal growth factor (EGF) activated the formation of c-Src/focal adhesion kinase (FAK)-mediated intracellular complex and subsequently induced RhoA-and Rac1-mediated actin remodeling, resulting in EGFR dimerization and endocytosis. In contrast, CD99 agonist facilitated FAK dephosphorylation through the HRAS/ERK/PTPN12 signaling pathway, leading to inhibition of actin cytoskeletal reorganization via inactivation of the RhoA and Rac1 signaling pathways. Moreover, CD99 agonist significantly suppressed tumor growth in a BALB/c mouse model injected with MDA-MB-231 human breast cancer cells. Taken together, these results indicate that CD99-derived agonist ligand inhibits epidermal growth factor (EGF)-induced EGFR dimerization through impairment of cytoskeletal reorganization by PTPN12-dependent c-Src/FAK inactivation, thereby suppressing breast cancer growth.
Collapse
|
9
|
Alfaidi M, Bhattarai U, Orr AW. Nck1, But Not Nck2, Mediates Disturbed Flow-Induced p21-Activated Kinase Activation and Endothelial Permeability. J Am Heart Assoc 2020; 9:e016099. [PMID: 32468886 PMCID: PMC7428973 DOI: 10.1161/jaha.120.016099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Alteration in hemodynamic shear stress at atheroprone sites promotes endothelial paracellular pore formation and permeability. The molecular mechanism remains unknown. Methods and Results We show that Nck (noncatalytic region of tyrosine kinase) deletion significantly ameliorates disturbed flow‐induced permeability, and selective isoform depletion suggests distinct signaling mechanisms. Only Nck1 deletion significantly reduces disturbed flow‐induced paracellular pore formation and permeability, whereas Nck2 depletion has no significant effects. Additionally, Nck1 re‐expression, but not Nck2, restores disturbed flow‐induced permeability in Nck1/2 knockout cells, confirming the noncompensating roles. In vivo, using the partial carotid ligation model of disturbed flow, Nck1 knockout prevented the increase in vascular permeability, as assessed by Evans blue and fluorescein isothiocyanate dextran extravasations and leakage of plasma fibrinogen into the vessel wall. Domain swap experiments mixing SH2 (phosphotyrosine binding) and SH3 (proline‐rich binding) domains between Nck1 and Nck2 showed a dispensable role for SH2 domains but a critical role for the Nck1 SH3 domains in rescuing disturbed flow‐induced endothelial permeability. Consistent with this, both Nck1 and Nck2 bind to platelet endothelial adhesion molecule‐1 (SH2 dependent) in response to shear stress, but only Nck1 ablation interferes with shear stress–induced PAK2 (p21‐activated kinase) membrane translocation and activation. A single point mutation into individual Nck1 SH3 domains suggests a role for the first domain of Nck1 in PAK recruitment to platelet endothelial cell adhesion molecule‐1 and activation in response to shear stress. Conclusions This work provides the first evidence that Nck1 but not the highly similar Nck2 plays a distinct role in disturbed flow‐induced vascular permeability by selective p21‐activated kinase activation.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology LSU Health-Shreveport LA
| | - Umesh Bhattarai
- Department of Molecular& Cellular Physiology LSU Health-Shreveport LA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology LSU Health-Shreveport LA.,Department of Molecular& Cellular Physiology LSU Health-Shreveport LA.,Department of Cell Biology and Anatomy LSU Health-Shreveport LA
| |
Collapse
|
10
|
Haider N, Dusseault J, Larose L. Nck1 Deficiency Impairs Adipogenesis by Activation of PDGFRα in Preadipocytes. iScience 2018; 6:22-37. [PMID: 30240612 PMCID: PMC6137712 DOI: 10.1016/j.isci.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/22/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity results from an excessive expansion of white adipose tissue (WAT), which is still poorly understood from an etiologic-mechanistic perspective. Here, we report that Nck1, a Src homology domain-containing adaptor, is upregulated during WAT expansion and in vitro adipogenesis. In agreement, Nck1 mRNA correlates positively with peroxisome proliferator-activated receptor (PPAR) γ and adiponectin mRNAs in the WAT of obese humans, whereas Nck1-deficient mice display smaller WAT depots with reduced number of adipocyte precursors and accumulation of extracellular matrix. Furthermore, silencing Nck1 in 3T3-L1 preadipocytes increases the proliferation and expression of genes encoding collagen, whereas it decreases the expression of adipogenic markers and impairs adipogenesis. Silencing Nck1 in 3T3-L1 preadipocytes also promotes the expression of platelet-derived growth factor (PDGF)-A and platelet-derived growth factor receptor (PDGFR) α activation and signaling. Preventing PDGFRα activation using imatinib, or through PDGF-A or PDGFRα deficiency, inhibits collagen expression in Nck1-deficient preadipocytes. Finally, imatinib rescues differentiation of Nck1-deficient preadipocytes. Altogether, our findings reveal that Nck1 modulates WAT development through PDGFRα-dependent remodeling of preadipocytes.
Collapse
Affiliation(s)
- Nida Haider
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada
| | - Julie Dusseault
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada
| | - Louise Larose
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada.
| |
Collapse
|
11
|
Dubrac A, Künzel SE, Künzel SH, Li J, Chandran RR, Martin K, Greif DM, Adams RH, Eichmann A. NCK-dependent pericyte migration promotes pathological neovascularization in ischemic retinopathy. Nat Commun 2018; 9:3463. [PMID: 30150707 PMCID: PMC6110853 DOI: 10.1038/s41467-018-05926-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 07/04/2018] [Indexed: 12/20/2022] Open
Abstract
Pericytes are mural cells that surround capillaries and control angiogenesis and capillary barrier function. During sprouting angiogenesis, endothelial cell-derived platelet-derived growth factor-B (PDGF-B) regulates pericyte proliferation and migration via the platelet-derived growth factor receptor-β (PDGFRβ). PDGF-B overexpression has been associated with proliferative retinopathy, but the underlying mechanisms remain poorly understood. Here we show that abnormal, α-SMA-expressing pericytes cover angiogenic sprouts and pathological neovascular tufts (NVTs) in a mouse model of oxygen-induced retinopathy. Genetic lineage tracing demonstrates that pericytes acquire α-SMA expression during NVT formation. Pericyte depletion through inducible endothelial-specific knockout of Pdgf-b decreases NVT formation and impairs revascularization. Inactivation of the NCK1 and NCK2 adaptor proteins inhibits pericyte migration by preventing PDGF-B-induced phosphorylation of PDGFRβ at Y1009 and PAK activation. Loss of Nck1 and Nck2 in mural cells prevents NVT formation and vascular leakage and promotes revascularization, suggesting PDGFRβ-Y1009/NCK signaling as a potential target for the treatment of retinopathies. Pericytes are perivascular cells that regulate blood vessel formation and function. Here Dubrac et al. show that pericyte recruitment contributes to pathological neovascularisation in a mouse model of ischemic retinopathy, and that this depends on the regulation of PDGF-B signaling by NCK adaptor proteins.
Collapse
Affiliation(s)
- Alexandre Dubrac
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Steffen E Künzel
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Sandrine H Künzel
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jinyu Li
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Rachana Radhamani Chandran
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kathleen Martin
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Daniel M Greif
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis and University of Münster, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Anne Eichmann
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA. .,INSERM U970, Paris Cardiovascular Research Center, 75015, Paris, France. .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Li H, Wang Y, Liu H, Shi Q, Li H, Wu W, Zhu D, Amos CI, Fang S, Lee JE, Li Y, Han J, Wei Q. Genetic variants of PDGF signaling pathway genes predict cutaneous melanoma survival. Oncotarget 2017; 8:74595-74606. [PMID: 29088810 PMCID: PMC5650365 DOI: 10.18632/oncotarget.20245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022] Open
Abstract
To investigate whether genetic variants of platelet-derived growth factor (PDGF) signaling pathway genes are associated with survival of cutaneous melanoma (CM) patients, we assessed associations of single-nucleotide polymorphisms in PDGF pathway with melanoma-specific survival in 858 CM patients of M.D. Anderson Cancer Center (MDACC). Additional data of 409 cases from Harvard University were also included for further analysis. We identified 13 SNPs in four genes (COL6A3, NCK2, COL5A1 and PRKCD) with a nominal P < 0.05 and false discovery rate (FDR) < 0.2 in MDACC dataset. Based on linkage disequilibrium, functional prediction and minor allele frequency, a representative SNP in each gene was selected. In the meta-analysis using MDACC and Harvard datasets, there were two SNPs associated with poor survival of CM patients: rs6707820 C>T in NCK2 (HR = 1.87, 95% CI = 1.35-2.59, Pmeta= 1.53E-5); and rs2306574 T>C in PRKCD (HR = 1.73, 95% CI = 1.33-2.24, Pmeta= 4.56E-6). Moreover, CM patients in MDACC with combined risk genotypes of these two loci had markedly poorer survival (HR = 2.47, 95% CI = 1.58-3.84, P < 0.001). Genetic variants of rs6707820 C>T in NCK2 and rs2306574 T>C in PRKCD of the PDGF signaling pathway may be biomarkers for melanoma survival.
Collapse
Affiliation(s)
- Hong Li
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China.,Duke Cancer Institute, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yanru Wang
- Duke Cancer Institute, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qiong Shi
- Duke Cancer Institute, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongyu Li
- Duke Cancer Institute, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wenting Wu
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Dakai Zhu
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Christopher I Amos
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiali Han
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
13
|
Huang H, Svoboda RA, Lazenby AJ, Saowapa J, Chaika N, Ding K, Wheelock MJ, Johnson KR. Up-regulation of N-cadherin by Collagen I-activated Discoidin Domain Receptor 1 in Pancreatic Cancer Requires the Adaptor Molecule Shc1. J Biol Chem 2016; 291:23208-23223. [PMID: 27605668 DOI: 10.1074/jbc.m116.740605] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinomas are highly malignant cancers characterized by extensive invasion into surrounding tissues, metastasis to distant organs, and a limited response to therapy. A main feature of pancreatic ductal adenocarcinomas is desmoplasia, which leads to extensive deposition of collagen I. We have demonstrated that collagen I can induce epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. A hallmark of EMT is an increase in the expression of the mesenchymal cadherin N-cadherin. Previously we showed up-regulation of N-cadherin promotes tumor cell invasion and that collagen I-induced EMT is mediated by two collagen receptors, α2β1-integrin and discoidin domain receptor 1 (DDR1). DDR1 is a receptor-tyrosine kinase widely expressed during embryonic development and in many adult tissues and is also highly expressed in many different cancers. In the signaling pathway initiated by collagen, we have shown proline-rich tyrosine kinase 2 (Pyk2) is downstream of DDR1. In this study we found isoform b of DDR1 is responsible for collagen I-induced up-regulation of N-cadherin and tyrosine 513 of DDR1b is necessary. Knocking down Shc1, which binds to tyrosine 513 of DDR1b via its PTB (phosphotyrosine binding) domain, eliminates the up-regulation of N-cadherin. The signaling does not require a functional SH2 domain or the tyrosine residues commonly phosphorylated in Shc1 but is mediated by the interaction between a short segment of the central domain of Shc1 and the proline-rich region of Pyk2. Taken together, these data illustrate DDR1b, but not DDR1a, mediates collagen I-induced N-cadherin up-regulation, and Shc1 is involved in this process by coupling to both DDR1 and Pyk2.
Collapse
Affiliation(s)
- Huocong Huang
- From the Department of Biochemistry and Molecular Biology, College of Medicine
| | | | - Audrey J Lazenby
- Department of Pathology and Microbiology, College of Medicine, and
| | | | - Nina Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198
| | - Ke Ding
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China, and
| | - Margaret J Wheelock
- From the Department of Biochemistry and Molecular Biology, College of Medicine.,Department of Oral Biology, College of Dentistry.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198
| | - Keith R Johnson
- From the Department of Biochemistry and Molecular Biology, College of Medicine, .,Department of Oral Biology, College of Dentistry.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
14
|
Paensuwan P, Hartl FA, Yousefi OS, Ngoenkam J, Wipa P, Beck-Garcia E, Dopfer EP, Khamsri B, Sanguansermsri D, Minguet S, Schamel WW, Pongcharoen S. Nck Binds to the T Cell Antigen Receptor Using Its SH3.1 and SH2 Domains in a Cooperative Manner, Promoting TCR Functioning. THE JOURNAL OF IMMUNOLOGY 2015; 196:448-58. [PMID: 26590318 DOI: 10.4049/jimmunol.1500958] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022]
Abstract
Ligand binding to the TCR causes a conformational change at the CD3 subunits to expose the CD3ε cytoplasmic proline-rich sequence (PRS). It was suggested that the PRS is important for TCR signaling and T cell activation. It has been shown that the purified, recombinant SH3.1 domain of the adaptor molecule noncatalytic region of tyrosine kinase (Nck) can bind to the exposed PRS of CD3ε, but the molecular mechanism of how full-length Nck binds to the TCR in cells has not been investigated so far. Using the in situ proximity ligation assay and copurifications, we show that the binding of Nck to the TCR requires partial phosphorylation of CD3ε, as it is based on two cooperating interactions. First, the SH3.1(Nck) domain has to bind to the nonphosphorylated and exposed PRS, that is, the first ITAM tyrosine has to be in the unphosphorylated state. Second, the SH2(Nck) domain has to bind to the second ITAM tyrosine in the phosphorylated state. Likewise, mutations of the SH3.1 and SH2 domains in Nck1 resulted in the loss of Nck1 binding to the TCR. Furthermore, expression of an SH3.1-mutated Nck impaired TCR signaling and T cell activation. Our data suggest that the exact pattern of CD3ε phosphorylation is critical for TCR functioning.
Collapse
Affiliation(s)
- Pussadee Paensuwan
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Frederike A Hartl
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - O Sascha Yousefi
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg 79104, Germany
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Esmeralda Beck-Garcia
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; International Max Planck Research School for Molecular and Cellular Biology, Freiburg 79108, Germany
| | - Elaine P Dopfer
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - Boonruang Khamsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Donruedee Sanguansermsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Susana Minguet
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - Wolfgang W Schamel
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany;
| | - Sutatip Pongcharoen
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; and Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
15
|
Mukherjee C, Bakthavachalu B, Schoenberg DR. The cytoplasmic capping complex assembles on adapter protein nck1 bound to the proline-rich C-terminus of Mammalian capping enzyme. PLoS Biol 2014; 12:e1001933. [PMID: 25137142 PMCID: PMC4138027 DOI: 10.1371/journal.pbio.1001933] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/11/2014] [Indexed: 12/03/2022] Open
Abstract
mRNA capping and decapping requires a cytoplasmic complex to maintain and/or restore the 5′ cap on a subset of the mammalian transcriptome; Nck1, an SH2/SH3 adapter, creates a scaffold upon which the cytoplasmic capping complex forms. Cytoplasmic capping is catalyzed by a complex that contains capping enzyme (CE) and a kinase that converts RNA with a 5′-monophosphate end to a 5′ diphosphate for subsequent addition of guanylic acid (GMP). We identify the proline-rich C-terminus as a new domain of CE that is required for its participation in cytoplasmic capping, and show the cytoplasmic capping complex assembles on Nck1, an adapter protein with functions in translation and tyrosine kinase signaling. Binding is specific to Nck1 and is independent of RNA. We show by sedimentation and gel filtration that Nck1 and CE are together in a larger complex, that the complex can assemble in vitro on recombinant Nck1, and Nck1 knockdown disrupts the integrity of the complex. CE and the 5′ kinase are juxtaposed by binding to the adjacent domains of Nck1, and cap homeostasis is inhibited by Nck1 with inactivating mutations in each of these domains. These results identify a new domain of CE that is specific to its function in cytoplasmic capping, and a new role for Nck1 in regulating gene expression through its role as the scaffold for assembly of the cytoplasmic capping complex. We previously described a cyclical process of mRNA decapping and recapping termed “cap homeostasis.” Recapping is catalyzed by a complex of cytoplasmic proteins that includes the enzyme known to catalyze nuclear capping, and a kinase that converts RNA with a 5′-monophosphate end to a 5′-diphosphate capping substrate. The current study shows these two enzymatic activities are brought together in the cytoplasmic capping complex as both bind to adjacent domains of the adapter protein Nck1. Nck1 is a cytoplasmic protein best known for transducing receptor tyrosine kinase signaling. We identify a proline-rich sequence at the C-terminus of a human capping enzyme that is required for binding to Nck1, and we show that this interaction is required for integrity of the cytoplasmic capping complex. Depletion of Nck1 causes the cytoplasmic capping complex to dissociate. The inhibition of cytoplasmic capping by Nck1 with mutations in either the 5′-kinase or capping enzyme binding sites identified a functional role for Nck1 in cap homeostasis and a previously unknown function for Nck1 in cell biology.
Collapse
Affiliation(s)
- Chandrama Mukherjee
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Baskar Bakthavachalu
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel R. Schoenberg
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ngoenkam J, Paensuwan P, Preechanukul K, Khamsri B, Yiemwattana I, Beck-García E, Minguet S, Schamel WWA, Pongcharoen S. Non-overlapping functions of Nck1 and Nck2 adaptor proteins in T cell activation. Cell Commun Signal 2014; 12:21. [PMID: 24670066 PMCID: PMC3977700 DOI: 10.1186/1478-811x-12-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/13/2014] [Indexed: 11/13/2022] Open
Abstract
Background Signalling by the T cell antigen receptor (TCR) results in the activation of T lymphocytes. Nck1 and Nck2 are two highly related adaptor proteins downstream of the TCR that each contains three SH3 and one SH2 domains. Their individual functions and the roles of their SH3 domains in human T cells remain mostly unknown. Results Using specific shRNA we down-regulated the expression of Nck1 or Nck2 to approximately 10% each in Jurkat T cells. We found that down-regulation of Nck1 impaired TCR-induced phosphorylation of the kinases Erk and MEK, activation of the AP-1 and NFAT transcription factors and subsequently, IL-2 and CD69 expression. In sharp contrast, down-regulation of Nck2 hardly impacts these activation read-outs. Thus, in contrast to Nck2, Nck1 is a positive regulator for TCR-induced stimulation of the Erk pathway. Mutation of the third SH3 domain of Nck1 showed that this domain was required for this activity. Further, TCR-induced NFAT activity was reduced in both Nck1 and Nck2 knock-down cells, showing that both isoforms are involved in NFAT activation. Lastly, we show that neither Nck isoform is upstream of p38 phosphorylation or Ca2+influx. Conclusions In conclusion, Nck1 and Nck2 have non-redundant roles in human T cell activation in contrast to murine T cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sutatip Pongcharoen
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
17
|
Locascio LE, Donoghue DJ. KIDs rule: regulatory phosphorylation of RTKs. Trends Biochem Sci 2013; 38:75-84. [PMID: 23312584 DOI: 10.1016/j.tibs.2012.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 01/14/2023]
Abstract
Receptor tyrosine kinases (RTKs) are mediators of multiple cell signaling networks linked to cell growth and differentiation. In general, they exhibit similar overall structure with a ligand-binding extracellular domain and a conserved intracellular tyrosine kinase domain. In many RTKs, the kinase domain is interrupted by a sequence known as the kinase insert domain (KID). In addition to phosphorylation sites within the kinase domain, regulatory phosphorylation also occurs within the KID of several RTKs important in human health and disease. Phosphorylation of specific Tyr or Ser residues within the KID of some RTKs triggers distinct cellular signaling outcomes. Here, we review the functionality of KIDs throughout all RTK families, and provide justification for further study of this often-overlooked domain.
Collapse
Affiliation(s)
- Lauren E Locascio
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, USA
| | | |
Collapse
|
18
|
Moes MJA, Zhou Y, Boonstra J. Co-localization of the PDGF β-Receptor and Actin during PDGF Stimulation in Mouse Fibroblasts. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/568104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The subcellular localization of the PDGF β-receptor was investigated in relation with PDGF-induced actin and membrane dynamics in mouse C3H10T1/2 fibroblasts. Serum-starved cells exhibit a nonhomogenous distribution of PDGF β-receptors. However, the observed pattern does not resemble the localization of PDGF-induced actin structures. Interestingly, the PDGF β-receptor showed a changed subcellular distribution in relation to the formation of PDGF-BB-induced actin structures. Upon PDGF exposure, PDGF β-receptors were found to accumulate in dorsal circular ruffles. The presence of both macropinosomes and clathrin in the induced circular ruffles suggests that the accumulation of PDGF β-receptors in circular ruffles results in the efficient internalization of PDGF β-receptors.
Collapse
Affiliation(s)
- Maarten J. A. Moes
- Cell Biology, Department of Biology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Yeping Zhou
- Cell Biology, Department of Biology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Johannes Boonstra
- Cell Biology, Department of Biology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
19
|
Yiemwattana I, Ngoenkam J, Paensuwan P, Kriangkrai R, Chuenjitkuntaworn B, Pongcharoen S. Essential role of the adaptor protein Nck1 in Jurkat T cell activation and function. Clin Exp Immunol 2012; 167:99-107. [PMID: 22132889 PMCID: PMC3248091 DOI: 10.1111/j.1365-2249.2011.04494.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2011] [Indexed: 11/29/2022] Open
Abstract
The non-catalytic region of tyrosine kinase (Nck) is proposed to play an essential role in T cell activation. However, evidence based on functional and biochemical studies has brought into question the critical function of Nck. Therefore, the aim of the present work was to investigate the role of Nck in T cell activation. To study this, the human Jurkat T cell line was used as a model for human T lymphocytes. The short interfering (si) RNA targeting Nck1 gene was used with electroporation to knock-down Nck1 protein expression in Jurkat T cells. Primary human CD4 T cells were also transfected with the siRNA of Nck1. The results showed that decreased Nck1 protein expression did not affect the apoptosis of the transfected Jurkat T cells compared with control siRNA-transfected cells and non-transfected cells. Upon CD3ε/CD28 stimulation, knock-down of Nck1 in Jurkat T cells caused a decrease in CD69 expression and in interleukin (IL)-2 secretion. Similarly, knock-down of Nck1 in primary CD4 T cells also caused decreased CD69 expression. However, no significant alterations of CD69 and IL-2 expression were found upon phytohaemagglutinin (PHA)/phorbol myristate acetate (PMA) stimulation. Knock-down of Nck1 had no effect on the proliferation of Jurkat T cells stimulated with either PHA or anti-T cell receptor (TCR) monoclonal antibody (C305). The reduced Nck1 expression in Jurkat cells was also associated with a reduced phosphorylation of extracellular regulated kinase (Erk)1 and Erk2 proteins upon CD3ε/CD28 stimulation. In conclusion, the decreased Nck1 protein in Jurkat T cells resulted in an impairment of TCR-CD3-mediated activation involving a defective Erk phosphorylation pathway.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- Apoptosis/drug effects
- Apoptosis/immunology
- CD28 Antigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Electroporation
- Humans
- Interleukin-1/biosynthesis
- Interleukin-1/genetics
- Jurkat Cells/drug effects
- Jurkat Cells/immunology
- Jurkat Cells/metabolism
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/genetics
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Oncogene Proteins/antagonists & inhibitors
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Phosphorylation
- Phytohemagglutinins/pharmacology
- Protein Processing, Post-Translational
- RNA Interference
- RNA, Small Interfering/pharmacology
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
Affiliation(s)
- I Yiemwattana
- Department of Preventive Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | | | | | | | | | | |
Collapse
|
20
|
Zhou L, Zhang Z, Zheng Y, Zhu Y, Wei Z, Xu H, Tang Q, Kong X, Hu L. SKAP2, a novel target of HSF4b, associates with NCK2/F-actin at membrane ruffles and regulates actin reorganization in lens cell. J Cell Mol Med 2011; 15:783-95. [PMID: 20219016 PMCID: PMC3922667 DOI: 10.1111/j.1582-4934.2010.01048.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In addition to roles in stress response, heat shock factors (HSFs) play crucial roles in differentiation and development. Heat shock transcription factor 4 (HSF4) deficiency leads to defect in lens epithelial cell (LEC) differentiation and cataract formation. However, the mechanism remains obscure. Here, we identified Src kinase-associated phosphoprotein 2 (SKAP2) as a downstream target of HSF4b and it was highly expressed at the anterior tip of lens elongating fibre cells in vivo. The HSF4-deficient lenses showed reduced SKAP2 expression and defects in actin reorganization. The disassembly of stress fibres and formation of cortical actin fibres are critical for the initiation of LEC differentiation. SKAP2 localized at actin-rich ruffles in human LECs (SRA01/04 cells) and knockdown SKAP2 using RNA interference impaired the disassembly of cellular stress fibres in response to fibroblast growth factor (FGF)-b. Overexpression of SKAP2, but not the N-terminal deletion mutant of SKAP2, induced the actin remodelling. We further found that SKAP2 interacted with the SH2 domain of non-catalytic region of tyrosine kinase adaptor protein 2 (NCK2) via its N-terminus. The complex of SKAP2-NCK2-F-actin accumulated at the leading edge of the lamellipodium, where FGF receptors and focal adhesion were also recruited. These results revealed an essential role for HSF4-mediated SKAP2 expression in the regulation of actin reorganization during lens differentiation, likely through a mechanism that SKAP2 anchors the complex of NCK2/focal adhesion to FGF receptors at the lamellipodium in lens epithelial cells.
Collapse
Affiliation(s)
- Li Zhou
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Round JE, Sun H. The adaptor protein Nck2 mediates Slit1-induced changes in cortical neuron morphology. Mol Cell Neurosci 2011; 47:265-73. [PMID: 21600986 DOI: 10.1016/j.mcn.2011.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/18/2011] [Accepted: 04/28/2011] [Indexed: 01/24/2023] Open
Abstract
Slits are multifunctional guidance cues, capable of triggering neurite repulsion, extension, or branching, depending on cell type and developmental context. While the Robo family of Slit receptors is a well-established mediator of axon repulsion, a role for Robos in Slit-mediated neurite growth and branching is not well defined, and the signaling molecules that link Robo to the cytoskeletal changes that drive neurite outgrowth are not well characterized in vertebrates. We show that Slit stimulates cortical dendrite branching, and we report that Slit also triggers a robust increase in the length of cortical axons in vitro. Moreover, neurons derived from Robo1; Robo2 deficient mice do not display an increase in neurite length, indicating that endogenous Robos mediate Slit's growth-promoting effects on both axons and dendrites. We also demonstrate that the SH2/SH3 adaptor proteins Nck1 and Nck2 bind to Robo via an atypical SH3-mediated mechanism. Furthermore, we show that only Nck2 is required for the Slit-induced changes in cortical neuron morphology in vitro. These findings indicate a specific role for Nck2 in linking Robo activation to the cytoskeleton rearrangements that shape cortical neuron morphology.
Collapse
Affiliation(s)
- Jennifer E Round
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, United States.
| | | |
Collapse
|
22
|
Ger M, Zitkus Z, Valius M. Adaptor protein Nck1 interacts with p120 Ras GTPase-activating protein and regulates its activity. Cell Signal 2011; 23:1651-8. [PMID: 21664272 DOI: 10.1016/j.cellsig.2011.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 11/25/2022]
Abstract
Adaptor protein Nck1 binds a number of intracellular proteins and influences various signaling pathways. Here we show that Nck1 directly binds and activates the GTPase-activating protein of Ras (RasGAP), which is responsible for the down-regulation of Ras. The first and the third SH3 domains of Nck1 and the NH(2)-terminal proline-rich sequence of RasGAP contribute most to the complex formation causing direct molecular interaction between the two proteins. Cell adhesion to the substrate is obligatory for the Nck1 and RasGAP association, as cell detachment makes RasGAP incapable of associating with Nck1. This leads to the complex dissipation, decrease of RasGAP activity and the increase of H-Ras-GTP level in the detached cells. Our findings reveal unexpected feature of adaptor protein Nck1 as the regulator of RasGAP activity.
Collapse
Affiliation(s)
- Marija Ger
- Proteomics Centre, Vilnius University Institute of Biochemistry, Lithuania.
| | | | | |
Collapse
|
23
|
Adaptor protein is essential for insect cytokine signaling in hemocytes. Proc Natl Acad Sci U S A 2010; 107:15862-7. [PMID: 20798052 DOI: 10.1073/pnas.1003785107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Growth-blocking peptide (GBP) is an insect cytokine that stimulates a class of immune cells called plasmatocytes to adhere to one another and to foreign surfaces. Although extensive structure-activity studies have been performed on the GBP and its mutants in Lepidoptera Pseudaletia separata, the signaling pathway of GBP-dependent activation of plasmatocytes remains unknown. We identified an adaptor protein (P77) with a molecular mass of 77 kDa containing SH2/SH3 domain binding motifs and an immunoreceptor tyrosine-based activation motif (ITAM)-like domain in the cytoplasmic region of the C terminus. Although P77 showed no capacity for direct binding with GBP, its cytoplasmic tyrosine residues were specifically phosphorylated within seconds after GBP was added to a plasmatocyte suspension. Tyrosine phosphorylation of P77 also was observed when hemocytes were incubated with Enterobactor cloacae or Micrococcus luteus, but this phosphorylation was found to be induced by GBP released from hemocytes stimulated by the pathogens. Tyrosine phosphorylation of the integrin beta subunit also was detected in plasmatocytes stimulated by GBP. Double-stranded RNAs targeting P77 not only decreased GBP-dependent tyrosine phosphorylation of the integrin beta subunit, but also abolished GBP-induced spreading of plasmatocytes on foreign surfaces. P77 RNAi larvae also showed significantly higher mortality than control larvae after infection with Serratia marcescens, indicating that P77 is essential for GBP to mediate a normal innate cellular immunity in insects. These results demonstrate that GBP signaling in plasmatocytes requires the adaptor protein P77, and that active P77-assisted tyrosine phosphorylation of integrins is critical for the activation of plasmatocytes.
Collapse
|
24
|
Abella JV, Vaillancourt R, Frigault MM, Ponzo MG, Zuo D, Sangwan V, Larose L, Park M. The Gab1 scaffold regulates RTK-dependent dorsal ruffle formation through the adaptor Nck. J Cell Sci 2010; 123:1306-19. [PMID: 20332103 DOI: 10.1242/jcs.062570] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The polarised distribution of signals downstream from receptor tyrosine kinases (RTKs) regulates fundamental cellular processes that control cell migration, growth and morphogenesis. It is poorly understood how RTKs are involved in the localised signalling and actin remodelling required for these processes. Here, we show that the Gab1 scaffold is essential for the formation of a class of polarised actin microdomain, namely dorsal ruffles, downstream from the Met, EGF and PDGF RTKs. Gab1 associates constitutively with the actin-nucleating factor N-WASP. Following RTK activation, Gab1 recruits Nck, an activator of N-WASP, into a signalling complex localised to dorsal ruffles. Formation of dorsal ruffles requires interaction between Gab1 and Nck, and also requires functional N-WASP. Epithelial cells expressing Gab1DeltaNck (Y407F) exhibit decreased Met-dependent Rac activation, fail to induce dorsal ruffles, and have impaired cell migration and epithelial remodelling. These data show that a Gab1-Nck signalling complex interacts with several RTKs to promote polarised actin remodelling and downstream biological responses.
Collapse
Affiliation(s)
- Jasmine V Abella
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
An inhibitory role of the G-protein regulator AGS3 in mTOR-dependent macroautophagy. PLoS One 2010; 5:e8877. [PMID: 20126274 PMCID: PMC2811177 DOI: 10.1371/journal.pone.0008877] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 01/04/2010] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy is a cellular process whereby the cell sequesters and recycles cytosolic constituents in a lysosome-dependent manner. It has also been implicated in a number of disorders, including cancer and neurodegeneration. Although a previous report that AGS3 over-expression promotes macroautophagy suggests a stimulatory role of AGS3 in this process, we have found that knock-down of AGS3, unexpectedly, also induces macroautophagy, indicating an inhibitory function of endogenous AGS3 in macroautophagy. Interestingly, AGS3 phosphorylation is decreased upon induction of mammalian target of rapamycin (mTOR)-dependent macroautophagy. Moreover, unlike wild-type AGS3, over-expression of an AGS3 mutant lacking this modification fails to enhance macroautophagic activity. These observations imply that AGS3 phosphorylation may participate in the modulation of macroautophagy.
Collapse
|
26
|
Schneider L, Cammer M, Lehman J, Nielsen SK, Guerra CF, Veland IR, Stock C, Hoffmann EK, Yoder BK, Schwab A, Satir P, Christensen ST. Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cell Physiol Biochem 2010; 25:279-92. [PMID: 20110689 DOI: 10.1159/000276562] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2009] [Indexed: 12/28/2022] Open
Abstract
Cell motility and migration play pivotal roles in numerous physiological and pathophysiological processes including development and tissue repair. Cell migration is regulated through external stimuli such as platelet-derived growth factor-AA (PDGF-AA), a key regulator in directional cell migration during embryonic development and a chemoattractant during postnatal migratory responses including wound healing. We previously showed that PDGFRalpha signaling is coordinated by the primary cilium in quiescent cells. However, little is known about the function of the primary cilium in cell migration. Here we used micropipette analysis to show that a normal chemosensory response to PDGF-AA in fibroblasts requires the primary cilium. In vitro and in vivo wound healing assays revealed that in ORPK mouse (IFT88(Tg737Rpw)) fibroblasts, where ciliary assembly is defective, chemotaxis towards PDGF-AA is absent, leading to unregulated high speed and uncontrolled directional cell displacement during wound closure, with subsequent defects in wound healing. These data suggest that in coordination with cytoskeletal reorganization, the fibroblast primary cilium functions via ciliary PDGFRalpha signaling to monitor directional movement during wound healing.
Collapse
Affiliation(s)
- Linda Schneider
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dhar MS, Hauser LJ, Nicholls RD, Johnson DK. Physical Mapping of thePink-Eyed DilutionComplex in Mouse Chromosome 7 shows thatAtp10cis the only Transcript betweenGabrb3andUbe3a. ACTA ACUST UNITED AC 2009; 15:306-9. [PMID: 15620220 DOI: 10.1080/10425170412331279855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phenotypic analyses of a set of homozygous-lethal deletion mutants at the pink-eyed dilution (p) locus has resulted in the identification of p-linked obesity locus 1 (plo 1), distal to the p locus, as a locus involved in the modulation of body fat and/or affecting lipid metabolism in these mice. The plo 1 region maps to mouse chromosome 7 (MMU 7) between two genes, Gabrb3 and Ube3a, which have been used as anchor points to generate an integrated deletion and physical map of plo 1 that encompasses about 1.2-1.3 Mb. A deletion/physical map was constructed and the genomic DNA between the two loci was sequenced to identify genes mapping to this region. Data show that Atp10c, a novel type IV ATPase a putative phospholipid transporter, is the only coding unit in this region of the chromosome.
Collapse
Affiliation(s)
- Madhu S Dhar
- 318 Jessie Harris Building, Department of Nutrition, University of Tennessee, 1215 Cumberland Avenue, Knoxville, TN 37996, USA.
| | | | | | | |
Collapse
|
28
|
Non-compensating roles between Nckalpha and Nckbeta in PDGF-BB signaling to promote human dermal fibroblast migration. J Invest Dermatol 2009; 129:1909-20. [PMID: 19242519 DOI: 10.1038/jid.2008.457] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Platelet-derived growth factor BB (PDGF-BB) is a Food and Drug Administration (FDA)-approved growth factor, acting as a mitogen and motogen of dermal fibroblasts (DFs), for skin wound healing. The two closely related SH2/SH3 adapter proteins, Nckalpha and Nckbeta, connect PDGF-BB signaling to the actin cytoskeleton and cell motility. The mechanism has not been fully understood. In this study, we investigated, side by side, the roles of Nckalpha and Nckbeta in PDGF-BB-stimulated DF migration. We found that cells expressing the PDGFRbeta-Y751F mutant (preventing Nckalpha binding) or PDGFRbeta-Y1009F mutant (preventing Nckbeta binding), DF cells isolated from Nckalpha- or Nckbeta-knockout mice, and primary human DF cells with RNA interference (RNAi) knockdown of the endogenous Nckalpha or Nckbeta all failed to migrate in response to PDGF-BB. Overexpression of the middle SH3 domain of Nckalpha or Nckbeta alone in human DFs also blocked PDGF-BB-induced cell migration. However, neither Nckalpha nor Nckbeta was required for the activation of the PDGF receptor, p21-activated protein kinase (Pak1), AKT, extracellular signal-regulated kinase (ERK) 1/2, or p38MAP by PDGF-BB. Although PDGF-BB stimulated the membrane translocation of both Nckalpha and Nckbeta, Nckalpha appeared to mediate Cdc42 signaling for filopodium formation, whereas Nckbeta mediated Rho signaling to induce stress fibers. Thus, this study has elucidated the independent roles and mechanisms of action of Nckalpha and Nckbeta in DF migration, which is critical for wound healing.
Collapse
|
29
|
Lettau M, Pieper J, Janssen O. Nck adapter proteins: functional versatility in T cells. Cell Commun Signal 2009; 7:1. [PMID: 19187548 PMCID: PMC2661883 DOI: 10.1186/1478-811x-7-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/02/2009] [Indexed: 01/16/2023] Open
Abstract
Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3epsilon subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation.
Collapse
Affiliation(s)
- Marcus Lettau
- University Hospital Schleswig-Holstein Campus Kiel, Institute of Immunology, Molecular Immunology, Arnold-Heller-Str 3, Bldg 17, D-24105 Kiel, Germany.
| | | | | |
Collapse
|
30
|
Cardin E, Larose L. Nck-1 interacts with PKR and modulates its activation by dsRNA. Biochem Biophys Res Commun 2008; 377:231-5. [PMID: 18835251 DOI: 10.1016/j.bbrc.2008.09.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 11/19/2022]
Abstract
Activation of the double-stranded RNA (dsRNA)-activated protein kinase PKR results in inhibition of general translation through phosphorylation of the eukaryotic initiation factor 2 alpha-subunit on serine 51 (eIF2alphaSer51). Previously, we have reported that the adaptor protein Nck-1 modulates eIF2alphaSer51 phosphorylation by a subset of eIF2alpha kinases, including PKR. Herein, we demonstrate that Nck-1 prevents efficient activation of PKR by dsRNA, revealing that Nck-1 acts at the level of PKR. In agreement, Nck-1 impairs p38MAPK activation and attenuates cell death induced by dsRNA, in addition to diminish eIF2alphaSer51 phosphorylation. Our data show that the inhibitory effect of Nck-1 on PKR is reversible, as it could be overcome by increasing levels of dsRNA. Interestingly, we found that Nck-1 interacts with the inactive form of PKR, independently of its Src homology domains. Furthermore, we uncovered that Nck-1 is substrate of PKR in vitro. All together, our data provide the first evidence identifying Nck-1 as a novel endogenous regulator of PKR and support the notion that Nck-1-PKR interaction could be a way to limit PKR activation.
Collapse
Affiliation(s)
- Eric Cardin
- Experimental Medicine Department, Polypeptide Laboratory, McGill University, Montreal, Que, Canada
| | | |
Collapse
|
31
|
Ruusala A, Pawson T, Heldin CH, Aspenström P. Nck adapters are involved in the formation of dorsal ruffles, cell migration, and Rho signaling downstream of the platelet-derived growth factor beta receptor. J Biol Chem 2008; 283:30034-44. [PMID: 18765673 DOI: 10.1074/jbc.m800913200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The SH3 and SH2 domain-containing adapter proteins Nck1 and Nck2 are known to function downstream of activated tyrosine kinase receptors, such as the platelet-derived growth factor (PDGF) receptors. The SH2 domain of Nck1 binds to phosphorylated tyrosine residue 751 in PDGFbeta receptor and has been suggested to have a role in the PDGF-induced mobilization of the actin filament system. Because Tyr-751 is a site for additional receptor interactors, it has been difficult to discriminate the signaling from Nck from signaling via other molecules. For this reason we have used mouse embryonic fibroblasts derived from mice in which the genes for Nck1 and Nck2 have been inactivated by gene targeting (knock-out (KO) cells). The mutant cells had a reduced ability to form edge ruffles in response to PDGF, and the presence of Nck was obligatory for the formation of dorsal ruffles. In addition, the KO cells had a reduced chemotactic and migratory potential. Importantly, KO cells had reduced cell attachment properties and a reduced ability to form focal adhesions in response to serum stimulation. Moreover, signaling involving the Rho GTPases was defective in KO cells. In summary, our observations suggest that the Nck adapters are needed for signaling to Rho GTPases and actin dynamics downstream of the PDGFbeta receptor.
Collapse
Affiliation(s)
- Aino Ruusala
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
32
|
Warner N, Wybenga-Groot LE, Pawson T. Analysis of EphA4 receptor tyrosine kinase substrate specificity using peptide-based arrays. FEBS J 2008; 275:2561-73. [PMID: 18422655 DOI: 10.1111/j.1742-4658.2008.06405.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eph receptor tyrosine kinases regulate many important biological processes. In the present study, we explored the substrate specificity of the EphA4 receptor tyrosine kinase using peptide arrays. We define a consensus substrate motif for EphA4 and go on to identify and test a number of potential EphA4 substrates and map their putative site(s) of phosphorylation. Cotransfection studies validate two of the predicted substrates: Nck2 and Dok1. Our findings identify several potential EphA4 substrates and demonstrate the general utility of using peptide arrays to rapidly identify and map protein kinase phosphorylation sites.
Collapse
Affiliation(s)
- Neil Warner
- Program in Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|
33
|
Stanley FM. Insulin-increased prolactin gene expression requires actin treadmilling: potential role for p21 activated kinase. Endocrinology 2007; 148:5874-83. [PMID: 17884942 DOI: 10.1210/en.2007-0127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-increased prolactin gene transcription in GH4 cells was enhanced by binding on fibronectin. This was mediated by receptor-like protein tyrosine phosphatase alpha, which activated Src, Rho, and phosphatidylinositol 3-kinase. It suggested that insulin signaling to gene transcription was partly dependent on actin rearrangement. This was confirmed through studies using inhibitors of actin treadmilling. Cytochalasin D, jasplakinolide, latrunculin B, and swinholide A altered the actin cytoskeleton of GH4 cells, as assessed by Alexa Fluor phalloidin staining, and inhibited insulin-increased prolactin gene transcription. These reagents did not affect the controls. Nor was it due to a gross defect of insulin signaling because activation/translocation of glycogen synthase kinase 3beta and mammalian target of rapamycin were not affected. Expression of wild-type and mutant actin treadmilling agents, Cdc42, TC10, neuronal Wiskott-Aldrich syndrome protein, and Nck, indicated that they were essential to insulin-increased prolactin gene expression, and suggested that activation of p21 associated kinase (PAK) might also be essential to this process. PAK expression also increased and PAK mutants decreased prolactin promoter activity in insulin-treated cells. The activation of PAK in the presence of inhibitors was also consistent with a role in activation of insulin-increased prolactin gene expression. Finally, small interfering RNA-mediated reduction of PAK decreased the effect of insulin on prolactin gene expression. Thus, it is likely that insulin activation of actin treadmilling through Cdc42/TC10 and neuronal Wiskott-Aldrich syndrome protein activates PAK and prolactin gene transcription.
Collapse
Affiliation(s)
- Frederick M Stanley
- Department of Pharmacology, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
34
|
Cardin E, Latreille M, Khoury C, Greenwood MT, Larose L. Nck-1 selectively modulates eIF2alphaSer51 phosphorylation by a subset of eIF2alpha-kinases. FEBS J 2007; 274:5865-75. [PMID: 17944934 DOI: 10.1111/j.1742-4658.2007.06110.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorylation of the alpha-subunit of the eukaryotic initiation factor 2 (eIF2) on Ser51 is an early event associated with the down-regulation of protein synthesis at the level of translation and initiation of a transcriptional program. This constitutes a potent mechanism to overcome various stress conditions. In mammals, four eIF2alpha-kinases [PKR-like endoplasmic reticulum kinase (PERK), dsRNA-activated protein kinase (PKR), heme regulated inhibitor (HRI) and general control nonderepressible-2 (GCN2)], activated following specific stresses, have been shown to be involved in this process. In this article, we report that the ubiquitously expressed adaptor protein Nck, composed only of Src homology domains and classically implicated in cell signaling by activated plasma membrane receptor tyrosine kinases, modulates eIF2alpha-kinase-mediated eIF2alphaSer51 phosphorylation in a specific manner. Our results show that Nck not only prevents eIF2alpha phosphorylation upon PERK activation, as reported previously, but also reduces eIF2alpha phosphorylation in conditions leading to PKR and HRI activation. By contrast, the overexpression of Nck in mammalian cells fails to attenuate eIF2alphaSer51 phosphorylation in response to amino acid starvation, a stress well known to activate GCN2. This observation is further confirmed by showing that Nck fails to alter eIF2alphaSer51 phosphorylation in Saccharomyces cerevisiae, for which the sole eIF2alpha-kinase is Gcn2p. Our results suggest the existence of a novel mechanism that specifically modulates the phosphorylation of eIF2alpha on Ser51 under various stress conditions.
Collapse
Affiliation(s)
- Eric Cardin
- Polypeptide Laboratory, Department of Experimental Medicine, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
35
|
Neph1 cooperates with nephrin to transduce a signal that induces actin polymerization. Mol Cell Biol 2007; 27:8698-712. [PMID: 17923684 DOI: 10.1128/mcb.00948-07] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While the mechanisms that regulate actin dynamics in cellular motility are intensively studied, relatively little is known about signaling events that transmit outside-in signals and direct assembly and regulation of actin polymerization complexes at the cell membrane. The kidney podocyte provides a unique model for investigating these mechanisms since deletion of Nephrin or Neph1, two interacting components of the specialized podocyte intercellular junction, results in abnormal podocyte morphogenesis and junction formation. We provide evidence that extends the existing model by which the Nephrin-Neph1 complex transduces phosphorylation-mediated signals that assemble an actin polymerization complex at the podocyte intercellular junction. Upon engagement, Neph1 is phosphorylated on specific tyrosine residues by Fyn, which results in the recruitment of Grb2, an event that is necessary for Neph1-induced actin polymerization at the plasma membrane. Importantly, Neph1 and Nephrin directly interact and, by juxtaposing Grb2 and Nck1/2 at the membrane following complex activation, cooperate to augment the efficiency of actin polymerization. These data provide evidence for a mechanism reminiscent of that employed by vaccinia virus and other pathogens, by which a signaling complex transduces an outside-in signal that results in actin filament polymerization at the plasma membrane.
Collapse
|
36
|
Guan S, Chen M, Woodley D, Li W. Nckbeta adapter controls neuritogenesis by maintaining the cellular paxillin level. Mol Cell Biol 2007; 27:6001-11. [PMID: 17591694 PMCID: PMC1952161 DOI: 10.1128/mcb.01807-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/16/2006] [Accepted: 06/14/2007] [Indexed: 11/20/2022] Open
Abstract
The SH2/SH3 adapter Nck has an evolutionarily conserved role in neurons, linking the cell surface signals to actin cytoskeleton-mediated responses. The mechanism, however, remains poorly understood. We have investigated the role of Nck/Nckalpha/Nck1 versus Grb4/Nckbeta/Nck2 side-by-side in the process of mammalian neuritogenesis. Here we show that permanent genetic silencing of Nckbeta, but not Nckalpha, completely blocked nerve growth factor-induced neurite outgrowth in PC12 cells and dramatically disrupted the axon and dendrite tree in primary rat cortical neurons. By screening for changes among the components reportedly present in complex with Nck, we found that the steady-state level of paxillin was significantly reduced in Nckbeta knockdown, but not Nckalpha knockdown, neurons. Interestingly, Nckbeta knockdown did not affect the paxillin level in glial cells and several other cell types of various tissue origins. Genetic silencing of paxillin blocked neuritogenesis, just like Nckbeta knockdown. Reintroducing a nondegradable Nckbeta into Nckbeta short interfering RNA-expressing PC12 cells rescued paxillin from down-regulation and allowed the resumption of neuritogenesis. Forced expression of paxillin in Nckbeta knockdown PC12 also rescued its capacity for neuritogenesis. Finally, Nckbeta, but not Nckalpha, binds strongly to paxillin and treatment of the neurons with proteosome inhibitors prevented paxillin down-regulation in Nckbeta knockdown neurons. Thus, Nckbeta maintains paxillin stability during neuritogenesis.
Collapse
Affiliation(s)
- Shengxi Guan
- Department of Dermatology and USC/Norris Cancer Center, University of Southern California Keck School of Medicine, 1303 North Mission Road, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
37
|
Bisson N, Poitras L, Mikryukov A, Tremblay M, Moss T. EphA4 signaling regulates blastomere adhesion in the Xenopus embryo by recruiting Pak1 to suppress Cdc42 function. Mol Biol Cell 2007; 18:1030-43. [PMID: 17215521 PMCID: PMC1805096 DOI: 10.1091/mbc.e06-04-0294] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 12/04/2006] [Accepted: 12/29/2006] [Indexed: 12/19/2022] Open
Abstract
The control of cell adhesion is an important mechanism by which Eph receptors regulate cell sorting during development. Activation of EphA4 in Xenopus blastulae induces a reversible, cell autonomous loss-of-adhesion and disruption of the blastocoel roof. We show this phenotype is rescued by Nckbeta (Grb4) dependent on its interaction with EphA4. Xenopus p21(Cdc42/Rac)-activated kinase xPAK1 interacts with Nck, is activated in embryo by EphA4 in an Nck-dependent manner, and is required for EphA4-induced loss-of-adhesion. Ectopic expression of xPAK1 phenocopies EphA4 activation. This does not require the catalytic activity of xPAK1, but it does require its GTPase binding domain and is enhanced by membrane targeting. Indeed, membrane targeting of the GTPase binding domain (GBD) of xPAK1 alone is sufficient to phenocopy EphA4 loss-of-adhesion. Both EphA4 and the xPAK1-GBD down-regulate RhoA-GTP levels, and consistent with this, loss-of-adhesion can be rescued by activated Cdc42, Rac, and RhoA and can be epistatically induced by dominant-negative RhoA. Despite this, neither Cdc42 nor Rac activities are down-regulated by EphA4 activation or by the xPAK1-GBD. Together, the data suggest that EphA4 activation sequesters active Cdc42 and in this way down-regulates cell-cell adhesion. This novel signaling pathway suggests a mechanism for EphA4-guided migration.
Collapse
Affiliation(s)
- Nicolas Bisson
- Cancer Research Centre and Department of Medical Biology, Laval University, Hôtel-Dieu de Québec, Québec, G1R 2J6 Québec, Canada
| | - Luc Poitras
- Cancer Research Centre and Department of Medical Biology, Laval University, Hôtel-Dieu de Québec, Québec, G1R 2J6 Québec, Canada
| | - Alexander Mikryukov
- Cancer Research Centre and Department of Medical Biology, Laval University, Hôtel-Dieu de Québec, Québec, G1R 2J6 Québec, Canada
| | - Michel Tremblay
- Cancer Research Centre and Department of Medical Biology, Laval University, Hôtel-Dieu de Québec, Québec, G1R 2J6 Québec, Canada
| | - Tom Moss
- Cancer Research Centre and Department of Medical Biology, Laval University, Hôtel-Dieu de Québec, Québec, G1R 2J6 Québec, Canada
| |
Collapse
|
38
|
Garg P, Verma R, Holzman LB. Slit Diaphragm Junctional Complex and Regulation of the Cytoskeleton. ACTA ACUST UNITED AC 2007; 106:e67-72. [PMID: 17570942 DOI: 10.1159/000101795] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In recent years, identification of proteins found at the slit diaphragm has greatly improved our understanding of the molecular mechanisms responsible for forming and maintaining the glomerular filtration barrier. This review examines the function of proteins identified at the podocyte intercellular junction in coordinating podocyte intercellular junction dynamics or cytoskeletal dynamics.
Collapse
Affiliation(s)
- Puneet Garg
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI 48109-0676, USA
| | | | | |
Collapse
|
39
|
Lange F, Härtl S, Ungethuem U, Kuban RJ, Hammerschmidt S, Faber S, Morawietz L, Wirtz H, Emmrich F, Krenn V, Sack U. Anti-TNF Effects on Destructive Fibroblasts Depend on Mechanical Stress. Scand J Immunol 2006; 64:544-53. [PMID: 17032248 DOI: 10.1111/j.1365-3083.2006.01840.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Joint destruction in rheumatoid arthritis (RA) starts typically at sites of mechanically stressed inserts of the synovial membrane near the cartilage/bone border. In the therapy of RA, tumour necrosis factor (TNF) antagonists have rapidly emerged as a valuable class of anti-rheumatic agents that reduce joint destruction. The aim of this study was to investigate and profile genes involved in the interaction between articular movement and anti-TNF therapy in an in vitro model. Murine LS48 cells, an established substitute for invasive RA synovial fibroblasts, were cultured, stretched and/or treated with anti-TNF-alpha antibody for 24 h. RNA was isolated and gene transcript levels were determined using U74Av2 Affymetrix GeneChips to identify transcriptional events. Positive findings were verified by polymerase chain reaction (PCR). We identified 170 differentially regulated genes, including 44 of particular interest. Gene expression fell into different functional groups that can be explained by RA pathogenesis and experimental conditions. For 21 genes of the 44 of particular interest, regulation could be confirmed by real-time PCR. Remarkably, we found structural as well as functional genes differently regulated between stretched cells, anti-TNF-treated cells, and stretched cells treated with anti-TNF antibody. Additionally, we also found a large number of genes that are apparently not related to the experimental conditions. Mechanical exertion modulates gene expression and subsequently cellular response to anti-TNF therapy. Results in exerted cells correspond to current knowledge regarding RA pathogenesis and underline the relevance of our experimental approach. Finally, the central function of the interleukin-18 system in joint destruction could be confirmed by our findings.
Collapse
Affiliation(s)
- F Lange
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hehlgans S, Haase M, Cordes N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta Rev Cancer 2006; 1775:163-80. [PMID: 17084981 DOI: 10.1016/j.bbcan.2006.09.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/26/2006] [Accepted: 09/28/2006] [Indexed: 01/13/2023]
Abstract
Integrin-associated signalling renders cells more resistant to genotoxic anti-cancer agents like ionizing radiation and chemotherapeutic substances, a phenomenon termed cell adhesion-mediated radioresistance/drug resistance (CAM-RR, CAM-DR). Integrins are heterodimeric cell-surface molecules that on one side link the actin cytoskeleton to the cell membrane and on the other side mediate cell-matrix interactions. In addition to their structural functions, integrins mediate signalling from the extracellular space into the cell through integrin-associated signalling and adaptor molecules such as FAK (focal adhesion kinase), ILK (integrin-linked kinase), PINCH (particularly interesting new cysteine-histidine rich protein) and Nck2 (non-catalytic (region of) tyrosine kinase adaptor protein 2). Via these molecules, integrin signalling tightly and cooperatively interacts with receptor tyrosine kinase signalling to regulate survival, proliferation and cell shape as well as polarity, adhesion, migration and differentiation. In tumour cells of diverse origin like breast, colon or skin, the function and regulation of these molecules is partly disturbed and thus might contribute to the malignant phenotype and pre-existent and acquired multidrug resistance. These issues as well as a variety of therapeutic options envisioned to influence tumour cell growth, metastasis and resistance, including kinase inhibitors, anti-integrin antibodies or RNA interference, will be summarized and discussed in this review.
Collapse
Affiliation(s)
- Stephanie Hehlgans
- OncoRay, Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Fetscherstrasse 74/PF 86, 01307 Dresden, Germany
| | | | | |
Collapse
|
41
|
Latreille M, Larose L. Nck in a Complex Containing the Catalytic Subunit of Protein Phosphatase 1 Regulates Eukaryotic Initiation Factor 2α Signaling and Cell Survival to Endoplasmic Reticulum Stress. J Biol Chem 2006; 281:26633-44. [PMID: 16835242 DOI: 10.1074/jbc.m513556200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Stress imposed on the endoplasmic reticulum (ER) induces the phosphorylation of the alpha-subunit of the eukaryotic initiation factor 2 (eIF2) on Ser51. This results in transient inhibition of general translation initiation while concomitantly activating a signaling pathway that promotes the expression of genes whose products improve ER function. Conversely, dephosphorylation of eIF2alphaSer51 is accomplished by protein phosphatase 1 (PP1c) complexes containing either the protein CReP or GADD34, which target PP1c to eIF2. Here, we demonstrate that the Src homology (SH) domain-containing adaptor Nck is a key component of a molecular complex that controls eIF2alpha phosphorylation and signaling in response to ER stress. We show that overexpression of Nck decreases basal and ER stress-induced eIF2alpha phosphorylation and the attendant induction of ATF4 and CHOP. In contrast, we demonstrate that the mouse embryonic fibroblasts lacking both isoforms of Nck (Nck1-/-Nck2-/-) show higher levels of eIF2alpha phosphorylation and premature induction of ATF4, CHOP, and GADD34 in response to ER stress and finally, are more resistant to cell death induced by prolonged ER stress conditions. We establish that a significant amount of Nck protein localizes at the ER and is in a complex with eIF2 subunits. Further analysis of this complex revealed that it also contains the Ser/Thr phosphatase PP1c, its regulatory subunit CReP, and dephosphorylates eIF2alpha on Ser51 in vitro. Overall, we demonstrate that Nck as a component of the CReP/PP1c holophosphatase complex contributes to maintain eIF2alpha in a hypophosphorylated state. In this manner, Nck modulates translation and eIF2alpha signaling in response to ER stress.
Collapse
Affiliation(s)
- Mathieu Latreille
- Polypeptide Hormone Laboratory, Department of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | |
Collapse
|
42
|
Rivera GM, Antoku S, Gelkop S, Shin NY, Hanks SK, Pawson T, Mayer BJ. Requirement of Nck adaptors for actin dynamics and cell migration stimulated by platelet-derived growth factor B. Proc Natl Acad Sci U S A 2006; 103:9536-41. [PMID: 16769879 PMCID: PMC1476694 DOI: 10.1073/pnas.0603786103] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Nck family of Src homology (SH) 2/SH3 domain adaptors functions to link tyrosine phosphorylation induced by extracellular signals with downstream regulators of actin dynamics. We investigated the role of mammalian Nck adaptors in signaling from the activated platelet-derived growth factor (PDGF) receptor (PDGFbetaR) to the actin cytoskeleton. We report here that Nck adaptors are required for cytoskeletal reorganization and chemotaxis stimulated by PDGF-B. Analysis of tyrosine-phosphorylated proteins demonstrated that Crk-associated substrate (p130(Cas)), not the activated PDGFbetaR itself, is the major Nck SH2 domain-binding protein in PDGF-B-stimulated cells. Both Nck- and p130(Cas)-deficient cells fail to display cytoskeletal rearrangements, including the formation of membrane ruffles and the disassembly of actin bundles, typically shown by their WT counterparts in response to PDGF-B. Furthermore, Nck and p130(Cas) colocalize in phosphotyrosine-enriched membrane ruffles induced by PDGF-B in NIH 3T3 cells. These results suggest that Nck adaptors play an essential role in linking the activated PDGFbetaR with actin dynamics through a pathway that involves p130(Cas).
Collapse
Affiliation(s)
- G. M. Rivera
- *Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - S. Antoku
- *Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - S. Gelkop
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5; and
| | - N. Y. Shin
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - S. K. Hanks
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - T. Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5; and
- To whom correspondence may be addressed. E-mail:
or
| | - B. J. Mayer
- *Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
43
|
Vidali L, Chen F, Cicchetti G, Ohta Y, Kwiatkowski DJ. Rac1-null mouse embryonic fibroblasts are motile and respond to platelet-derived growth factor. Mol Biol Cell 2006; 17:2377-90. [PMID: 16525021 PMCID: PMC1446085 DOI: 10.1091/mbc.e05-10-0955] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 01/30/2006] [Accepted: 02/27/2006] [Indexed: 11/11/2022] Open
Abstract
Previous studies of Rac1 in fibroblasts have used dominant negative constructs, which may have nonspecific effects. We used a conditional Rac1 allele to critically examine Rac1 function in mouse fibroblasts. Lack of Rac1 had dramatic effects on nonconfluent cells, which were elongated and had extensive blebbing, but no lamellipodia or ruffle formation. However, Rac1-null fibroblasts translocated using pseudopodia-like protrusions without lamellipodia, migrating toward a platelet-derived growth factor (PDGF) gradient as efficiently as their wild-type counterparts. Rac1-null fibroblasts closed wounds in vitro and spread on a fibronectin substrate, although at a slower rate than wild-type cells. However, Rac1-null cells were markedly impaired in proliferation, with a defect in G1 to S transition, although they were capable of surviving in culture for more than 2 wk. These results refine our understanding of the functions of Rac1, indicate that lamellipodia formation is not required for cell motility, and show that PDGF-induced chemotaxis can occur in the absence of both lamellipodia and Rac1.
Collapse
Affiliation(s)
- Luis Vidali
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
44
|
Frese S, Schubert WD, Findeis AC, Marquardt T, Roske YS, Stradal TEB, Heinz DW. The phosphotyrosine peptide binding specificity of Nck1 and Nck2 Src homology 2 domains. J Biol Chem 2006; 281:18236-45. [PMID: 16636066 DOI: 10.1074/jbc.m512917200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nck proteins are essential Src homology (SH) 2 and SH3 domain-bearing adapters that modulate actin cytoskeleton dynamics by linking proline-rich effector molecules to tyrosine kinases or phosphorylated signaling intermediates. Two mammalian pathogens, enteropathogenic Escherichia coli and vaccinia virus, exploit Nck as part of their infection strategy. Conflicting data indicate potential differences in the recognition specificities of the SH2 domains of the isoproteins Nck1 (Nckalpha) and Nck2 (Nckbeta and Grb4). We have characterized the binding specificities of both SH2 domains and find them to be essentially indistinguishable. Crystal structures of both domains in complex with phosphopeptides derived from the enteropathogenic E. coli protein Tir concur in identifying highly conserved, specific recognition of the phosphopeptide. Differential peptide recognition can therefore not account for the preference of either Nck in particular signaling pathways. Binding studies using sequentially mutated, high affinity phosphopeptides establish the sequence variability tolerated in peptide recognition. Based on this binding motif, we identify potential new binding partners of Nck1 and Nck2 and confirm this experimentally for the Arf-GAP GIT1.
Collapse
Affiliation(s)
- Susanne Frese
- Division of Cell Biology, German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Georgakopoulos A, Litterst C, Ghersi E, Baki L, Xu C, Serban G, Robakis NK. Metalloproteinase/Presenilin1 processing of ephrinB regulates EphB-induced Src phosphorylation and signaling. EMBO J 2006; 25:1242-52. [PMID: 16511561 PMCID: PMC1422162 DOI: 10.1038/sj.emboj.7601031] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 02/09/2006] [Indexed: 01/08/2023] Open
Abstract
Bidirectional signaling triggered by interacting ephrinB receptors (EphB) and ephrinB ligands is crucial for development and function of the vascular and nervous systems. A signaling cascade triggered by this interaction involves activation of Src kinase and phosphorylation of ephrinB. The mechanism, however, by which EphB activates Src in the ephrinB-expressing cells is unknown. Here we show that EphB stimulates a metalloproteinase cleavage of ephrinB2, producing a carboxy-terminal fragment that is further processed by PS1/gamma-secretase to produce intracellular peptide ephrinB2/CTF2. This peptide binds Src and inhibits its association with inhibitory kinase Csk, allowing autophosphorylation of Src at residue tyr418. EphrinB2/CTF2-activated Src phosphorylates ephrinB2 and inhibits its processing by gamma-secretase. These data show that the PS1/gamma-secretase system controls Src activation and ephrinB phosphorylation by regulating production of Src activator ephrinB2/CTF2. Accordingly, gamma-secretase inhibitors prevented the EphB-induced sprouting of endothelial cells and the recruitment of Grb4 to ephrinB. PS1 FAD and gamma-secretase dominant-negative mutants inhibited the EphB-induced cleavage of ephrinB2 and Src autophosphorylation, raising the possibility that FAD mutants interfere with the functions of Src and ephrinB2 in the CNS.
Collapse
Affiliation(s)
| | - Claudia Litterst
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NYU, New York, NY, USA
| | - Enrico Ghersi
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NYU, New York, NY, USA
| | - Lia Baki
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NYU, New York, NY, USA
| | - ChiJie Xu
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NYU, New York, NY, USA
| | - Geo Serban
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NYU, New York, NY, USA
| | - Nikolaos K Robakis
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NYU, New York, NY, USA
| |
Collapse
|
46
|
Verma R, Kovari I, Soofi A, Nihalani D, Patrie K, Holzman LB. Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. J Clin Invest 2006; 116:1346-59. [PMID: 16543952 PMCID: PMC1401486 DOI: 10.1172/jci27414] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 02/07/2006] [Indexed: 12/21/2022] Open
Abstract
A properly established and maintained podocyte intercellular junction, or slit diaphragm, is a necessary component of the selective permeability barrier of the kidney glomerulus. The observation that mutation or deletion of the slit diaphragm transmembrane protein nephrin results in failure of podocyte foot process morphogenesis and concomitant proteinuria first suggested the hypothesis that nephrin serves as a component of a signaling complex that directly integrates podocyte junctional integrity with cytoskeletal dynamics. The observations made herein provide the first direct evidence to our knowledge for a phosphorylation-mediated signaling mechanism by which this integrative function is derived. Our data support the model that during podocyte intercellular junction formation, engagement of the nephrin ectodomain induces transient Fyn catalytic activity that results in nephrin phosphorylation on specific nephrin cytoplasmic domain tyrosine residues. We found that this nephrin phosphorylation event resulted in recruitment of the SH2-SH3 domain-containing adapter protein Nck and assembly of actin filaments in an Nck-dependent fashion. Considered in the context of the role of nephrin family proteins in other organisms and the integral relationship of actin dynamics and junction formation, these observations establish a function for nephrin in regulating actin cytoskeletal dynamics.
Collapse
Affiliation(s)
- Rakesh Verma
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Iulia Kovari
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Abdul Soofi
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Deepak Nihalani
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Kevin Patrie
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| | - Lawrence B. Holzman
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Veterans Affairs, Ann Arbor, Michigan, USA
| |
Collapse
|
47
|
Banerji L, Sattler M. Targeting mutated tyrosine kinases in the therapy of myeloid leukaemias. Expert Opin Ther Targets 2006; 8:221-39. [PMID: 15161429 DOI: 10.1517/14728222.8.3.221] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Myeloid leukaemias are frequently associated with translocations and mutations of tyrosine kinase genes. The products of these oncogenes, including BCR-ABL, TEL-PDGFR, Flt3 and c-Kit, have elevated tyrosine kinase activity and transform haematopoietic cells, mainly by augmentation of proliferation and enhanced viability. Activated ABL kinases are associated with chronic myeloid leukaemia. Mutations in platelet-derived growth factor receptor beta are associated with chronic myelomonocytic leukaemia. Flt3 or c-Kit cooperate with other types of oncogenes to create fully transformed acute leukaemias. Elevated activity of these tyrosine kinases is crucial for transformation, thus making the kinase domain an ideal target for therapeutic intervention. Tyrosine kinase inhibitors for various kinases are currently being evaluated in clinical trials and are potentially useful therapeutic agents in myeloid leukaemias. Here, the authors review the signalling activities, mechanism of transformation and therapeutic targeting of several tyrosine kinase oncogenes important in myeloid leukaemias.
Collapse
Affiliation(s)
- Lolita Banerji
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA 02115, USA
| | | |
Collapse
|
48
|
Ran X, Song J. Structural insight into the binding diversity between the Tyr-phosphorylated human ephrinBs and Nck2 SH2 domain. J Biol Chem 2005; 280:19205-12. [PMID: 15764601 DOI: 10.1074/jbc.m500330200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The binding interaction between the Nck2 SH2 domain and the phosphorylated ephrinB initiates a critical pathway for the reverse signaling network mediated by Eph receptor-ephrinB. Previously, the NMR structure and Tyr phosphorylations of the human ephrinB cytoplasmic domain have been studied. To obtain a complete story, it would be of significant interest to determine the structure of the Nck2 SH2 domain that shows a low sequence identity to other SH2 domains with known structures. Here, we report the determination of the solution structure of the human Nck2 SH2 domain and investigate its interactions with three phosphorylated ephrinB fragments by NMR spectroscopy. The results indicate that: 1) although the human Nck2 SH2 domain adopts a core tertiary fold common to all SH2 domains, it owns some unique properties such as a shorter C-terminal helix and unusual electrostatic potential surface. However, the most striking finding is that the C-terminal tail of the human Nck2 SH2 domain adopts a short antiparallel beta-sheet that, to the best of our knowledge, has never been identified in other SH2 domains. The truncation study suggests that one function of the C-terminal tail is to control the folding/solubility of the SH2 domain. 2) In addition to [Tyr(P)304]ephrinB2(301-322) and [Tyr(P)316]ephrinB2(301-322), here we identified [Tyr(P)330]ephrinB2(324-333) also capable of binding to the SH2 domain. The detailed NMR study indicated that the binding mechanisms for the three ephrinB fragments might be different. The binding with [Tyr(P)304]-ephrinB2(301-322) and [Tyr(P)316]ephrinB2(301-322) might be mostly involved in the residues over the N-half of the SH2 domain and provoked a significant increase in the backbone and side chain dynamics of the SH2 domain on the microsecond-millisecond time scale. In contrast, binding with [Tyr(P)330]ephrinB2(324-333) might have most residues over both halves engaged but induced less profound conformational dynamics on the mus-ms time scale.
Collapse
Affiliation(s)
- Xiaoyuan Ran
- Department of Biochemistry, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | | |
Collapse
|
49
|
Vaynberg J, Fukuda T, Chen K, Vinogradova O, Velyvis A, Tu Y, Ng L, Wu C, Qin J. Structure of an Ultraweak Protein-Protein Complex and Its Crucial Role in Regulation of Cell Morphology and Motility. Mol Cell 2005; 17:513-23. [PMID: 15721255 DOI: 10.1016/j.molcel.2004.12.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 08/13/2004] [Accepted: 12/29/2004] [Indexed: 10/25/2022]
Abstract
Weak protein-protein interactions (PPIs) (K(D) > 10(-6) M) are critical determinants of many biological processes. However, in contrast to a large growing number of well-characterized, strong PPIs, the weak PPIs, especially those with K(D) > 10(-4) M, are poorly explored. Genome wide, there exist few 3D structures of weak PPIs with K(D) > 10(-4) M, and none with K(D) > 10(-3) M. Here, we report the NMR structure of an extremely weak focal adhesion complex (K(D) approximately 3 x 10(-3) M) between Nck-2 SH3 domain and PINCH-1 LIM4 domain. The structure exhibits a remarkably small and polar interface with distinct binding modes for both SH3 and LIM domains. Such an interface suggests a transient Nck-2/PINCH-1 association process that may trigger rapid focal adhesion turnover during integrin signaling. Genetic rescue experiments demonstrate that this interface is indeed involved in mediating cell shape change and migration. Together, the data provide a molecular basis for an ultraweak PPI in regulating focal adhesion dynamics during integrin signaling.
Collapse
Affiliation(s)
- Julia Vaynberg
- Structural Biology Program, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li W, Henry G, Fan J, Bandyopadhyay B, Pang K, Garner W, Chen M, Woodley DT. Signals that Initiate, Augment, and Provide Directionality for Human Keratinocyte Motility. J Invest Dermatol 2004; 123:622-33. [PMID: 15373765 DOI: 10.1111/j.0022-202x.2004.23416.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human keratinocytes (HK) migration plays a critical role in the re-epithelialization of acute skin wounds. Although extracellular matrices (ECM) and growth factors (GF) are the two major pro-motility signals, their functional relationship remains unclear. We investigated how ECM and GF regulate HK motility under defined conditions: (1) in the absence of GF and ECM and (2) with or without GF with cells apposed to a known pro-motility ECM. Our results show that HK migrate on selected ECM even in the total absence of GF. This suggests that certain ECM alone are able to "initiate" HK migration. Unlike ECM, however, GF alone cannot initiate HK migration. HK cannot properly migrate when plated in the presence of GF, regardless of the concentration, without an ECM substratum. The role of GF, instead, is to augment ECM-initiated motility and provide directionality. To gain insights into the mechanism of action by ECM and GF, we compared, side-by-side, the roles of three major mitogen-activated protein kinase cascades, extracellular-signal-regulated kinase (ERK)1/2, p38, and c-Jun N-terminal kinase (JNK). Our data show that ERK1/2 is involved in mediating collagen's initiation signal and GF's augmentation signal. p38 is specific for GF's augmentation signal. JNK is uninvolved in HK motility. Constitutively activated p38 and ERK1/2 alone could not initiate HK migration. Co-expression of both constitutively activated p38 and ERK1/2, however, could partially mimic the pro-motility effects of collagen and GF. This study reveals for the first time the specific functions of ECM and GF in cell motility.
Collapse
Affiliation(s)
- Wei Li
- The Department of Medicine, Division of Dermatology and the Norris Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|