1
|
Li P, Chen L, Liu J. Network pharmacology and molecular docking approach to elucidate the mechanisms of safflower, phellodendron, scutellaria baicalensis, coptis, and gardenia in hand-foot syndrome. Front Med (Lausanne) 2024; 11:1454776. [PMID: 39355840 PMCID: PMC11443508 DOI: 10.3389/fmed.2024.1454776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Background Safflower, phellodendron, scutellaria baicalensis, coptis, and gardenia (SPSCG) are medicinal plants with a wide range of anti-inflammatory and antioxidant effects. However, the related mechanism of SPSCG against hand-foot syndrome (HFS) has yet to be revealed. Objective To investigate the mechanisms of SPSCG in the treatment of HFS using the Network Pharmacology. Methods Active ingredients and targets of SPSCG for HFS were screened by the Chinese Medicine Systems Pharmacology (TCMSP) and Swiss Target Prediction databases. Potential therapeutic targets were collected from the GeneCards and OMIM databases. Subsequently, protein-protein interactions (PPI), Gene Ontology (GO) annotations, and pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to investigate the potential mechanism of the SPSCG in HFS. Then, molecular docking and molecular dynamics simulations were performed to predict the binding interactions between the active compound and the core target. Finally, vitro experiments were used to verify the repair effect of key ingredients of SPSCG on cell damage caused by 5-Fluorouracil. Results Quercetin, kaempferol, β-sitosterol, and stigmasterol were identified as the major active components of SPSCG. GO analysis showed a total of 1,127 biological processes, 42 terms cellular components, and 57 molecular functions. KEGG analysis showed that the MAPK, TNF, and IL-17 signaling pathways were significantly enriched. The PPI analysis discovered that EGFR, CASP3, AKT1, CCND1, and CTNNB1 shared the highest centrality among all target genes. The experimental results confirmed that these SPSCG active ingredients could treat HFS by reducing inflammation reaction and promoting cell damage repair. Conclusion SPSCG may alleviate HFS by exerting antioxidative effects and suppressing inflammatory responses.
Collapse
Affiliation(s)
- Pengxing Li
- Department of Gastrointestinal Surgery, Shaowu Municiple Hospital of Fujian Province, Nanping, China
| | - Lizhu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jianhui Liu
- Department of Traditional Chinese Medicine, Shaowu Municiple Hospital of Fujian Province, Nanping, China
| |
Collapse
|
2
|
Jin Y, Zhou P, Huang S, Shao C, Huang D, Su X, Yang R, Jiang J, Wu J. Cucurbitacin B Inhibits the Proliferation of WPMY-1 Cells and HPRF Cells via the p53/MDM2 Axis. Int J Mol Sci 2024; 25:9333. [PMID: 39273281 PMCID: PMC11395236 DOI: 10.3390/ijms25179333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Modern research has shown that Cucurbitacin B (Cu B) possesses various biological activities such as liver protection, anti-inflammatory, and anti-tumor effects. However, the majority of research has primarily concentrated on its hepatoprotective effects, with limited attention devoted to exploring its potential impact on the prostate. Our research indicates that Cu B effectively inhibits the proliferation of human prostate stromal cells (WPMY-1) and fibroblasts (HPRF), while triggering apoptosis in prostate cells. When treated with 100 nM Cu B, the apoptosis rates of WPMY-1 and HPRF cells reached 51.73 ± 5.38% and 26.83 ± 0.40%, respectively. In addition, the cell cycle assay showed that Cu B had a G2/M phase cycle arrest effect on WPMY-1 cells. Based on RNA-sequencing analysis, Cu B might inhibit prostate cell proliferation via the p53 signaling pathway. Subsequently, the related gene and protein expression levels were measured using quantitative real-time PCR (RT-qPCR), immunocytochemistry (ICC), and enzyme-linked immunosorbent assays (ELISA). Our results mirrored the regulation of tumor protein p53 (TP53), mouse double minute-2 (MDM2), cyclin D1 (CCND1), and thrombospondin 1 (THBS1) in Cu B-induced prostate cell apoptosis. Altogether, Cu B may inhibit prostate cell proliferation and correlate to the modulation of the p53/MDM2 signaling cascade.
Collapse
Affiliation(s)
- Yangtao Jin
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Ping Zhou
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Sisi Huang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Congcong Shao
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Dongyan Huang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Xin Su
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Rongfu Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Juan Jiang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Jianhui Wu
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| |
Collapse
|
3
|
Li D, Zhou L, Liu Z, Zhang Z, Mao W, Shi W, Zhu M, Wang F, Wan Y. FTO demethylates regulates cell-cycle progression by controlling CCND1 expression in luteinizing goat granulosa cells. Theriogenology 2024; 216:20-29. [PMID: 38154203 DOI: 10.1016/j.theriogenology.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
In mammals, N6-methyladenosine (m6A) stands out as one of the most abundant internal mRNA modifications and plays a crucial role in follicular development. Nonetheless, the precise mechanism by which the demethylase FTO regulates the progression of the goat luteinizing granulosa cells (LGCs) cycle remains to be elucidated. In our study, we primarily assessed the protein and mRNA expression levels of genes using Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR), cell proliferation via EdU, cell viability with CCK-8, and apoptosis and cell cycle progression through flow cytometry. Here, the results demonstrated that knockdown of FTO significantly enhanced apoptosis, impeded cell proliferation, and increased autophagy levels in goat LGCs. Furthermore, the silencing of FTO substantially reduced cyclin D1 (CCND1) expression through the recognition and degradation of YTHDF2, consequently prolonging the cell cycle progression. This study sheds light on the mechanism by which FTO demethylation governs cell cycle progression by controlling the expression of CCND1 in goat LGCs, underscoring the dynamic role of m6A modification in the regulation of cell cycle progression.
Collapse
Affiliation(s)
- Dongxu Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Zhou
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weijia Mao
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangwang Shi
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Minghui Zhu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Bestepe F, Ghanem GF, Fritsche CM, Weston J, Sahay S, Mauro AK, Sahu P, Tas SM, Ruemmele B, Persing S, Good ME, Chatterjee A, Huggins GS, Salehi P, Icli B. MicroRNA-409-3p/BTG2 signaling axis improves impaired angiogenesis and wound healing in obese mice. FASEB J 2024; 38:e23459. [PMID: 38329343 DOI: 10.1096/fj.202302124rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Wound healing is facilitated by neoangiogenesis, a complex process that is essential to tissue repair in response to injury. MicroRNAs are small, noncoding RNAs that can regulate the wound healing process including stimulation of impaired angiogenesis that is associated with type-2 diabetes (T2D). Expression of miR-409-3p was significantly increased in the nonhealing skin wounds of patients with T2D compared to the non-wounded normal skin, and in the skin of a murine model with T2D. In response to high glucose, neutralization of miR-409-3p markedly improved EC growth and migration in human umbilical vein endothelial cells (HUVECs), promoted wound closure and angiogenesis as measured by increased CD31 in human skin organoids, while overexpression attenuated EC angiogenic responses. Bulk mRNA-Seq transcriptomic profiling revealed BTG2 as a target of miR-409-3p, where overexpression of miR-409-3p significantly decreased BTG2 mRNA and protein expression. A 3' untranslated region (3'-UTR) luciferase assay of BTG2 revealed decreased luciferase activity with overexpression of miR-409-3p, while inhibition had opposite effects. Mechanistically, in response to high glucose, miR-409-3p deficiency in ECs resulted in increased mTOR phosphorylation, meanwhile BTG-anti-proliferation factor 2 (BTG2) silencing significantly decreased mTOR phosphorylation. Endothelial-specific and tamoxifen-inducible miR-409-3p knockout mice (MiR-409IndECKO ) with hyperglycemia that underwent dorsal skin wounding showed significant improvement of wound closure, increased blood flow, granulation tissue thickness (GTT), and CD31 that correlated with increased BTG2 expression. Taken together, our results show that miR-409-3p is a critical mediator of impaired angiogenesis in diabetic skin wound healing.
Collapse
Affiliation(s)
- Furkan Bestepe
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - George F Ghanem
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Colette M Fritsche
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - James Weston
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Sumedha Sahay
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Amanda K Mauro
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Parul Sahu
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Sude M Tas
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brooke Ruemmele
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Sarah Persing
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Miranda E Good
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Abhishek Chatterjee
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Gordon S Huggins
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Payam Salehi
- Division of Vascular Surgery, Cardiovascular Center, Tufts Medical Center, Boston, Massachusetts, USA
| | - Basak Icli
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Lluch A, Latorre J, Serena-Maione A, Espadas I, Caballano-Infantes E, Moreno-Navarrete JM, Oliveras-Cañellas N, Ricart W, Malagón MM, Martin-Montalvo A, Birchmeier W, Szymanski W, Graumann J, Gómez-Serrano M, Sommariva E, Fernández-Real JM, Ortega FJ. Impaired Plakophilin-2 in obesity breaks cell cycle dynamics to breed adipocyte senescence. Nat Commun 2023; 14:5106. [PMID: 37607954 PMCID: PMC10444784 DOI: 10.1038/s41467-023-40596-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Plakophilin-2 (PKP2) is a key component of desmosomes, which, when defective, is known to promote the fibro-fatty infiltration of heart muscle. Less attention has been given to its role in adipose tissue. We report here that levels of PKP2 steadily increase during fat cell differentiation, and are compromised if adipocytes are exposed to a pro-inflammatory milieu. Accordingly, expression of PKP2 in subcutaneous adipose tissue diminishes in patients with obesity, and normalizes upon mild-to-intense weight loss. We further show defective PKP2 in adipocytes to break cell cycle dynamics and yield premature senescence, a key rheostat for stress-induced adipose tissue dysfunction. Conversely, restoring PKP2 in inflamed adipocytes rewires E2F signaling towards the re-activation of cell cycle and decreased senescence. Our findings connect the expression of PKP2 in fat cells to the physiopathology of obesity, as well as uncover a previously unknown defect in cell cycle and adipocyte senescence due to impaired PKP2.
Collapse
Affiliation(s)
- Aina Lluch
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Angela Serena-Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Isabel Espadas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain
| | - Estefanía Caballano-Infantes
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José M Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María M Malagón
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Cordoba (IMIBIC), University of Cordoba, Reina Sofia University Hospital, Cordoba, Spain
| | - Alejandro Martin-Montalvo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain
| | | | - Witold Szymanski
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - José M Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Francisco J Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain.
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
6
|
Kim M, Park J, Lee H, Lim W, Song G. Bensulide exposure causes cell division cycle arrest and apoptosis in porcine trophectoderm and uterine luminal epithelial cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105460. [PMID: 37248025 DOI: 10.1016/j.pestbp.2023.105460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
As the use of herbicides in agriculture has increased worldwide, the importance of identifying unexpected toxic effects on non-target organisms is emerging. Bensulide is used on various agricultural crops as an organophosphate herbicide; however, it can pose a high risk to non-target organisms because of its long half-life and accumulative potential. Despite its high risk, the hazardous effects of bensulide on implantation and mechanisms in cells have not been reported. Therefore, in this study, intracellular mechanisms and potential risk of implantation failure were identified in porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells derived from pigs with human-like molecular mechanisms in implantation. The LC50 values of bensulide were 5.21 mg/L in pTr cells and 6.49 mg/L in pLE cells. Both cell lines were exposed to bensulide at concentrations <5 mg/L in subsequent experiments. Treatment with 5 mg/L bensulide activated ERK1/2 and JNK. Disrupted mitochondrial membrane potentials of both cell types were identified. In addition, mitochondrial Ca2+ concentration increased to 261.24% and 228.04% in pTr and pLE cells, respectively, and cytoplasmic Ca2+ concentrations decreased by approximately 50% in both cell types. The abnormal regulation of various intracellular environments by bensulide causes cell division cycle arrest and apoptosis. Finally, 5 mg/L bensulide inhibited transcription of implantation-related genes. Collectively, our results suggest that bensulide may interrupt implantation during early pregnancy by disrupting maternal-fetal interaction.
Collapse
Affiliation(s)
- Miji Kim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hojun Lee
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Affiliation(s)
- Sang Hyeon Kim
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - In Ryeong Jung
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Seok Hwang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
- Chronic Intractable Disease Systems Medicine Research Center, Institute of Genetic Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
8
|
Shimizu H, Katsurahara K, Inoue H, Shiozaki A, Kosuga T, Kudou M, Arita T, Konishi H, Komatsu S, Fujiwara H, Morinaga Y, Konishi E, Otsuji E. NADPH Oxidase 2 Has a Crucial Role in Cell Cycle Progression of Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2022; 29:8677-8687. [PMID: 35972670 DOI: 10.1245/s10434-022-12384-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND NADPH oxidases (NOXs) are transmembrane proteins that generate reactive oxygen species. Recent studies have reported that NOXs are involved in tumor progression in various cancers. However, the expression and role of NOX2 in esophageal squamous cell carcinoma (ESCC) remain unclear. This study aimed to clarify the pathophysiologic role of NOX2 in patients with ESCC and cell lines. METHODS Two human ESCC cell lines (TE5 and KYSE170) were used for NOX2 transfection experiments, and the effects on cell proliferation, cell cycle, cell motility, and cell survival were analyzed. An mRNA microarray analysis was also performed to assess gene expression profiles. Additionally, NOX2 immunohistochemistry was performed on 130 primary ESCC tumor samples to assess the prognostic value of NOX2 in patients with ESCC. RESULTS NOX2 depletion significantly inhibited cell proliferation with the G0/G1 arrest and resulted in apoptosis in two cell lines. Microarray analysis revealed a strong relationship between NOX2 gene expression and the signaling pathway of cell cycle regulation by the B-cell translocation gene 2 (BTG2) family, including BTG2, CCNE2, E2F1, and CDK2 genes. Immunohistochemical staining revealed that high NOX2 protein expression was significantly associated with deeper tumor invasion and selected as one of the independent prognostic factors associated with the 5-year OS rate in patients with ESCC. CONCLUSIONS NOX2 expression in ESCC cells affects tumorigenesis, especially cell cycle progression via the BTG2-related signaling pathway, as well as the prognosis of patients with ESCC. NOX2 may be a novel biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keita Katsurahara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyuki Inoue
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiko Morinaga
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
9
|
Model-based translation of DNA damage signaling dynamics across cell types. PLoS Comput Biol 2022; 18:e1010264. [PMID: 35802572 PMCID: PMC9269748 DOI: 10.1371/journal.pcbi.1010264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 12/14/2022] Open
Abstract
Interindividual variability in DNA damage response (DDR) dynamics may evoke differences in susceptibility to cancer. However, pathway dynamics are often studied in cell lines as alternative to primary cells, disregarding variability. To compare DDR dynamics in the cell line HepG2 with primary human hepatocytes (PHHs), we developed a HepG2-based computational model that describes the dynamics of DDR regulator p53 and targets MDM2, p21 and BTG2. We used this model to generate simulations of virtual PHHs and compared the results to those for PHH donor samples. Correlations between baseline p53 and p21 or BTG2 mRNA expression in the absence and presence of DNA damage for HepG2-derived virtual samples matched the moderately positive correlations observed for 50 PHH donor samples, but not the negative correlations between p53 and its inhibitor MDM2. Model parameter manipulation that affected p53 or MDM2 dynamics was not sufficient to accurately explain the negative correlation between these genes. Thus, extrapolation from HepG2 to PHH can be done for some DDR elements, yet our analysis also reveals a knowledge gap within p53 pathway regulation, which makes such extrapolation inaccurate for the regulator MDM2. This illustrates the relevance of studying pathway dynamics in addition to gene expression comparisons to allow reliable translation of cellular responses from cell lines to primary cells. Overall, with our approach we show that dynamical modeling can be used to improve our understanding of the sources of interindividual variability of pathway dynamics. Susceptibility to develop cancer varies among people, partially due to differences in genetic background. Ideally, healthy human-derived cells are used to investigate intracellular signaling pathways and their interindividual variability contributing to cancer susceptibility. Because cells from healthy human tissue are difficult to obtain and culture for periods longer than a few days, cell lines are often used as substitute. However, it is unclear to what extent signaling dynamics in cell lines represent dynamics in healthy human tissue. We asked whether we could reproduce interindividual variability in DNA damage response gene expression in a set of 50 human liver cell donors. Therefore, we built a mathematical model that simulates temporal expression dynamics of the DNA damage response in the HepG2 liver cell line upon chemical activation and used the simulations to create virtual donors. Our virtual donors displayed similar relations between genes as the samples from human donors, provided that we adjusted the strength of specific molecular interactions. Thus, our approach can be used to examine the applicability of widely used cell systems to healthy human tissue in terms of their dynamic responses.
Collapse
|
10
|
Hoffman MJ, Takizawa A, Jensen ES, Schilling R, Grzybowski M, Geurts AM, Dwinell MR. Btg2 mutation induces renal injury and impairs blood pressure control in female rats. Physiol Genomics 2022; 54:231-241. [PMID: 35503009 DOI: 10.1152/physiolgenomics.00167.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypertension (HTN) is a complex disease influenced by heritable genetic elements and environmental interactions. Dietary salt is among the most influential modifiable factors contributing to increased blood pressure (BP). It is well established that men and women develop BP impairment in different patterns and a recent emphasis has been placed on identifying mechanisms leading to the differences observed between the sexes in HTN development. The current work reported here builds on an extensive genetic mapping experiment which sought to identify genetic determinants of salt sensitive (SS) HTN using the Dahl SS rat. BTG anti-proliferation factor 2 (Btg2) was previously identified by our group as a candidate gene contributing to SS HTN in female rats. In the current study, Btg2 was mutated using TALEN targeted gene disruption on the SSBN congenic rat background. The Btg2 mutated rats exhibited impaired BP and proteinuria responses to a high salt diet compared to wild type rats. Differences in body weight, mutant pup viability, skeletal morphology, and adult nephron density suggest a potential role for Btg2 in developmental signaling pathways. Subsequent cell cycle gene expression assessment provides several additional signaling pathways that Btg2 may function through during salt handling in the kidney. The expression analysis also identified several potential upstream targets that can be explored to further isolate therapeutic approaches for SS HTN.
Collapse
Affiliation(s)
- Matthew J Hoffman
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Akiko Takizawa
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Eric S Jensen
- Biomedical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Rebecca Schilling
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael Grzybowski
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aron M Geurts
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Melinda R Dwinell
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
11
|
Thomas AF, Kelly GL, Strasser A. Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ 2022; 29:961-971. [PMID: 35396345 PMCID: PMC9090748 DOI: 10.1038/s41418-022-00996-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The tumour suppressor TP53 is a master regulator of several cellular processes that collectively suppress tumorigenesis. The TP53 gene is mutated in ~50% of human cancers and these defects usually confer poor responses to therapy. The TP53 protein functions as a homo-tetrameric transcription factor, directly regulating the expression of ~500 target genes, some of them involved in cell death, cell cycling, cell senescence, DNA repair and metabolism. Originally, it was thought that the induction of apoptotic cell death was the principal mechanism by which TP53 prevents the development of tumours. However, gene targeted mice lacking the critical effectors of TP53-induced apoptosis (PUMA and NOXA) do not spontaneously develop tumours. Indeed, even mice lacking the critical mediators for TP53-induced apoptosis, G1/S cell cycle arrest and cell senescence, namely PUMA, NOXA and p21, do not spontaneously develop tumours. This suggests that TP53 must activate additional cellular responses to mediate tumour suppression. In this review, we will discuss the processes by which TP53 regulates cell death, cell cycling/cell senescence, DNA damage repair and metabolic adaptation, and place this in context of current understanding of TP53-mediated tumour suppression.
Collapse
Affiliation(s)
- Annabella F Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Zhang L, Wang X. Lowly expressed LNC01136 fails to aid HIF-1α to induce BTG2 expression resulting in increased proliferation of retinal microvascular endothelial cells. Microvasc Res 2022; 141:104315. [PMID: 35007537 DOI: 10.1016/j.mvr.2022.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Retinal neovascularization (RN), a major cause of blindness occurring in multiple types of ophthalmic diseases, is closely associated with hypoxic conditions. However, the underlying pathological mechanisms of RN have not been fully elucidated. BTG2 is anti-proliferative factor. The up-stream of BTG2 gene within 3000 bp expresses a long non-coding RNA, LNC01136. METHODS we initially compared the expression of BTG2 and LNC01136 in human retinal microvascular endothelial cells (hRMECs) with other eye-associated cells, including Muller cells, ARPE19 cells and RGC-5, in response to a hypoxia mimetic agent (CoCl2). FISH and PCR tests were performed to determine the enrichment of LNC01136 in different cellular components. LNC01136 were overexpressed or knockdown to determine the effect on BTG2 expression. Finally, ChIP, RIP and Co-IP assays were performed to determine the interaction among BTG2, HIF-1α, LNC01136 and CNOT7. RESULTS After the treatment with CoCl2, expression levels of BTG2 and LNC01136 were strongly induced in Muller cells, ARPE19 cells and RGC-5, but weakly in hRMECs. LNC01136 is prominently located in cell nucleus and aids HIF-1α to enhance transcription of BTG2, which consequently inhibits cell growth. The anti-proliferative effect of BTG2 is probably associated to the interaction with CNOT7 and the regulation of multiple cell cycle-related proteins. CONCLUSIONS This study revealed that LNC01136 is a cell growth suppressor by recruiting HIF-1α to induce BTG2 expression. However the low expression of LNC01136 in hRMECs compared to other eye-associated cells promoted hRMECs' proliferation, which is probably a cause of RN under hypoxia.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Ophthalmology, Hunan Children's Hospital, Changsha 410006, PR China
| | - Xilang Wang
- Department of Ophthalmology, Hunan Children's Hospital, Changsha 410006, PR China.
| |
Collapse
|
13
|
Li B, Liu X, Wu G, Liu J, Cai S, Wang F, Yang C, Liu J. MicroRNA-934 facilitates cell proliferation, migration, invasion and angiogenesis in colorectal cancer by targeting B-cell translocation gene 2. Bioengineered 2021; 12:9507-9519. [PMID: 34699325 PMCID: PMC8809948 DOI: 10.1080/21655979.2021.1996505] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer (CRC) is a global public health issue with increasing prevalence. MicroRNA-934 (miR-934) is a kind of non-coding RNA involved in the regulation of diverse cancers. Though previous researches have revealed part of association between miR-934 and CRC, the role of miR-934 in CRC pathogenesis has not been completely explored yet. In this study, we aim to investigate the effect of miR-934 on cell proliferation, migration, invasion and angiogenesis in CRC. Accordingly, miR-934 was found to be over-expressed in SW480 and HCT116 cells, two typical CRC cell lines. Meanwhile, miR-934 knockdown significantly inhibited cell proliferation and induced cell cycle arrest in SW480 and HCT116 cells. It was further validated that miR-934 knockdown displayed an inhibitory effect on cell migration and invasion in SW480 and HCT116 cells. Additionally, miR-934 deficiency markedly decreased VEGF expression in SW480 and HCT116 cells and suppressed capability of CRC cells to promote tube formation in vascular endothelial cells, which suggests the pro-angiogenesis role of miR-934 in vitro. Dual luciferase reporter assay further showed that miR-934 directly bound to B-cell translocation gene 2 (BTG2). BTG2 knockdown reversed the inhibitory effect of miR-934 silencing on cell proliferation, migration, invasion, and angiogenesis in SW480 and HCT116 cells. In summary, this study suggests that miR-934 facilitates CRC progression by targeting BTG2, and further highlights the role of miR-934 in pathogenesis of CRC.
Collapse
Affiliation(s)
- Bo Li
- Department of General Surgery, Ansteel Group General Hospital, Anshan, Liaoning, China
| | - Xianyi Liu
- Department of General Surgery, Ansteel Group General Hospital, Anshan, Liaoning, China
| | - Guogang Wu
- Department of General Surgery, Ansteel Group General Hospital, Anshan, Liaoning, China
| | - Jiawen Liu
- Department of General Surgery, Ansteel Group General Hospital, Anshan, Liaoning, China
| | - Shouliang Cai
- Department of General Surgery, Ansteel Group General Hospital, Anshan, Liaoning, China
| | - Fuxin Wang
- Department of General Surgery, Ansteel Group General Hospital, Anshan, Liaoning, China
| | - Chunyu Yang
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Jisheng Liu
- Department of General Surgery, Ansteel Group General Hospital, Anshan, Liaoning, China
| |
Collapse
|
14
|
Almasmoum HA, Airhihen B, Seedhouse C, Winkler GS. Frequent loss of BTG1 activity and impaired interactions with the Caf1 subunit of the Ccr4-Not deadenylase in non-Hodgkin lymphoma. Leuk Lymphoma 2020; 62:281-290. [PMID: 33021411 DOI: 10.1080/10428194.2020.1827243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in the highly similar genes B-cell translocation gene 1 (BTG1) and BTG2 are identified in approximately 10-15% of non-Hodgkin lymphoma cases, which may suggest a direct involvement of BTG1 and BTG2 in malignant transformation. However, it is unclear whether or how disease-associated mutations impair the function of these genes. Therefore, we selected 16 BTG1 variants based on in silico analysis. We then evaluated (i) the ability of these variants to interact with the known protein-binding partners CNOT7 and CNOT8, which encode the Caf1 catalytic subunit of the Ccr4-Not deadenylase complex; (ii) the activity of the variant proteins in cell cycle progression; (iii) translational repression; and (iv) mRNA degradation. Based on these analyses, we conclude that mutations in BTG1 may contribute to malignant transformation and tumor cell proliferation by interfering with its anti-proliferative activity and ability to interact with CNOT7 and CNOT8.
Collapse
Affiliation(s)
- Hibah Ali Almasmoum
- School of Pharmacy, The University of Nottingham, University Park, Nottingham, UK.,Department of Haematology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK.,Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Blessing Airhihen
- School of Pharmacy, The University of Nottingham, University Park, Nottingham, UK
| | - Claire Seedhouse
- Department of Haematology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | | |
Collapse
|
15
|
Abels ER, Maas SLN, Nieland L, Wei Z, Cheah PS, Tai E, Kolsteeg CJ, Dusoswa SA, Ting DT, Hickman S, El Khoury J, Krichevsky AM, Broekman MLD, Breakefield XO. Glioblastoma-Associated Microglia Reprogramming Is Mediated by Functional Transfer of Extracellular miR-21. Cell Rep 2020; 28:3105-3119.e7. [PMID: 31533034 PMCID: PMC6817978 DOI: 10.1016/j.celrep.2019.08.036] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/09/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Gliomas are primary, diffusely infiltrating brain tumors. Microglia are innate immune cells in the CNS and make up a substantial portion of the tumor mass. Glioma cells shape their microenvironment, communicating with and reprogramming surrounding cells, resulting in enhanced angiogenesis, immune suppression, and remodeling of the extracellular matrix. Glioma cells communicate with microglia, in part by releasing extracellular vesicles (EVs). Mouse glioma cells stably expressing a palmitoylated GFP to label EVs were implanted intracranially into syngeneic miR-21-null mice. Here, we demonstrate functional delivery of miR-21, regulating specific downstream mRNA targets in microglia after uptake of tumor-derived EVs. These findings attest to EV-dependent microRNA delivery as studied in an in vivo-based model and provide insight into the reprograming of microglial cells by tumor cells to create a favorable microenvironment for cancer progression.
Collapse
Affiliation(s)
- Erik R Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02129, USA.
| | - Sybren L N Maas
- Department of Neurosurgery, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Lisa Nieland
- Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02129, USA
| | - Zhiyun Wei
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pike See Cheah
- Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02129, USA; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Eric Tai
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Christy-Joy Kolsteeg
- Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02129, USA
| | - Sophie A Dusoswa
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunology Institute and Cancer Center Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, the Netherlands
| | - David T Ting
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Suzanne Hickman
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Joseph El Khoury
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Anna M Krichevsky
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marike L D Broekman
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, the Netherlands
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
16
|
Krentz NAJ, Lee MYY, Xu EE, Sproul SLJ, Maslova A, Sasaki S, Lynn FC. Single-Cell Transcriptome Profiling of Mouse and hESC-Derived Pancreatic Progenitors. Stem Cell Reports 2019; 11:1551-1564. [PMID: 30540962 PMCID: PMC6294286 DOI: 10.1016/j.stemcr.2018.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/06/2023] Open
Abstract
Human embryonic stem cells (hESCs) are a potential unlimited source of insulin-producing β cells for diabetes treatment. A greater understanding of how β cells form during embryonic development will improve current hESC differentiation protocols. All pancreatic endocrine cells, including β cells, are derived from Neurog3-expressing endocrine progenitors. This study characterizes the single-cell transcriptomes of 6,905 mouse embryonic day (E) 15.5 and 6,626 E18.5 pancreatic cells isolated from Neurog3-Cre; Rosa26mT/mG embryos, allowing for enrichment of endocrine progenitors (yellow; tdTomato + EGFP) and endocrine cells (green; EGFP). Using a NEUROG3-2A-eGFP CyT49 hESC reporter line (N5-5), 4,462 hESC-derived GFP+ cells were sequenced. Differential expression analysis revealed enrichment of markers that are consistent with progenitor, endocrine, or previously undescribed cell-state populations. This study characterizes the single-cell transcriptomes of mouse and hESC-derived endocrine progenitors and serves as a resource (https://lynnlab.shinyapps.io/embryonic_pancreas) for improving the formation of functional β-like cells from hESCs. Single-cell transcriptome of embryonic mouse pancreas and hESC-derived cells Identification of novel cell types during mouse pancreas development Pseudotime analysis reveals developmental trajectories of endocrine cell lineage hESC-derived endocrine cells resemble immature β cells
Collapse
Affiliation(s)
- Nicole A J Krentz
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada.
| | - Michelle Y Y Lee
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Eric E Xu
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Shannon L J Sproul
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Alexandra Maslova
- Graduate Program in Bioinformatics, University of British Columbia, 100-570 7(th) Avenue West, Vancouver, BC V5Z 4S6, Canada
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada.
| |
Collapse
|
17
|
Ghaemi Z, Soltani BM, Mowla SJ. MicroRNA-326 Functions as a Tumor Suppressor in Breast Cancer by Targeting ErbB/PI3K Signaling Pathway. Front Oncol 2019; 9:653. [PMID: 31417861 PMCID: PMC6682688 DOI: 10.3389/fonc.2019.00653] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/03/2019] [Indexed: 01/04/2023] Open
Abstract
Breast cancer represents the most common malignancy in women worldwide and the ErbB/PI3K pathway has been found to play a crucial role in regulation of the cancer cell growth. MicroRNAs have been implicated in regulating diverse cellular pathways and therefore, understanding the link between the regulatory microRNAs and the ErbB/PI3K signaling pathway could potentially be helpful for breast cancer prevention and treatment. The aim of this study is to examine the regulatory effect of miR-326 on ErbB/PI3K signaling pathway in breast cancer development and progression. The results of qRT-PCR, RNA seq, and array data indicated that miR-326 was remarkably down-regulated in breast tumor tissues and correlated with poor survival outcome. Importantly, very low levels of miR-326 expression were found in aggressive breast cells compared to less-aggressive cell types. Mechanistically, a gene network including EGFR, ErbB2, ErbB3, AKT1, AKT2, and AKT3 targeted by miR-326, thereby providing suppression of ErbB/PI3K pathway, detected by RT-qPCR, and dual luciferase assay. In addition, Western blot analysis revealed that miR-326 upregulation decreased PI3K signaling activity by decreasing total AKT and p-AKT protein level in SKBR3 cell lines. Interestingly, up regulation of ErbB2 rescued the effect of miR-326 on miR-326 target genes. Further functional assays demonstrated that up regulation of miR-326 significantly suppressed cell growth as evidenced by cell cycle, cell cycle associated genes expression, colony formation and MTT assays and induced apoptosis, detected by Annexin V-PI. In addition, EMT markers RT-qPCR, scratch, and Transwell assays showed inhibited cellular migration and invasion following miR-326 upregulation. Altogether, our results revealed that miR-326 play a tumor-suppressive role in breast cancer through inhibiting ErbB/PI3K pathway and miR-326 may serve as a potential therapeutic target for the treatment of patients with breast cancer.
Collapse
Affiliation(s)
| | - Bahram Mohammad Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
18
|
Zhang Y, Chen J, Wu SS, Lv MJ, Yu YS, Tang ZH, Chen XH, Zang GQ. HOXA10 knockdown inhibits proliferation, induces cell cycle arrest and apoptosis in hepatocellular carcinoma cells through HDAC1. Cancer Manag Res 2019; 11:7065-7076. [PMID: 31440094 PMCID: PMC6666378 DOI: 10.2147/cmar.s199239] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Background Homeobox A10 (HOXA10) has been implicated in the development and progression of various human cancers. However, the precise biological functions of HOXA10 in hepatocellular carcinoma (HCC) have not been defined. Methods In this study, we examined mRNA expression by quantitative real-time PCR (qRT-PCR) of HOXA10 as well as histone deacetylase (HDAC) and protein levels by Western blot of HOXA10, HDAC1, Cyclin D1, proliferating cell nuclear antigen (PCNA), Survivin and p53 acetylation in HCC tissues and cell lines. We also assessed cell proliferation using Cell Counting Kit-8 (CCK-8) and analyzed cell cycle by flow cytometry. Furthermore, tumor growth of HCC cells in vivo was monitored using the nude mouse xenograft model. Finally, HDAC1 promoter activity and binding in HCC cell lines were detected by luciferase reporter assay and chromatin immunoprecipitation (ChIP), respectively. Results We uncovered the elevated expression of HOXA10 in HCC tissues compared to adjacent normal liver tissues. RNA interference-mediated knockdown of HOXA10 inhibited HCC cell proliferation both in vitro and in vivo. HOXA10 knockdown also induced cell cycle arrest at G0/G1 phase and apoptosis, which were accompanied with the reduced expression of Cyclin D1, PCNA and Survivin. Notably, HOXA10 knockdown enhanced p53 acetylation (Lys382), which is crucial to the activation of p53. Likewise, HOXA10 knockdown suppressed the transcription of HDAC1, a potential deacetylase for p53. In line with these observations, HDAC1 downregulation abrogated the effects of HOXA10 overexpression on proliferation, cell cycle progression, apoptosis and p53 acetylation, indicating the role of HDAC1 in mediating HOXA10 functions. Conclusion Our results demonstrate that HOXA10 knockdown inhibits proliferation, induces cell cycle arrest and apoptosis in HCC cells by regulating HDAC1 transcription.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Jie Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Shan-Shan Wu
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Meng-Jiao Lv
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Yong-Sheng Yu
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Zheng-Hao Tang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Xiao-Hua Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Guo-Qing Zang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| |
Collapse
|
19
|
Ochiai A, Kuroda K, Ozaki R, Ikemoto Y, Murakami K, Muter J, Matsumoto A, Itakura A, Brosens JJ, Takeda S. Resveratrol inhibits decidualization by accelerating downregulation of the CRABP2-RAR pathway in differentiating human endometrial stromal cells. Cell Death Dis 2019; 10:276. [PMID: 30894514 PMCID: PMC6427032 DOI: 10.1038/s41419-019-1511-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
Pregnancy critically depends on the transformation of the human endometrium into a decidual matrix that controls embryo implantation and placenta formation, a process driven foremost by differentiation and polarization of endometrial stromal cells into mature and senescent decidual cells. Perturbations in the decidual process underpin a spectrum of prevalent reproductive disorders, including implantation failure and early pregnancy loss, emphasizing the need for new therapeutic interventions. Resveratrol is a naturally occurring polyphenol, widely used for its antioxidant and anti-inflammatory properties. Using primary human endometrial stromal cell (HESC) cultures, we demonstrate that resveratrol has anti-deciduogenic properties, repressing not only the induction of the decidual marker genes PRL and IGFBP1 but also abrogating decidual senescence. Knockdown of Sirtuin 1, a histone deacetylase activated by resveratrol, restored the expression of IGFBP1 but not the induction of PRL or senescence markers in decidualizing HESCs, suggesting involvement of other pathways. We demonstrate that resveratrol interferes with the reprogramming of the retinoic acid signaling pathway in decidualizing HESCs by accelerating down-regulation of cellular retinoic acid-binding protein 2 (CRABP2) and retinoic acid receptor (RAR). Notably, knockdown of CRABP2 or RAR in HESCs was sufficient to recapitulate the anti-deciduogenic effects of resveratrol. Thus, while resveratrol has been advanced as a potential fertility drug, our results indicate it may have detrimental effects on embryo implantation by interfering with decidual remodeling of the endometrium.
Collapse
Affiliation(s)
- Asako Ochiai
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Keiji Kuroda
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, Tokyo, 116-0023, Japan.
| | - Rie Ozaki
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Yuko Ikemoto
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Keisuke Murakami
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Joanne Muter
- The Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, Coventry, CV2 2DX, UK
| | - Akemi Matsumoto
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Jan J Brosens
- The Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, Coventry, CV2 2DX, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, CV2 2DX, UK
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| |
Collapse
|
20
|
Kido T, Li Y, Tanaka Y, Dahiya R, Chris Lau YF. The X-linked tumor suppressor TSPX downregulates cancer-drivers/oncogenes in prostate cancer in a C-terminal acidic domain dependent manner. Oncotarget 2019; 10:1491-1506. [PMID: 30863497 PMCID: PMC6407674 DOI: 10.18632/oncotarget.26673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/31/2019] [Indexed: 01/02/2023] Open
Abstract
TSPX is a tumor suppressor gene located at Xp11.22, a prostate cancer susceptibility locus. It is ubiquitously expressed in most tissues but frequently downregulated in various cancers, including lung, brain, liver and prostate cancers. The C-terminal acidic domain (CAD) of TSPX is crucial for the tumor suppressor functions, such as inhibition of cyclin B/CDK1 phosphorylation and androgen receptor transactivation. Currently, the exact role of the TSPX CAD in transcriptional regulation of downstream genes is still uncertain. Using different variants of TSPX, we showed that overexpression of either TSPX, that harbors a CAD, or a CAD-truncated variant (TSPX[∆C]) drastically retarded cell proliferation in a prostate cancer cell line LNCaP, but cell death was induced only by overexpression of TSPX. Transcriptome analyses showed that TSPX or TSPX[∆C] overexpression downregulated multiple cancer-drivers/oncogenes, including MYC and MYB, in a CAD-dependent manner and upregulated various tumor suppressors in a CAD-independent manner. Datamining of transcriptomes of prostate cancer specimens in the Cancer Genome Atlas (TCGA) dataset confirmed the negative correlation between the expression level of TSPX and those of MYC and MYB in clinical prostate cancer, thereby supporting the hypothesis that the CAD of TSPX plays an important role in suppression of cancer-drivers/oncogenes in prostatic oncogenesis.
Collapse
Affiliation(s)
- Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Yunmin Li
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| |
Collapse
|
21
|
Gonzalez-Farre B, Ramis-Zaldivar JE, Salmeron-Villalobos J, Balagué O, Celis V, Verdu-Amoros J, Nadeu F, Sábado C, Ferrández A, Garrido M, García-Bragado F, de la Maya MD, Vagace JM, Panizo CM, Astigarraga I, Andrés M, Jaffe ES, Campo E, Salaverria I. Burkitt-like lymphoma with 11q aberration: a germinal center-derived lymphoma genetically unrelated to Burkitt lymphoma. Haematologica 2019; 104:1822-1829. [PMID: 30733272 PMCID: PMC6717587 DOI: 10.3324/haematol.2018.207928] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/07/2019] [Indexed: 12/29/2022] Open
Abstract
Burkitt-like lymphoma with 11q aberration is characterized by pathological features and gene expression profile resembling those of Burkitt lymphoma but lacks the MYC rearrangement and carries an 11q-arm aberration with proximal gains and telomeric losses. Whether this lymphoma is a distinct category or a particular variant of other recognized entities is controversial. To improve the understanding of Burkitt-like lymphoma with 11q aberration we performed an analysis of copy number alterations and targeted sequencing of a large panel of B-cell lymphoma-related genes in 11 cases. Most patients had localized nodal disease and a favorable outcome after therapy. Histologically, they were high grade B-cell lymphoma, not otherwise specified (8 cases), diffuse large B-cell lymphoma (2 cases) and only one was considered as atypical Burkitt lymphoma. All cases had a germinal center B-cell signature and phenotype with frequent LMO2 expression. The patients with Burkitt-like lymphoma with 11q aberration had frequent gains of 12q12-q21.1 and losses of 6q12.1-q21, and lacked common Burkitt lymphoma or diffuse large B-cell lymphoma alterations. Potential driver mutations were found in 27 genes, particularly involving BTG2, DDX3X, ETS1, EP300, and GNA13. However, ID3, TCF3, or CCND3 mutations were absent in all cases. These results suggest that Burkitt-like lymphoma with 11q aberration is a germinal center-derived lymphoma closer to high-grade B-cell lymphoma or diffuse large B-cell lymphoma than to Burkitt lymphoma.
Collapse
Affiliation(s)
- Blanca Gonzalez-Farre
- Hematopathology Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Joan Enric Ramis-Zaldivar
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Olga Balagué
- Hematopathology Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Verónica Celis
- Pediatric Oncology Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Jaime Verdu-Amoros
- Pediatric Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Constantino Sábado
- Pediatric Oncology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Marta Garrido
- Pathology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | | - José Manuel Vagace
- Pediatric Hematology Department, Hospital Materno Infantil de Badajoz, Badajoz, Spain
| | - Carlos Manuel Panizo
- Department of Hematology, Clínica Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Itziar Astigarraga
- Pediatrics Department, Hospital Universitario Cruces, IIS Biocruces Bizkaia, UPV/EHU, Barakaldo, Spain
| | - Mara Andrés
- Pediatric Oncology Department, Hospital La Fe, Valencia, Spain
| | - Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elias Campo
- Hematopathology Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
22
|
Yuniati L, Scheijen B, van der Meer LT, van Leeuwen FN. Tumor suppressors BTG1 and BTG2: Beyond growth control. J Cell Physiol 2018; 234:5379-5389. [PMID: 30350856 PMCID: PMC6587536 DOI: 10.1002/jcp.27407] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/22/2018] [Indexed: 01/21/2023]
Abstract
Since the identification of B‐cell translocation gene 1 (BTG1) and BTG2 as antiproliferation genes more than two decades ago, their protein products have been implicated in a variety of cellular processes including cell division, DNA repair, transcriptional regulation and messenger RNA stability. In addition to affecting differentiation during development and in the adult, BTG proteins play an important role in maintaining homeostasis under conditions of cellular stress. Genomic profiling of B‐cell leukemia and lymphoma has put BTG1 and BTG2 in the spotlight, since both genes are frequently deleted or mutated in these malignancies, pointing towards a role as tumor suppressors. Moreover, in solid tumors, reduced expression of BTG1 or BTG2 is often correlated with malignant cell behavior and poor treatment outcome. Recent studies have uncovered novel roles for BTG1 and BTG2 in genotoxic and integrated stress responses, as well as during hematopoiesis. This review summarizes what is currently known about the roles of BTG1 and BTG2 in these and other cellular processes. In addition, we will highlight the molecular mechanisms and biological consequences of BTG1 and BTG2 deregulation during cancer progression and elaborate on the potential clinical implications of these findings.
Collapse
Affiliation(s)
- Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Sundaramoorthy S, Devanand P, Ryu MS, Song KY, Noh DY, Lim IK. TIS21/BTG2 inhibits breast cancer growth and progression by differential regulation of mTORc1 and mTORc2–AKT1–NFAT1–PHLPP2 signaling axis. J Cancer Res Clin Oncol 2018; 144:1445-1462. [DOI: 10.1007/s00432-018-2677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/21/2018] [Indexed: 10/25/2022]
|
24
|
Cell Cycle Regulation by Alternative Polyadenylation of CCND1. Sci Rep 2018; 8:6824. [PMID: 29717174 PMCID: PMC5931507 DOI: 10.1038/s41598-018-25141-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/16/2018] [Indexed: 01/11/2023] Open
Abstract
Global shortening of 3′UTRs by alternative polyadenylation (APA) has been observed in cancer cells. However, the role of APA in cancer remains unknown. CCND1 is a proto-oncogene that regulates progression through the G1-S phase of the cell cycle; moreover, it has been observed to be switching to proximal APA sites in cancer cells. To investigate the biological function of the APA of CCND1, we edited the weak poly(A) signal (PAS) of the proximal APA site to a canonical PAS using the CRISPR/Cas9 method, which can force the cells to use a proximal APA site. Cell cycle profiling and proliferation assays revealed that the proximal APA sites of CCND1 accelerated the cell cycle and promoted cell proliferation, but UTR-APA and CR-APA act via different molecular mechanisms. These results indicate that PAS editing with CRISPR/Cas9 provides a good method by which to study the biological function of APA.
Collapse
|
25
|
Presutti D, Ceccarelli M, Micheli L, Papoff G, Santini S, Samperna S, Lalli C, Zentilin L, Ruberti G, Tirone F. Tis21-gene therapy inhibits medulloblastoma growth in a murine allograft model. PLoS One 2018. [PMID: 29538458 PMCID: PMC5851620 DOI: 10.1371/journal.pone.0194206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma (MB), the tumor of the cerebellum, is the most frequent brain cancer in childhood and a major cause of pediatric mortality. Based on gene profiling, four MB subgroups have been identified, i.e., Wnt or Sonic Hedgehog (Shh) types, and subgroup 3 or 4. The Shh-type MB has been shown to arise from the cerebellar precursors of granule neurons (GCPs), where a hyperactivation of the Shh pathway leads to their neoplastic transformation. We have previously shown that the gene Tis21 (PC3/Btg2) inhibits the proliferation and promotes the differentiation and migration of GCPs. Moreover, the overexpression or the deletion of Tis21 in Patched1 heterozygous mice, a model of spontaneous Shh-type MB, highly reduces or increases, respectively, the frequency of MB. Here we tested whether Tis21 can inhibit MB allografts. Athymic nude mice were subcutaneously grafted with MB cells explanted from Patched1 heterozygous mice. MB allografts were then injected with adeno-associated viruses either carrying Tis21 (AAV-Tis21) or empty (AAV-CBA). We observed that the treatment with AAV-Tis21 significantly inhibited the growth of tumor nodules, as judged by their volume, and reduced the number of proliferating tumor cells (labeled with Ki67 or BrdU), relative to AAV-CBA-treated control mice. In parallel, AAV-Tis21 increased significantly tumor cells labeled with early and late neural differentiation markers. Overall the results suggest that Tis21-gene therapy slows down MB tumor growth through inhibition of proliferation and enhancement of neural differentiation. These results validate Tis21 as a relevant target for MB therapy.
Collapse
Affiliation(s)
- Dario Presutti
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
| | - Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
| | - Giuliana Papoff
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Simonetta Santini
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Simone Samperna
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Cristiana Lalli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Giovina Ruberti
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
- * E-mail: (GR); (FT)
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
- * E-mail: (GR); (FT)
| |
Collapse
|
26
|
Devanand P, Oya Y, Sundaramoorthy S, Song KY, Watanabe T, Kobayashi Y, Shimizu Y, Hong SA, Suganuma M, Lim IK. Inhibition of TNFα-interacting protein α (Tipα)-associated gastric carcinogenesis by BTG2 /TIS21 via downregulating cytoplasmic nucleolin expression. Exp Mol Med 2018; 50:e449. [PMID: 29472702 PMCID: PMC5903828 DOI: 10.1038/emm.2017.281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
To understand the regulation of Helicobacter pylori (H. pylori)-associated gastric carcinogenesis, we examined the effect of B-cell translocation gene 2 (BTG2) expression on the biological activity of Tipα, an oncoprotein secreted from H. pylori. BTG2, the human ortholog of mouse TIS21 (BTG2/TIS21), has been reported to be a primary response gene that is transiently expressed in response to various stimulations. Here, we report that BTG2 is constitutively expressed in the mucous epithelium and parietal cells of the gastric gland in the stomach. Expression was increased in the mucous epithelium following H. pylori infection in contrast to its loss in human gastric adenocarcinoma. Indeed, adenoviral transduction of BTG2/TIS21 significantly inhibited Tipα activity in MKN-1 and MGT-40, human and mouse gastric cancer cells, respectively, thereby downregulating tumor necrosis factor-α (TNFα) expression and Erk1/2 phosphorylation by reducing expression of nucleolin, a Tipα receptor. Chromatin immunoprecipitation proved that BTG2/TIS21 inhibited Sp1 expression and its binding to the promoter of the nucleolin gene. In addition, BTG2/TIS21 expression significantly reduced membrane-localized nucleolin expression in cancer cells, and the loss of BTG2/TIS21 expression induced cytoplasmic nucleolin availability in gastric cancer tissues, as evidenced by immunoblotting and immunohistochemistry. Higher expression of BTG2 and lower expression of nucleolin were accompanied with better overall survival of poorly differentiated gastric cancer patients. This is the first report showing that BTG2/TIS21 inhibits nucleolin expression via Sp1 binding, which might be associated with the inhibition of H. pylori-induced carcinogenesis. We suggest that BTG2/TIS21 is a potential inhibitor of nucleolin in the cytoplasm, leading to inhibition of carcinogenesis after H. pylori infection.
Collapse
Affiliation(s)
- Preethi Devanand
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| | - Yukiko Oya
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Santhoshkumar Sundaramoorthy
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| | - Kye Yong Song
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Tatsuro Watanabe
- Department of Clinical Laboratory of Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | - Soon Auck Hong
- Department of Pathology, Soonchunhyang Cheonan hospital, Soonchunhyang University, College of Medicine, Cheonan, Republic of Korea
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - In Kyoung Lim
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| |
Collapse
|
27
|
Yin L, Guo X, Zhang C, Cai Z, Xu C. In silico analysis of expression data during the early priming stage of liver regeneration after partial hepatectomy in rat. Oncotarget 2018; 9:11794-11804. [PMID: 29545936 PMCID: PMC5837750 DOI: 10.18632/oncotarget.24370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
The priming stage is the first step of liver regeneration (LR). This stage is characterized by the transition from G0 to cell cycle for 4 hours in rat. In this study, individual gene level and gene set level (GSEA) was performed to identify the candidate genes and significantly changed biological processes at 2 h after partial hepatectomy (PH). The leading edge analysis is performed to identify the key genes and iRegulon was employed for transcription factor (TF) analysis. A total of 53 differentially expressed genes were identified using RMA package based on R language at 2 h after PH, including the transcription factor, enzyme and cytokine. As the most important genes in our analysis, Socs3 was selected with a special analysis so as to find the pathways correlate to the expression of it. The changed significantly pathways in LR involved response to stress, ATP metabolism, and regulation of cell cycle mainly. Several transcription factors were identified including Stat5a, Cnot3 and zfp384. Taken together, at the early priming stage of LR in rat, the liver is experiencing some changes including response to stress, activated ATP metabolism and inhibition of cell cycle. Our analysis provided a detailed and comprehensive map for further research of the early priming stage of LR in rat.
Collapse
Affiliation(s)
- Li Yin
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, Henan Province, China.,Luohe Medical College, Luohe 462002, Henan Province, China
| | - Xueqiang Guo
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Chunyan Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Zhihui Cai
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China.,Luohe Medical College, Luohe 462002, Henan Province, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, Henan Province, China
| |
Collapse
|
28
|
miR-663 sustains NSCLC by inhibiting mitochondrial outer membrane permeabilization (MOMP) through PUMA/BBC3 and BTG2. Cell Death Dis 2018; 9:49. [PMID: 29352138 PMCID: PMC5833438 DOI: 10.1038/s41419-017-0080-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023]
Abstract
Treatment of lung cancer is an unmet need as it accounts for the majority of cancer deaths worldwide. The development of new therapies urges the identification of potential targets. MicroRNAs' expression is often deregulated in cancer and their modulation has been proposed as a successful strategy to interfere with tumor cell growth and spread. We recently reported on an unbiased high-content approach to identify miRNAs regulating cell proliferation and tumorigenesis in non-small cell lung cancer (NSCLC). Here we studied the oncogenic role of miR-663 in NSCLC biology and analyzed the therapeutic potential of miR-663 targeting. We found that miR-663 regulates apoptosis by controlling mitochondrial outer membrane permeabilization (MOMP) through the expression of two novel direct targets PUMA/BBC3 and BTG2. Specifically, upon miR-663 knockdown the BH3-only protein PUMA/BBC3 directly activates mitochondrial depolarization and cell death, while BTG2 accumulation further enhances this effect by triggering p53 mitochondrial localization. Moreover, we show that miR-663 depletion is sufficient to elicit cell death in NSCLC cells and to impair tumor growth in vivo.
Collapse
|
29
|
Fischer M. Census and evaluation of p53 target genes. Oncogene 2017; 36:3943-3956. [PMID: 28288132 PMCID: PMC5511239 DOI: 10.1038/onc.2016.502] [Citation(s) in RCA: 615] [Impact Index Per Article: 87.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53's tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation.
Collapse
Affiliation(s)
- M Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Dolezal E, Infantino S, Drepper F, Börsig T, Singh A, Wossning T, Fiala GJ, Minguet S, Warscheid B, Tarlinton DM, Jumaa H, Medgyesi D, Reth M. The BTG2-PRMT1 module limits pre-B cell expansion by regulating the CDK4-Cyclin-D3 complex. Nat Immunol 2017. [PMID: 28628091 DOI: 10.1038/ni.3774] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developing pre-B cells in the bone marrow alternate between proliferation and differentiation phases. We found that protein arginine methyl transferase 1 (PRMT1) and B cell translocation gene 2 (BTG2) are critical components of the pre-B cell differentiation program. The BTG2-PRMT1 module induced a cell-cycle arrest of pre-B cells that was accompanied by re-expression of Rag1 and Rag2 and the onset of immunoglobulin light chain gene rearrangements. We found that PRMT1 methylated cyclin-dependent kinase 4 (CDK4), thereby preventing the formation of a CDK4-Cyclin-D3 complex and cell cycle progression. Moreover, BTG2 in concert with PRMT1 efficiently blocked the proliferation of BCR-ABL1-transformed pre-B cells in vitro and in vivo. Our results identify a key molecular mechanism by which the BTG2-PRMT1 module regulates pre-B cell differentiation and inhibits pre-B cell leukemogenesis.
Collapse
Affiliation(s)
- Elmar Dolezal
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM) Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Simona Infantino
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Friedel Drepper
- BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Department of Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Theresa Börsig
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Aparajita Singh
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Wossning
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gina J Fiala
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Susana Minguet
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Department of Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - David M Tarlinton
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Hassan Jumaa
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Institute of Immunology, University Hospital Ulm, Ulm, Germany
| | - David Medgyesi
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Michael Reth
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
31
|
Chaudhary R, Gryder B, Woods WS, Subramanian M, Jones MF, Li XL, Jenkins LM, Shabalina SA, Mo M, Dasso M, Yang Y, Wakefield LM, Zhu Y, Frier SM, Moriarity BS, Prasanth KV, Perez-Pinera P, Lal A. Prosurvival long noncoding RNA PINCR regulates a subset of p53 targets in human colorectal cancer cells by binding to Matrin 3. eLife 2017; 6. [PMID: 28580901 PMCID: PMC5470874 DOI: 10.7554/elife.23244] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 05/20/2017] [Indexed: 12/19/2022] Open
Abstract
Thousands of long noncoding RNAs (lncRNAs) have been discovered, yet the function of the vast majority remains unclear. Here, we show that a p53-regulated lncRNA which we named PINCR (p53-induced noncoding RNA), is induced ~100-fold after DNA damage and exerts a prosurvival function in human colorectal cancer cells (CRC) in vitro and tumor growth in vivo. Targeted deletion of PINCR in CRC cells significantly impaired G1 arrest and induced hypersensitivity to chemotherapeutic drugs. PINCR regulates the induction of a subset of p53 targets involved in G1 arrest and apoptosis, including BTG2, RRM2B and GPX1. Using a novel RNA pulldown approach that utilized endogenous S1-tagged PINCR, we show that PINCR associates with the enhancer region of these genes by binding to RNA-binding protein Matrin 3 that, in turn, associates with p53. Our findings uncover a critical prosurvival function of a p53/PINCR/Matrin 3 axis in response to DNA damage in CRC cells. DOI:http://dx.doi.org/10.7554/eLife.23244.001 Though DNA contains the information needed to build the proteins that keep cells alive, only 2% of the DNA in a human cell codes for proteins. The remaining 98% is referred to as non-coding DNA. The information in some of these non-coding regions can still be copied into molecules of RNA, including long molecules called lncRNAs. Little is known about what lncRNAs actually do, but growing evidence suggests that these molecules are important for a number of vital processes including cell growth and survival. When the DNA in an animal cell gets damaged, the cell needs to decide whether to pause growth and repair the damage, or to kill itself if the harm is too great. One of the best-studied proteins guiding this decision is the p53 protein, which increases the number of protein-coding genes needed to carry out either option in this decision. That is to say that, p53 regulates the genes needed to kill the cell and the genes needed to temporarily pause its growth and repair the damage, which instead keeps the cell alive. So, how does the p53 protein guide the decision, and are lncRNA molecules involved? Using human colon cancer cells, Chaudhary et al. now report that when DNA is damaged, the levels of a specific lncRNA increase 100-fold. Further experiments showed that this lncRNA – named PINCR, which refers to p53-induced noncoding RNA – promotes the survival of cells. Chaudhary et al. showed that PINCR molecules do this by recruiting a protein called Matrin 3 to a certain region in the DNA called an enhancer and then links it to promoter region in the DNA of specific genes that temporarily pause cell growth but keep the cell alive. This in turn activates these ‘pro-survival genes’. In further experiments, when the PINCR molecules were essentially deleted, p53 was not able to fully activate these genes and as a result more of the cells died. Together these findings increase our knowledge of how lncRNAs can work, especially in the context of DNA damage in cancer cells. A next important step will be to uncover other roles for the PINCR molecule in both cancer and healthy cells. DOI:http://dx.doi.org/10.7554/eLife.23244.002
Collapse
Affiliation(s)
- Ritu Chaudhary
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Berkley Gryder
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Wendy S Woods
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Murugan Subramanian
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Matthew F Jones
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Min Mo
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Mary Dasso
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Yuan Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Yuelin Zhu
- Molecular Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | | | - Branden S Moriarity
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Twin Cities, United States
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
32
|
Han W, Zhu J, Wang S, Xu D. Understanding the Phosphorylation Mechanism by Using Quantum Chemical Calculations and Molecular Dynamics Simulations. J Phys Chem B 2017; 121:3565-3573. [PMID: 27976577 PMCID: PMC6138447 DOI: 10.1021/acs.jpcb.6b09421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phosphorylation is one of the most frequent post-translational modifications on proteins. It regulates many cellular processes by modulation of phosphorylation on protein structure and dynamics. However, the mechanism of phosphorylation-induced conformational changes of proteins is still poorly understood. Here, we report a computational study of three representative groups of tyrosine in ADP-ribosylhydrolase 1, serine in BTG2, and serine in Sp100C by using six molecular dynamics (MD) simulations and quantum chemical calculations. Added phosphorylation was found to disrupt hydrogen bond, and increase new weak interactions (hydrogen bond and hydrophobic interaction) during MD simulations, leading to conformational changes. Quantum chemical calculations further indicate that the phosphorylation on tyrosine, threonine, and serine could decrease the optical band gap energy (Egap), which can trigger electronic transitions to form or disrupt interactions easily. Our results provide an atomic and electronic description of how phosphorylation facilitates conformational and dynamic changes in proteins, which may be useful for studying protein function and protein design.
Collapse
Affiliation(s)
- Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Department of Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201, USA
| | - Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Song Wang
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Dong Xu
- Department of Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201, USA
- College of Computer Science and Technology Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
33
|
Liu R, Cheng Q, Wang X, Chen H, Wang W, Zhang H, Wang L, Song L. The B-cell translocation gene 1 (CgBTG1) identified in oyster Crassostrea gigas exhibit multiple functions in immune response. FISH & SHELLFISH IMMUNOLOGY 2017; 61:68-78. [PMID: 27940367 DOI: 10.1016/j.fsi.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
B-cell translocation gene 1 (BTG1) is a member of the anti-proliferative gene family, which plays important roles in regulation of cell cycle. In the present study, a B-cell translocation gene 1 molecule homologue (designed CgBTG1) are identified and characterized in oyster Crassostrea gigas. CgBTG1 contains a conserved BTG domain with Box A and Box B motifs, and it shares high similarities with both BTG1 and BTG2 proteins in vertebrates. CgBTG1 mRNA is predominantly expressed in hemocytes, and its expression level in hemocytes is significantly up-regulated at 6 h (5.40-fold, p < 0.01) post Vibrio splendidus stimulation. The apoptosis rate of oyster hemocytes is significantly decreased (p < 0.05) after CgBTG1 interfered by dsRNA (dsCgBTG1). This is indicated that CgBTG1 participated in the regulation of oyster hemocytes apoptosis. Furthermore, CgBTG1 could also induce the apoptosis of cancer cells (HeLa, A549 and BEL7402) in vitro. Compared with normal oysters, both vessel-like structures and muscle fibers in CgBTG1 interfered oysters are severely damaged after V. splendidus challenge in paraffin section, considering that CgBTG1 possessed an analogous feature of angiogenesis for maintenance of vessel-like structures in adductor muscle of oyster. The results suggests that CgBTG1 is a multi-functional molecule involved in the immune response of C. gigas against pathogen infection, which provides more clues for intensive studies of BTG family proteins in invertebrates.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qi Cheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
34
|
Micheli L, D'Andrea G, Leonardi L, Tirone F. HDAC1, HDAC4, and HDAC9 Bind to PC3/Tis21/Btg2 and Are Required for Its Inhibition of Cell Cycle Progression and Cyclin D1 Expression. J Cell Physiol 2017; 232:1696-1707. [PMID: 27333946 DOI: 10.1002/jcp.25467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023]
Abstract
PC3/Tis21 is a transcriptional cofactor that inhibits proliferation in several cell types, including neural progenitors. Here, we report that PC3/Tis21 associates with HDAC1, HDAC4, and HDAC9 in vivo, in fibroblast cells. Furthermore, when HDAC1, HDAC4, or HDAC9 are silenced in fibroblasts or in a line of cerebellar progenitor cells, the ability of PC3/Tis21 to inhibit proliferation is significantly reduced. Overexpression of HDAC1, HDAC4, or HDAC9 in fibroblasts and in cerebellar precursor cells synergizes with PC3/Tis21 in inhibiting the expression of cyclin D1, a cyclin selectively inhibited by PC3/Tis21. Conversely, the depletion of HDAC1 or HDAC4 (but not HDAC9) in fibroblasts and in cerebellar precursor cells significantly impairs the ability of PC3/Tis21 to inhibit cyclin D1 expression. An analysis of HDAC4 deletion mutants shows that both the amino-terminal moiety and the catalytic domain of HDAC4 associate to PC3/Tis21, but neither alone is sufficient to potentiate the inhibition of cyclin D1 by PC3/Tis21. As a whole, our findings indicate that PC3/Tis21 inhibits cell proliferation in a way dependent on the presence of HDACs, in fibroblasts as well as in neural cells. Considering that several reports have demonstrated that HDACs can act as transcriptional corepressors on the cyclin D1 promoter, our data suggest that the association of PC3/Tis21 to HDACs is functional to recruit them to target genes, such as cyclin D1, for repression of their expression. J. Cell. Physiol. 232: 1696-1707, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Luca Leonardi
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
35
|
Lim IK, Choi JA, Kim EY, Kim BN, Jang S, Ryu MS, Shim SH. TIS21/BTG2 inhibits doxorubicin-induced stress fiber-vimentin networks via Nox4-ROS-ABI2-DRF-linked signal cascade. Cell Signal 2017; 30:179-190. [DOI: 10.1016/j.cellsig.2016.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/11/2016] [Accepted: 12/04/2016] [Indexed: 01/28/2023]
|
36
|
Yuniati L, van der Meer LT, Tijchon E, van Ingen Schenau D, van Emst L, Levers M, Palit SAL, Rodenbach C, Poelmans G, Hoogerbrugge PM, Shan J, Kilberg MS, Scheijen B, van Leeuwen FN. Tumor suppressor BTG1 promotes PRMT1-mediated ATF4 function in response to cellular stress. Oncotarget 2016; 7:3128-43. [PMID: 26657730 PMCID: PMC4823095 DOI: 10.18632/oncotarget.6519] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/19/2015] [Indexed: 11/25/2022] Open
Abstract
Cancer cells are frequently exposed to physiological stress conditions such as hypoxia and nutrient limitation. Escape from stress-induced apoptosis is one of the mechanisms used by malignant cells to survive unfavorable conditions. B-cell Translocation Gene 1 (BTG1) is a tumor suppressor that is frequently deleted in acute lymphoblastic leukemia and recurrently mutated in diffuse large B cell lymphoma. Moreover, low BTG1 expression levels have been linked to poor outcome in several solid tumors. How loss of BTG1 function contributes to tumor progression is not well understood. Here, using Btg1 knockout mice, we demonstrate that loss of Btg1 provides a survival advantage to primary mouse embryonic fibroblasts (MEFs) under stress conditions. This pro-survival effect involves regulation of Activating Transcription Factor 4 (ATF4), a key mediator of cellular stress responses. We show that BTG1 interacts with ATF4 and positively modulates its activity by recruiting the protein arginine methyl transferase PRMT1 to methylate ATF4 on arginine residue 239. We further extend these findings to B-cell progenitors, by showing that loss of Btg1 expression enhances stress adaptation of mouse bone marrow-derived B cell progenitors. In conclusion, we have identified the BTG1/PRMT1 complex as a new modifier of ATF4 mediated stress responses.
Collapse
Affiliation(s)
- Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esther Tijchon
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorette van Ingen Schenau
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Liesbeth van Emst
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marloes Levers
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sander A L Palit
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline Rodenbach
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Prinses Maxima Center for Pediatric Oncology, De Bilt, The Netherlands
| | - Jixiu Shan
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Scheel A, Bellile E, McHugh JB, Walline HM, Prince ME, Urba S, Wolf GT, Eisbruch A, Worden F, Carey TE, Bradford C. Classification of TP53 mutations and HPV predict survival in advanced larynx cancer. Laryngoscope 2016; 126:E292-9. [PMID: 27345657 PMCID: PMC5002993 DOI: 10.1002/lary.25915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/28/2015] [Accepted: 01/19/2016] [Indexed: 11/07/2022]
Abstract
OBJECTIVES/HYPOTHESIS Assess tumor suppressor p53 (TP53) functional mutations in the context of other biomarkers in advanced larynx cancer. STUDY DESIGN Prospective analysis of pretreatment tumor TP53, human papillomavirus (HPV), Bcl-xL, and cyclin D1 status in stage III and IV larynx cancer patients in a clinical trial. METHODS TP53 exons 4 through 9 from 58 tumors were sequenced. Mutations were grouped using three classifications based on their expected function. Each functional group was analyzed for response to induction chemotherapy, time to surgery, survival, HPV status, p16INK4a, Bcl-xl, and cyclin D1 expression. RESULTS TP53 mutations were found in 22 of 58 (37.9%) patients with advanced larynx cancer, including missense mutations in 13 of 58 (22.4%) patients, nonsense mutations in four of 58 (6.9%), and deletions in five of 58 (8.6%). High-risk HPV was found in 20 of 52 (38.5%) tumors. A classification based on Evolutionary Action score of p53 (EAp53) distinguished missense mutations with high risk for decreased survival from low-risk mutations (P = 0.0315). A model including this TP53 classification, HPV status, cyclin D1, and Bcl-xL staining significantly predicts survival (P = 0.0017). CONCLUSION EAp53 functional classification of TP53 mutants and biomarkers predict survival in advanced larynx cancer. LEVEL OF EVIDENCE NA. Laryngoscope, 126:E292-E299, 2016.
Collapse
Affiliation(s)
- Adam Scheel
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, U.S.A
| | - Emily Bellile
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, U.S.A
| | - Jonathan B McHugh
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan, U.S.A
| | - Heather M Walline
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, U.S.A
| | - Mark E Prince
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, U.S.A
| | - Susan Urba
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, U.S.A
| | - Gregory T Wolf
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, U.S.A
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan Health System, Ann Arbor, Michigan, U.S.A
| | - Francis Worden
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, U.S.A
| | - Thomas E Carey
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, U.S.A
| | - Carol Bradford
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, U.S.A
| |
Collapse
|
38
|
Btg2 is a Negative Regulator of Cardiomyocyte Hypertrophy through a Decrease in Cytosolic RNA. Sci Rep 2016; 6:28592. [PMID: 27346836 PMCID: PMC4921833 DOI: 10.1038/srep28592] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022] Open
Abstract
Under hypertrophic stimulation, cardiomyocytes enter a hypermetabolic state and accelerate biomass accumulation. Although the molecular pathways that regulate protein levels are well-studied, the functional implications of RNA accumulation and its regulatory mechanisms in cardiomyocytes remain elusive. Here, we have elucidated the quantitative kinetics of RNA in cardiomyocytes through single cell imaging and c-Myc (Myc)-mediated hypermetabolic analytical model using cultured cardiomyocytes. Nascent RNA labeling combined with single cell imaging demonstrated that Myc protein significantly increased the amount of global RNA production per cardiomyocyte. Chromatin immunoprecipitation with high-throughput sequencing clarified that overexpressed Myc bound to a specific set of genes and recruits RNA polymerase II. Among these genes, we identified Btg2 as a novel target of Myc. Btg2 overexpression significantly reduced cardiomyocyte surface area. Conversely, shRNA-mediated knockdown of Btg2 accelerated adrenergic stimulus-induced hypertrophy. Using mass spectrometry analysis, we determined that Btg2 binds a series of proteins that comprise mRNA deadenylation complexes. Intriguingly, Btg2 specifically suppresses cytosolic, but not nuclear, RNA levels. Btg2 knockdown further enhances cytosolic RNA accumulation in cardiomyocytes under adrenergic stimulation, suggesting that Btg2 negatively regulates reactive hypertrophy by negatively regulating RNA accumulation. Our findings provide insight into the functional significance of the mechanisms regulating RNA levels in cardiomyocytes.
Collapse
|
39
|
Lin CJ, Chang YA, Lin YL, Liu SH, Chang CK, Chen RM. Preclinical effects of honokiol on treating glioblastoma multiforme via G1 phase arrest and cell apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:517-527. [PMID: 27064011 DOI: 10.1016/j.phymed.2016.02.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Our previous study showed that honokiol, a bioactive polyphenol, can traverse the blood-brain barrier and kills neuroblastoma cells. PURPOSE In this study, we further evaluated the preclinical effects of honokiol on development of malignant glioma and the possible mechanisms. METHODS Effects of honokiol on viability, caspase activities, apoptosis, and cell cycle arrest in human glioma U87 MG or U373MG cells were assayed. As to the mechanisms, levels of inactive or phosphorylated (p) p53, p21, CDK6, CDK4, cyclin D1, and E2F1 were immunodetected. Pifithrin-α (PFN-α), a p53 inhibitor, was pretreated into the cells. Finally, our in vitro findings were confirmed using intracranial nude mice implanted with U87 MG cells. RESULTS Exposure of human U87 MG glioma cells to honokiol decreased the cell viability. In parallel, honokiol induced activations of caspase-8, -9, and -3, apoptosis, and G1 cell cycle arrest. Treatment of U87 MG cells with honokiol increased p53 phosphorylation and p21 levels. Honokiol provoked signal-transducing downregulation of CDK6, CDK4, cyclin D1, phosphorylated (p)RB, and E2F1. Pretreatment of U87 MG cells with PFN-α significantly reversed honokiol-induced p53 phosphorylation and p21 augmentation. Honokiol-induced alterations in levels of CDK6, CDK4, cyclin D1, p-RB, and E2F1 were attenuated by PFN-α. Furthermore, honokiol could induce apoptotic insults to human U373MG glioma cells. In our in vivo model, administration of honokiol prolonged the survival rate of nude mice implanted with U87 MG cells and induced caspase-3 activation and chronological changes in p53, p21, CDK6, CDK4, cyclin D1, p-RB, and E2F1. CONCLUSIONS Honokiol can repress human glioma growth by inducing apoptosis and cell cycle arrest in tumor cells though activating a p53/cyclin D1/CDK6/CDK4/E2F1-dependent pathway. Our results suggest the potential of honokiol in therapies for human malignant gliomas.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Comprehensive Cancer Center and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ya-An Chang
- Comprehensive Cancer Center and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ling Lin
- Brain Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Kuei Chang
- Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan
| | - Ruei-Ming Chen
- Comprehensive Cancer Center and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Brain Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan; Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
40
|
Stupfler B, Birck C, Séraphin B, Mauxion F. BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation. Nat Commun 2016; 7:10811. [PMID: 26912148 PMCID: PMC4773420 DOI: 10.1038/ncomms10811] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
While BTG2 plays an important role in cellular differentiation and cancer, its precise molecular function remains unclear. BTG2 interacts with CAF1 deadenylase through its APRO domain, a defining feature of BTG/Tob factors. Our previous experiments revealed that expression of BTG2 promoted mRNA poly(A) tail shortening through an undefined mechanism. Here we report that the APRO domain of BTG2 interacts directly with the first RRM domain of the poly(A)-binding protein PABPC1. Moreover, PABPC1 RRM and BTG2 APRO domains are sufficient to stimulate CAF1 deadenylase activity in vitro in the absence of other CCR4–NOT complex subunits. Our results unravel thus the mechanism by which BTG2 stimulates mRNA deadenylation, demonstrating its direct role in poly(A) tail length control. Importantly, we also show that the interaction of BTG2 with the first RRM domain of PABPC1 is required for BTG2 to control cell proliferation. BTG2 promotes mRNA poly(A) tail shortening and regulates cellular differentiation. Here, Stupfler et al. show that the BTG2 APRO domain interacts with PABPC1 RRM1, allowing the former to recruit and stimulate the poly(A) tail shortening activity of CAF1 deadenylase and to control cell proliferation.
Collapse
Affiliation(s)
- Benjamin Stupfler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Catherine Birck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Fabienne Mauxion
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
41
|
Xiang FL, Guo M, Yutzey KE. Overexpression of Tbx20 in Adult Cardiomyocytes Promotes Proliferation and Improves Cardiac Function After Myocardial Infarction. Circulation 2016; 133:1081-92. [PMID: 26841808 DOI: 10.1161/circulationaha.115.019357] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/28/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Adult mammalian cardiomyocytes (CMs) have the potential to proliferate, but this is not sufficient to generate adequate CMs after myocardial infarction (MI). The transcription factor Tbx20 is required for CM proliferation during development and adult CM homeostasis. The ability of Tbx20 overexpression (Tbx20(OE)) to promote adult CM proliferation and to improve cardiac function after MI was examined. METHODS AND RESULTS Tbx20(OE) was induced specifically in adult mouse differentiated CMs. Increased CM proliferation and fetal-like characteristics were found in Tbx20(OE) hearts compared with controls without causing pathology 4 weeks after Tbx20(OE) at baseline. Moreover, Tbx20(OE) in adult CM after MI significantly improved survival, cardiac function, and infarct size 4 weeks after MI. Improved cardiac repair, as indicated by increased CM proliferation and capillary density, was observed in the MI border zone of Tbx20(OE) hearts compared with controls. Expression of proliferation activator (cyclin D1, E1, and IGF1) and fetal contractile protein (ssTNI, βMHC) mRNA was increased whereas negative cell-cycle regulators (p21, Meis1) were decreased in Tbx20(OE) hearts compared with controls under both baseline and MI conditions. Tbx20(OE) in adult hearts activates multiple proproliferation pathways, including Akt, YAP and BMP. Interestingly, p21, Meis1, and a novel cell-cycle inhibitory gene, Btg2, are directly bound and repressed by Tbx20 with induction of proliferation in neonatal CM. CONCLUSIONS Tbx20(OE), specifically in adult CM, activates multiple cardiac proliferative pathways, directly represses cell-cycle inhibitory genes p21, Meis1, and Btg2, promotes adult CM proliferation; and preserves cardiac performance after MI.
Collapse
Affiliation(s)
- Fu-Li Xiang
- From Heart Institute, Cincinnati Children's Medical Center, OH (F.-l.X., K.E.Y.); and Department of Electrical Engineering and Computing Systems, University of Cincinnati, OH (M.G.)
| | - Minzhe Guo
- From Heart Institute, Cincinnati Children's Medical Center, OH (F.-l.X., K.E.Y.); and Department of Electrical Engineering and Computing Systems, University of Cincinnati, OH (M.G.)
| | - Katherine E Yutzey
- From Heart Institute, Cincinnati Children's Medical Center, OH (F.-l.X., K.E.Y.); and Department of Electrical Engineering and Computing Systems, University of Cincinnati, OH (M.G.).
| |
Collapse
|
42
|
Choi JA, Jung YS, Kim JY, Kim HM, Lim IK. Inhibition of breast cancer invasion by TIS21/BTG2/Pc3-Akt1-Sp1-Nox4 pathway targeting actin nucleators, mDia genes. Oncogene 2016; 35:83-93. [PMID: 25798836 DOI: 10.1038/onc.2015.64] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 01/18/2015] [Accepted: 01/30/2015] [Indexed: 02/06/2023]
Abstract
The mammalian homolog of Drosophila diaphanous (mDia), actin nucleator, has been known to participate in the process of invasion and metastasis of cancer cells via regulating a number of actin-related biological processes. We have previously reported that tumor suppressor TIS21(/BTG2/Pc3) (TIS21) inhibits invadopodia formation by downregulating reactive oxygen species (ROS) in MDA-MB-231 cells. We herein report that TIS21(/BTG2/Pc3) downregulates diaphanous-related formin (DRF) expression via reducing NADPH oxidase 4 (Nox4)-derived ROS generation by Akt1 activation and subsequently impairs invasion activity of the highly invasive breast cancer cells. Knockdown of Akt1 by RNA interference recovered the TIS21(/BTG2/Pc3)-inhibited F-actin remodeling and ROS generation by recovering Nox4 expression. Furthermore, Sp1-mediated Nox4 transcription was downregulated by TIS21(/BTG2/Pc3)-Akt1 signals, leading to the inhibition of cancer cell invasion via F-actin remodeling by mDia genes. To our best knowledge, this is the first study to show that TIS21(/BTG2/Pc3)-Akt1 inhibited Sp1-Nox4-ROS cascade, subsequently reducing invasion activity via inhibition of mDia family genes.
Collapse
Affiliation(s)
- J-A Choi
- Departments of Biochemistry and Molecular Biology, Ajou University School of Medicine, and Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Y S Jung
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - J Y Kim
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - H M Kim
- Department of Energy Systems Research, Ajou University, Suwon, Korea
| | - I K Lim
- Departments of Biochemistry and Molecular Biology, Ajou University School of Medicine, and Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| |
Collapse
|
43
|
Lee HS, Kundu J, Kim RN, Shin YK. Transducer of ERBB2.1 (TOB1) as a Tumor Suppressor: A Mechanistic Perspective. Int J Mol Sci 2015; 16:29815-28. [PMID: 26694352 PMCID: PMC4691146 DOI: 10.3390/ijms161226203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/22/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023] Open
Abstract
Transducer of ERBB2.1 (TOB1) is a tumor-suppressor protein, which functions as a negative regulator of the receptor tyrosine-kinase ERBB2. As most of the other tumor suppressor proteins, TOB1 is inactivated in many human cancers. Homozygous deletion of TOB1 in mice is reported to be responsible for cancer development in the lung, liver, and lymph node, whereas the ectopic overexpression of TOB1 shows anti-proliferation, and a decrease in the migration and invasion abilities on cancer cells. Biochemical studies revealed that the anti-proliferative activity of TOB1 involves mRNA deadenylation and is associated with the reduction of both cyclin D1 and cyclin-dependent kinase (CDK) expressions and the induction of CDK inhibitors. Moreover, TOB1 interacts with an oncogenic signaling mediator, β-catenin, and inhibits β-catenin-regulated gene transcription. TOB1 antagonizes the v-akt murine thymoma viral oncogene (AKT) signaling and induces cancer cell apoptosis by activating BCL2-associated X (BAX) protein and inhibiting the BCL-2 and BCL-XL expressions. The tumor-specific overexpression of TOB1 results in the activation of other tumor suppressor proteins, such as mothers against decapentaplegic homolog 4 (SMAD4) and phosphatase and tensin homolog-10 (PTEN), and blocks tumor progression. TOB1-overexpressing cancer cells have limited potential of growing as xenograft tumors in nude mice upon subcutaneous implantation. This review addresses the molecular basis of TOB1 tumor suppressor function with special emphasis on its regulation of intracellular signaling pathways.
Collapse
Affiliation(s)
- Hun Seok Lee
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Juthika Kundu
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Ryong Nam Kim
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
- Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul 08826, Korea.
| | - Young Kee Shin
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
- Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul 08826, Korea.
- The Center for Anti-cancer Companion Diagnostics, School of Biological Science, Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
44
|
Ceccarelli M, Micheli L, D'Andrea G, De Bardi M, Scheijen B, Ciotti M, Leonardi L, Luvisetto S, Tirone F. Altered cerebellum development and impaired motor coordination in mice lacking the Btg1 gene: Involvement of cyclin D1. Dev Biol 2015; 408:109-25. [DOI: 10.1016/j.ydbio.2015.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/03/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
45
|
Beckervordersandforth R, Zhang CL, Lie DC. Transcription-Factor-Dependent Control of Adult Hippocampal Neurogenesis. Cold Spring Harb Perspect Biol 2015; 7:a018879. [PMID: 26430216 DOI: 10.1101/cshperspect.a018879] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adult-generated dentate granule neurons have emerged as major contributors to hippocampal plasticity. New neurons are generated from neural stem cells through a complex sequence of proliferation, differentiation, and maturation steps. Development of the new neuron is dependent on the precise temporal activity of transcription factors, which coordinate the expression of stage-specific genetic programs. Here, we review current knowledge in transcription factor-mediated regulation of mammalian neural stem cells and neurogenesis and will discuss potential mechanisms of how transcription factor networks, on one hand, allow for precise execution of the developmental sequence and, on the other hand, allow for adaptation of the rate and timing of adult neurogenesis in response to complex stimuli. Understanding transcription factor-mediated control of neuronal development will provide new insights into the mechanisms underlying neurogenesis-dependent plasticity in health and disease.
Collapse
Affiliation(s)
- Ruth Beckervordersandforth
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Dieter Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
46
|
Li YJ, Dong BK, Fan M, Jiang WX. BTG2 inhibits the proliferation and metastasis of osteosarcoma cells by suppressing the PI3K/AKT pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12410-12418. [PMID: 26722427 PMCID: PMC4680372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/30/2015] [Indexed: 06/05/2023]
Abstract
B cell translocation gene 2 (BTG2) has been reported to be a potential tumor suppressor in many types of tumors. However, the roles and molecular mechanisms of BTG2 in osteosarcoma progression are still unknown. In this study, we investigated the role of BTG2 in proliferation and metastasis of osteosarcoma and the underlying mechanism. BTG2 expression levels were measured in fresh osteosarcoma tissues and cell lines. The effects of BTG2 on cell proliferation, migration and invasion were explored by MTT, transwell assays, western blot, and in vivo tumorigenesis in nude mice. We found that BTG2 was down-regulated in human osteosarcoma tissues and cell lines. Overexpression of BTG2 inhibited the proliferation and migration/invasion of human osteosarcoma cells in vitro, it also markedly inhibited xenograft tumor growth in vivo. Furthermore, BTG2 significantly decreased the expression of phosphorylated PI3K and AKT in osteosarcoma cells. Taken together, our data indicate that BTG2 might suppress the tumor growth and metastasis via PI3K/AKT signaling pathway, implying that BTG2 may serve as a potential molecular target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yi-Jin Li
- Department of Orthopaedic Surgery, Tianjin First Central Hospital Tianjin 300192, China
| | - Bao-Kang Dong
- Department of Orthopaedic Surgery, Tianjin First Central Hospital Tianjin 300192, China
| | - Meng Fan
- Department of Orthopaedic Surgery, Tianjin First Central Hospital Tianjin 300192, China
| | - Wen-Xue Jiang
- Department of Orthopaedic Surgery, Tianjin First Central Hospital Tianjin 300192, China
| |
Collapse
|
47
|
Micheli L, Ceccarelli M, Farioli-Vecchioli S, Tirone F. Control of the Normal and Pathological Development of Neural Stem and Progenitor Cells by the PC3/Tis21/Btg2 and Btg1 Genes. J Cell Physiol 2015; 230:2881-90. [DOI: 10.1002/jcp.25038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| |
Collapse
|
48
|
Lee JC, Chung LC, Chen YJ, Feng TH, Chen WT, Juang HH. Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells. Cancer Lett 2015; 360:310-8. [DOI: 10.1016/j.canlet.2015.02.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/31/2015] [Accepted: 02/16/2015] [Indexed: 12/28/2022]
|
49
|
Wagenaar TR, Zabludoff S, Ahn SM, Allerson C, Arlt H, Baffa R, Cao H, Davis S, Garcia-Echeverria C, Gaur R, Huang SMA, Jiang L, Kim D, Metz-Weidmann C, Pavlicek A, Pollard J, Reeves J, Rocnik JL, Scheidler S, Shi C, Sun F, Tolstykh T, Weber W, Winter C, Yu E, Yu Q, Zheng G, Wiederschain D. Anti-miR-21 Suppresses Hepatocellular Carcinoma Growth via Broad Transcriptional Network Deregulation. Mol Cancer Res 2015; 13:1009-21. [PMID: 25758165 DOI: 10.1158/1541-7786.mcr-14-0703] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/03/2015] [Indexed: 01/12/2023]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) remains a significant clinical challenge with few therapeutic options available to cancer patients. MicroRNA 21-5p (miR-21) has been shown to be upregulated in HCC, but the contribution of this oncomiR to the maintenance of tumorigenic phenotype in liver cancer remains poorly understood. We have developed potent and specific single-stranded oligonucleotide inhibitors of miR-21 (anti-miRNAs) and used them to interrogate dependency on miR-21 in a panel of liver cancer cell lines. Treatment with anti-miR-21, but not with a mismatch control anti-miRNA, resulted in significant derepression of direct targets of miR-21 and led to loss of viability in the majority of HCC cell lines tested. Robust induction of caspase activity, apoptosis, and necrosis was noted in anti-miR-21-treated HCC cells. Furthermore, ablation of miR-21 activity resulted in inhibition of HCC cell migration and suppression of clonogenic growth. To better understand the consequences of miR-21 suppression, global gene expression profiling was performed on anti-miR-21-treated liver cancer cells, which revealed striking enrichment in miR-21 target genes and deregulation of multiple growth-promoting pathways. Finally, in vivo dependency on miR-21 was observed in two separate HCC tumor xenograft models. In summary, these data establish a clear role for miR-21 in the maintenance of tumorigenic phenotype in HCC in vitro and in vivo. IMPLICATIONS miR-21 is important for the maintenance of the tumorigenic phenotype of HCC and represents a target for pharmacologic intervention.
Collapse
Affiliation(s)
| | | | | | | | - Heike Arlt
- Sanofi Oncology, Cambridge, MA Massachusetts
| | | | - Hui Cao
- Sanofi Oncology, Cambridge, MA Massachusetts
| | | | | | - Rajula Gaur
- Genzyme R&D Center, Framingham, Massachusetts
| | | | - Lan Jiang
- Sanofi Oncology, Cambridge, MA Massachusetts
| | | | | | | | | | | | | | - Sabine Scheidler
- Sanofi BioInnovation, Nucleic Acid Therapeutics Platform, Frankfurt, Germany
| | - Chaomei Shi
- Sanofi Oncology, Cambridge, MA Massachusetts
| | | | | | | | | | - Eunsil Yu
- Asan Medical Center, Seoul, Republic of Korea
| | - Qunyan Yu
- Sanofi Oncology, Cambridge, MA Massachusetts
| | - Gang Zheng
- Sanofi Oncology, Cambridge, MA Massachusetts
| | | |
Collapse
|
50
|
Li WQ, Yu HY, Zhong NZ, Hou LJ, Li YM, He J, Liu HM, Xia CY, Lu YC. miR‑27a suppresses the clonogenic growth and migration of human glioblastoma multiforme cells by targeting BTG2. Int J Oncol 2015; 46:1601-8. [PMID: 25626081 DOI: 10.3892/ijo.2015.2843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/28/2014] [Indexed: 11/06/2022] Open
Abstract
miR-27a and BTG2 are implicated in gliomagenesis and glioma progression. However, hitherto, a link between miR-27a and BTG2 in glioma has not been reported. In the present study, we investigated the effects of miR-27a on the proliferation and invasiveness of glioblastoma cells in vitro and in a mouse xenograft model and further studied the relation between miR‑27a expression and its target gene BTG2, which was identified by computation prediction algorithms. Our MTT and clonogenic assays showed that miR-27a overexpression significantly increased the clonogenic growth of glioblastoma U87MG and U251MG cells. The Transwell assays further revealed that miR-27a overexpression markedly increased the number of migrated U87MG and U251MG cells. TargetScan and other prediction algorithms identified BTG2 as a target gene of miR-27a, which was confirmed by EGFP reporter and immunoblotting assays showing an inverse relation between miR-27a expression and endogenous BTG2 expression. BTG2 overexpression also increased the proliferation and invasiveness of glioblastoma cells and BTG2 functioned downstream of miR-27a in modulating the proliferation and migration of glioblastoma cells. In conclusion, miR-27a modulates human glioblastoma growth and invasion by targeting BTG2.
Collapse
Affiliation(s)
- Wei-Qing Li
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Hong-Yu Yu
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Nan-Zhe Zhong
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Li-Jun Hou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yi-Ming Li
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jin He
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Hui-Min Liu
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Chun-Yan Xia
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yi-Cheng Lu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|