1
|
Lima TRR, Kohori NA, de Camargo JLV, da Silva CA, Pereira LC. Diuron and its metabolites induce mitochondrial dysfunction-mediated cytotoxicity in urothelial cells. Toxicol Mech Methods 2024; 34:32-45. [PMID: 37664877 DOI: 10.1080/15376516.2023.2250430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
In the environment, or during mammalian metabolism, the diuron herbicide (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is transformed mainly into 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU) and 3,4-dichloroaniline (DCA). Previous research suggests that such substances are toxic to the urothelium of Wistar rats where, under specific exposure conditions, they may induce urothelial cell degeneration, necrosis, hyperplasia, and eventually tumors. However, the intimate mechanisms of action associated with such chemical toxicity are not fully understood. In this context, the purpose of the current in vitro study was to analyze the underlying mechanisms involved in the urothelial toxicity of those chemicals, addressing cell death and the possible role of mitochondrial dysfunction. Thus, human 1T1 urothelial cells were exposed to six different concentrations of diuron, DCA, and DCPMU, ranging from 0.5 to 500 µM. The results showed that tested chemicals induced oxidative stress and mitochondrial damage, cell cycle instability, and cell death, which were more expressive at the higher concentrations of the metabolites. These data corroborate previous studies from this laboratory and, collectively, suggest mitochondrial dysfunction as an initiating event triggering urothelial cell degeneration and death.
Collapse
Affiliation(s)
- Thania Rios Rossi Lima
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), UNESP, Medical School, Botucatu, Brazil
| | - Natalia Akemi Kohori
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), UNESP, Medical School, Botucatu, Brazil
| | - João Lauro Viana de Camargo
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), UNESP, Medical School, Botucatu, Brazil
| | - Carla Adriene da Silva
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), UNESP, Medical School, Botucatu, Brazil
| | - Lilian Cristina Pereira
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil
- Center for Evaluation of Environmental Impact on Human Health (TOXICAM), UNESP, Medical School, Botucatu, Brazil
- São Paulo State University (UNESP), School of Agriculture, Botucatu, Brazil
| |
Collapse
|
2
|
Oyagbemi AA, Omobowale TO, Awoyomi OV, Ajibade TO, Falayi OO, Ogunpolu BS, Okotie UJ, Asenuga ER, Adejumobi OA, Hassan FO, Ola-Davies OE, Saba AB, Adedapo AA, Yakubu MA. Cobalt chloride toxicity elicited hypertension and cardiac complication via induction of oxidative stress and upregulation of COX-2/Bax signaling pathway. Hum Exp Toxicol 2018; 38:519-532. [PMID: 30596275 DOI: 10.1177/0960327118812158] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cobalt is a ferromagnetic metal with extensive industrial and biological applications. To assess the toxic effects of, and mechanisms involved in cobalt chloride (CoCl2)-induced cardio-renal dysfunctions. Male Wistar rats were exposed orally, daily through drinking water to 0 ppm (control), 150 ppm, 300 ppm, and 600 ppm of CoCl2, respectively. Following exposure, results revealed significant ( p < 0.05) rise in markers of oxidative stress, but decreased activities of catalase, glutathione peroxidase, glutathione-S-transferase, and reduced glutathione content in cardiac and renal tissues. There were significant increases in systolic, diastolic, and mean arterial blood pressure at the 300- and 600-ppm level of CoCl2-exposed rats relative to the control. Prolongation of QT and QTc intervals was observed in CoCl2 alone treated rats. Also, there were significant increases in the heart rates, and reduction in P wave, and PR duration of rats administered CoCl2. Histopathology of the kidney revealed peritubular and periglomerular inflammation, focal glomerular necrosis following CoCl2 exposure. Further, cyclooxygenase-2 and B-cell associated protein X expressions were upregulated in the cardiac and renal tissues of CoCl2-exposed rats relative to the control. Combining all, results from this study implicated oxidative stress, inflammation, and apoptosis as pathologic mechanisms in CoCl2-induced hypertension and cardiovascular complications of rats.
Collapse
Affiliation(s)
- A A Oyagbemi
- 1 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - T O Omobowale
- 2 Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O V Awoyomi
- 3 Federal College of Animal Health and Production Technology, Moor Plantation, Ibadan, Nigeria
| | - T O Ajibade
- 1 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O O Falayi
- 4 Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - B S Ogunpolu
- 2 Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - U J Okotie
- 3 Federal College of Animal Health and Production Technology, Moor Plantation, Ibadan, Nigeria
| | - E R Asenuga
- 5 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Ibadan, Nigeria
| | - O A Adejumobi
- 2 Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - F O Hassan
- 1 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O E Ola-Davies
- 1 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - A B Saba
- 4 Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - A A Adedapo
- 4 Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - M A Yakubu
- 4 Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.,6 Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
3
|
Arachchige D, Holub JM. Synthesis and Biological Activity of Scyllatoxin-Based BH3 Domain Mimetics Containing Two Disulfide Linkages. Protein J 2018; 37:428-443. [PMID: 30128635 DOI: 10.1007/s10930-018-9791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The B cell lymphoma 2 (BCL2) proteins are a family of evolutionarily related proteins that act as positive or negative regulators of the intrinsic apoptosis pathway. Overexpression of anti-apoptotic BCL2 proteins in cells is associated with apoptotic resistance, which can result in cancerous phenotypes and pathogenic cell survival. Consequently, anti-apoptotic BCL2 proteins have attracted considerable interest as therapeutic targets. We recently reported the development of a novel class of synthetic protein based on scyllatoxin (ScTx) designed to mimic the helical BH3 interaction domain of the pro-apoptotic BCL2 protein Bax. These studies showed that the number and position of native disulfide linkages contained within the ScTx-Bax structure significantly influences the ability for these constructs to target anti-apoptotic BCL2 proteins in vitro. The goal of the present study is to investigate the contribution of two disulfide linkages in the folding and biological activity of ScTx-Bax proteins. Here, we report the full chemical synthesis of three ScTx-Bax sequence variants, each presenting two native disulfide linkages at different positions within the folded structure. It was observed that two disulfide linkages were sufficient to fold ScTx-Bax proteins into native-like architectures reminiscent of wild-type ScTx. Furthermore, we show that select (bis)disulfide ScTx-Bax variants can target Bcl-2 (proper) in vitro and that the position of the disulfide bonds significantly influences binding affinity. Despite exhibiting only modest binding to Bcl-2, the successful synthesis of ScTx-Bax proteins containing two disulfide linkages represents a viable route to ScTx-based BH3 domain mimetics that preserve native-like conformations. Finally, structural models of ScTx-Bax proteins in complex with Bcl-2 indicate that these helical mimetics bind in similar configurations as wild-type Bax BH3 domains. Taken together, these results suggest that ScTx-Bax proteins may serve as potent lead compounds that expand the repertoire of "druggable" protein-protein interactions.
Collapse
Affiliation(s)
- Danushka Arachchige
- Department of Chemistry and Biochemistry, Ohio University, Biochemistry Research Facility 108, 350 W. State St., Athens, OH, 45701, USA
| | - Justin M Holub
- Department of Chemistry and Biochemistry, Ohio University, Biochemistry Research Facility 108, 350 W. State St., Athens, OH, 45701, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
4
|
Xiao K, Zhao W, Zhou L, Chang DC. Alpha 5/6 helix domains together with N-terminus determine the apoptotic potency of the Bcl-2 family proteins. Apoptosis 2018; 21:1214-1226. [PMID: 27553060 DOI: 10.1007/s10495-016-1283-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A critical process in apoptosis is the permeabilization of the mitochondrial outer membrane (MOM). This process is known to be regulated by the multi-domain Bcl-2 family proteins. For example, the pro-apoptotic proteins Bax and Bak are responsible for forming pores at MOM. The anti-apoptotic proteins (including Bcl-2, Mcl-1 and Bcl-xL), on the other hand, can inhibit this pore-forming process. Interestingly, although these two subgroups of proteins perform opposite apoptotic functions, their structures are very similar. This raises two highly interesting questions: (1) Why do these structurally similar proteins play opposite roles in apoptosis? (2) What are the roles of different functional domains of a Bcl-2 family protein in determining its apoptotic property? In this study, we generated a series of deletion mutants and substitution chimera, and used a combination of molecular biology, bio-informatics and living cell imaging techniques to answer these questions. Our major findings are: (1) All of the Bcl-2 family proteins appear to possess an intrinsic pro-apoptotic property. (2) The N-termini of these proteins play an active role in suppressing their pro-apoptotic function. (3) The apoptotic potency is positively correlated with membrane affinity of the alpha 5/6 helix domains. (4) Charge distribution flanking the alpha 5/6 helices is also important for the apoptotic potency. These findings explain why different members of Bcl-2 family proteins with similar domain composition can function oppositely in the apoptotic process.
Collapse
Affiliation(s)
- Kang Xiao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research; Center for Marine Algal Biotechnology, College of Life Science and Oceanography; Key Laboratory of Optoeletronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoeletronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Wenrui Zhao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Liying Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Donald Choy Chang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
5
|
Timucin AC, Basaga H. Pro-apoptotic effects of lipid oxidation products: HNE at the crossroads of NF-κB pathway and anti-apoptotic Bcl-2. Free Radic Biol Med 2017; 111:209-218. [PMID: 27840321 DOI: 10.1016/j.freeradbiomed.2016.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022]
Abstract
The axis between lipid oxidation products and cell death is explicitly linked. 4-Hydroxynonenal (HNE), as well as other lipid oxidation products was also established to induce apoptosis in various experimental settings. Yet, the decision leading to apoptotic execution not only includes upregulation of pro-apoptotic signals but also involves a downregulation of anti-apoptotic signals. Within the frames of this paradigm, HNE acts significantly different from other lipid oxidation products in the regulation of two widely known anti-apoptotic elements, Nuclear Factor-κB (NF-κB) transcription factors and its target anti-apoptotic B-Cell Lymphoma-2 (Bcl-2) protein. Even so, a review inclusively linking these anti-apoptotic factors and their crosstalk upon HNE exposure is still at demand. In order to elucidate presence of such crosstalk, reports on the link between HNE and NF-κB pathway, on the link between HNE and anti-apoptotic Bcl-2 and on the crossroad of these links during HNE exposure were summarized and discussed. IKK, the upstream kinase of NF-κB, has been shown to regulate HNE mediated phosphorylation and inactivation of Bcl-2 by our group. Based on this observation and other studies reporting on HNE-NF-κB pathway interaction, IKK was proposed to mediate the crosstalk of NF-κB pathway and anti-apoptotic Bcl-2 protein, when HNE is present. These reports further suggested that HNE based inhibition of NF-κB pathway is highly likely. Besides, evidence on the HNE-anti-apoptotic Bcl-2 axis supported the deduction of HNE mediated NF-κB pathway inhibition and IKK mediated Bcl-2 inactivation. In conclusion, through combining all evidences, three possible scenarios intervening the HNE mediated crosstalk between NF-κB pathway and anti-apoptotic Bcl-2 protein, was extrapolated.
Collapse
Affiliation(s)
- Ahmet Can Timucin
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey.
| | - Huveyda Basaga
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey.
| |
Collapse
|
6
|
Clearing the outer mitochondrial membrane from harmful proteins via lipid droplets. Cell Death Discov 2017; 3:17016. [PMID: 28386457 PMCID: PMC5357670 DOI: 10.1038/cddiscovery.2017.16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 01/25/2023] Open
Abstract
In recent years it turned out that there is not only extensive communication between the nucleus and mitochondria but also between mitochondria and lipid droplets (LDs) as well. We were able to demonstrate that a number of proteins shuttle between LDs and mitochondria and it depends on the metabolic state of the cell on which organelle these proteins are predominantly localized. Responsible for the localization of the particular proteins is a protein domain consisting of two α-helices, which we termed V-domain according to the predicted structure. So far we have detected this domain in the following proteins: mammalian BAX, BCL-XL, TCTP and yeast Mmi1p and Erg6p. According to our experiments there are two functions of this domain: (1) shuttling of proteins to mitochondria in times of stress and apoptosis; (2) clearing the outer mitochondrial membrane from pro- as well as anti-apoptotic proteins by moving them to LDs after the stress ceases. In this way the LDs are used by the cell to modulate stress response.
Collapse
|
7
|
Landeta O, Landajuela A, Garcia-Saez A, Basañez G. Minimalist Model Systems Reveal Similarities and Differences between Membrane Interaction Modes of MCL1 and BAK. J Biol Chem 2015; 290:17004-19. [PMID: 25987560 DOI: 10.1074/jbc.m114.602193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 11/06/2022] Open
Abstract
Proteins belonging to the BCL2 family are key modulators of apoptosis that establish a complex network of interactions among themselves and with other cellular factors to regulate cell fate. It is well established that mitochondrial membranes are the main locus of action of all BCL2 family proteins, but it is difficult to obtain a precise view of how BCL2 family members operate at the native mitochondrial membrane environment during apoptosis. Here, we used minimalist model systems and multiple fluorescence-based techniques to examine selected membrane activities of MCL1 and BAK under apoptotic-like conditions. We show that three distinct apoptosis-related factors (i.e. the BCL2 homology 3 ligand cBID, the mitochondrion-specific lipid cardiolipin, and membrane geometrical curvature) all promote membrane association of BCL2-like structural folds belonging to both MCL1 and BAK. However, at the same time, the two proteins exhibited distinguishing features in their membrane association modes under apoptotic-like conditions. In addition, scanning fluorescence cross-correlation spectroscopy and FRET measurements revealed that the BCL2-like structural fold of MCL1, but not that of BAK, forms stable heterodimeric complexes with cBID in a manner adjustable by membrane cardiolipin content and curvature degree. Our results add significantly to a growing body of evidence indicating that the mitochondrial membrane environment plays a complex and active role in the mode of action of BCL2 family proteins.
Collapse
Affiliation(s)
- Olatz Landeta
- From the Unidad de Biofísica, Centro Mixto Centro Superior de Investigaciones Científicas (CSIC)-EuskalHerriko Unibertsitatea/Universidad del País Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain,
| | - Ane Landajuela
- From the Unidad de Biofísica, Centro Mixto Centro Superior de Investigaciones Científicas (CSIC)-EuskalHerriko Unibertsitatea/Universidad del País Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Ana Garcia-Saez
- the Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, and the Max-Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany, and the German Cancer Research Center, BioQuant, ImNeuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Gorka Basañez
- From the Unidad de Biofísica, Centro Mixto Centro Superior de Investigaciones Científicas (CSIC)-EuskalHerriko Unibertsitatea/Universidad del País Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain,
| |
Collapse
|
8
|
Functions of the C-terminal domains of apoptosis-related proteins of the Bcl-2 family. Chem Phys Lipids 2014; 183:77-90. [PMID: 24892727 DOI: 10.1016/j.chemphyslip.2014.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 02/06/2023]
Abstract
Bcl-2 family proteins are involved in cell homeostasis, where they regulate cell death. Some of these proteins are pro-apoptotic and others pro-survival. Moreover, many of them share a similar domain composition with several of the so-called BH domains, although some only have a BH3 domain. A C-terminal domain is present in all the multi-BH domain proteins and in some of the BH3-only ones. This C-terminal domain is hydrophobic or amphipathic, for which reason it was thought when they were discovered that they were membrane anchors. Although this is indeed one of their functions, it has since been observed that they may also serve as regulators of the function of some members of this family, such as Bax. They may also serve to recognize the target membrane of some of these proteins, which only after an apoptotic signal, are incorporated into a membrane. It has been shown that peptides that imitate the sequence of C-terminal domains can form pores and may serve as a model to design cytotoxic molecules.
Collapse
|
9
|
µ-Calpain conversion of antiapoptotic Bfl-1 (BCL2A1) into a prodeath factor reveals two distinct alpha-helices inducing mitochondria-mediated apoptosis. PLoS One 2012; 7:e38620. [PMID: 22745672 PMCID: PMC3379997 DOI: 10.1371/journal.pone.0038620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 05/09/2012] [Indexed: 01/09/2023] Open
Abstract
Anti-apoptotic Bfl-1 and pro-apoptotic Bax, two members of the Bcl-2 family sharing a similar structural fold, are classically viewed as antagonist regulators of apoptosis. However, both proteins were reported to be death inducers following cleavage by the cysteine protease µ-calpain. Here we demonstrate that calpain-mediated cleavage of full-length Bfl-1 induces the release of C-terminal membrane active α-helices that are responsible for its conversion into a pro-apoptotic factor. A careful comparison of the different membrane-active regions present in the Bfl-1 truncated fragments with homologous domains of Bax show that helix α5, but not α6, of Bfl-1 induces cell death and cytochrome c release from purified mitochondria through a Bax/Bak-dependent mechanism. In contrast, both helices α5 and α6 of Bax permeabilize mitochondria regardless of the presence of Bax or Bak. Moreover, we provide evidence that the α9 helix of Bfl-1 promotes cytochrome c release and apoptosis through a unique membrane-destabilizing action whereas Bax-α9 does not display such activities. Hence, despite a common 3D-structure, C-terminal toxic domains present on Bfl-1 and Bax function in a dissimilar manner to permeabilize mitochondria and induce apoptosis. These findings provide insights for designing therapeutic approaches that could exploit the cleavage of endogenous Bcl-2 family proteins or the use of Bfl-1/Bax-derived peptides to promote tumor cell clearance.
Collapse
|
10
|
Characterization of Unique Signature Sequences in the Divergent Maternal Protein Bcl2l10. Mol Biol Evol 2011; 28:3271-83. [DOI: 10.1093/molbev/msr152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Abstract
The pro-apoptototic protein Bax (Bcl-2 Associated protein X) plays a central role in the mitochondria-dependent apoptotic pathway. In healthy mammalian cells, Bax is essentially cytosolic and inactive. Following a death signal, the protein is translocated to the outer mitochondrial membrane, where it promotes a permeabilization that favors the release of different apoptogenic factors, such as cytochrome c. The regulation of Bax translocation is associated to conformational changes that are under the control of different factors. The evidences showing the involvement of different Bax domains in its mitochondrial localization are presented. The interactions between Bax and its different partners are described in relation to their ability to promote (or prevent) Bax conformational changes leading to mitochondrial addressing and to the acquisition of the capacity to permeabilize the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Thibaud T Renault
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, F-33000 Bordeaux, France
| | | |
Collapse
|
12
|
Koshy C, Parthiban M, Sowdhamini R. 100 ns Molecular Dynamics Simulations to Study Intramolecular Conformational Changes in Bax. J Biomol Struct Dyn 2010; 28:71-83. [DOI: 10.1080/07391102.2010.10507344] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Role of Reactive Oxygen Species and Bcl-2 Family Proteins in TNF-α-Induced Apoptosis of Lymphocytes. Bull Exp Biol Med 2010; 149:180-3. [DOI: 10.1007/s10517-010-0902-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Guillemin Y, Lopez J, Gimenez D, Fuertes G, Valero JG, Blum L, Gonzalo P, Salgado J, Girard-Egrot A, Aouacheria A. Active fragments from pro- and antiapoptotic BCL-2 proteins have distinct membrane behavior reflecting their functional divergence. PLoS One 2010; 5:e9066. [PMID: 20140092 PMCID: PMC2816717 DOI: 10.1371/journal.pone.0009066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 01/17/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The BCL-2 family of proteins includes pro- and antiapoptotic members acting by controlling the permeabilization of mitochondria. Although the association of these proteins with the outer mitochondrial membrane is crucial for their function, little is known about the characteristics of this interaction. METHODOLOGY/PRINCIPAL FINDINGS Here, we followed a reductionist approach to clarify to what extent membrane-active regions of homologous BCL-2 family proteins contribute to their functional divergence. Using isolated mitochondria as well as model lipid Langmuir monolayers coupled with Brewster Angle Microscopy, we explored systematically and comparatively the membrane activity and membrane-peptide interactions of fragments derived from the central helical hairpin of BAX, BCL-xL and BID. The results show a connection between the differing abilities of the assayed peptide fragments to contact, insert, destabilize and porate membranes and the activity of their cognate proteins in programmed cell death. CONCLUSION/SIGNIFICANCE BCL-2 family-derived pore-forming helices thus represent structurally analogous, but functionally dissimilar membrane domains.
Collapse
Affiliation(s)
- Yannis Guillemin
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
| | - Jonathan Lopez
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
| | - Diana Gimenez
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia, España
| | - Gustavo Fuertes
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia, España
| | - Juan Garcia Valero
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
| | - Loïc Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), CNRS UMR5246, University of Lyon, Villeurbanne, France
| | - Philippe Gonzalo
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
| | - Jesùs Salgado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia, España
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Burjassot, Valencia, España
| | - Agnès Girard-Egrot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), CNRS UMR5246, University of Lyon, Villeurbanne, France
| | - Abdel Aouacheria
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
15
|
García-Sáez AJ, Fuertes G, Suckale J, Salgado J. Permeabilization of the Outer Mitochondrial Membrane by Bcl-2 Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 677:91-105. [DOI: 10.1007/978-1-4419-6327-7_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
The Interplay between BCL-2 Family Proteins and Mitochondrial Morphology in the Regulation of Apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 687:97-114. [DOI: 10.1007/978-1-4419-6706-0_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
17
|
Abstract
Bid, a pro-apoptotic member of the Bcl-2 family, was initially discovered through binding to both pro-apoptotic Bax and anti-apoptotic Bcl-2. During apoptosis, Bid can be cleaved not only by caspase-8 during death receptor apoptotic signaling, but also by other caspases, granzyme B, calpains and cathepsins. Protease-cleaved Bid migrates to mitochondria where it induces permeabilization of the outer mitochondrial membrane that is dependent on the pro-apoptotic proteins Bax and/or Bak, and thus Bid acts as a sentinel for protease-mediated death signals. Although sequence analysis suggests that Bid belongs to the BH3-only subgroup of the Bcl-2 family, structural and phylogenetic analysis suggests that Bid may be more related to multi-BH region proteins such as pro-apoptotic Bax. Analysis of membrane binding by protease-cleaved Bid reveals mechanistic similarities with the membrane binding of Bax. For both proteins, membrane binding is characterized by relief of N-terminal inhibition of sequences promoting migration to membranes, insertion into the bilayer of the central hydrophobic hairpin helices and exposure of the BH3 region. These findings implicate Bid as a BH3-only protein that is both structurally and functionally related to multi-BH region Bcl-2 family proteins such as Bax.
Collapse
|
18
|
Structure assembly of Bcl-x(L) through alpha5-alpha5 and alpha6-alpha6 interhelix interactions in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2389-95. [PMID: 19761754 DOI: 10.1016/j.bbamem.2009.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 08/18/2009] [Accepted: 09/06/2009] [Indexed: 11/21/2022]
Abstract
Lipid bilayer membrane is the main site where Bcl-x(L) executes its anti-apoptotic function. Here we used site-directed mutagenesis and cysteine-directed cross-linking to trap the structure of Bcl-x(L) upon membrane insertion. Cys151 on alpha5-helix and Asn185 on alpha6-helix of two neighboring Bcl-x(L) are found in close positions, respectively. The FRET based binding assay indicated that the BH3-peptide binding pocket in Bcl-x(L) is disrupted after its membrane insertion. Co-immunoprecipitation experiments showed that the membrane-bound Bcl-x(L) sequestered tBid by direct interaction at physiological pH. If Bcl-x(L) behaves similarly at low pH as it does at physiological pH, the membrane-bound Bcl-x(L) should bind to tBid through protein regions other than the BH3 domain of tBid and the hydrophobic pocket of Bcl-x(L). Previously, a crystallography study demonstrated that Bcl-x(L) formed homodimers through domain swapping in water, where Cys151 and Asn185 of two monomeric subunits are far apart from each other and the BH3-peptide binding pocket is intact. Our results indicated that Bcl-x(L) dimer trapped by cross-linking in lipids is distinct from the domain swapped dimer, suggesting that Bcl-x(L) transits through a structural change from the water-soluble state to the membrane-bound state and there are multiple possibilities for structural reorganization of Bcl-x(L) protein.
Collapse
|
19
|
Veresov VG, Davidovskii AI. Activation of Bax by joint action of tBid and mitochondrial outer membrane: Monte Carlo simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:941-60. [PMID: 19466402 DOI: 10.1007/s00249-009-0475-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/30/2009] [Accepted: 05/04/2009] [Indexed: 12/31/2022]
Abstract
The mitochondrial pathway of apoptosis proceeds when molecules, such as cytochrome c, sequestered between the outer and inner mitochondrial membranes are released to the cytosol by mitochondrial outer membrane (MOM) permeabilization. Bax, a member of the Bcl-2 protein family, plays a pivotal role in mitochondrion-mediated apoptosis. In response to apoptotic stimuli, Bax integrates into the MOM, where it mediates the release of cytochrome c from the intermembrane space into the cytosol, leading to caspase activation and cell death. The pro-death action of Bax is regulated by interactions with both other prosurvival proteins, such as tBid, and the MOM, but the exact mechanisms remain largely unclear. Here, the mechanisms of integration of Bax into a model membrane mimicking the MOM were studied by Monte Carlo simulations preceded by a computer prediction of the docking of tBid with Bax. A novel model of Bax activation by tBid was predicted by the simulations. In this model, tBid binds to Bax at an interaction site formed by Bax helices alpha1, alpha2, alpha3 and alpha5 leading, due to interaction of the positively charged N-terminal fragment of tBid with anionic lipid headgroups, to Bax reorientation such that a hydrogen-bonded pair of residues, Asp98 and Ser184, is brought into close proximity with negatively charged lipid headgroups. The interaction with these headgroups destabilizes the hydrogen bond which results in the release of helix alpha9 from the Bax-binding groove, its insertion into the membrane, followed by insertion into the membrane of the alpha5-alpha6 helical hairpin.
Collapse
Affiliation(s)
- Valery G Veresov
- Department of Cell Biophysics, Institute of Biophysics and Cell Engineering, Academicheskaya St. 27, Minsk, 220072, Belarus.
| | | |
Collapse
|
20
|
Bank A, Yu J, Zhang L. NSAIDs downregulate Bcl-X(L) and dissociate BAX and Bcl-X(L) to induce apoptosis in colon cancer cells. Nutr Cancer 2009; 60 Suppl 1:98-103. [PMID: 19003586 DOI: 10.1080/01635580802381261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective in preventing colorectal cancer. Apoptosis induction by NSAIDs plays a critical role in NSAID-mediated chemoprevention. Our previous study demonstrated that NSAIDs require the proapoptotic B-cell non-Hodgkin lymphoma-2 (Bcl-2) family member Bcl-2-associated x protein (BAX) to induce apoptosis and inhibit the expression of antiapoptotic basal cell lymphoma-extra large (Bcl-X(L)) in colon cancer cells. In this study, we further investigated how BAX and Bcl-X(L) mediate NSAID-induced apoptosis. We found that Bcl-X(L) is downregulated by NSAIDs in part through proteasome-mediated protein degradation. NSAIDs promote the dissociation of BAX and Bcl-X(L) and translocation of BAX to the mitochondria. Furthermore, we found that only wild-type BAX, but not a mutant BAX deficient in either protein-protein interaction or mitochondrial localization, was able to restore NSAID-induced apoptosis in the BAX-knockout colon cancer cells. These results suggest that NSAIDs induce apoptosis in colon cancer cells by dissociating BAX and Bcl-X(L), thereby promoting BAX mitochondrial translocation and multimerization.
Collapse
Affiliation(s)
- Alexander Bank
- University of Pittsburgh Cancer Institute and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
21
|
Williams B, Dickman M. Plant programmed cell death: can't live with it; can't live without it. MOLECULAR PLANT PATHOLOGY 2008; 9:531-44. [PMID: 18705866 PMCID: PMC6640338 DOI: 10.1111/j.1364-3703.2008.00473.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The decision of whether a cell should live or die is fundamental for the wellbeing of all organisms. Despite intense investigation into cell growth and proliferation, only recently has the essential and equally important idea that cells control/programme their own demise for proper maintenance of cellular homeostasis gained recognition. Furthermore, even though research into programmed cell death (PCD) has been an extremely active area of research there are significant gaps in our understanding of the process in plants. In this review, we discuss PCD during plant development and pathogenesis, and compare/contrast this with mammalian apoptosis.
Collapse
Affiliation(s)
- Brett Williams
- Institute for Plant Genomics and Biotechnology, Texas A&M University, Department of Plant Pathology and Microbiology, College Station, TX 77843, USA
| | | |
Collapse
|
22
|
The alpha-5 helix of Bax is sensitive to ubiquitin-dependent degradation. Biochem Biophys Res Commun 2008; 371:10-5. [PMID: 18395515 DOI: 10.1016/j.bbrc.2008.03.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 11/22/2022]
Abstract
The pro-apoptotic protein Bax is instable in many cancer cells but the mechanism of Bax degradation remains unclear. Four different lengths of deductive Bax degradation sensitive (BDS) sequences within BH3-BH1 region, BDS-1 (Bax 67-124), BDS-3 (Bax 74-107), BDS-5 (Bax 67-107), and BDS-7 (Bax 74-124), were tested for the susceptibility to ubiquitin-dependent degradation. Both BDS-1 and BDS-7 which contain the alpha5 helix, a putative pore-forming domain of Bax, are sensitive to proteasome-dependent degradation and ubiquitin-conjugation. The Bax alpha5-deletion mutant (Bax-Deltaalpha5) was stable and also maintained its apoptosis-inducing ability. Deletion of helices alpha1 and part of alpha2 (Bax-Delta1-66) or helices alpha3 and alpha4 (Bax-Deltaalpha3,4) did not affect the sensitivity to degradation. However, Bax-Delta1-66 mutant was not able to induce apoptosis. Thus, we propose that the alpha5 helix of Bax is sensitive to ubiquitin-dependent degradation. Moreover, Bax mutant retains its pro-apoptosis ability when the alpha5 helix is deleted.
Collapse
|
23
|
Radogna F, Cristofanon S, Paternoster L, D'Alessio M, De Nicola M, Cerella C, Dicato M, Diederich M, Ghibelli L. Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2. J Pineal Res 2008; 44:316-25. [PMID: 18339127 DOI: 10.1111/j.1600-079x.2007.00532.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recently shown that melatonin antagonizes damage-induced apoptosis by interaction with the MT-1/MT-2 plasma membrane receptors. Here, we show that melatonin interferes with the intrinsic pathway of apoptosis at the mitochondrial level. In response to an apoptogenic stimulus, melatonin allows mitochondrial translocation of the pro-apoptotic protein Bax, but it impairs its activation/dimerization The downstream apoptotic events, i.e. cytochrome c release, caspase 9 and 3 activation and nuclear vesiculation are equally impaired, indicating that melatonin interferes with Bax activation within mitochondria. Interestingly, we found that melatonin induces a strong re-localization of Bcl-2, the main Bax antagonist to mitochondria, suggesting that Bax activation may in fact be antagonized by Bcl-2 at the mitochondrial level. Indeed, we inhibit the melatonin anti-apoptotic effect (i) by silencing Bcl-2 with small interfering RNAs, or with small-molecular inhibitors targeted at the BH3 binding pocket in Bcl-2 (i.e. the one interacting with Bax); and (ii) by inhibiting melatonin-induced Bcl-2 mitochondrial re-localization with the MT1/MT2 receptor antagonist luzindole. This evidence provides a mechanism that may explain how melatonin through interaction with the MT1/MT2 receptors, elicits a pathway that interferes with the Bcl-2 family, thus modulating the cell life/death balance.
Collapse
Affiliation(s)
- Flavia Radogna
- Dipartimento di Biologia, Università di Roma Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
PTD-mediated delivery of anti-cell death proteins/peptides and therapeutic enzymes. Adv Drug Deliv Rev 2008; 60:499-516. [PMID: 18093693 DOI: 10.1016/j.addr.2007.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/12/2007] [Indexed: 01/28/2023]
Abstract
Millions of unnecessary cells are removed from our body everyday by apoptosis to ensure our survivals. Apoptosis is a highly coordinated process. Failure in apoptotic regulation results in disease. A large number of studies have demonstrated that accelerated apoptosis is involved in degenerative diseases, ischemic injuries, immunodeficiency and infertility. These studies have also revealed the molecular mechanisms of apoptosis signal transduction to provide therapeutic targets. On the other hand, protein transduction technology has been developed to deliver full-length proteins to various tissues including the brain. So far, many studies have shown that in vivo delivery of therapeutic proteins/peptides, including anti-apoptotic proteins, an anti-oxidant enzyme, a neuroprotectant, enzymes involved in purine or tyrosine metabolism, caspase inhibitors, c-Jun N-terminal kinase inhibitors and an NF-kappaB inhibitor, by protein transduction technology mitigates various diseases in animal models.
Collapse
|
25
|
Lalier L, Cartron PF, Juin P, Nedelkina S, Manon S, Bechinger B, Vallette FM. Bax activation and mitochondrial insertion during apoptosis. Apoptosis 2008; 12:887-96. [PMID: 17453158 DOI: 10.1007/s10495-007-0749-1] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mitochondrial apoptotic pathway is a highly regulated biological mechanism which determines cell fate. It is defined as a cascade of events, going from an apoptotic stimulus to the MOM permeabilization, resulting in the activation of the so-called executive phase. This pathway is very often altered in cancer cells. The mitochondrial permeabilization is under the control of the Bcl-2 family of proteins (pBcls). These proteins share one to four homology domains (designed BH1-4) with Bcl-2, and are susceptible of homo- and/or hetero-dimerization. In spite of a poor amino-acid sequence homology, these proteins exhibit very similar tertiary structures. Strikingly, while some of these proteins are anti-apoptotic, the others are pro-apoptotic. Pro-apoptotic proteins are further divided in two sub-classes: multi-domains proteins, among which Bax and Bak, which exhibit BH1-3 domains, and BH3-only proteins (or BOPs). Schematically, BOPs and anti-apoptotic proteins antagonistically regulate the activation of the multi-domain proteins Bax and Bak and their oligomerization in the MOM, the latter process being responsible for the apoptotic mitochondrial permeabilization. Considering the critical role of Bax in cancer cells apoptosis, we focus in this review on the molecular events of Bax activation through its interaction with the other proteins from the Bcl-2 family. The mechanism by which Bax triggers the MOM permeabilization once activated will be discussed in some other reviews in this special issue.
Collapse
|
26
|
The N-terminus and alpha-5, alpha-6 helices of the pro-apoptotic protein Bax, modulate functional interactions with the anti-apoptotic protein Bcl-xL. BMC Cell Biol 2007; 8:16. [PMID: 17519046 PMCID: PMC1890283 DOI: 10.1186/1471-2121-8-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 05/23/2007] [Indexed: 02/07/2023] Open
Abstract
Background Bcl-2 family proteins are key regulators of mitochondrial integrity and comprise both pro- and anti-apoptotic proteins. Bax a pro-apoptotic member localizes as monomers in the cytosol of healthy cells and accumulates as oligomers in mitochondria of apoptotic cells. The Bcl-2 homology-3 (BH3) domain regulates interactions within the family, but regions other than BH3 are also critical for Bax function. Thus, the N-terminus has been variously implicated in targeting to mitochondria, interactions with BH3-only proteins as well as conformational changes linked to Bax activation. The transmembrane (TM) domains (α5-α6 helices in the core and α9 helix in the C-terminus) in Bax are implicated in localization to mitochondria and triggering cytotoxicity. Here we have investigated N-terminus modulation of TM function in the context of regulation by the anti-apoptotic protein Bcl-xL. Results Deletion of 29 amino acids in the Bax N-terminus (Bax 30–192) caused constitutive accumulation at mitochondria and triggered high levels of cytotoxicity, not inhibited by Bcl-xL. Removal of the TM domains (Bax 30–105) abrogated mitochondrial localization but resulted in Bcl-xL regulated activation of endogenous Bax and Bax-Bak dependent apoptosis. Inclusion of the α5-α6 helices/TMI domain (Bax 30–146) phenocopied Bax 30–192 as it restored mitochondrial localization, Bcl-xL independent cytotoxicity and was not dependent on endogenous Bax-Bak. Inhibition of function and localization by Bcl-xL was restored in Bax 1–146, which included the TM1 domain. Regardless of regulation by Bcl-xL, all N-terminal deleted constructs immunoprecipitated Bcl-xLand converged on caspase-9 dependent apoptosis consistent with mitochondrial involvement in the apoptotic cascade. Sub-optimal sequence alignments of Bax and Bcl-xL indicated a sequence similarity between the α5–α6 helices of Bax and Bcl-xL. Alanine substitutions of three residues (T14A-S15A-S16A) in the N-terminus (Bax-Ala3) attenuated regulation by the serine-threonine kinase Akt/PKB but not by Bcl-xL indicative of distinct regulatory mechanisms. Conclusion Collectively, the analysis of Bax deletion constructs indicates that the N-terminus drives conformational changes facilitating inhibition of cytotoxicity by Bcl-xL. We speculate that the TM1 helices may serve as 'structural antagonists' for BH3-Bcl-xL interactions, with this function being regulated by the N-terminus in the intact protein.
Collapse
|
27
|
Abstract
Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions.
Collapse
Affiliation(s)
- Ozgur Kutuk
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Orhanli, Tuzla, Istanbul, Turkey
| | | |
Collapse
|
28
|
Bellot G, Cartron PF, Er E, Oliver L, Juin P, Armstrong LC, Bornstein P, Mihara K, Manon S, Vallette FM. TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax. Cell Death Differ 2006; 14:785-94. [PMID: 17096026 DOI: 10.1038/sj.cdd.4402055] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The association of Bax with mitochondria is an essential step in the implementation of apoptosis. By using a bacterial two-hybrid assay and crosslinking strategies, we have identified TOM22, a component of the translocase of the outer mitochondrial membrane (TOM), as a mitochondrial receptor of Bax. Peptide mapping showed that the interaction of Bax with TOM22 involved the first alpha helix of Bax and possibly two central alpha helices, which are homologous to the pore forming domains of some toxins. Antibodies directed against TOM22 or an antisense knockdown of the expression of TOM22 specifically inhibited the association of Bax with mitochondria and prevented Bax-dependent apoptosis. In yeast, a haploid strain for TOM22 exhibited a decreased expression of TOM22 and mitochondrial association of ectopically expressed human Bax. Our data provide a new perspective on the mechanism of association of Bax with mitochondria as it involves a classical import pathway.
Collapse
Affiliation(s)
- G Bellot
- INSERM U601, Université de Nantes, Faculté de Médecine, Nantes Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Er E, Oliver L, Cartron PF, Juin P, Manon S, Vallette FM. Mitochondria as the target of the pro-apoptotic protein Bax. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1301-11. [PMID: 16836974 DOI: 10.1016/j.bbabio.2006.05.032] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/20/2006] [Accepted: 05/23/2006] [Indexed: 11/21/2022]
Abstract
During apoptosis, engagement of the mitochondrial pathway involves the permeabilization of the outer mitochondrial membrane (OMM), which leads to the release of cytochrome c and other apoptogenic proteins such as Smac/DIABLO, AIF, EndoG, Omi/HtraA2 and DDP/TIMM8a. OMM permeabilization depends on activation, translocation and oligomerization of multidomain Bcl-2 family proteins such as Bax or Bak. Factors involved in Bax conformational change and the function(s) of the distinct domains controlling the addressing and the insertion of Bax into mitochondria are described in this review. We also discuss our current knowledge on Bax oligomerization and on the molecular mechanisms underlying the different models accounting for OMM permeabilization during apoptosis.
Collapse
Affiliation(s)
- Emine Er
- UMR 601 INSERM, Université de Nantes, 9 Quai Moncousu F-44035 Nantes, Cedex 01 France
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The discovery of B-cell lymphoma-2 (BCL-2) over 20 years ago revealed a new paradigm in cancer biology: the development and persistence of cancer can be driven by molecular roadblocks along the natural pathway to cell death. The subsequent identification of an expansive family of BCL-2 proteins provoked an intensive investigation of the interplay among these critical regulators of cell death. What emerged was a compelling tale of guardians and executioners, each participating in a molecular choreography that dictates cell fate. Ten years into the BCL-2 era, structural details defined how certain BCL-2 family proteins interact, and molecular targeting of the BCL-2 family has since become a pharmacological quest. Although many facets of BCL-2 family death signaling remain a mechanistic mystery, small molecules and peptides that effectively target BCL-2 are eliminating the roadblock to cell death, raising hopes for a medical breakthrough in cancer and other diseases of deregulated apoptosis.
Collapse
Affiliation(s)
- L D Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Zhu Y, Liu X, Hildeman D, Peyerl FW, White J, Kushnir E, Kappler J, Marrack P. Bax does not have to adopt its final form to drive T cell death. ACTA ACUST UNITED AC 2006; 203:1147-52. [PMID: 16651384 PMCID: PMC2121198 DOI: 10.1084/jem.20051736] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The introduction of antigen into animals causes antigen-specific T cells to divide and then die. Activated T cell death requires either of the death effector molecules, Bak or Bax. When T cells die, Bak and Bax change their conformations, a phenomenon that is thought to be required for Bak or Bax to drive cell death. Here we show that Bak changes conformation before activated T cells die, as detected by an antibody specific for a peptide near the NH2 terminus of Bak, but Bax does not change its shape markedly until after the cells are dead, as detected by an antibody specific for a peptide near the NH2 terminus of Bax. This latter finding is also true in activated T cells that lack Bak and are therefore dependent on Bax to die. This result suggests that Bax does not have to adopt its final, completely unfolded form until after the cells are dead.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80220, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ming L, Wang P, Bank A, Yu J, Zhang L. PUMA Dissociates Bax and Bcl-X(L) to induce apoptosis in colon cancer cells. J Biol Chem 2006; 281:16034-42. [PMID: 16608847 DOI: 10.1074/jbc.m513587200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PUMA is a BH3-only Bcl-2 family protein that plays an essential role in DNA damage-induced apoptosis. PUMA interacts with anti-apoptotic Bcl-2 and Bcl-X(L) and is dependent on Bax to induce apoptosis. In this study, we investigated how the interactions of PUMA with the antiapoptotic proteins coordinate with Bax to initiate apoptosis in HCT116 colon cancer cells. We found that Bcl-X(L) was most effective among several antiapoptotic proteins in suppressing PUMA-induced apoptosis and PUMA-dependent apoptosis induced by the DNA-damaging agent adriamycin. Mutant Bcl-X(L) that cannot interact with Bax was unable to protect cells from PUMA-mediated apoptosis. Knockdown of Bcl-X(L) by RNA interference significantly enhanced PUMA-mediated apoptosis in HCT116 cells but not in PUMA-knockout cells. Furthermore, Bax was found to be dissociated preferentially from Bcl-X(L) in HCT116 cells but not in the PUMA-knockout cells, in response to PUMA induction and adriamycin treatment. PUMA inhibited the association of Bax and Bcl-X(L) in vitro by directly binding to Bcl-X(L) through its BH3 domain. Finally, we found that wild-type Bax, but not mutant Bax deficient in either multimerization or mitochondrial localization, was able to restore PUMA-induced apoptosis in the BAX-knockout cells. Together, these results indicate that PUMA initiates apoptosis in part by dissociating Bax and Bcl-X(L), thereby promoting Bax multimerization and mitochondrial translocation.
Collapse
Affiliation(s)
- Lihua Ming
- Department of Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
33
|
D'Alessio M, De Nicola M, Coppola S, Gualandi G, Pugliese L, Cerella C, Cristofanon S, Civitareale P, Ciriolo MR, Bergamaschi A, Magrini A, Ghibelli L. Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis. FASEB J 2005; 19:1504-6. [PMID: 15972297 DOI: 10.1096/fj.04-3329fje] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bax is a cytosolic protein, which in response to stressing apoptotic stimuli, is activated and translocates to mitochondria, thus initiating the intrinsic apoptotic pathway. In spite of many studies and the importance of the issue, the molecular mechanisms that trigger Bax translocation are still obscure. We show by computer simulation that the two cysteine residues of Bax may form disulfide bridges, producing conformational changes that favor Bax translocation. Oxidative, nonapoptogenic treatments produce an up-shift of Bax migration compatible with homodimerization, which is reverted by reducing agents; this is accompanied by translocation to mitochondria. Dimers also appear in pure cytosolic fractions of cell lysates treated with H2O2, showing that Bax dimerization may take place in the cytosol. Bax dimer-enriched lysates support Bax translocation to isolated mitochondria much more efficiently than untreated lysates, indicating that dimerization may promote Bax translocation. The absence of apoptosis in our system allows the demonstration that Bax moves because of oxidations, even in the absence of apoptosis. This provides the first evidence that Bax dimerization and translocation respond to oxidative stimuli, suggesting a novel role for Bax as a sensor of redox imbalance.
Collapse
Affiliation(s)
- M D'Alessio
- Dipartimento di Biología, Universita' di Roma, Tor Vergata, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang D, Mott JL, Chang SW, Stevens M, Mikolajczak P, Zassenhaus HP. Mitochondrial DNA mutations activate programmed cell survival in the mouse heart. Am J Physiol Heart Circ Physiol 2005; 288:H2476-83. [PMID: 15840907 DOI: 10.1152/ajpheart.00670.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased frequencies of mitochondrial DNA (mtDNA) mutations characterize the aging heart and are also found in idiopathic dilated cardiomyopathy and end-stage heart failure. The pathogenic potential of such mutations is unclear. Transgenic mice showing accelerated accumulation of mtDNA mutations and dilated cardiomyopathy due to expression of an error-prone mtDNA polymerase specifically in the heart were characterized by Western blot analysis and immunohistochemistry for the levels of pro- and antiapoptotic proteins. By 8 wk of age, when frequencies of mtDNA mutations were approximately 0.01% and all transgenic mice showed four-chamber cardiac dilation, a vigorous prosurvival response was evident. Upregulated were Bcl-2, Bcl-xl, Bfl1, heat shock protein 27, and X-linked inhibitor of apoptosis protein, all of which function to inhibit apoptosis. Although translocation of Bax to mitochondria was also seen, it was not integrated into the mitochondrial membrane. Treatment of transgenic mice with doxorubicin failed to induce apoptosis, in contrast to controls, showing that the prosurvival response protected cardiomyocytes from a death stimulus. Increased apoptosis and release of cytochrome c appeared to precede the establishment of the prosurvival state suggesting that it may reflect a response to activation of programmed cell death pathways. It has been proposed that a programmed cell survival response is activated in the failing and aging heart. We show that elevated frequencies of mtDNA mutations may serve as one trigger for the activation of such a response.
Collapse
Affiliation(s)
- Dekui Zhang
- Saint Louis University Health Science Center, Department of Molecular Microbiology and Immunology, St. Louis, Missouri 63104, USA
| | | | | | | | | | | |
Collapse
|
35
|
Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B, Andrews DW. Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J 2005; 24:2096-103. [PMID: 15920484 PMCID: PMC1150878 DOI: 10.1038/sj.emboj.7600675] [Citation(s) in RCA: 306] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 04/15/2005] [Indexed: 11/09/2022] Open
Abstract
Bax promotes cell death by permeabilizing mitochondrial outer membranes by an unresolved mechanism. However, in cells lacking the gene c-myc, membrane permeabilization by Bax is blocked by changes in the mitochondria that prevent Bax oligomerization. Drug-treated c-myc null cells and cells expressing Myc were used to map the topology of Bax in membranes prior to and after mitochondrial permeabilization. Chemical labeling of single cysteine mutants of Bax using a membrane bilayer impermeant cysteine-specific modifying agent revealed that Bax inserted both the 'pore domain' (helices alpha5-alpha6), and the tail-anchor (helix alpha9) into membranes prior to oligomerization and membrane permeabilization. Additional topology changes for Bax were not required in Myc-expressing cells to promote oligomerization and cytochrome c release. Our results suggest that unlike most pore-forming proteins, Bax membrane permeabilization results from oligomerization of transmembrane monomers rather than concerted insertion of the pore domains of a preformed oligomer.
Collapse
Affiliation(s)
- Matthew G Annis
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Paulina J Dlugosz
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jorge A Cruz-Aguado
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Linda Z Penn
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David W Andrews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry, McMaster University, Health Sciences Center, 4H41B, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5. Tel.: +1 905 525 9140 ext 22075; Fax: +1 905 522 9033; E-mail:
| |
Collapse
|
36
|
Abstract
HSP60 has primarily been known as a mitochondrial protein that is important for folding key proteins after import into the mitochondria. It is now clear that a significant amount of HSP60 is also present in the extra-mitochondrial cytosol of many cells. In the heart, this cytosolic HSP60 complexes with Bax, Bak and Bcl-XL, but not with Bcl-2. Reduction in HSP60 expression precipitates apoptosis, but does not alter mitochondrial function. During hypoxia, HSP60 cellular distribution changes, with HSP60 leaving the cytosol, and translocating to the plasma membrane. Total cellular HSP60 does not change until 10 h of reoxygenation; however, release of cytochrome c from the mitochondria occurs prior to reoxygenation, coinciding with the redistribution of HSP60. The changes in HSP60, Bax and cytochrome c during hypoxia can be replicated by ATP depletion. HSP60 has also been shown to accelerate the cleavage of pro-caspase3. Thus, HSP60 has a complex role in apoptosis in the cell. Its binding to Bax under normal conditions suggests a key regulatory role in apoptosis.
Collapse
Affiliation(s)
- S. Gupta
- Molecular and Cellular Cardiology, Department of Medicine, University of California, Davis, CA and VA Medical Center, Sacramento, CA, USA
| | - A. A. Knowlton
- Molecular and Cellular Cardiology, Department of Medicine, University of California, Davis, CA and VA Medical Center, Sacramento, CA, USA
| |
Collapse
|
37
|
Shiau CW, Yang CC, Kulp SK, Chen KF, Chen CS, Huang JW, Chen CS. Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARgamma. Cancer Res 2005; 65:1561-9. [PMID: 15735046 DOI: 10.1158/0008-5472.can-04-1677] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Certain members of the thiazolidenedione family of the peroxisome proliferator-activated receptor gamma (PPARgamma) agonists, such as troglitazone and ciglitazone, exhibit antitumor effects; however, the underlying mechanism remains inconclusive. This study shows that the effect of these thiazolidenedione members on apoptosis in prostate cancer cells is independent of PPARgamma activation. First, close structural analogues of thiazolidenediones, whereas devoid of PPARgamma activity, retain the ability to induce apoptosis with equal potency. Second, both PC-3 (PPARgamma-expressing) and LNCaP (PPARgamma-deficient) cells are sensitive to apoptosis induction by troglitazone and its PPARgamma-inactive analogue irrespective of their PPARgamma expression status. Third, rosiglitazone and pioglitazone, potent PPARgamma agonists, show marginal effects on apoptosis even at high concentrations. Evidence indicates that the apoptotic effect of troglitazone, ciglitazone, and their PPARgamma-inactive analogues 5-[4-(6-hydroxy-2,5,7,8-tetramethyl-chroman-2-ylmethoxy)-benzylidene]-2,4-thiazolidine-dione (Delta2-TG) and 5-[4-(1-methyl-cyclohexylmethoxy)-benzylidene]-thiazolidine-2,4-dione, respectively, is in part attributable to their ability to inhibit the anti-apoptotic functions of Bcl-xL and Bcl-2. Treatment of PC-3 cells with troglitazone or Delta2-TG led to reduced association of Bcl-2 and Bcl-xL with Bak, leading to caspase-dependent apoptosis. Bcl-xL overexpression protects LNCaP cells from apoptosis induction by troglitazone and Delta2-TG in an expression level-dependent manner. Considering the pivotal role of Bcl-xL/Bcl-2 in regulating mitochondrial integrity, this new mode of mechanism provides a framework to account for the PPARgamma-independent action of thiazolidenediones in inducing apoptosis in cancer cells. Moreover, dissociation of these two pharmacologic activities provides a molecular basis to develop novel Bcl-xL/Bcl-2 inhibitors, of which the proof of principle is illustrated by a Delta2-TG analogue with potent in vivo antitumor activities.
Collapse
Affiliation(s)
- Chung-Wai Shiau
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Cartron PF, Arokium H, Oliver L, Meflah K, Manon S, Vallette FM. Distinct Domains Control the Addressing and the Insertion of Bax into Mitochondria. J Biol Chem 2005; 280:10587-98. [PMID: 15590655 DOI: 10.1074/jbc.m409714200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translocation of Bax from the cytosol into the mitochondrial outer membrane is a central event during apoptosis. We report that beyond the addressing step, which involves its first alpha-helix (halpha1), the helices alpha5 and alpha6 (halpha5alpha6) are responsible for the insertion of Bax into mitochondrial outer membrane bilayer. The translocation of Bax to mitochondria is associated with specific changes in the conformation of the protein that are under the control of two prolines: Pro-13, which controls the unfolding of halpha1, and Pro-168, a proline located immediately before the hydrophobic carboxyl-terminal end (i.e. helix alpha9, halpha9), which controls the disclosure of halpha5alpha6. An additional step, the disruption of an electrostatic bond formed between Asp-33 (halpha1) and Lys-64 (BH3), allows the mitochondria addressing of Bax. We conclude that, although the intramolecular interactions of halpha1 with the BH3 region control the addressing of Bax to mitochondria, the Pro-168 is involved in the control of its membrane insertion through halpha5alpha6.
Collapse
Affiliation(s)
- Pierre-François Cartron
- Unité Mixte de Recherche 601 INSERM/Université de Nantes, Institut Fédératif de Recherche 26, Equipe 4, Apoptosis & Tumor Progression (Equipe Labellisée Ligue) 9, Quai Moncousu, 44035 Nantes, Cedex 01, France
| | | | | | | | | | | |
Collapse
|
39
|
Jamerson MH, Johnson MD, Korsmeyer SJ, Furth PA, Dickson RB. Bax regulates c-Myc-induced mammary tumour apoptosis but not proliferation in MMTV-c-myc transgenic mice. Br J Cancer 2004; 91:1372-9. [PMID: 15354213 PMCID: PMC2409914 DOI: 10.1038/sj.bjc.6602137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The expression of the proto-oncogene c-myc is frequently deregulated, via multiple mechanisms, in human breast cancers. Deregulated expression of c-myc contributes to mammary epithelial cell transformation and is causally involved in mammary tumorigenesis in MMTV-c-myc transgenic mice. c-Myc is known to promote cellular proliferation, apoptosis, genomic instability and tumorigenesis in several distinct tissues, both in vivo and in vitro. Expression of the proapoptotic regulatory gene bax is reduced or absent in human breast cancers, and c-Myc has been shown to regulate the expression of Bax, as well as cooperate with Bax in controlling apoptosis in a fibroblast model. Additionally, loss of bax reduces c-Myc-induced apoptosis in lymphoid cells and increases c-Myc-mediated lymphomagenesis in vivo. In order to assess whether loss of bax could influence c-Myc-induced apoptosis and tumorigenesis in the mammary gland in vivo, we generated MMTV-c-myc transgenic mice in which neither, one, or both wild-type alleles of bax were eliminated. Haploid loss of bax in MMTV-c-myc transgenic mice resulted in significantly reduced mammary tumour apoptosis. As anticipated for an apoptosis-regulatory gene, loss of the wild-type bax alleles did not significantly alter cellular proliferation in either mammary adenocarcinomas or dysplastic mammary tissues. However, in contrast to c-Myc-mediated lymphomagenesis, loss of one or both alleles of bax in MMTV-c-myc transgenic mice did not significantly enhance mammary tumorigenesis, despite evidence that haploid loss of bax might modestly increase mammary tumour multiplicity. Our results demonstrate that Bax contributes significantly to c-Myc-induced apoptosis in mammary tumours. In addition, they suggest that in contrast to c-Myc-induced lymphomagenesis, mammary tumorigenesis induced by deregulated c-myc expression requires some amount of Bax expression.
Collapse
Affiliation(s)
- M H Jamerson
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, DC 20057, USA
| | - M D Johnson
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, DC 20057, USA
| | - S J Korsmeyer
- Department of Cancer Immunology and AIDS and Howard Hughes Medical Institute, Dana Farber Cancer Institute, Harvard University, 44 Binney Street, Boston, MA 02115, USA
| | - P A Furth
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, DC 20057, USA
| | - R B Dickson
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, DC 20057, USA
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, DC 20057, USA. E-mail:
| |
Collapse
|
40
|
Abstract
The factors affecting T cell viability vary depending on the type and status of the T cell involved. Naive T cells die via a Bcl-2/Bim dependent route. Their deaths are prevented in animals by IL-7 and contact with MHC. Activated T cells die in many different ways. Among these is a pathway involving signals that come from outside the T cell and affect it via surface receptors such as Fas. Activated T cells also die through a pathway driven by signals generated within the T cell itself, a cell autonomous route. This pathway involves members of the Bcl-2 family, in particular Bcl-2, Bcl-xl, Bim, and probably Bak. The viability of CD8+ and CD4+ memory T cells is controlled in different ways. CD8+ memory T cells are maintained by IL-15 and IL-7. The control of CD4+ memory T cells is more mysterious, with roles reported for IL-7 and/or contact via the TCR.
Collapse
Affiliation(s)
- Philippa Marrack
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Medical and Research Center, and Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80206, USA.
| | | |
Collapse
|
41
|
Chae HJ, Kim HR, Xu C, Bailly-Maitre B, Krajewska M, Krajewski S, Banares S, Cui J, Digicaylioglu M, Ke N, Kitada S, Monosov E, Thomas M, Kress CL, Babendure JR, Tsien RY, Lipton SA, Reed JC. BI-1 Regulates an Apoptosis Pathway Linked to Endoplasmic Reticulum Stress. Mol Cell 2004; 15:355-66. [PMID: 15304216 DOI: 10.1016/j.molcel.2004.06.038] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 05/26/2004] [Accepted: 05/28/2004] [Indexed: 12/25/2022]
Abstract
Bax inhibitor-1 (BI-1) is an evolutionarily conserved endoplasmic reticulum (ER) protein that suppresses cell death in both animal and plant cells. We characterized mice in which the bi-1 gene was ablated. Cells from BI-1-deficient mice, including fibroblasts, hepatocytes, and neurons, display selective hypersensitivity to apoptosis induced by ER stress agents (thapsigargin, tunicamycin, brefeldin A), but not to stimulators of mitochondrial or TNF/Fas-death receptor apoptosis pathways. Conversely, BI-1 overexpression protects against apoptosis induced by ER stress. BI-1-mediated protection from apoptosis induced by ER stress correlated with inhibition of Bax activation and translocation to mitochondria, preservation of mitochondrial membrane potential, and suppression of caspase activation. BI-1 overexpression also reduces releasable Ca(2+) from the ER. In vivo, bi-1(-/-) mice exhibit increased sensitivity to tissue damage induced by stimuli that trigger ER stress, including stroke and tunicamycin injection. Thus, BI-1 regulates a cell death pathway important for cytopreservation during ER stress.
Collapse
Affiliation(s)
- Han-Jung Chae
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mc Gee MM, Greene LM, Ledwidge S, Campiani G, Nacci V, Lawler M, Williams DC, Zisterer DM. Selective induction of apoptosis by the pyrrolo-1,5-benzoxazepine 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) in Leukemia cells occurs via the c-Jun NH2-terminal kinase-dependent phosphorylation and inactivation of Bcl-2 and Bcl-XL. J Pharmacol Exp Ther 2004; 310:1084-95. [PMID: 15143129 DOI: 10.1124/jpet.104.067561] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.
Collapse
|
43
|
Benimetskaya L, Stein CA. Antisense therapy: recent advances and relevance to prostate cancer. ACTA ACUST UNITED AC 2004; 1:20-30. [PMID: 15046709 DOI: 10.3816/cgc.2002.n.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Currently employed treatment options for patients with advanced and metastatic cancer such as surgery, radiation, hormone therapy, and chemotherapy are limited. In particular, the well known limitations of chemotherapy are at least in part due to a lack of specificity. The activation of dominant oncogenes and inactivation of tumor suppressor genes may represent novel targets for cancer therapy. Antisense therapy has been widely used to specifically and selectively inhibit the expression of selected genes at the messenger RNA level. Combinations of antisense oligonucleotides with chemotherapeutic agents may offer important advantages in cancer treatment. Several antisense drugs, especially oblimersen (G3139), have shown interesting results in experiments in animals, and have entered clinical trials. However, control oligonucleotides must be carefully chosen to separate antisense effects from the many potential nonspecific effects of oligonucleotides. This review summarizes the advantages and limitations of antisense therapy and its use in the treatment of androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Luba Benimetskaya
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
44
|
Heimlich G, McKinnon AD, Bernardo K, Brdiczka D, Reed JC, Kain R, Krönke M, Jürgensmeier JM. Bax-induced cytochrome c release from mitochondria depends on alpha-helices-5 and -6. Biochem J 2004; 378:247-55. [PMID: 14614769 PMCID: PMC1223939 DOI: 10.1042/bj20031152] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 10/31/2003] [Accepted: 11/13/2003] [Indexed: 01/21/2023]
Abstract
The pro-apoptotic protein Bax plays a key role in the mitochondrial signalling pathway. Upon induction of apoptosis, Bax undergoes a conformational change and translocates to mitochondrial membranes, where it inserts and mediates the release of cytochrome c from the intermembrane space into the cytosol. However, the domains of Bax that are essential for the induction of cytochrome c release are still elusive. Therefore various Bax deletion mutants were generated and expressed in Escherichia coli. The proteins were then purified in order to delineate the function of the transmembrane domain, the BH3 (Bcl-2 homology 3) domain and the putative pore-forming alpha-helices-5 and -6. These proteins were used to analyse the mechanism of Bax-induced cytochrome c release from mitochondria. None of the Bax proteins caused cytochrome c release merely through physical perturbation of the mitochondrial outer membrane. The alpha-helices-5 and -6 of Bax were shown to mediate the insertion of the protein into mitochondrial membranes and to be essential for the cytochrome c -releasing activity of Bax. In contrast, neither the transmembrane domain nor a functional BH3 domain is required for the Bax-mediated release of cytochrome c from mitochondria.
Collapse
Affiliation(s)
- Gerd Heimlich
- Institute for Medical Microbiology, Immunology and Hygiene, University of Köln, 50935 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Deaciuc IV, D'Souza NB, Burikhanov R, Nasser MS, Voskresensky IV, De Villiers WJS, McClain CJ. Alcohol, but not lipopolysaccharide-induced liver apoptosis involves changes in intracellular compartmentalization of apoptotic regulators. Alcohol Clin Exp Res 2004. [PMID: 14745315 DOI: 10.1111/j.1530-0277.2004.tb02981.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND While alcohol-induced augmentation of liver apoptosis has been demonstrated in humans and laboratory animals, the underlying mechanisms are not fully elucidated. This study addresses the question whether alcohol and bacterial lipopolysaccharide (LPS), a putative mediator of alcohol effects on the liver, induce augmentation of liver apoptosis by intrinsic or extrinsic signaling pathways. This information may prove important for future design of therapies for alcoholic liver disease. METHODS Male rats were fed either an alcohol-containing liquid diet or an isocaloric, control diet for 15-16 weeks. At the end of feeding period, the rats were treated with LPS (0.8 mg.kg-1 body weight) or sterile saline and killed 3 and 24 hr later. The liver and blood were sampled for histology and biochemical assays. Hepatocytes were isolated by collagenase perfusion and fractionated to yield mitochondria and cytoplasm. The propensity of mitochondria to undergo permeability transition in the presence of a Ca2+ overload was determined along with distribution of various apoptotic regulators (AIF, Smac2, Bax, cytochrome c, Bcl-XL, Bfl-1, and caspase-2) between mitochondria and cytoplasmic fractions. RESULTS Increased liver apoptosis in alcohol-treated rats was associated with translocation of several apoptotic regulators between mitochondria and cytoplasm in a manner suggesting that alcohol induces augmentation of apoptosis by recruiting intrinsic apoptotic signals. LPS treatment of rats counteracted alcohol-induced changes in intracellular compartmentalization of apoptotic regulators despite an increased rate of apoptosis. LPS may, therefore, recruit extrinsic apoptotic signals, such as proinflammatory cytokines. CONCLUSIONS Hepatocytes are to be able to mount an apoptotic response to both intrinsic and extrinsic signals. Alcohol increases liver apoptosis predominantly through an intrinsic signaling pathway while LPS recruits extrinsic signaling pathways.
Collapse
Affiliation(s)
- Ion V Deaciuc
- Division of Gastroenterology/Hepatology, College of Medicine, University of Louisville, Louisville, KY, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Girard-Egrot A, Chauvet JP, Gillet G, Moradi-Améli M. Specific interaction of the antiapoptotic protein Nr-13 with phospholipid monolayers is prevented by the BH3 domain of Bax. J Mol Biol 2004; 335:321-31. [PMID: 14659760 DOI: 10.1016/j.jmb.2003.10.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the Bcl-2 protein family regulate apoptosis by controlling the release of apoptogenic proteins such as cytochrome c from the mitochondrial intermembrane space. Proapoptotic members induce release by increasing outer membrane permeability, while antiapoptotic members prevent this. The activity of Bcl-2 proteins depends mostly on their insertion into the mitochondrial membrane, which is reported to occur via putative channels formed by the two central hydrophobic helices. The pro- and antiapoptotic activity of Bcl-2 proteins can also be modulated by heterodimerization between antagonists through the BH3 domain of proapoptotic members, though the position of the heterodimer with respect to the membrane has never been elucidated. In this work, the membrane insertion capacity of the antiapoptotic Bcl-2 related protein Nr-13 was explored, using monolayer expansion measurements. Nr-13 penetrates into the monolayer with a molecular cross-section of 1100A(2), thereby implicating almost all alpha-helical domains of the molecule in this process. A mutant protein, bearing neutral instead of acidic residues in the loop between the two putative channel-forming fifth and sixth alpha-helices, retained the ability to interact with the lipid monolayer, suggesting that the membrane insertion of Nr-13 is not exclusively alpha5-alpha6-dependent. In contrast, the specific interaction of Nr-13 with the monolayer was prevented by heterodimer formation with the BH3 domain of proapoptotic Bax. These findings are discussed in terms of a model for monolayer insertion in which the antiapoptotic Nr-13 and proapoptotic proteins exert their antagonistic effects by preventing each other from reaching the membrane.
Collapse
Affiliation(s)
- Agnès Girard-Egrot
- Laboratoire de Génie Enzymatique et Biomoléculaire, CNRS-UCBL UMR 5013, 43, Bd du 11 November 1918, 69622 cedex, Villeubanne, France
| | | | | | | |
Collapse
|
47
|
Alcohol, But Not Lipopolysaccharide-Induced Liver Apoptosis Involves Changes in Intracellular Compartmentalization of Apoptotic Regulators. Alcohol Clin Exp Res 2004. [DOI: 10.1097/00000374-200401000-00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Sulistijo ES, Jaszewski TM, MacKenzie KR. Sequence-specific dimerization of the transmembrane domain of the "BH3-only" protein BNIP3 in membranes and detergent. J Biol Chem 2003; 278:51950-6. [PMID: 14532263 DOI: 10.1074/jbc.m308429200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondria-mediated apoptosis is regulated by proteins of the Bcl-2 superfamily, most of which contain a C-terminal hydrophobic domain that plays a role in membrane targeting. Experiments with BNIP3 have implicated the transmembrane (TM) domain in its proapoptotic function, homodimerization, and interactions with Bcl-2 and Bcl-xL. We show that the BNIP3 TM domain self-associates strongly in Escherichia coli cell membranes and causes reversible dimerization of a soluble protein in the detergent SDS when expressed as an in-frame fusion. Limited mutational analysis identifies specific residues that are critical for BNIP3 TM self-association in membranes, and these residues are also important for dimerization in SDS micelles, suggesting that the self-association observed in membranes is preserved in detergent. The effects of sequence changes at positions Ala176 and Gly180 suggest that the BNIP3 TM domain associates using a variant of the GXXXG motif previously shown to be important in the dimerization of glycophorin A. The importance of residue His173 in BNIP3 TM domain dimerization indicates that polar residues, which have been implicated in self-association of model TM peptides, can act in concert with the AXXXG motif to stabilize TM domain interactions. Our results demonstrate that the hydrophobic C-terminal TM domain of the pro-apoptotic BNIP3 protein dimerizes tightly in lipidic environments, and that this association has a strong sequence dependence but is independent of the identity of flanking regions. Thus, the transmembrane domain represents another region of the Bcl-2 superfamily of proteins that is capable of mediating strong and specific protein-protein interactions.
Collapse
Affiliation(s)
- Endah S Sulistijo
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
49
|
Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 2003; 423:456-61. [PMID: 12732850 DOI: 10.1038/nature01627] [Citation(s) in RCA: 474] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 03/31/2003] [Indexed: 12/20/2022]
Abstract
Bax (Bcl2-associated X protein) is an apoptosis-inducing protein that participates in cell death during normal development and in various diseases. Bax resides in an inactive state in the cytosol of many cells. In response to death stimuli, Bax protein undergoes conformational changes that expose membrane-targeting domains, resulting in its translocation to mitochondrial membranes, where Bax inserts and causes release of cytochrome c and other apoptogenic proteins. It is unknown what controls conversion of Bax from the inactive to active conformation. Here we show that Bax interacts with humanin (HN), an anti-apoptotic peptide of 24 amino acids encoded in mammalian genomes. HN prevents the translocation of Bax from cytosol to mitochondria. Conversely, reducing HN expression by small interfering RNAs sensitizes cells to Bax and increases Bax translocation to membranes. HN peptides also block Bax association with isolated mitochondria, and suppress cytochrome c release in vitro. Notably, the mitochondrial genome contains an identical open reading frame, and the mitochondrial version of HN can also bind and suppress Bax. We speculate therefore that HN arose from mitochondria and transferred to the nuclear genome, providing a mechanism for protecting these organelles from Bax.
Collapse
Affiliation(s)
- Bin Guo
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Sun YF, Yu LY, Saarma M, Arumäe U. Mutational analysis of N-Bak reveals different structural requirements for antiapoptotic activity in neurons and proapoptotic activity in nonneuronal cells. Mol Cell Neurosci 2003; 23:134-43. [PMID: 12799143 DOI: 10.1016/s1044-7431(03)00023-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
N-Bak, a neuron-specific BH3-only splice variant of Bak, is proapoptotic when overexpressed in nonneuronal cells, but antiapoptotic in NGF-deprived sympathetic neurons. We generated mutants of N-Bak and compared their activities in COS-7 or Neuro2A cells to those in NGF-deprived sympathetic neurons. A C-terminal deletion shortly after the BH3 domain of N-Bak compromised its neuroprotective activity but had little effect on its cytotoxic activity in nonneuronal cells. Amino acid changes in the BH3 domain of N-Bak differently affected its function in nonneuronal cells and in neurons. The same changes in the BH3 domain of longer Bak isoform affected its function similarly in nonneuronal cells and neurons. C-terminally truncated Bax, a structural analogue of N-Bak, was also neuroprotective, whereas Blk, a different BH3-only protein was apoptotic in neurons. Thus, neuron-specific antiapoptotic interactions require a "N-Bak-type" conformation, not just a BH3 domain, whereas the presence of a BH3 domain in the Bak protein is sufficient to kill nonneuronal cells.
Collapse
Affiliation(s)
- Yun-Fu Sun
- Program in Molecular Neurobiology, Institute of Biotechnology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Finland
| | | | | | | |
Collapse
|