1
|
Rredhi A, Petersen J, Wagner V, Vuong T, Li W, Li W, Schrader L, Mittag M. The UV-A Receptor CRY-DASH1 Up- and Downregulates Proteins Involved in Different Plastidial Pathways. J Mol Biol 2024; 436:168271. [PMID: 37699454 DOI: 10.1016/j.jmb.2023.168271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Algae encode up to five different types of cryptochrome photoreceptors. So far, relatively little is known about the biological functions of the DASH (Drosophila, Arabidopsis, Synechocystis and Homo)-type cryptochromes. The green alga Chlamydomonas reinhardtii encodes two of them. CRY-DASH1 also called DCRY1 has its maximal absorption peak in the UV-A range. It is localized in the chloroplast and plays an important role in balancing the photosynthetic machinery. Here, we performed a comparative analysis of chloroplast proteins from wild type and a knockout mutant of CRY-DASH1 named cry-dash1mut, using label-free quantitative proteomics as well as immunoblotting. Our results show upregulation of enzymes involved in specific pathways in the mutant including key enzymes of chlorophyll and carotenoid biosynthesis consistent with increased levels of photosynthetic pigments in cry-dash1mut. There is also an increase in certain redox as well as photosystem I and II proteins, including D1. Strikingly, CRY-DASH1 is coregulated in a D1 deletion mutant, where its amount is increased. In contrast, key proteins of the central carbon metabolism, including glycolysis/gluconeogenesis, dark fermentation and the oxidative pentose phosphate pathway are downregulated in cry-dash1mut. Similarly, enzymes of histidine biosynthesis are downregulated in cry-dash1mut leading to a reduction in the amount of free histidine. Yet, transcripts encoding for several of these proteins are at a similar level in the wild type and cry-dash1mut or even opposite. We show that CRY-DASH1 can bind to RNA, taking the psbA RNA encoding D1 as target. These data suggest that CRY-DASH1 regulates plastidial metabolic pathways at the posttranscriptional level.
Collapse
Affiliation(s)
- Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/1anPetersen
| | - Volker Wagner
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/trangha593
| | - Wenshuang Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Wei Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Laura Schrader
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
2
|
Yousef AF, Ali MM, Rizwan HM, Ahmed MAA, Ali WM, Kalaji HM, Elsheery N, Wróbel J, Xu Y, Chen F. Effects of light spectrum on morpho-physiological traits of grafted tomato seedlings. PLoS One 2021; 16:e0250210. [PMID: 33961648 PMCID: PMC8104444 DOI: 10.1371/journal.pone.0250210] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/03/2021] [Indexed: 11/21/2022] Open
Abstract
It is already known that there are many factors responsible for the successful grafting process in plants, including light intensity. However, the influence of the spectrum of light-emitting diodes (LEDs) on this process has almost never been tested. During the pre-grafting process tomato seedlings grew for 30 days under 100 μmol m-2 s-1 of mixed LEDs (red 70%+ blue 30%). During the post-grafting period, seedlings grew for 20 days under the same light intensity but the lightening source was either red LED, mixed LEDs (red 70% + blue 30%), blue LED or white fluorescent lamps. This was done to determine which light source(s) could better improve seedling quality and increase grafting success. Our results showed that application of red and blue light mixture (R7:B3) caused significant increase in total leaf area, dry weight (total, shoot and root), total chlorophyll/carotenoid ratio, soluble protein and sugar content. Moreover, this light treatment maintained better photosynthetic performance i.e. more effective quantum yield of PSII photochemistry Y(II), better photochemical quenching (qP), and higher electron transport rate (ETR). This can be partially explained by the observed upregulation of gene expression levels of PsaA and PsbA and the parallel protein expression levels. This in turn could lead to better functioning of the photosynthetic apparatus of tomato seedlings and then to faster production of photoassimilate ready to be translocated to various tissues and organs, including those most in need, i.e., involved in the formation of the graft union.
Collapse
Affiliation(s)
- Ahmed F. Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut, Egypt
| | - Muhammad M. Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hafiz M. Rizwan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A. A. Ahmed
- Plant Production Department (Horticulture—Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Waleed M. Ali
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut, Egypt
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Nabil Elsheery
- Agriculture Botany Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Yong Xu
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Machine Learning and Intelligent Science, Fujian University of Technology, Fuzhou, China
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Wessendorf RL, Lu Y. Photosynthetic characterization of transgenic Synechocystis expressing a plant thiol/disulfide-modulating protein. PLANT SIGNALING & BEHAVIOR 2019; 15:1709708. [PMID: 31889463 PMCID: PMC7053882 DOI: 10.1080/15592324.2019.1709708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
A previous study showed that introducing an Arabidopsis thaliana thiol/disulfide-modulating protein, Low Quantum Yield of Photosystem II 1 (LQY1), into the cyanobacterium Synechocystis sp. PCC6803 increased the efficiency of Photosystem II (PSII) photochemistry. In the present study, the authors provided additional evidence for the role of AtLQY1 in improving PSII photochemical efficiency and cell growth. Light response curve analysis showed that AtLQY1-expressing Synechocystis grown at a moderate growth light intensity (50 µmol photons m-2 s-1) had higher minimal, maximal, and variable fluorescence than the empty-vector control, under a wide range of actinic light intensities. Light induction and dark recovery curves demonstrated that AtLQY1-expressing Synechocystis grown at the moderate growth light intensity had higher effective PSII quantum yield, higher photochemical quenching, lower regulated heat dissipation (non-photochemical quenching), low amounts of reduced plastoquinone, and higher amounts of oxidized plastoquinone than the empty-vector control. Furthermore, growth curve analysis indicated that AtLQY1-expressing Synechocystis grew faster than the empty-vector control at the moderate growth light intensity. These results suggest that transgenic expression of AtLQY1 in Synechocystis significantly improves PSII photochemical efficiency and overall cell growth.
Collapse
Affiliation(s)
- Ryan L. Wessendorf
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
4
|
Chotewutmontri P, Barkan A. Multilevel effects of light on ribosome dynamics in chloroplasts program genome-wide and psbA-specific changes in translation. PLoS Genet 2018; 14:e1007555. [PMID: 30080854 PMCID: PMC6095610 DOI: 10.1371/journal.pgen.1007555] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/16/2018] [Accepted: 07/11/2018] [Indexed: 11/22/2022] Open
Abstract
Plants and algae adapt to fluctuating light conditions to optimize photosynthesis, minimize photodamage, and prioritize energy investments. Changes in the translation of chloroplast mRNAs are known to contribute to these adaptations, but the scope and magnitude of these responses are unclear. To clarify the phenomenology, we used ribosome profiling to analyze chloroplast translation in maize seedlings following dark-to-light and light-to-dark shifts. The results resolved several layers of regulation. (i) The psbA mRNA exhibits a dramatic gain of ribosomes within minutes after shifting plants to the light and reverts to low ribosome occupancy within one hour in the dark, correlating with the need to replace damaged PsbA in Photosystem II. (ii) Ribosome occupancy on all other chloroplast mRNAs remains similar to that at midday even after 12 hours in the dark. (iii) Analysis of ribosome dynamics in the presence of lincomycin revealed a global decrease in the translation elongation rate shortly after shifting plants to the dark. The pausing of chloroplast ribosomes at specific sites changed very little during these light-shift regimes. A similar but less comprehensive analysis in Arabidopsis gave similar results excepting a trend toward reduced ribosome occupancy at the end of the night. Our results show that all chloroplast mRNAs except psbA maintain similar ribosome occupancy following short-term light shifts, but are nonetheless translated at higher rates in the light due to a plastome-wide increase in elongation rate. A light-induced recruitment of ribosomes to psbA mRNA is superimposed on this global response, producing a rapid and massive increase in PsbA synthesis. These findings highlight the unique translational response of psbA in mature chloroplasts, clarify which steps in psbA translation are light-regulated in the context of Photosystem II repair, and provide a foundation on which to explore mechanisms underlying the psbA-specific and global effects of light on chloroplast translation.
Collapse
Affiliation(s)
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
5
|
LOW PHOTOSYNTHETIC EFFICIENCY 1 is required for light-regulated photosystem II biogenesis in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E6075-E6084. [PMID: 29891689 PMCID: PMC6042084 DOI: 10.1073/pnas.1807364115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photosystem II (PSII) reaction center protein D1 is encoded by chloroplast gene psbA and is crucial to the biogenesis and functional maintenance of PSII. D1 proteins are highly dynamic under varying light conditions and thus require efficient synthesis, but the mechanism remains poorly understood. We reported that Arabidopsis LPE1 directly binds to the 5′ UTR of psbA mRNA in a light-dependent manner through a redox-based mechanism and facilitates the association of HCF173 with psbA mRNA to regulate D1 translation. These findings fill a major gap in our understanding of the mechanism of light-regulated D1 synthesis in higher plants and imply that higher plants and primitive photosynthetic organisms share conserved mechanisms but use distinct regulators to regulate biogenesis of PSII subunits. Photosystem II (PSII), a multisubunit protein complex of the photosynthetic electron transport chain, functions as a water-plastoquinone oxidoreductase, which is vital to the initiation of photosynthesis and electron transport. Although the structure, composition, and function of PSII are well understood, the mechanism of PSII biogenesis remains largely elusive. Here, we identified a nuclear-encoded pentatricopeptide repeat (PPR) protein LOW PHOTOSYNTHETIC EFFICIENCY 1 (LPE1; encoded by At3g46610) in Arabidopsis, which plays a crucial role in PSII biogenesis. LPE1 is exclusively targeted to chloroplasts and directly binds to the 5′ UTR of psbA mRNA which encodes the PSII reaction center protein D1. The loss of LPE1 results in less efficient loading of ribosome on the psbA mRNA and great synthesis defects in D1 protein. We further found that LPE1 interacts with a known regulator of psbA mRNA translation HIGH CHLOROPHYLL FLUORESCENCE 173 (HCF173) and facilitates the association of HCF173 with psbA mRNA. More interestingly, our results indicate that LPE1 associates with psbA mRNA in a light-dependent manner through a redox-based mechanism. This study enhances our understanding of the mechanism of light-regulated D1 synthesis, providing important insight into PSII biogenesis and the functional maintenance of efficient photosynthesis in higher plants.
Collapse
|
6
|
Kayum MA, Park JI, Nath UK, Saha G, Biswas MK, Kim HT, Nou IS. Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 2017; 18:885. [PMID: 29145809 PMCID: PMC5691835 DOI: 10.1186/s12864-017-4277-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/03/2017] [Indexed: 11/10/2022] Open
Abstract
Background Protein disulfide isomerase (PDI) and PDI-like proteins contain thioredoxin domains that catalyze protein disulfide bond, inhibit aggregation of misfolded proteins, and function in isomerization during protein folding in endoplasmic reticulum and responses during abiotic stresses.Chinese cabbage is widely recognized as an economically important, nutritious vegetable, but its yield is severely hampered by various biotic and abiotic stresses. Because of, it is prime need to identify those genes whose are responsible for biotic and abiotic stress tolerance. PDI family genes are among of them. Results We have identified 32 PDI genes from the Br135K microarray dataset, NCBI and BRAD database, and in silico characterized their sequences. Expression profiling of those genes was performed using cDNA of plant samples imposed to abiotic stresses; cold, salt, drought and ABA (Abscisic Acid) and biotic stress; Fusarium oxysporum f. sp. conglutinans infection. The Chinese cabbage PDI genes were clustered in eleven groups in phylogeny. Among them, 15 PDI genes were ubiquitously expressed in various organs, while 24 PDI genes were up-regulated under salt and drought stress. By contrast, cold and ABA stress responsive gene number were ten and nine, respectively. In case of F. oxysporum f. sp. conglutinans infection 14 BrPDI genes were highly up-regulated. Interestingly, BrPDI1–1 gene was identified as putative candidate against abiotic (salt and drought) and biotic stresses, BrPDI5–2 gene for ABA stress, and BrPDI1–4, 6–1 and 9–2 were putative candidate genes for both cold and chilling injury stresses. Conclusions Our findings help to elucidate the involvement of PDI genes in stress responses, and they lay the foundation for functional genomics in future studies and molecular breeding of Brassica rapa crops. The stress-responsive PDI genes could be potential resources for molecular breeding of Brassica crops resistant to biotic and abiotic stresses. Electronic supplementary material The online version of this article (10.1186/s12864-017-4277-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Md Abdul Kayum
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Ujjal Kumar Nath
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Gopal Saha
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Manosh Kumar Biswas
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Hoy-Taek Kim
- University-Industry Cooperation Foundation, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
7
|
Grabsztunowicz M, Koskela MM, Mulo P. Post-translational Modifications in Regulation of Chloroplast Function: Recent Advances. FRONTIERS IN PLANT SCIENCE 2017; 8:240. [PMID: 28280500 PMCID: PMC5322211 DOI: 10.3389/fpls.2017.00240] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/08/2017] [Indexed: 05/08/2023]
Abstract
Post-translational modifications (PTMs) of proteins enable fast modulation of protein function in response to metabolic and environmental changes. Phosphorylation is known to play a major role in regulating distribution of light energy between the Photosystems (PS) I and II (state transitions) and in PSII repair cycle. In addition, thioredoxin-mediated redox regulation of Calvin cycle enzymes has been shown to determine the efficiency of carbon assimilation. Besides these well characterized modifications, recent methodological progress has enabled identification of numerous other types of PTMs in various plant compartments, including chloroplasts. To date, at least N-terminal and Lys acetylation, Lys methylation, Tyr nitration and S-nitrosylation, glutathionylation, sumoylation and glycosylation of chloroplast proteins have been described. These modifications impact DNA replication, control transcriptional efficiency, regulate translational machinery and affect metabolic activities within the chloroplast. Moreover, light reactions of photosynthesis as well as carbon assimilation are regulated at multiple levels by a number of PTMs. It is likely that future studies will reveal new metabolic pathways to be regulated by PTMs as well as detailed molecular mechanisms of PTM-mediated regulation.
Collapse
Affiliation(s)
| | | | - Paula Mulo
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| |
Collapse
|
8
|
Wang Y, Ji K, Shen S, Chen H. Probing molecular events associated with early development of thylakoid membranes by comparative proteomics and low temperature fluorescence. J Proteomics 2016; 143:401-415. [PMID: 27126603 DOI: 10.1016/j.jprot.2016.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/18/2016] [Accepted: 04/24/2016] [Indexed: 11/17/2022]
Abstract
UNLABELLED A comparison of protein profiles between prolamellar bodies from dark-grown etioplasts and thylakoid membranes from de-etioplasts illuminated respectively for 1, 5 and 9h revealed 155 differentially expressed CBB-stained spots. Clear results showed that the nonphototransformable Pchlide627-632 was the dominant pigment form in the PLBs of rice etioplasts during plant development in dark and transformed slowly to chlorophyllide in rice etioplasts when exposed to light. The light-induced accumulation of ACC oxidase, which catalyzes the final step of ethylene synthesis using ACC as substrate, would facilitate chlorophyll synthesis by inducing PORa/b expression via ethylene signaling. It could be also suggested that cyclic electron transport might play an important role in generation of ATP for carbon fixation and photoprotection of photosystems from excessive light in prothylakoid. Furthermore, the overproduction of ClpC1, which targets proteins to the ClpPR core complex for degradation, was observed only in Stage 1, during which period PLBs disrupted and converted into prothylakoids, suggesting that ClpC1 was of particular importance for disassembly of PLBs of etioplasts when exposed to light. This study revealed the possible biochemical and physiological processes lead to the formation of functional thylakoid membranes. BIOLOGICAL SIGNIFICANCE In this study, we monitored the light-induced transformation of prolamellar bodies into thylakoid membranes, which is correlated to the biogenesis of photosynthetic apparatus involving a complex cascade of biochemical and structural events. Three stages of thylakoid development classified according to the thylakoid development status (Adam et al., 2011) were studied for biogenesis of photosynthetic apparatus: Stage 1, prothylakoids emerge from the disrupted PLBs; Stage 2, prothylakoids converted into primary thylakoids which were dispersed in the stroma; Stage 3, the continuous grana and stroma thylakoids are formed. The development stage-dependent changes in the proteomic profile of the thylakoids were analyzed by two-dimensional electrophoresis (2-DE). This information was complemented with the steady-state 77K chlorophyll fluorescence of thylakoids at the corresponding development stage. Together, these analyses allowed us to further understand the molecular processes connected to the formation of functional thylakoid membranes.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Research and Development for Resource Plant, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuixian Ji
- Key Laboratory of Research and Development for Resource Plant, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shihua Shen
- Key Laboratory of Research and Development for Resource Plant, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hui Chen
- Key Laboratory of Research and Development for Resource Plant, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
9
|
Berger H, De Mia M, Morisse S, Marchand CH, Lemaire SD, Wobbe L, Kruse O. A Light Switch Based on Protein S-Nitrosylation Fine-Tunes Photosynthetic Light Harvesting in Chlamydomonas. PLANT PHYSIOLOGY 2016; 171:821-32. [PMID: 27208221 PMCID: PMC4902583 DOI: 10.1104/pp.15.01878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/04/2016] [Indexed: 05/21/2023]
Abstract
Photosynthetic eukaryotes are challenged by a fluctuating light supply, demanding for a modulated expression of nucleus-encoded light-harvesting proteins associated with photosystem II (LHCII) to adjust light-harvesting capacity to the prevailing light conditions. Here, we provide clear evidence for a regulatory circuit that controls cytosolic LHCII translation in response to light quantity changes. In the green unicellular alga Chlamydomonas reinhardtii, the cytosolic RNA-binding protein NAB1 represses translation of certain LHCII isoform mRNAs. Specific nitrosylation of Cys-226 decreases NAB1 activity and could be demonstrated in vitro and in vivo. The less active, nitrosylated form of NAB1 is found in cells acclimated to limiting light supply, which permits accumulation of light-harvesting proteins and efficient light capture. In contrast, elevated light supply causes its denitrosylation, thereby activating the repression of light-harvesting protein synthesis, which is needed to control excitation pressure at photosystem II. Denitrosylation of recombinant NAB1 is efficiently performed by the cytosolic thioredoxin system in vitro. To our knowledge, NAB1 is the first example of stimulus-induced denitrosylation in the context of photosynthetic acclimation. By identifying this novel redox cross-talk pathway between chloroplast and cytosol, we add a new key element required for drawing a precise blue print of the regulatory network of light harvesting.
Collapse
Affiliation(s)
- Hanna Berger
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), 33615 Bielefeld, Germany (H.B., L.W., O.K.); andSorbonne Universités, UPMC University of Paris 6, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France (M.D.M., S.M., C.H.M., S.D.L.)
| | - Marcello De Mia
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), 33615 Bielefeld, Germany (H.B., L.W., O.K.); andSorbonne Universités, UPMC University of Paris 6, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France (M.D.M., S.M., C.H.M., S.D.L.)
| | - Samuel Morisse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), 33615 Bielefeld, Germany (H.B., L.W., O.K.); andSorbonne Universités, UPMC University of Paris 6, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France (M.D.M., S.M., C.H.M., S.D.L.)
| | - Christophe H Marchand
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), 33615 Bielefeld, Germany (H.B., L.W., O.K.); andSorbonne Universités, UPMC University of Paris 6, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France (M.D.M., S.M., C.H.M., S.D.L.)
| | - Stéphane D Lemaire
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), 33615 Bielefeld, Germany (H.B., L.W., O.K.); andSorbonne Universités, UPMC University of Paris 6, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France (M.D.M., S.M., C.H.M., S.D.L.)
| | - Lutz Wobbe
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), 33615 Bielefeld, Germany (H.B., L.W., O.K.); andSorbonne Universités, UPMC University of Paris 6, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France (M.D.M., S.M., C.H.M., S.D.L.)
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), 33615 Bielefeld, Germany (H.B., L.W., O.K.); andSorbonne Universités, UPMC University of Paris 6, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France (M.D.M., S.M., C.H.M., S.D.L.)
| |
Collapse
|
10
|
Moore M, Gossmann N, Dietz KJ. Redox Regulation of Cytosolic Translation in Plants. TRENDS IN PLANT SCIENCE 2016; 21:388-397. [PMID: 26706442 DOI: 10.1016/j.tplants.2015.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/31/2015] [Accepted: 11/05/2015] [Indexed: 05/19/2023]
Abstract
Control of protein homeostasis is crucial for environmental acclimation of plants. In this context, translational control is receiving increasing attention, particularly since post-translational modifications of the translational apparatus allow very fast and highly effective control of protein synthesis. Reduction and oxidation (redox) reactions decisively control translation by modifying initiation, elongation, and termination of translation. This opinion article compiles information on the redox sensitivity of cytosolic translation factors and the significance of redox regulation as a key modulator of translation for efficient acclimation to changing environmental conditions.
Collapse
Affiliation(s)
- Marten Moore
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Nikolaj Gossmann
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany.
| |
Collapse
|
11
|
Ferreira-Camargo LS, Tran M, Beld J, Burkart MD, Mayfield SP. Selenocystamine improves protein accumulation in chloroplasts of eukaryotic green algae. AMB Express 2015; 5:126. [PMID: 26137911 PMCID: PMC4489976 DOI: 10.1186/s13568-015-0126-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/22/2015] [Indexed: 12/30/2022] Open
Abstract
Eukaryotic green algae have become an increasingly popular platform for recombinant proteins production. In particular, Chlamydomonas reinhardtii, has garnered increased attention for having the necessary biochemical machinery to produce vaccines, human antibodies and next generation cancer targeting immunotoxins. While it has been shown that chloroplasts contain chaperones, peptidyl prolylisomerases and protein disulfide isomerases that facilitate these complex proteins folding and assembly, little has been done to determine which processes serve as rate-limiting steps for protein accumulation. In other expression systems, as Escherichia coli, Chinese hamster ovary cells, and insect cells, recombinant protein accumulation can be hampered by cell's inability to fold the target polypeptide into the native state, resulting in aggregation and degradation. To determine if chloroplasts' ability to oxidize proteins that require disulfide bonds into a stable conformation is a rate-limiting step of protein accumulation, three recombinant strains, each expressing a different recombinant protein, were analyzed. These recombinant proteins included fluorescent GFP, a reporter containing no disulfide bonds; Gaussia princeps luciferase, a luminescent reporter containing disulfide bonds; and an immunotoxin, an antibody-fusion protein containing disulfide bonds. Each strain was analyzed for its ability to accumulate proteins when supplemented with selenocystamine, a small molecule capable of catalyzing the formation of disulfide bonds. Selenocystamine supplementation led to an increase in luciferase and immunotoxin but not GFP accumulation. These results demonstrated that selenocystamine can increase the accumulation of proteins containing disulfide bonds and suggests that a rate-limiting step in chloroplast protein accumulation is the disulfide bonds formation in recombinant proteins native structure.
Collapse
|
12
|
Sun Y, Zerges W. Translational regulation in chloroplasts for development and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:809-20. [PMID: 25988717 DOI: 10.1016/j.bbabio.2015.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/13/2015] [Accepted: 05/10/2015] [Indexed: 11/16/2022]
Abstract
Chloroplast genomes encode 100-200 proteins which function in photosynthesis, the organellar genetic system, and other pathways and processes. These proteins are synthesized by a complete translation system within the chloroplast, with bacterial-type ribosomes and translation factors. Here, we review translational regulation in chloroplasts, focusing on changes in translation rates which occur in response to requirements for proteins encoded by the chloroplast genome for development and homeostasis. In addition, we delineate the developmental and physiological contexts and model organisms in which translational regulation in chloroplasts has been studied. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
Affiliation(s)
- Yi Sun
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada
| | - William Zerges
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada.
| |
Collapse
|
13
|
Wittenberg G, Levitan A, Klein T, Dangoor I, Keren N, Danon A. Knockdown of the Arabidopsis thaliana chloroplast protein disulfide isomerase 6 results in reduced levels of photoinhibition and increased D1 synthesis in high light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:1003-13. [PMID: 24684167 DOI: 10.1111/tpj.12525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/18/2014] [Accepted: 03/27/2014] [Indexed: 05/09/2023]
Abstract
A chloroplast protein disulfide isomerase (PDI) was previously proposed to regulate translation of the unicellular green alga Chlamydomonas reinhardtii chloroplast psbA mRNA, encoding the D1 protein, in response to light. Here we show that AtPDI6, one of 13 Arabidopsis thaliana PDI genes, also plays a role in the chloroplast. We found that AtPDI6 is targeted and localized to the chloroplast. Interestingly, AtPDI6 knockdown plants displayed higher resistance to photoinhibition than wild-type plants when exposed to a tenfold increase in light intensity. The AtPDI6 knockdown plants also displayed a higher rate of D1 synthesis under a similar light intensity. The increased resistance to photoinhibition may not be rationalized by changes in antenna or non-photochemical quenching. Thus, the increased D1 synthesis rate, which may result in a larger proportion of active D1 under light stress, may led to the decrease in photoinhibition. These results suggest that, although the D1 synthesis rates observed in wild-type plants under high light intensities are elevated, repair can potentially occur faster. The findings implicate AtPDI6 as an attenuator of D1 synthesis, modulating photoinhibition in a light-regulated manner.
Collapse
Affiliation(s)
- Gal Wittenberg
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | |
Collapse
|
14
|
Oey M, Ross IL, Hankamer B. Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae. PLoS One 2014; 9:e86841. [PMID: 24523866 PMCID: PMC3921121 DOI: 10.1371/journal.pone.0086841] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/13/2013] [Indexed: 11/24/2022] Open
Abstract
With a rising world population, demand will increase for food, energy and high value products. Renewable production systems, including photosynthetic microalgal biotechnologies, can produce biomass for foods, fuels and chemical feedstocks and in parallel allow the production of high value protein products, including recombinant proteins. Such high value recombinant proteins offer important economic benefits during startup of industrial scale algal biomass and biofuel production systems, but the limited markets for individual recombinant proteins will require a high throughput pipeline for cloning and expression in microalgae, which is currently lacking, since genetic engineering of microalgae is currently complex and laborious. We have introduced the recombination based Gateway® system into the construction process of chloroplast transformation vectors for microalgae. This simplifies the vector construction and allows easy, fast and flexible vector design for the high efficiency protein production in microalgae, a key step in developing such expression pipelines.
Collapse
Affiliation(s)
- Melanie Oey
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ian L. Ross
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
15
|
Oxidative protein-folding systems in plant cells. Int J Cell Biol 2013; 2013:585431. [PMID: 24187554 PMCID: PMC3800646 DOI: 10.1155/2013/585431] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/01/2013] [Indexed: 12/13/2022] Open
Abstract
Plants are unique among eukaryotes in having evolved organelles: the protein storage vacuole, protein body, and chloroplast. Disulfide transfer pathways that function in the endoplasmic reticulum (ER) and chloroplasts of plants play critical roles in the development of protein storage organelles and the biogenesis of chloroplasts, respectively. Disulfide bond formation requires the cooperative function of disulfide-generating enzymes (e.g., ER oxidoreductase 1), which generate disulfide bonds de novo, and disulfide carrier proteins (e.g., protein disulfide isomerase), which transfer disulfides to substrates by means of thiol-disulfide exchange reactions. Selective molecular communication between disulfide-generating enzymes and disulfide carrier proteins, which reflects the molecular and structural diversity of disulfide carrier proteins, is key to the efficient transfer of disulfides to specific sets of substrates. This review focuses on recent advances in our understanding of the mechanisms and functions of the various disulfide transfer pathways involved in oxidative protein folding in the ER, chloroplasts, and mitochondria of plants.
Collapse
|
16
|
Rochaix JD. Redox regulation of thylakoid protein kinases and photosynthetic gene expression. Antioxid Redox Signal 2013; 18:2184-201. [PMID: 23339452 PMCID: PMC3629850 DOI: 10.1089/ars.2012.5110] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Photosynthetic organisms are subjected to frequent changes in their environment that include fluctuations in light quality and quantity, temperature, CO(2) concentration, and nutrient availability. They have evolved complex responses to these changes that allow them to protect themselves against photo-oxidative damage and to optimize their growth under these adverse conditions. In the case of light changes, these acclimatory processes can occur in either the short or the long term and are mainly mediated through the redox state of the plastoquinone pool and the ferredoxin/thioredoxin system. RECENT ADVANCES Short-term responses involve a dynamic reorganization of photosynthetic complexes, and long-term responses (LTRs) modulate the chloroplast and nuclear gene expression in such a way that the levels of the photosystems and their antennae are rebalanced for an optimal photosynthetic performance. These changes are mediated through a complex signaling network with several protein kinases and phosphatases that are conserved in land plants and algae. The phosphorylation status of the light-harvesting proteins of photosystem II and its core proteins is mainly determined by two complementary kinase-phosphatase pairs corresponding to STN7/PPH1 and STN8/PBCP, respectively. CRITICAL ISSUES The activity of the Stt7 kinase is principally regulated by the redox state of the plastoquinone pool, which in turn depends on the light irradiance, ambient CO(2) concentration, and cellular energy status. In addition, this kinase is also involved in the LTR. FUTURE DIRECTIONS Other chloroplast kinases modulate the activity of the plastid transcriptional machinery, but the global signaling network that connects all of the identified kinases and phosphatases is still largely unknown.
Collapse
Affiliation(s)
- Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
17
|
Meierhoff K, Westhoff P. The Biogenesis of the Thylakoid Membrane: Photosystem II, a Case Study. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Schwarz C, Bohne AV, Wang F, Cejudo FJ, Nickelsen J. An intermolecular disulfide-based light switch for chloroplast psbD gene expression in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:378-89. [PMID: 22725132 DOI: 10.1111/j.1365-313x.2012.05083.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Expression of the chloroplast psbD gene encoding the D2 protein of the photosystem II reaction center is regulated by light. In the green alga Chlamydomonas reinhardtii, D2 synthesis requires a high-molecular-weight complex containing the RNA stabilization factor Nac2 and the translational activator RBP40. Based on size exclusion chromatography analyses, we provide evidence that light control of D2 synthesis depends on dynamic formation of the Nac2/RBP40 complex. Furthermore, 2D redox SDS-PAGE assays suggest an intermolecular disulfide bridge between Nac2 and Cys11 of RBP40 as the putative molecular basis for attachment of RBP40 to the complex in light-grown cells. This covalent link is reduced in the dark, most likely via NADPH-dependent thioredoxin reductase C, supporting the idea of a direct relationship between chloroplast gene expression and chloroplast carbon metabolism during dark adaption of algal cells.
Collapse
Affiliation(s)
- Christian Schwarz
- Molekulare Pflanzenwissenschaften, Biozentrum Ludwig Maximilian University Munich, Grosshaderner Strasse, Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
19
|
Kolotilin I, Kaldis A, Devriendt B, Joensuu J, Cox E, Menassa R. Production of a subunit vaccine candidate against porcine post-weaning diarrhea in high-biomass transplastomic tobacco. PLoS One 2012; 7:e42405. [PMID: 22879967 PMCID: PMC3411772 DOI: 10.1371/journal.pone.0042405] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/05/2012] [Indexed: 11/20/2022] Open
Abstract
Post-weaning diarrhea (PWD) in piglets is a major problem in piggeries worldwide and results in severe economic losses. Infection with Enterotoxigenic Escherichia coli (ETEC) is the key culprit for the PWD disease. F4 fimbriae of ETEC are highly stable proteinaceous polymers, mainly composed of the major structural subunit FaeG, with a capacity to evoke mucosal immune responses, thus demonstrating a potential to act as an oral vaccine against ETEC-induced porcine PWD. In this study we used a transplastomic approach in tobacco to produce a recombinant variant of the FaeG protein, rFaeG(ntd/dsc), engineered for expression as a stable monomer by N-terminal deletion and donor strand-complementation (ntd/dsc). The generated transplastomic tobacco plants accumulated up to 2.0 g rFaeG(ntd/dsc) per 1 kg fresh leaf tissue (more than 1% of dry leaf tissue) and showed normal phenotype indistinguishable from wild type untransformed plants. We determined that chloroplast-produced rFaeG(ntd/dsc) protein retained the key properties of an oral vaccine, i.e. binding to porcine intestinal F4 receptors (F4R), and inhibition of the F4-possessing (F4+) ETEC attachment to F4R. Additionally, the plant biomass matrix was shown to delay degradation of the chloroplast-produced rFaeG(ntd/dsc) in gastrointestinal conditions, demonstrating a potential to function as a shelter-vehicle for vaccine delivery. These results suggest that transplastomic plants expressing the rFaeG(ntd/dsc) protein could be used for production and, possibly, delivery of an oral vaccine against porcine F4+ ETEC infections. Our findings therefore present a feasible approach for developing an oral vaccination strategy against porcine PWD.
Collapse
Affiliation(s)
- Igor Kolotilin
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Angelo Kaldis
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Bert Devriendt
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Gent University, Merelbeke, Belgium
| | - Jussi Joensuu
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Eric Cox
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Gent University, Merelbeke, Belgium
| | - Rima Menassa
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
20
|
Dangoor I, Peled-Zehavi H, Wittenberg G, Danon A. A chloroplast light-regulated oxidative sensor for moderate light intensity in Arabidopsis. THE PLANT CELL 2012; 24:1894-906. [PMID: 22570442 PMCID: PMC3442576 DOI: 10.1105/tpc.112.097139] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The transition from dark to light involves marked changes in the redox reactions of photosynthetic electron transport and in chloroplast stromal enzyme activity even under mild light and growth conditions. Thus, it is not surprising that redox regulation is used to dynamically adjust and coordinate the stromal and thylakoid compartments. While oxidation of regulatory proteins is necessary for the regulation, the identity and the mechanism of action of the oxidizing pathway are still unresolved. Here, we studied the oxidation of a thylakoid-associated atypical thioredoxin-type protein, ACHT1, in the Arabidopsis thaliana chloroplast. We found that after a brief period of net reduction in plants illuminated with moderate light intensity, a significant oxidation reaction of ACHT1 arises and counterbalances its reduction. Interestingly, ACHT1 oxidation is driven by 2-Cys peroxiredoxin (Prx), which in turn eliminates peroxides. The ACHT1 and 2-Cys Prx reaction characteristics in plants further indicated that ACHT1 oxidation is linked with changes in the photosynthetic production of peroxides. Our findings that plants with altered redox poise of the ACHT1 and 2-Cys Prx pathway show higher nonphotochemical quenching and lower photosynthetic electron transport infer a feedback regulatory role for this pathway.
Collapse
|
21
|
Türkeri H, Schweer J, Link G. Phylogenetic and functional features of the plastid transcription kinase cpCK2 from Arabidopsis signify a role of cysteinyl SH-groups in regulatory phosphorylation of plastid sigma factors. FEBS J 2011; 279:395-409. [DOI: 10.1111/j.1742-4658.2011.08433.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Payne TM, Payne AJ, Knoll LJ. A Toxoplasma gondii mutant highlights the importance of translational regulation in the apicoplast during animal infection. Mol Microbiol 2011; 82:1204-16. [PMID: 22059956 DOI: 10.1111/j.1365-2958.2011.07879.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite of all warm-blooded animals. We previously described a forward genetic screen to identify T. gondii mutants defective in the establishment of a chronic infection. One of the mutants isolated was disrupted in the 3' untranslated region (3'UTR) of an orthologue of bacterial translation elongation factor G (EFG). The mutant does not have a growth defect in tissue culture. Genetic complementation of this mutant with the genomic locus of TgEFG restores virulence in an acute infection mouse model. Epitope tagged TgEFG localized to the apicoplast, via a non-canonical targeting signal, where it functions as an elongation factor for translation in the apicoplast. Comparisons of TgEFG expression constructs with wild-type or mutant 3'UTRs showed that a wild-type 3'UTR is necessary for translation of TgEFG. In tissue culture, the TgEFG transcript is equally abundant in wild-type and mutant parasites; however, during an animal infection, the TgEFG transcript is increased more than threefold in the mutant. These results highlight that in tissue culture, translation in the apicoplast can be diminished, but during an animal infection, translation in the apicoplast must be fully functional.
Collapse
Affiliation(s)
- T Matthew Payne
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
23
|
Nishiyama Y, Allakhverdiev SI, Murata N. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. PHYSIOLOGIA PLANTARUM 2011; 142:35-46. [PMID: 21320129 DOI: 10.1111/j.1399-3054.2011.01457.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photoinhibition of photosystem II (PSII) occurs when the rate of photodamage to PSII exceeds the rate of the repair of photodamaged PSII. Recent examination of photoinhibition by separate determinations of photodamage and repair has revealed that the rate of photodamage to PSII is directly proportional to the intensity of incident light and that the repair of PSII is particularly sensitive to the inactivation by reactive oxygen species (ROS). The ROS-induced inactivation of repair is attributable to the suppression of the synthesis de novo of proteins, such as the D1 protein, that are required for the repair of PSII at the level of translational elongation. Furthermore, molecular analysis has revealed that the ROS-induced suppression of protein synthesis is associated with the specific inactivation of elongation factor G via the formation of an intramolecular disulfide bond. Impairment of various mechanisms that protect PSII against photoinhibition, including photorespiration, thermal dissipation of excitation energy, and the cyclic transport of electrons, decreases the rate of repair of PSII via the suppression of protein synthesis. In this review, we present a newly established model of the mechanism and the physiological significance of repair in the regulation of the photoinhibition of PSII.
Collapse
Affiliation(s)
- Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering and Institute for Environmental Science and Technology, Saitama University, Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| | | | | |
Collapse
|
24
|
Kurakin A. The self-organizing fractal theory as a universal discovery method: the phenomenon of life. Theor Biol Med Model 2011; 8:4. [PMID: 21447162 PMCID: PMC3080324 DOI: 10.1186/1742-4682-8-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/29/2011] [Indexed: 12/15/2022] Open
Abstract
A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy.An application of the new discovery method to life sciences reveals that moving electrons represent a keystone physical force (flux) that powers, animates, informs, and binds all living structures-processes into a planetary-wide, multiscale system of electron flow/circulation, and that all living organisms and their larger-scale organizations emerge to function as electron transport networks that are supported by and, at the same time, support the flow of electrons down the Earth's redox gradient maintained along the core-mantle-crust-ocean-atmosphere axis of the planet. The presented findings lead to a radically new perspective on the nature and origin of life, suggesting that living matter is an organizational state/phase of nonliving matter and a natural consequence of the evolution and self-organization of nonliving matter.The presented paradigm opens doors for explosive advances in many disciplines, by uniting them within a single conceptual framework and providing a discovery method that allows for the systematic generation of knowledge through comparison and complementation of empirical data across different sciences and disciplines.
Collapse
Affiliation(s)
- Alexei Kurakin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
25
|
d'Aloisio E, Paolacci AR, Dhanapal AP, Tanzarella OA, Porceddu E, Ciaffi M. The Protein Disulfide Isomerase gene family in bread wheat (T. aestivum L.). BMC PLANT BIOLOGY 2010; 10:101. [PMID: 20525253 PMCID: PMC3017771 DOI: 10.1186/1471-2229-10-101] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 06/03/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND The Protein Disulfide Isomerase (PDI) gene family encodes several PDI and PDI-like proteins containing thioredoxin domains and controlling diversified metabolic functions, including disulfide bond formation and isomerisation during protein folding. Genomic, cDNA and promoter sequences of the three homologous wheat genes encoding the "typical" PDI had been cloned and characterized in a previous work. The purpose of present research was the cloning and characterization of the complete set of genes encoding PDI and PDI like proteins in bread wheat (Triticum aestivum cv Chinese Spring) and the comparison of their sequence, structure and expression with homologous genes from other plant species. RESULTS Eight new non-homologous wheat genes were cloned and characterized. The nine PDI and PDI-like sequences of wheat were located in chromosome regions syntenic to those in rice and assigned to eight plant phylogenetic groups. The nine wheat genes differed in their sequences, genomic organization as well as in the domain composition and architecture of their deduced proteins; conversely each of them showed high structural conservation with genes from other plant species in the same phylogenetic group. The extensive quantitative RT-PCR analysis of the nine genes in a set of 23 wheat samples, including tissues and developmental stages, showed their constitutive, even though highly variable expression. CONCLUSIONS The nine wheat genes showed high diversity, while the members of each phylogenetic group were highly conserved even between taxonomically distant plant species like the moss Physcomitrella patens. Although constitutively expressed the nine wheat genes were characterized by different expression profiles reflecting their different genomic organization, protein domain architecture and probably promoter sequences; the high conservation among species indicated the ancient origin and diversification of the still evolving gene family. The comprehensive structural and expression characterization of the complete set of PDI and PDI-like wheat genes represents a basis for the functional characterization of this gene family in the hexaploid context of bread wheat.
Collapse
Affiliation(s)
- Elisa d'Aloisio
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Anna R Paolacci
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Arun P Dhanapal
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Oronzo A Tanzarella
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Enrico Porceddu
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Mario Ciaffi
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| |
Collapse
|
26
|
Schröter Y, Steiner S, Matthäi K, Pfannschmidt T. Analysis of oligomeric protein complexes in the chloroplast sub-proteome of nucleic acid-binding proteins from mustard reveals potential redox regulators of plastid gene expression. Proteomics 2010; 10:2191-204. [DOI: 10.1002/pmic.200900678] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Alizadeh D, Cohen A. Red light and calmodulin regulate the expression of the psbA binding protein genes in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2010; 51:312-22. [PMID: 20061301 PMCID: PMC2817094 DOI: 10.1093/pcp/pcq002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/25/2009] [Indexed: 05/23/2023]
Abstract
In the unicellular green alga Chlamydomonas reinhardtii, translation of the chloroplast-encoded psbA mRNA is regulated by the light-dependent binding of a nuclear-encoded protein complex (RB38, RB47, RB55 and RB60) to the 5'-untranslated region of the RNA. Despite the absence of any report identifying a red light photoreceptor within this alga, we show that the expression of the rb38, rb47 and rb60 genes, as well as the nuclear-encoded psbO gene that directs the synthesis of OEE1 (oxygen evolving enhancer 1), is differentially regulated by red light. Further elucidation of the signal transduction pathway shows that calmodulin is an important messenger in the signaling cascade that leads to the expression of rb38, rb60 and psbO, and that a chloroplast signal affects rb47 at the translational level. While there may be several factors involved in the cascade of events from the perception of red light to the expression of the rb and psbO genes, our data suggest the involvement of a red light photoreceptor. Future studies will elucidate this receptor and the additional components of this red light signaling expression pathway in C. reinhardtii.
Collapse
Affiliation(s)
- Darya Alizadeh
- Department of Biological Science, California State University, Fullerton, PO Box 6850, Fullerton, CA 92834-6850, USA
- City of Hope, Division of Neurosurgery, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Amybeth Cohen
- Department of Biological Science, California State University, Fullerton, PO Box 6850, Fullerton, CA 92834-6850, USA
| |
Collapse
|
28
|
Bräutigam K, Dietzel L, Pfannschmidt T. Hypothesis: A binary redox control mode as universal regulator of photosynthetic light acclimation. PLANT SIGNALING & BEHAVIOR 2010; 5:81-5. [PMID: 20592819 PMCID: PMC2835968 DOI: 10.4161/psb.5.1.10294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 05/18/2023]
Abstract
In nature, plants experience considerable changes in the prevailing illumination, which can drastically reduce photosynthetic efficiency and yield. Such adverse effects are counterbalanced by acclimation responses which ensure high photosynthetic productivity by structural reconfiguration of the photosynthetic apparatus. Those acclimation responses are controlled by reduction-oxidation (redox) signals from two pools of redox compounds, the plastoquinone and the thioredoxin pools. The relative impact of these two redox signaling systems on this process, however, remains controversial. Recently, we showed that photosynthesis controls nuclear gene expression and cellular metabolite states in an integrated manner, thus, stabilizing the varying energetic demands of the plant. Here, we propose a novel model based on a binary redox control mode to explain adaptation of plant primary productivity to the light environment. Plastoquinone and thioredoxin pools are proposed to define specific environmental situations cooperatively and to initiate appropriate acclimation responses controlled by four binary combinations of their redox states. Our model indicates a hierarchical redox regulation network that controls plant primary productivity and supports the notion that photosynthesis is an environmental sensor affecting plant growth and development.
Collapse
Affiliation(s)
- Katharina Bräutigam
- Institute for General Botany and Plant Physiology, Friedrich-Schiller University Jena, Jena, Germany
| | | | | |
Collapse
|
29
|
Bräutigam K, Dietzel L, Kleine T, Ströher E, Wormuth D, Dietz KJ, Radke D, Wirtz M, Hell R, Dörmann P, Nunes-Nesi A, Schauer N, Fernie AR, Oliver SN, Geigenberger P, Leister D, Pfannschmidt T. Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis. THE PLANT CELL 2009; 21:2715-32. [PMID: 19737978 PMCID: PMC2768923 DOI: 10.1105/tpc.108.062018] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 07/22/2009] [Accepted: 08/20/2009] [Indexed: 05/18/2023]
Abstract
Plants possess acclimation responses in which structural reconfigurations adapt the photosynthetic apparatus to fluctuating illumination. Long-term acclimation involves changes in plastid and nuclear gene expression and is controlled by redox signals from photosynthesis. The kinetics of these signals and the adjustments of energetic and metabolic demands to the changes in the photosynthetic apparatus are currently poorly understood. Using a redox signaling system that preferentially excites either photosystem I or II, we measured the time-dependent impact of redox signals on the transcriptome and metabolome of Arabidopsis thaliana. We observed rapid and dynamic changes in nuclear transcript accumulation resulting in differential and specific expression patterns for genes associated with photosynthesis and metabolism. Metabolite pools also exhibited dynamic changes and indicate readjustments between distinct metabolic states depending on the respective illumination. These states reflect reallocation of energy resources in a defined and reversible manner, indicating that structural changes in the photosynthetic apparatus during long-term acclimation are additionally supported at the level of metabolism. We propose that photosynthesis can act as an environmental sensor, producing retrograde redox signals that trigger two parallel adjustment loops that coordinate photosynthesis and metabolism to adapt plant primary productivity to the environment.
Collapse
Affiliation(s)
- Katharina Bräutigam
- Nachwuchsgruppe Pflanzliche Anpassung an Umweltveränderungen: Proteinanalyse mittels MS, Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Lars Dietzel
- Nachwuchsgruppe Pflanzliche Anpassung an Umweltveränderungen: Proteinanalyse mittels MS, Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Tatjana Kleine
- Lehrstuhl für Botanik, Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Elke Ströher
- Lehrstuhl für Biochemie und Pflanzenphysiologie, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Dennis Wormuth
- Lehrstuhl für Biochemie und Pflanzenphysiologie, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Lehrstuhl für Biochemie und Pflanzenphysiologie, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Dörte Radke
- Hans Knöll Institute, 07745 Jena, Germany
- Institute for Community Medicine, Ernst Moritz Arndt University of Greifswald, 17475 Greifswald, Germany
| | - Markus Wirtz
- Heidelberg Institute of Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Rüdiger Hell
- Heidelberg Institute of Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter Dörmann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Nicolas Schauer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Sandra N. Oliver
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Peter Geigenberger
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Dario Leister
- Lehrstuhl für Botanik, Department Biologie I, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Thomas Pfannschmidt
- Nachwuchsgruppe Pflanzliche Anpassung an Umweltveränderungen: Proteinanalyse mittels MS, Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
- Address correspondence to
| |
Collapse
|
30
|
Ogrzewalla K, Piotrowski M, Reinbothe S, Link G. The plastid transcription kinase from mustard (Sinapis alba
L.). ACTA ACUST UNITED AC 2009. [DOI: 10.1046/j.1432-1033.2002.03017_269_13.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Activation of translation via reduction by thioredoxin-thioredoxin reductase in Saccharomyces cerevisiae. FEBS Lett 2009; 583:2804-10. [PMID: 19622355 DOI: 10.1016/j.febslet.2009.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 11/23/2022]
Abstract
Previously we reported that in vitro translation activity in extracts of Saccharomyces cerevisiae was stimulated by dithiothreitol (DTT) and further increased by the addition of thioredoxin (TRX1) [Choi, S.K. (2007) Thioredoxin-mediated regulation of protein synthesis by redox in Saccharomyces cerevisiae. Kor. J. Microbiol. Biotechnol. 35, 36-40]. To identify the pathway affecting translation, we cloned and purified thioredoxin reductase 1 (TRR1), thioredoxin reductase 2 (TRR2), glutaredoxin 1 (GRX1) and glutaredoxin reductase 1 (GLR1) as fusion proteins. Thioredoxin-mediated activation of translation was more effectively stimulated by NADPH or NADH than by DTT. Moreover, addition of TRR1 led to a further increase of translation in the presence of thioredoxin plus NADPH. These findings indicate that redox control via the thioredoxin-thioredoxin reductase system plays an important role in the regulation of translation.
Collapse
|
32
|
Sturm N, Jortzik E, Mailu BM, Koncarevic S, Deponte M, Forchhammer K, Rahlfs S, Becker K. Identification of proteins targeted by the thioredoxin superfamily in Plasmodium falciparum. PLoS Pathog 2009; 5:e1000383. [PMID: 19360125 PMCID: PMC2660430 DOI: 10.1371/journal.ppat.1000383] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 03/16/2009] [Indexed: 11/24/2022] Open
Abstract
The malarial parasite Plasmodium falciparum possesses a functional thioredoxin and glutathione system comprising the dithiol-containing redox proteins thioredoxin (Trx) and glutaredoxin (Grx), as well as plasmoredoxin (Plrx), which is exclusively found in Plasmodium species. All three proteins belong to the thioredoxin superfamily and share a conserved Cys-X-X-Cys motif at the active site. Only a few of their target proteins, which are likely to be involved in redox reactions, are currently known. The aim of the present study was to extend our knowledge of the Trx-, Grx-, and Plrx-interactome in Plasmodium. Based on the reaction mechanism, we generated active site mutants of Trx and Grx lacking the resolving cysteine residue. These mutants were bound to affinity columns to trap target proteins from P. falciparum cell extracts after formation of intermolecular disulfide bonds. Covalently linked proteins were eluted with dithiothreitol and analyzed by mass spectrometry. For Trx and Grx, we were able to isolate 17 putatively redox-regulated proteins each. Furthermore, the approach was successfully established for Plrx, leading to the identification of 21 potential target proteins. In addition to confirming known interaction partners, we captured potential target proteins involved in various processes including protein biosynthesis, energy metabolism, and signal transduction. The identification of three enzymes involved in S-adenosylmethionine (SAM) metabolism furthermore suggests that redox control is required to balance the metabolic fluxes of SAM between methyl-group transfer reactions and polyamine synthesis. To substantiate our data, the binding of the redoxins to S-adenosyl-L-homocysteine hydrolase and ornithine aminotransferase (OAT) were verified using BIAcore surface plasmon resonance. In enzymatic assays, Trx was furthermore shown to enhance the activity of OAT. Our approach led to the discovery of several putatively redox-regulated proteins, thereby contributing to our understanding of the redox interactome in malarial parasites. Protection from oxidative stress and efficient redox regulation are essential for malarial parasites which have to grow and multiply rapidly in various environments. As shown by glucose-6 phosphate dehydrogenase deficiency, a genetic variation protecting from malaria, the parasite–host cell unit is very susceptible to disturbances in redox equilibrium. This is the major reason why redox active proteins of Plasmodium currently belong to the most attractive antimalarial drug targets. The dithiol-containing redox proteins thioredoxin (Trx) and glutaredoxin (Grx), as well as plasmoredoxin (Plrx), which is exclusively found in Plasmodium species, represent central players in the redox network of malarial parasites. To extend our knowledge of interacting partners and the functions of these proteins, we carried out pull-down assays with immobilized active site mutants of Trx, Grx, and Plrx and whole cell parasite lysate. After elution of bound proteins and mass spectrometric identification, about 20 interacting partners were identified for each of the redox proteins. Data was supported using BIAcore surface plasmon resonance. The identified interacting proteins, which are likely to be redox-regulated, are involved in important cellular processes including protein biosynthesis, energy metabolism, polyamine synthesis, and signal transduction. Our results contribute to our understanding of the redox interactome in malarial parasites.
Collapse
Affiliation(s)
- Nicole Sturm
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Boniface M. Mailu
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Sasa Koncarevic
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
- Proteome Sciences R&D GmbH & Co. KG, Frankfurt am Main, Germany
| | - Marcel Deponte
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
- Institute for Physiological Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Karl Forchhammer
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, Germany
| | - Stefan Rahlfs
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Katja Becker
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
- * E-mail:
| |
Collapse
|
33
|
Thioredoxin targets in plants: The first 30 years. J Proteomics 2009; 72:452-74. [DOI: 10.1016/j.jprot.2008.12.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 12/19/2022]
|
34
|
Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 2009; 11:861-905. [PMID: 19239350 DOI: 10.1089/ars.2008.2177] [Citation(s) in RCA: 751] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have multifaceted roles in the orchestration of plant gene expression and gene-product regulation. Cellular redox homeostasis is considered to be an "integrator" of information from metabolism and the environment controlling plant growth and acclimation responses, as well as cell suicide events. The different ROS forms influence gene expression in specific and sometimes antagonistic ways. Low molecular antioxidants (e.g., ascorbate, glutathione) serve not only to limit the lifetime of the ROS signals but also to participate in an extensive range of other redox signaling and regulatory functions. In contrast to the low molecular weight antioxidants, the "redox" states of components involved in photosynthesis such as plastoquinone show rapid and often transient shifts in response to changes in light and other environmental signals. Whereas both types of "redox regulation" are intimately linked through the thioredoxin, peroxiredoxin, and pyridine nucleotide pools, they also act independently of each other to achieve overall energy balance between energy-producing and energy-utilizing pathways. This review focuses on current knowledge of the pathways of redox regulation, with discussion of the somewhat juxtaposed hypotheses of "oxidative damage" versus "oxidative signaling," within the wider context of physiological function, from plant cell biology to potential applications.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Agriculture, Food and Rural Development, Agriculture Building, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
35
|
Dangoor I, Peled-Zehavi H, Levitan A, Pasand O, Danon A. A small family of chloroplast atypical thioredoxins. PLANT PHYSIOLOGY 2009; 149:1240-50. [PMID: 19109414 PMCID: PMC2649386 DOI: 10.1104/pp.108.128314] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 12/22/2008] [Indexed: 05/23/2023]
Abstract
The reduction and the formation of regulatory disulfide bonds serve as a key signaling element in chloroplasts. Members of the thioredoxin (Trx) superfamily of oxidoreductases play a major role in these processes. We have characterized a small family of plant-specific Trxs in Arabidopsis (Arabidopsis thaliana) that are rich in cysteine and histidine residues and are typified by a variable noncanonical redox active site. We found that the redox midpoint potential of three selected family members is significantly less reducing than that of the classic Trxs. Assays of subcellular localization demonstrated that all proteins are localized to the chloroplast. Selected members showed high activity, contingent on a dithiol electron donor, toward the chloroplast 2-cysteine peroxiredoxin A and poor activity toward the chloroplast NADP-malate dehydrogenase. The expression profile of the family members suggests that they have distinct roles. The intermediate redox midpoint potential value of the atypical Trxs might imply adaptability to function in modulating the redox state of chloroplast proteins with regulatory disulfides.
Collapse
Affiliation(s)
- Inbal Dangoor
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
36
|
Lindahl M, Kieselbach T. Disulphide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria. J Proteomics 2009; 72:416-38. [PMID: 19185068 DOI: 10.1016/j.jprot.2009.01.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/31/2008] [Accepted: 01/07/2009] [Indexed: 12/11/2022]
Abstract
Light-dependent disulphide/dithiol exchange catalysed by thioredoxin is a classical example of redox regulation of chloroplast enzymes. Recent proteome studies have mapped thioredoxin target proteins in all chloroplast compartments ranging from the envelope to the thylakoid lumen. Progress in the methodologies has made it possible to identify which cysteine residues interact with thioredoxin and to tackle membrane-bound thioredoxin targets. To date, more than hundred targets of thioredoxin and glutaredoxin have been found in plastids from Arabidopsis, spinach, poplar and Chlamydomonas reinhardtii. Thioredoxin-mediated redox control appears to be a feature of the central pathways for assimilation and storage of carbon, sulphur and nitrogen, as well as for translation and protein folding. Cyanobacteria are oxygenic photosynthetic prokaryotes, which presumably share a common ancestor with higher plant plastids. As in chloroplasts, cyanobacterial thioredoxins receive electrons from the photosynthetic electron transport, and thioredoxin-targeted proteins are therefore highly interesting in the context of acclimation of these organisms to their environment. Studies of the unicellular model cyanobacterium Synechocystis sp. PCC 6803 revealed 77 thioredoxin target proteins. Notably, the functions of all these thioredoxin targets highlight essentially the same processes as those described in chloroplasts suggesting that thioredoxin-mediated redox signalling is equally significant in oxygenic photosynthetic prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Marika Lindahl
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, Seville, Spain
| | | |
Collapse
|
37
|
Uniacke J, Zerges W. Stress induces the assembly of RNA granules in the chloroplast of Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 2008; 182:641-6. [PMID: 18710928 PMCID: PMC2518703 DOI: 10.1083/jcb.200805125] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Eukaryotic cells under stress repress translation and localize these messenger RNAs (mRNAs) to cytoplasmic RNA granules. We show that specific stress stimuli induce the assembly of RNA granules in an organelle with bacterial ancestry, the chloroplast of Chlamydomonas reinhardtii. These chloroplast stress granules (cpSGs) form during oxidative stress and disassemble during recovery from stress. Like mammalian stress granules, cpSGs contain poly(A)-binding protein and the small, but not the large, ribosomal subunit. In addition, mRNAs are in continuous flux between polysomes and cpSGs during stress. Localization of cpSGs within the pyrenoid reveals that this chloroplast compartment functions in this stress response. The large subunit of ribulosebisphosphate carboxylase/oxygenase also assembles into cpSGs and is known to bind mRNAs during oxidative stress, raising the possibility that it plays a role in cpSG assembly. This discovery within such an organelle suggests that mRNA localization to granules during stress is a more general phenomenon than currently realized.
Collapse
Affiliation(s)
- James Uniacke
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
38
|
Michelet L, Zaffagnini M, Vanacker H, Le Maréchal P, Marchand C, Schroda M, Lemaire SD, Decottignies P. In Vivo Targets of S-Thiolation in Chlamydomonas reinhardtii. J Biol Chem 2008; 283:21571-8. [DOI: 10.1074/jbc.m802331200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
39
|
Farran I, Río-Manterola F, Iñiguez M, Gárate S, Prieto J, Mingo-Castel AM. High-density seedling expression system for the production of bioactive human cardiotrophin-1, a potential therapeutic cytokine, in transgenic tobacco chloroplasts. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:516-27. [PMID: 18384506 DOI: 10.1111/j.1467-7652.2008.00334.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Histidine-tagged human cardiotrophin-1 (hCT-1), a recently discovered cytokine with excellent therapeutic potential, was expressed in tobacco chloroplasts under the transcriptional and translational control of two different promoters (rrn and psbA) and 5'-untranslated regions (5'-UTRs) (psbA and phage T7 gene 10). The psbA 5'-UTR promotes recombinant hCT-1 (rhCT-1) accumulation in chloroplasts at higher levels (eight-fold) than those obtained for the phage T7 gene 10 5'-UTR, regardless of the promoter used, indicating that the correct choice of translational control element is most important for protein production in chloroplasts. The maximum level of rhCT-1 achieved was 1.14 mg/g fresh weight (equivalent to 5% of total soluble protein) with the psbA promoter and 5'-UTR in young leaves harvested after 32 h of continuous light, although the bioactivity was significantly lower (approximately 35%) than that of commercial hCT-1. However, harvesting in the dark or after 12 h of light did not result in a significant decrease in the bioactivity of rhCT-1, suggesting that 32 h of over-lighting affects the biological activity of rhCT-1. Because high levels of rhCT-1 accumulation took place mainly in young leaves, it is proposed that seedlings should be used in a 'closed system' unit, yielding up to 3.2 kg per year of rhCT-1. This amount would be sufficient to meet the estimated annual worldwide needs of hCT-1 for liver transplantation surgery in a cost-effective manner. Furthermore, our strategy is an environmentally friendly method for the production of plant-based biopharmaceuticals.
Collapse
Affiliation(s)
- Imma Farran
- Instituto de Agrobiotecnología, UPNA-CSIC-Gobierno de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Oelze ML, Kandlbinder A, Dietz KJ. Redox regulation and overreduction control in the photosynthesizing cell: complexity in redox regulatory networks. Biochim Biophys Acta Gen Subj 2008; 1780:1261-72. [PMID: 18439433 DOI: 10.1016/j.bbagen.2008.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/25/2008] [Accepted: 03/27/2008] [Indexed: 01/07/2023]
Abstract
Regulation of the photosynthetic apparatus between efficient energy conversion at low light and avoidance of overreduction and damage development at excess light resembles dangerous navigating between Scylla and Charybdis. Photosynthesis is a high rate redox metabolic pathway that generates redox intermediates with extreme redox potentials and eventually reactive oxygen species and oxidative stress. Therefore it is not surprising that the states of defined redox reactions in the chloroplast provide the predominant information and thus directly or indirectly the decisive signals for the multilevel control of cell activities in the chloroplast, cytoplasm, mitochondrion and nucleus. This review elaborates on the diversity of photosynthesis-derived redox signals such as the plastoquinone and thiol redox state that regulate and coordinate light use efficiency, electron transport activity, metabolic reactions, gene transcription and translation not only in the chloroplast but through retrograde signaling also essentially in all other cell compartments. The synergistic and antagonistic interrelations between the redox-dependent signaling pathways and their interactions with other signals such as abscisic acid and tetrapyrol intermediates constitute a redundant and probably buffered regulatory network to optimize performance of photosynthesis on the cellular and whole leaf level.
Collapse
Affiliation(s)
- Marie-Luise Oelze
- Biochemistry and Physiology of Plants, Faculty of Biology-W5, Bielefeld University, 33501 Bielefeld, Germany
| | | | | |
Collapse
|
41
|
Stengel A, Benz P, Balsera M, Soll J, Bölter B. TIC62 redox-regulated translocon composition and dynamics. J Biol Chem 2008; 283:6656-67. [PMID: 18180301 DOI: 10.1074/jbc.m706719200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The preprotein translocon at the inner envelope of chloroplasts (Tic complex) facilitates the import of nuclear-encoded preproteins into the organelle. Seven distinct subunits have been identified so far. For each of those, specific functions have been proposed based on structural prediction or experimental evidence. Three of those subunits possess modules that could act as redox-active regulatory components in the import process. To date, however, the mode of redox regulation of the import process remains enigmatic. To investigate how the chloroplast redox state influences translocon behavior and composition, we studied the Tic component and the putative redox sensor Tic62 in more detail. The experimental results provide evidence that Tic62 can act as a bona fide dehydrogenase in vitro, and that it changes its localization in the chloroplast dependent on the NADP+/NADPH ratio in the stroma. Moreover, the redox state influences the interactions of Tic62 with the translocon and the flavoenzyme ferredoxin-NADP+ oxidoreductase. Additionally, we give initial experimental insights into the Tic62 structure using circular dichroism measurements and demonstrate that the protein consists of two structurally different domains. Our results indicate that Tic62 possesses redox-dependent properties that would allow it to fulfill a role as redox sensor protein in the chloroplast.
Collapse
Affiliation(s)
- Anna Stengel
- Munich Center for Integrated Protein Science CiPS, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
42
|
Shibagaki N, Grossman A. The State of Sulfur Metabolism in Algae: From Ecology to Genomics. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Redox Regulation of Chloroplast Gene Expression. PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
44
|
Marín-Navarro J, Manuell AL, Wu J, P Mayfield S. Chloroplast translation regulation. PHOTOSYNTHESIS RESEARCH 2007; 94:359-74. [PMID: 17661159 DOI: 10.1007/s11120-007-9183-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 04/19/2007] [Indexed: 05/16/2023]
Abstract
Chloroplast gene expression is primarily controlled during the translation of plastid mRNAs. Translation is regulated in response to a variety of biotic and abiotic factors, and requires a coordinate expression with the nuclear genome. The translational apparatus of chloroplasts is related to that of bacteria, but has adopted novel mechanisms in order to execute the specific roles that this organelle performs within a eukaryotic cell. Accordingly, plastid ribosomes contain a number of chloroplast-unique proteins and domains that may function in translational regulation. Chloroplast translation regulation involves cis-acting RNA elements (located in the mRNA 5' UTR) as well as a set of corresponding trans-acting protein factors. While regulation of chloroplast translation is primarily controlled at the initiation steps through these RNA-protein interactions, elongation steps are also targets for modulating chloroplast gene expression. Translation of chloroplast mRNAs is regulated in response to light, and the molecular mechanisms underlying this response involve changes in the redox state of key elements related to the photosynthetic electron chain, fluctuations of the ADP/ATP ratio and the generation of a proton gradient. Photosynthetic complexes also experience assembly-related autoinhibition of translation to coordinate the expression of different subunits of the same complex. Finally, the localization of all these molecular events among the different chloroplast subcompartments appear to be a crucial component of the regulatory mechanisms of chloroplast gene expression.
Collapse
Affiliation(s)
- Julia Marín-Navarro
- Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
45
|
Lemaire SD, Michelet L, Zaffagnini M, Massot V, Issakidis-Bourguet E. Thioredoxins in chloroplasts. Curr Genet 2007; 51:343-65. [PMID: 17431629 DOI: 10.1007/s00294-007-0128-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 03/05/2007] [Accepted: 03/09/2007] [Indexed: 01/03/2023]
Abstract
Thioredoxins (TRXs) are small disulfide oxidoreductases of ca. 12 kDa found in all free living organisms. In plants, two chloroplastic TRXs, named TRX f and TRX m, were originally identified as light dependent regulators of several carbon metabolism enzymes including Calvin cycle enzymes. The availability of genome sequences revealed an unsuspected multiplicity of TRXs in photosynthetic eukaryotes, including new chloroplastic TRX types. Moreover, proteomic approaches and focused studies allowed identification of 90 potential chloroplastic TRX targets. Lately, recent studies suggest the existence of a complex interplay between TRXs and other redox regulators such as glutaredoxins (GRXs) or glutathione. The latter is involved in a post-translational modification, named glutathionylation that could be controlled by GRXs. Glutathionylation appears to specifically affect the activity of TRX f and other chloroplastic enzymes and could thereby constitute a previously undescribed regulatory mechanism of photosynthetic metabolism under oxidative stress. After summarizing the initial studies on TRX f and TRX m, this review will focus on the most recent developments with special emphasis on the contributions of genomics and proteomics to the field of TRXs. Finally, new emerging interactions with other redox signaling pathways and perspectives for future studies will also be discussed.
Collapse
Affiliation(s)
- Stéphane D Lemaire
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique, Univ Paris-Sud, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
46
|
Schult K, Meierhoff K, Paradies S, Töller T, Wolff P, Westhoff P. The nuclear-encoded factor HCF173 is involved in the initiation of translation of the psbA mRNA in Arabidopsis thaliana. THE PLANT CELL 2007; 19:1329-46. [PMID: 17435084 PMCID: PMC1913763 DOI: 10.1105/tpc.106.042895] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 03/08/2007] [Accepted: 03/22/2007] [Indexed: 05/14/2023]
Abstract
To gain insight into the biogenesis of photosystem II (PSII) and to identify auxiliary factors required for this process, we characterized the mutant hcf173 of Arabidopsis thaliana. The mutant shows a high chlorophyll fluorescence phenotype (hcf) and is severely affected in the accumulation of PSII subunits. In vivo labeling experiments revealed a drastically decreased synthesis of the reaction center protein D1. Polysome association experiments suggest that this is primarily caused by reduced translation initiation of the corresponding psbA mRNA. Comparison of mRNA steady state levels indicated that the psbA mRNA is significantly reduced in hcf173. Furthermore, the determination of the psbA mRNA half-life revealed an impaired RNA stability. The HCF173 gene was identified by map-based cloning, and its identity was confirmed by complementation of the hcf phenotype. HCF173 encodes a protein with weak similarities to the superfamily of the short-chain dehydrogenases/reductases. The protein HCF173 is localized in the chloroplast, where it is mainly associated with the membrane system and is part of a higher molecular weight complex. Affinity chromatography of an HCF173 fusion protein uncovered the psbA mRNA as a component of this complex.
Collapse
Affiliation(s)
- Kerstin Schult
- Institut für Entwicklungs und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Lefebvre-Legendre L, Rappaport F, Finazzi G, Ceol M, Grivet C, Hopfgartner G, Rochaix JD. Loss of phylloquinone in Chlamydomonas affects plastoquinone pool size and photosystem II synthesis. J Biol Chem 2007; 282:13250-63. [PMID: 17339322 DOI: 10.1074/jbc.m610249200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phylloquinone functions as the electron transfer cofactor at the A(1) site of photosystem I. We have isolated and characterized a mutant of Chlamydomonas reinhardtii, menD1, that is deficient in MenD, which encodes 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase, an enzyme that catalyzes the first specific step of the phylloquinone biosynthetic pathway. The mutant is photosynthetically active but light-sensitive. Analysis of total pigments by mass spectrometry reveals that phylloquinone is absent in menD1, but plastoquinone levels are not affected. This is further confirmed by the rescue of menD1 by addition of phylloquinone to the growth medium. Analysis of electron transfer by absorption spectroscopy indicates that plastoquinone replaces phylloquinone in photosystem I and that electron transfer from A(1) to the iron-sulfur centers is slowed down at least 40-fold. Consistent with a replacement of phylloquinone by plastoquinone, the size of the free plastoquinone pool of menD1 is reduced by 20-30%. In contrast to cyanobacterial MenD-deficient mutants, photosystem I accumulates normally in menD1, whereas the level of photosystem II declines. This decrease is because of reduced synthesis of the photosystem II core subunits. The relationship between plastoquinone occupancy of the A(1) site in photosystem I and the reduced accumulation of photosystem II is discussed.
Collapse
Affiliation(s)
- Linnka Lefebvre-Legendre
- Department of Molecular Biology, University of Geneva, 30, Quai Ernest Ansermet 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
48
|
Rochaix JD. The Role of Nucleus- and Chloroplast-Encoded Factors in the Synthesis of the Photosynthetic Apparatus. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-1-4020-4061-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
49
|
Transcription and transcriptional regulation in plastids. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0232] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Translation and translational regulation in chloroplasts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0234] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|