1
|
Li Y, Chitturi J, Yu B, Zhang Y, Wu J, Ti P, Hung W, Zhen M, Gao S. UBR-1 ubiquitin ligase regulates the balance between GABAergic and glutamatergic signaling. EMBO Rep 2023; 24:e57014. [PMID: 37811674 PMCID: PMC10626437 DOI: 10.15252/embr.202357014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Excitation/inhibition (E/I) balance is carefully maintained by the nervous system. The neurotransmitter GABA has been reported to be co-released with its sole precursor, the neurotransmitter glutamate. The genetic and circuitry mechanisms to establish the balance between GABAergic and glutamatergic signaling have not been fully elucidated. Caenorhabditis elegans DVB is an excitatory GABAergic motoneuron that drives the expulsion step in the defecation motor program. We show here that in addition to UNC-47, the vesicular GABA transporter, DVB also expresses EAT-4, a vesicular glutamate transporter. UBR-1, a conserved ubiquitin ligase, regulates DVB activity by suppressing a bidirectional inhibitory glutamate signaling. Loss of UBR-1 impairs DVB Ca2+ activity and expulsion frequency. These impairments are fully compensated by the knockdown of EAT-4 in DVB. Further, glutamate-gated chloride channels GLC-3 and GLC-2/4 receive DVB's glutamate signals to inhibit DVB and enteric muscle activity, respectively. These results implicate an intrinsic cellular mechanism that promotes the inherent asymmetric neural activity. We propose that elevated glutamate in ubr-1 mutants, being the cause of the E/I shift, potentially contributes to Johanson Blizzard syndrome.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jyothsna Chitturi
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Bin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Yongning Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jing Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Panpan Ti
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Wesley Hung
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Mei Zhen
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai HospitalUniversity of TorontoTorontoONCanada
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
François CM, Pihl T, Dunoyer de Segonzac M, Hérault C, Hudry B. Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction. Nat Commun 2023; 14:6737. [PMID: 37872135 PMCID: PMC10593830 DOI: 10.1038/s41467-023-42496-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The molecular mechanisms connecting cellular metabolism with differentiation remain poorly understood. Here, we find that metabolic signals contribute to stem cell differentiation and germline homeostasis during Drosophila melanogaster spermatogenesis. We discovered that external citrate, originating outside the gonad, fuels the production of Acetyl-coenzyme A by germline ATP-citrate lyase (dACLY). We show that this pathway is essential during the final spermatogenic stages, where a high Acetyl-coenzyme A level promotes NatB-dependent N-terminal protein acetylation. Using genetic and biochemical experiments, we establish that N-terminal acetylation shields key target proteins, essential for spermatid differentiation, from proteasomal degradation by the ubiquitin ligase dUBR1. Our work uncovers crosstalk between metabolism and proteome stability that is mediated via protein post-translational modification. We propose that this system coordinates the metabolic state of the organism with gamete production. More broadly, modulation of proteome turnover by circulating metabolites may be a conserved regulatory mechanism to control cell functions.
Collapse
Affiliation(s)
- Charlotte M François
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Thomas Pihl
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | | | - Chloé Hérault
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France.
| |
Collapse
|
3
|
Lee J, Sung KW, Bae EJ, Yoon D, Kim D, Lee JS, Park DH, Park DY, Mun SR, Kwon SC, Kim HY, Min JO, Lee SJ, Suh YH, Kwon YT. Targeted degradation of ⍺-synuclein aggregates in Parkinson's disease using the AUTOTAC technology. Mol Neurodegener 2023; 18:41. [PMID: 37355598 PMCID: PMC10290391 DOI: 10.1186/s13024-023-00630-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/31/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND There are currently no disease-modifying therapeutics for Parkinson's disease (PD). Although extensive efforts were undertaken to develop therapeutic approaches to delay the symptoms of PD, untreated α-synuclein (α-syn) aggregates cause cellular toxicity and stimulate further disease progression. PROTAC (Proteolysis-Targeting Chimera) has drawn attention as a therapeutic modality to target α-syn. However, no PROTACs have yet shown to selectively degrade α-syn aggregates mainly owing to the limited capacity of the proteasome to degrade aggregates, necessitating the development of novel approaches to fundamentally eliminate α-syn aggregates. METHODS We employed AUTOTAC (Autophagy-Targeting Chimera), a macroautophagy-based targeted protein degradation (TPD) platform developed in our earlier studies. A series of AUTOTAC chemicals was synthesized as chimeras that bind both α-syn aggregates and p62/SQSTM1/Sequestosome-1, an autophagic receptor. The efficacy of Autotacs was evaluated to target α-syn aggregates to phagophores and subsequently lysosomes for hydrolysis via p62-dependent macroautophagy. The target engagement was monitored by oligomerization and localization of p62 and autophagic markers. The therapeutic efficacy to rescue PD symptoms was characterized in cultured cells and mice. The PK/PD (pharmacokinetics/pharmacodynamics) profiles were investigated to develop an oral drug for PD. RESULTS ATC161 induced selective degradation of α-syn aggregates at DC50 of ~ 100 nM. No apparent degradation was observed with monomeric α-syn. ATC161 mediated the targeting of α-syn aggregates to p62 by binding the ZZ domain and accelerating p62 self-polymerization. These p62-cargo complexes were delivered to autophagic membranes for lysosomal degradation. In PD cellular models, ATC161 exhibited therapeutic efficacy to reduce cell-to-cell transmission of α-syn and to rescue cells from the damages in DNA and mitochondria. In PD mice established by injecting α-syn preformed fibrils (PFFs) into brain striata via stereotaxic surgery, oral administration of ATC161 at 10 mg/kg induced the degradation of α-syn aggregates and reduced their propagation. ATC161 also mitigated the associated glial inflammatory response and improved muscle strength and locomotive activity. CONCLUSION AUTOTAC provides a platform to develop drugs for PD. ATC161, an oral drug with excellent PK/PD profiles, induces selective degradation of α-syn aggregates in vitro and in vivo. We suggest that ATC161 is a disease-modifying drug that degrades the pathogenic cause of PD.
Collapse
Affiliation(s)
- Jihoon Lee
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
| | - Ki Woon Sung
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
| | - Eun-Jin Bae
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Dabin Yoon
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
- Department of Physical Education, Sejong University, Seoul, 05006, Republic of Korea
| | - Dasarang Kim
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
| | - Jin Saem Lee
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea
| | - Da-Ha Park
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Daniel Youngjae Park
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Su Ran Mun
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Soon Chul Kwon
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hye Yeon Kim
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Joo-Ok Min
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuramedy Co. Ltd, Seoul, 04796, Republic of Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Yong Tae Kwon
- Cellular Degradation Biology Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- AUTOTAC Bio Inc., Changkyunggung-Ro 254, Jongno-Gu, Seoul, 03077, Republic of Korea.
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
4
|
Heo AJ, Kim SB, Kwon YT, Ji CH. The N-degron pathway: From basic science to therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194934. [PMID: 36990317 DOI: 10.1016/j.bbagrm.2023.194934] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
The N-degron pathway is a degradative system in which single N-terminal (Nt) amino acids regulate the half-lives of proteins and other biological materials. These determinants, called N-degrons, are recognized by N-recognins that link them to the ubiquitin (Ub)-proteasome system (UPS) or autophagy-lysosome system (ALS). In the UPS, the Arg/N-degron pathway targets the Nt-arginine (Nt-Arg) and other N-degrons to assemble Lys48 (K48)-linked Ub chains by UBR box N-recognins for proteasomal proteolysis. In the ALS, Arg/N-degrons are recognized by the N-recognin p62/SQSTSM-1/Sequestosome-1 to induce cis-degradation of substrates and trans-degradation of various cargoes such as protein aggregates and subcellular organelles. This crosstalk between the UPS and ALP involves reprogramming of the Ub code. Eukaryotic cells developed diverse ways to target all 20 principal amino acids for degradation. Here we discuss the components, regulation, and functions of the N-degron pathways, with an emphasis on the basic mechanisms and therapeutic applications of Arg/N-degrons and N-recognins.
Collapse
Affiliation(s)
- Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Su Bin Kim
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; AUTOTAC Bio Inc., Changkyunggung-ro 254, Jongno-gu, Seoul 03077, Republic of Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea.
| | - Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; AUTOTAC Bio Inc., Changkyunggung-ro 254, Jongno-gu, Seoul 03077, Republic of Korea.
| |
Collapse
|
5
|
Heo AJ, Ji CH, Kwon YT. The Cys/N-degron pathway in the ubiquitin-proteasome system and autophagy. Trends Cell Biol 2023; 33:247-259. [PMID: 35945077 DOI: 10.1016/j.tcb.2022.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
The N-degron pathway is a degradative system in which the N-terminal residues of proteins modulate the half-lives of proteins and other cellular materials. The majority of amino acids in the genetic code have the potential to induce cis or trans degradation in diverse processes, which requires selective recognition between N-degrons and cognate N-recognins. Of particular interest is the Cys/N-degron branch, in which the N-terminal cysteine (Nt-Cys) induces proteolysis via either the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome pathway (ALP), depending on physiological conditions. Recent studies provided new insights into the central role of Nt-Cys in sensing the fluctuating levels of oxygen and reactive oxygen species (ROS). Here, we discuss the components, regulations, and functions of the Cys/N-degron pathway.
Collapse
Affiliation(s)
- Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea; AUTOTAC Bio Inc., Changkyunggung-ro 254, Jongno-gu, Seoul 03077, Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea; AUTOTAC Bio Inc., Changkyunggung-ro 254, Jongno-gu, Seoul 03077, Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Korea.
| |
Collapse
|
6
|
Xu J, Liu Z, Zhang J, Chen S, Wang W, Zhao X, Zhen M, Huang X. N-end Rule-Mediated Proteasomal Degradation of ATGL Promotes Lipid Storage. Diabetes 2023; 72:210-222. [PMID: 36346641 PMCID: PMC9871197 DOI: 10.2337/db22-0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Cellular lipid storage is regulated by the balance of lipogenesis and lipolysis. The rate-limiting triglyceride hydrolase ATGL (desnutrin/PNPLA2) is critical for lipolysis. The control of ATGL transcription, localization, and activation has been intensively studied, while regulation of the protein stability of ATGL is much less explored. In this study, we showed that the protein stability of ATGL is regulated by the N-end rule in cultured cells and in mice. The N-end rule E3 ligases UBR1 and UBR2 reduce the level of ATGL and affect lipid storage. The N-end rule-resistant ATGL(F2A) mutant, in which the N-terminal phenylalanine (F) of ATGL is substituted by alanine (A), has increased protein stability and enhanced lipolysis activity. ATGLF2A/F2A knock-in mice are protected against high-fat diet (HFD)-induced obesity, hepatic steatosis, and insulin resistance. Hepatic knockdown of Ubr1 attenuates HFD-induced hepatic steatosis by enhancing the ATGL level. Finally, the protein levels of UBR1 and ATGL are negatively correlated in the adipose tissue of obese mice. Our study reveals N-end rule-mediated proteasomal regulation of ATGL, a finding that may potentially be beneficial for treatment of obesity.
Collapse
Affiliation(s)
- Jiesi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Corresponding authors: Jiesi Xu, , and Xun Huang,
| | - Zhenglong Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianxin Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xuefan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Zhen
- Lunenfeld–Tanebaum Research Institute, Departments of Molecular Genetics and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Corresponding authors: Jiesi Xu, , and Xun Huang,
| |
Collapse
|
7
|
Wagner AM, Warner JB, Garrett HE, Walters CR, Petersson EJ. Transferase-Mediated Labeling of Protein N-Termini with Click Chemistry Handles. Methods Mol Biol 2023; 2620:157-175. [PMID: 37010762 DOI: 10.1007/978-1-0716-2942-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
The E. coli aminoacyl transferase (AaT) can be used to transfer a variety of unnatural amino acids, including those with azide or alkyne groups, to the α-amine of a protein with an N-terminal Lys or Arg. Subsequent functionalization through either copper-catalyzed or strain-promoted click reactions can be used to label the protein with fluorophores or biotin. This can be used to directly detect AaT substrates or in a two-step protocol to detect substrates of the mammalian ATE1 transferase.
Collapse
Affiliation(s)
- Anne M Wagner
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - John B Warner
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Haviva E Garrett
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
The ZZ domain of HERC2 is a receptor of arginylated substrates. Sci Rep 2022; 12:6063. [PMID: 35411094 PMCID: PMC9001736 DOI: 10.1038/s41598-022-10119-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/01/2022] [Indexed: 01/18/2023] Open
Abstract
AbstractThe E3 ubiquitin ligase HERC2 has been linked to neurological diseases and cancer, however it remains a poorly characterized human protein. Here, we show that the ZZ domain of HERC2 (HERC2ZZ) recognizes a mimetic of the Nt-R cargo degradation signal. NMR titration experiments and mutagenesis results reveal that the Nt-R mimetic peptide occupies a well-defined binding site of HERC2ZZ comprising of the negatively charged aspartic acids. We report the crystal structure of the DOC domain of HERC2 (HERC2DOC) that is adjacent to HERC2ZZ and show that a conformational rearrangement in the protein may occur when the two domains are linked. Immunofluorescence microscopy data suggest that the stimulation of autophagy promotes targeting of HERC2 to the proteasome. Our findings suggest a role of cytosolic HERC2 in the ubiquitin-dependent degradation pathways.
Collapse
|
9
|
Lee SH, Cho WJ, Najy AJ, Saliganan AD, Pham T, Rakowski J, Loughery B, Ji CH, Sakr W, Kim S, Kato I, Chung WK, Kim HE, Kwon YT, Kim HRC. p62/SQSTM1-induced caspase-8 aggresomes are essential for ionizing radiation-mediated apoptosis. Cell Death Dis 2021; 12:997. [PMID: 34697296 PMCID: PMC8546074 DOI: 10.1038/s41419-021-04301-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/03/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022]
Abstract
The autophagy–lysosome pathway and apoptosis constitute vital determinants of cell fate and engage in a complex interplay in both physiological and pathological conditions. Central to this interplay is the archetypal autophagic cargo adaptor p62/SQSTM1/Sequestosome-1 which mediates both cell survival and endoplasmic reticulum stress-induced apoptosis via aggregation of ubiquitinated caspase-8. Here, we investigated the role of p62-mediated apoptosis in head and neck squamous cell carcinoma (HNSCC), which can be divided into two groups based on human papillomavirus (HPV) infection status. We show that increased autophagic flux and defective apoptosis are associated with radioresistance in HPV(-) HNSCC, whereas HPV(+) HNSCC fail to induce autophagic flux and readily undergo apoptotic cell death upon radiation treatments. The degree of radioresistance and tumor progression of HPV(-) HNSCC respectively correlated with autophagic activity and cytosolic levels of p62. Pharmacological activation of the p62-ZZ domain using small molecule ligands sensitized radioresistant HPV(-) HNSCC cells to ionizing radiation by facilitating p62 self-polymerization and sequestration of cargoes leading to apoptosis. The self-polymerizing activity of p62 was identified as the essential mechanism by which ubiquitinated caspase-8 is sequestered into aggresome-like structures, without which irradiation fails to induce apoptosis in HNSCC. Our results suggest that harnessing p62-dependent sequestration of ubiquitinated caspase-8 provides a novel therapeutic avenue in patients with radioresistant tumors.
Collapse
Affiliation(s)
- Su Hyun Lee
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Cellular Degradation Biology Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Won Jin Cho
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Abdo J Najy
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Allen-Dexter Saliganan
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Tri Pham
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Joseph Rakowski
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Division of Radiation Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Brian Loughery
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Chang Hoon Ji
- Cellular Degradation Biology Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Wael Sakr
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Weon Kuu Chung
- Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Harold E Kim
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Division of Radiation Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Yong Tae Kwon
- Cellular Degradation Biology Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea. .,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Hyeong-Reh C Kim
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA. .,Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| |
Collapse
|
10
|
Mor-Shaked H, Salah S, Yanovsky-Dagan S, Meiner V, Atawneh OM, Abu-Libdeh B, Elpeleg O, Harel T. Biallelic deletion in a minimal CAPN15 intron in siblings with a recognizable syndrome of congenital malformations and developmental delay. Clin Genet 2021; 99:577-582. [PMID: 33410501 DOI: 10.1111/cge.13920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022]
Abstract
Calpainopathies constitute a heterogeneous group of disorders resulting from deficiencies in calpains, calcium-specific proteases that modulate substrates by limited proteolysis. Clinical manifestations depend on tissue-specific expression of the defective calpain and substrate specificity. CAPN15, encoding the Drosophila small optic lobes (sol) homolog, was recently found to cause various eye defects in individuals carrying bi-allelic missense variants. Here we report on two siblings with manifestations reminiscent of Johanson-Blizzard syndrome including failure to thrive, microcephaly, global developmental delay, dysmorphic features, endocrine abnormalities and congenital malformations, in addition to eye abnormalities. Exome sequencing identified a homozygous 47 base-pair deletion in a minimal intron of CAPN15, including the splice donor site. Sequencing of cDNA revealed single exon skipping, resulting in an out-of-frame deletion with a predicted premature termination codon. These findings expand the phenotypic spectrum associated with CAPN15 variants, and suggest that complete loss-of-function is associated with a recognizable syndrome of congenital malformations and developmental delay, overlapping Johanson-Blizzard syndrome and the recently observed brain defects in Capn15 knockout (KO) mice. Moreover, the data highlight the unique opportunity for indel detection in minimal introns.
Collapse
Affiliation(s)
- Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Somaya Salah
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Genetic Unit, Palestine Red Crescent Society Hospital, Hebron, Palestine
| | | | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Osama M Atawneh
- Pediatric Neurology Unit, Palestine Red Crescent Society Hospital, Hebron, Palestine
| | - Bassam Abu-Libdeh
- Department of Pediatrics, Makassed Hospital and Al-Quds Medical School, East Jerusalem, Palestine
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Li C, Beauregard-Lacroix E, Kondratev C, Rousseau J, Heo AJ, Neas K, Graham BH, Rosenfeld JA, Bacino CA, Wagner M, Wenzel M, Al Mutairi F, Al Deiab H, Gleeson JG, Stanley V, Zaki MS, Kwon YT, Leroux MR, Campeau PM. UBR7 functions with UBR5 in the Notch signaling pathway and is involved in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism. Am J Hum Genet 2021; 108:134-147. [PMID: 33340455 DOI: 10.1016/j.ajhg.2020.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
The ubiquitin-proteasome system facilitates the degradation of unstable or damaged proteins. UBR1-7, which are members of hundreds of E3 ubiquitin ligases, recognize and regulate the half-life of specific proteins on the basis of their N-terminal sequences ("N-end rule"). In seven individuals with intellectual disability, epilepsy, ptosis, hypothyroidism, and genital anomalies, we uncovered bi-allelic variants in UBR7. Their phenotype differs significantly from that of Johanson-Blizzard syndrome (JBS), which is caused by bi-allelic variants in UBR1, notably by the presence of epilepsy and the absence of exocrine pancreatic insufficiency and hypoplasia of nasal alae. While the mechanistic etiology of JBS remains uncertain, mutation of both Ubr1 and Ubr2 in the mouse or of the C. elegans UBR5 ortholog results in Notch signaling defects. Consistent with a potential role in Notch signaling, C. elegans ubr-7 expression partially overlaps with that of ubr-5, including in neurons, as well as the distal tip cell that plays a crucial role in signaling to germline stem cells via the Notch signaling pathway. Analysis of ubr-5 and ubr-7 single mutants and double mutants revealed genetic interactions with the Notch receptor gene glp-1 that influenced development and embryo formation. Collectively, our findings further implicate the UBR protein family and the Notch signaling pathway in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism that differs from JBS. Further studies exploring a potential role in histone regulation are warranted given clinical overlap with KAT6B disorders and the interaction of UBR7 and UBR5 with histones.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Eliane Beauregard-Lacroix
- Medical Genetics Division, Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC H3T 1C5, Canada
| | - Christine Kondratev
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Justine Rousseau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Ah Jung Heo
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Katherine Neas
- Genetic Health Service New Zealand, Wellington South 6242, New Zealand
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratory, Houston, TX 77021, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University Munich and Institute of Neurogenomics, Helmholtz Zentrum Munchen, Neuherberg 85764, Germany
| | | | - Fuad Al Mutairi
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz University for Health Sciences, and Medical Genetic Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh 11481, Saudi Arabia
| | - Hamad Al Deiab
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz University for Health Sciences, and Medical Genetic Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh 11481, Saudi Arabia
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Valentina Stanley
- Rady Children's Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Yong Tae Kwon
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Philippe M Campeau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
12
|
Vu TTM, Varshavsky A. The ATF3 Transcription Factor Is a Short-Lived Substrate of the Arg/N-Degron Pathway. Biochemistry 2020; 59:2796-2812. [PMID: 32692156 DOI: 10.1021/acs.biochem.0c00514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Arg/N-degron pathway targets proteins for degradation by recognizing their specific N-terminal residues or, alternatively, their non-N-terminal degrons. In mammals, this pathway is mediated by the UBR1, UBR2, UBR4, and UBR5 E3 ubiquitin ligases, and by the p62 regulator of autophagy. UBR1 and UBR2 are sequelogous, functionally overlapping, and dominate the targeting of Arg/N-degron substrates in examined cell lines. We constructed, here, mouse strains in which the double mutant [UBR1-/- UBR2-/-] genotype can be induced conditionally, in adult mice. We also constructed human [UBR1-/- UBR2-/-] HEK293T cell lines that unconditionally lack UBR1/UBR2. ATF3 is a basic leucine zipper transcription factor that regulates hundreds of genes and can act as either a repressor or an activator of transcription. Using the above double-mutant mice and human cells, we found that the levels of endogenous, untagged ATF3 were significantly higher in both of these [UBR1-/- UBR2-/-] settings than in wild-type cells. We also show, through chase-degradation assays with [UBR1-/- UBR2-/-] and wild-type human cells, that the Arg/N-degron pathway mediates a large fraction of ATF3 degradation. Furthermore, we used split-ubiquitin and another protein interaction assay to detect the binding of ATF3 to both UBR1 and UBR2, in agreement with the UBR1/UBR2-mediated degradation of endogenous ATF3. Full-length 24 kDa ATF3 binds to ∼100 kDa fragments of 200 kDa UBR1 and UBR2 but does not bind (in the setting of interaction assays) to full-length UBR1/UBR2. These and other binding patterns, whose mechanics remain to be understood, may signify a conditional (regulated) degradation of ATF3 by the Arg/N-degron pathway.
Collapse
Affiliation(s)
- Tri T M Vu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
13
|
Leboeuf D, Pyatkov M, Zatsepin TS, Piatkov K. The Arg/N-Degron Pathway-A Potential Running Back in Fine-Tuning the Inflammatory Response? Biomolecules 2020; 10:biom10060903. [PMID: 32545869 PMCID: PMC7356051 DOI: 10.3390/biom10060903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Recognition of danger signals by a cell initiates a powerful cascade of events generally leading to inflammation. Inflammatory caspases and several other proteases become activated and subsequently cleave their target proinflammatory mediators. The irreversible nature of this process implies that the newly generated proinflammatory fragments need to be sequestered, inhibited, or degraded in order to cancel the proinflammatory program or prevent chronic inflammation. The Arg/N-degron pathway is a ubiquitin-dependent proteolytic pathway that specifically degrades protein fragments bearing N-degrons, or destabilizing residues, which are recognized by the E3 ligases of the pathway. Here, we report that the Arg/N-degron pathway selectively degrades a number of proinflammatory fragments, including some activated inflammatory caspases, contributing in tuning inflammatory processes. Partial ablation of the Arg/N-degron pathway greatly increases IL-1β secretion, indicating the importance of this ubiquitous pathway in the initiation and resolution of inflammation. Thus, we propose a model wherein the Arg/N-degron pathway participates in the control of inflammation in two ways: in the generation of inflammatory signals by the degradation of inhibitory anti-inflammatory domains and as an “off switch” for inflammatory responses through the selective degradation of proinflammatory fragments.
Collapse
Affiliation(s)
- Dominique Leboeuf
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (D.L.); (T.S.Z.)
| | - Maxim Pyatkov
- Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia;
| | - Timofei S. Zatsepin
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (D.L.); (T.S.Z.)
| | - Konstantin Piatkov
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (D.L.); (T.S.Z.)
- Correspondence:
| |
Collapse
|
14
|
Sharma B, Dabur R. Role of Pro-inflammatory Cytokines in Regulation of Skeletal Muscle Metabolism: A Systematic Review. Curr Med Chem 2020; 27:2161-2188. [DOI: 10.2174/0929867326666181129095309] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
Background:
Metabolic pathways perturbations lead to skeletal muscular atrophy in the
cachexia and sarcopenia due to increased catabolism. Pro-inflammatory cytokines induce the catabolic
pathways that impair the muscle integrity and function. Hence, this review primarily concentrates
on the effects of pro-inflammatory cytokines in regulation of skeletal muscle metabolism.
Objective:
This review will discuss the role of pro-inflammatory cytokines in skeletal muscles during
muscle wasting conditions. Moreover, the coordination among the pro-inflammatory cytokines
and their regulated molecular signaling pathways which increase the protein degradation will be
discussed.
Results:
During normal conditions, pro-inflammatory cytokines are required to balance anabolism
and catabolism and to maintain normal myogenesis process. However, during muscle wasting their
enhanced expression leads to marked destructive metabolism in the skeletal muscles. Proinflammatory
cytokines primarily exert their effects by increasing the expression of calpains and E3
ligases as well as of Nf-κB, required for protein breakdown and local inflammation. Proinflammatory
cytokines also locally suppress the IGF-1and insulin functions, hence increase the
FoxO activation and decrease the Akt function, the central point of carbohydrates lipid and protein
metabolism.
Conclusion:
Current advancements have revealed that the muscle mass loss during skeletal muscular
atrophy is multifactorial. Despite great efforts, not even a single FDA approved drug is available
in the market. It indicates the well-organized coordination among the pro-inflammatory cytokines
that need to be further understood and explored.
Collapse
Affiliation(s)
- Bhawana Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana-124001, India
| | - Rajesh Dabur
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana-124001, India
| |
Collapse
|
15
|
Leboeuf D, Abakumova T, Prikazchikova T, Rhym L, Anderson DG, Zatsepin TS, Piatkov KI. Downregulation of the Arg/N-degron Pathway Sensitizes Cancer Cells to Chemotherapy In Vivo. Mol Ther 2020; 28:1092-1104. [PMID: 32087767 DOI: 10.1016/j.ymthe.2020.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
The N-degron pathway is an emerging target for anti-tumor therapies, because of its capacity to positively regulate many hallmarks of cancer, including angiogenesis, cell proliferation, motility, and survival. Thus, inhibition of the N-degron pathway offers the potential to be a highly effective anti-cancer treatment. With the use of a small interfering RNA (siRNA)-mediated approach for selective downregulation of the four Arg/N-degron-dependent ubiquitin ligases, UBR1, UBR2, UBR4, and UBR5, we demonstrated decreased cell migration and proliferation and increased spontaneous apoptosis in cancer cells. Chronic treatment with lipid nanoparticles (LNPs) loaded with siRNA in mice efficiently downregulates the expression of UBR-ubiquitin ligases in the liver without any significant toxic effects but engages the immune system and causes inflammation. However, when used in a lower dose, in combination with a chemotherapeutic drug, downregulation of the Arg/N-degron pathway E3 ligases successfully reduced tumor load by decreasing proliferation and increasing apoptosis in a mouse model of hepatocellular carcinoma, while avoiding the inflammatory response. Our study demonstrates that UBR-ubiquitin ligases of the Arg/N-degron pathway are promising targets for the development of improved therapies for many cancer types.
Collapse
Affiliation(s)
| | | | | | - Luke Rhym
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
16
|
Park JS, Lee JY, Nguyen YTK, Kang NW, Oh EK, Jang DM, Kim HJ, Kim DD, Han BW. Structural Analyses on the Deamidation of N-Terminal Asn in the Human N-Degron Pathway. Biomolecules 2020; 10:biom10010163. [PMID: 31968674 PMCID: PMC7022378 DOI: 10.3390/biom10010163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
The N-degron pathway is a proteolytic system in which a single N-terminal amino acid acts as a determinant of protein degradation. Especially, degradation signaling of N-terminal asparagine (Nt-Asn) in eukaryotes is initiated from its deamidation by N-terminal asparagine amidohydrolase 1 (NTAN1) into aspartate. Here, we have elucidated structural principles of deamidation by human NTAN1. NTAN1 adopts the characteristic scaffold of CNF1/YfiH-like cysteine hydrolases that features an α-β-β sandwich structure and a catalytic triad comprising Cys, His, and Ser. In vitro deamidation assays using model peptide substrates with varying lengths and sequences showed that NTAN1 prefers hydrophobic residues at the second-position. The structures of NTAN1-peptide complexes further revealed that the recognition of Nt-Asn is sufficiently organized to produce high specificity, and the side chain of the second-position residue is accommodated in a hydrophobic pocket adjacent to the active site of NTAN1. Collectively, our structural and biochemical analyses of the substrate specificity of NTAN1 contribute to understanding the structural basis of all three amidases in the eukaryotic N-degron pathway.
Collapse
Affiliation(s)
- Joon Sung Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea;
| | - Yen Thi Kim Nguyen
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Nae-Won Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Eun Kyung Oh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Dong Man Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
| | - Dae-Duk Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.S.P.); (Y.T.K.N.); (N.-W.K.); (E.K.O.); (D.M.J.); (D.-D.K.)
- Correspondence: ; Tel.: +82-2-880-7899
| |
Collapse
|
17
|
Rageul J, Park JJ, Jo U, Weinheimer AS, Vu TTM, Kim H. Conditional degradation of SDE2 by the Arg/N-End rule pathway regulates stress response at replication forks. Nucleic Acids Res 2019; 47:3996-4010. [PMID: 30698750 PMCID: PMC6486553 DOI: 10.1093/nar/gkz054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple pathways counteract DNA replication stress to prevent genomic instability and tumorigenesis. The recently identified human SDE2 is a genome surveillance protein regulated by PCNA, a DNA clamp and processivity factor at replication forks. Here, we show that SDE2 cleavage after its ubiquitin-like domain generates Lys-SDE2Ct, the C-terminal SDE2 fragment bearing an N-terminal Lys residue. Lys-SDE2Ct constitutes a short-lived physiological substrate of the Arg/N-end rule proteolytic pathway, in which UBR1 and UBR2 ubiquitin ligases mediate the degradation. The Arg/N-end rule and VCP/p97UFD1-NPL4 segregase cooperate to promote phosphorylation-dependent, chromatin-associated Lys-SDE2Ct degradation upon UVC damage. Conversely, cells expressing the degradation-refractory K78V mutant, Val-SDE2Ct, fail to induce RPA phosphorylation and single-stranded DNA formation, leading to defects in PCNA-dependent DNA damage bypass and stalled fork recovery. Together, our study elucidates a previously unappreciated axis connecting the Arg/N-end rule and the p97-mediated proteolysis with the replication stress response, working together to preserve replication fork integrity.
Collapse
Affiliation(s)
- Julie Rageul
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jennifer J Park
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ukhyun Jo
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alexandra S Weinheimer
- Biochemistry and Structural Biology graduate program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tri T M Vu
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.,Stony Brook Cancer Center, Stony Brook School of Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
18
|
Ji CH, Kim HY, Heo AJ, Lee SH, Lee MJ, Kim SB, Srinivasrao G, Mun SR, Cha-Molstad H, Ciechanover A, Choi CY, Lee HG, Kim BY, Kwon YT. The N-Degron Pathway Mediates ER-phagy. Mol Cell 2019; 75:1058-1072.e9. [PMID: 31375263 DOI: 10.1016/j.molcel.2019.06.028] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/04/2019] [Accepted: 06/19/2019] [Indexed: 12/29/2022]
Abstract
The endoplasmic reticulum (ER) is susceptible to wear-and-tear and proteotoxic stress, necessitating its turnover. Here, we show that the N-degron pathway mediates ER-phagy. This autophagic degradation initiates when the transmembrane E3 ligase TRIM13 (also known as RFP2) is ubiquitinated via the lysine 63 (K63) linkage. K63-ubiquitinated TRIM13 recruits p62 (also known as sequestosome-1), whose complex undergoes oligomerization. The oligomerization is induced when the ZZ domain of p62 is bound by the N-terminal arginine (Nt-Arg) of arginylated substrates. Upon activation by the Nt-Arg, oligomerized TRIM13-p62 complexes are separated along with the ER compartments and targeted to autophagosomes, leading to lysosomal degradation. When protein aggregates accumulate within the ER lumen, degradation-resistant autophagic cargoes are co-segregated by ER membranes for lysosomal degradation. We developed synthetic ligands to the p62 ZZ domain that enhance ER-phagy for ER protein quality control and alleviate ER stresses. Our results elucidate the biochemical mechanisms and pharmaceutical means that regulate ER homeostasis.
Collapse
Affiliation(s)
- Chang Hoon Ji
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Hee Yeon Kim
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea; AUTOTAC, Changkkyunggung-ro 254, Jongno-gu, Seoul 110-799, Republic of Korea
| | - Ah Jung Heo
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Su Hyun Lee
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Min Ju Lee
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Su Bin Kim
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Ganipisetti Srinivasrao
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea; AUTOTAC, Changkkyunggung-ro 254, Jongno-gu, Seoul 110-799, Republic of Korea
| | - Su Ran Mun
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Hyunjoo Cha-Molstad
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon 28116, Republic of Korea
| | - Aaron Ciechanover
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea; Technion Integrated Cancer Center, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Hee Gu Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
| | - Bo Yeon Kim
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon 28116, Republic of Korea.
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea; Protech, Yongeon 103 Daehangno, Jongno-gu, Seoul 110-799, Republic of Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea.
| |
Collapse
|
19
|
Hunt LC, Stover J, Haugen B, Shaw TI, Li Y, Pagala VR, Finkelstein D, Barton ER, Fan Y, Labelle M, Peng J, Demontis F. A Key Role for the Ubiquitin Ligase UBR4 in Myofiber Hypertrophy in Drosophila and Mice. Cell Rep 2019; 28:1268-1281.e6. [PMID: 31365869 PMCID: PMC6697171 DOI: 10.1016/j.celrep.2019.06.094] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/07/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy.
Collapse
Affiliation(s)
- Liam C Hunt
- Division of Developmental Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jared Stover
- Division of Developmental Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Benard Haugen
- Division of Developmental Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Timothy I Shaw
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yuxin Li
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Vishwajeeth R Pagala
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Elisabeth R Barton
- College of Health & Human Performance Applied Physiology & Kinesiology, University of Florida, 124 Florida Gym, 1864 Stadium Road, Gainesville, FL 32611, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Division of Developmental Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
20
|
Dumitru A, Radu BM, Radu M, Cretoiu SM. Muscle Changes During Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1088:73-92. [PMID: 30390248 DOI: 10.1007/978-981-13-1435-3_4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscle atrophy typically is a direct effect of protein degradation induced by a diversity of pathophysiologic states such as disuse, immobilization, denervation, aging, sepsis, cachexia, glucocorticoid treatment, hereditary muscular disorders, cancer, diabetes and obesity, kidney and heart failure, and others. Muscle atrophy is defined by changes in the muscles, consisting in shrinkage of myofibers, changes in the types of fiber and myosin isoforms, and a net loss of cytoplasm, organelles and overall a protein loss. Although in the literature there are extensive studies in a range of animal models, the paucity of human data is a reality. This chapter is focused on various aspects of muscle wasting and describes the transitions of myofiber types during the progression of muscle atrophy in several pathological states. Clinical conditions associated with muscle atrophy have been grouped based on the fast-to-slow or slow-to-fast fiber-type shifts. We have also summarized the ultrastructural and histochemical features characteristic for muscle atrophy in clinical and experimental models for aging, cancer, diabetes and obesity, and heart failure and arrhythmia.
Collapse
Affiliation(s)
- Adrian Dumitru
- Department of Pathology, Emergency University Hospital, Bucharest, Romania
| | - Beatrice Mihaela Radu
- Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Bucharest, Romania.,Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Mihai Radu
- Department of Life & Environmental Physics, 'Horia Hulubei' National Institute for Physics & Nuclear Engineering, Magurele, Romania
| | - Sanda Maria Cretoiu
- Division of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
21
|
Zhang Y, Mun SR, Linares JF, Ahn J, Towers CG, Ji CH, Fitzwalter BE, Holden MR, Mi W, Shi X, Moscat J, Thorburn A, Diaz-Meco MT, Kwon YT, Kutateladze TG. ZZ-dependent regulation of p62/SQSTM1 in autophagy. Nat Commun 2018; 9:4373. [PMID: 30349045 PMCID: PMC6197226 DOI: 10.1038/s41467-018-06878-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
Autophagic receptor p62 is a critical mediator of cell detoxification, stress response, and metabolic programs and is commonly deregulated in human diseases. The diverse functions of p62 arise from its ability to interact with a large set of ligands, such as arginylated (Nt-R) substrates. Here, we describe the structural mechanism for selective recognition of Nt-R by the ZZ domain of p62 (p62ZZ). We show that binding of p62ZZ to Nt-R substrates stimulates p62 aggregation and macroautophagy and is required for autophagic targeting of p62. p62 is essential for mTORC1 activation in response to arginine, but it is not a direct sensor of free arginine in the mTORC1 pathway. We identified a regulatory linker (RL) region in p62 that binds p62ZZ in vitro and may modulate p62 function. Our findings shed new light on the mechanistic and functional significance of the major cytosolic adaptor protein p62 in two fundamental signaling pathways. The autophagic receptor p62 recognizes arginylated (Nt-R) substrates through its ZZ domain (p62ZZ). Here the authors identify a p62 auto regulatory mechanism and provide structural insights into the selective recognition of Nt-R by p62ZZ and further show that Nt-R binding stimulates p62 oligomerization and macroautophagy.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Su Ran Mun
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Juan F Linares
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - JaeWoo Ahn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Christina G Towers
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Chang Hoon Ji
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Brent E Fitzwalter
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Michael R Holden
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Wenyi Mi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,Protech Inc., Yongeon 103 Daehangno, Jongno-gu, Seoul, 110-799, Republic of Korea.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
22
|
Kim ST, Lee YJ, Tasaki T, Mun SR, Hwang J, Kang MJ, Ganipisetti S, Yi EC, Kim BY, Kwon YT. The N-recognin UBR4 of the N-end rule pathway is targeted to and required for the biogenesis of the early endosome. J Cell Sci 2018; 131:jcs.217646. [PMID: 30111582 DOI: 10.1242/jcs.217646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022] Open
Abstract
The N-end rule pathway is a proteolytic system in which single N-terminal residues of proteins act as N-degrons. These degrons are recognized by N-recognins, facilitating substrate degradation via the ubiquitin (Ub) proteasome system (UPS) or autophagy. We have previously identified a set of N-recognins [UBR1, UBR2, UBR4 (also known as p600) and UBR5 (also known as EDD)] that bind N-degrons through their UBR boxes to promote proteolysis by the proteasome. Here, we show that the 570 kDa N-recognin UBR4 is associated with maturing endosomes through an interaction with Ca2+-bound calmodulin. The endosomal recruitment of UBR4 is essential for the biogenesis of early endosomes (EEs) and endosome-related processes, such as the trafficking of endocytosed protein cargos and degradation of extracellular cargos by endosomal hydrolases. In mouse embryos, UBR4 marks and plays a role in the endosome-lysosome pathway that mediates the heterophagic proteolysis of endocytosed maternal proteins into amino acids. By screening 9591 drugs through the DrugBank database, we identify picolinic acid as a putative ligand for UBR4 that inhibits the biogenesis of EEs. Our results suggest that UBR4 is an essential modulator in the endosome-lysosome system.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sung Tae Kim
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.,Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Yoon Jee Lee
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Takafumi Tasaki
- Division of Protein Regulation Research, Medical Research Institute, Kanazawa Medical University, Ishikawa, 920-0293, Japan.,Department of Medical Zoology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Su Ran Mun
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Joonsung Hwang
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, 28116, Republic of Korea
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, 03080, Republic of Korea
| | - Srinivasrao Ganipisetti
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, 03080, Republic of Korea
| | - Bo Yeon Kim
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, 28116, Republic of Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea .,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
23
|
Kim ST, Lee YJ, Tasaki T, Hwang J, Kang MJ, Yi EC, Kim BY, Kwon YT. The N-recognin UBR4 of the N-end rule pathway is required for neurogenesis and homeostasis of cell surface proteins. PLoS One 2018; 13:e0202260. [PMID: 30157281 PMCID: PMC6114712 DOI: 10.1371/journal.pone.0202260] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022] Open
Abstract
The N-end rule pathway is a proteolytic system in which single N-terminal amino acids of proteins act as a class of degrons (N-degrons) that determine the half-lives of proteins. We have previously identified a family of mammals N-recognins (termed UBR1, UBR2, UBR4/p600, and UBR5/EDD) whose conserved UBR boxes bind N-degrons to facilitate substrate ubiquitination and proteasomal degradation via the ubiquitin-proteasome system (UPS). Amongst these N-recognins, UBR1 and UBR2 mediate ubiquitination and proteolysis of short-lived regulators and misfolded proteins. Here, we characterized the null phenotypes of UBR4-deficient mice in which the UBR box of UBR4 was deleted. We show that the mutant mice die around embryonic days 9.5–10.5 (E9.5–E10.5) associated with abnormalities in various developmental processes such as neurogenesis and cardiovascular development. These developmental defects are significantly attributed to the inability to maintain cell integrity and adhesion, which significantly correlates to the severity of null phenotypes. UBR4-loss induces the depletion of many, but not all, proteins from the plasma membrane, suggesting that UBR4 is involved in proteome-wide turnover of cell surface proteins. Indeed, UBR4 is associated with and required to generate the multivesicular body (MVB) which transiently store endocytosed cell surface proteins before their targeting to autophagosomes and subsequently lysosomes. Our results suggest that the N-recognin UBR4 plays a role in the homeostasis of cell surface proteins and, thus, cell adhesion and integrity.
Collapse
Affiliation(s)
- Sung Tae Kim
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yoon Jee Lee
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Takafumi Tasaki
- Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Joonsung Hwang
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eugene C. Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Bo Yeon Kim
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
- * E-mail: (YTK); (BYK)
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- * E-mail: (YTK); (BYK)
| |
Collapse
|
24
|
Lee DH, Kim D, Kim ST, Jeong S, Kim JL, Shim SM, Heo AJ, Song X, Guo ZS, Bartlett DL, Oh SC, Lee J, Saito Y, Kim BY, Kwon YT, Lee YJ. PARK7 modulates autophagic proteolysis through binding to the N-terminally arginylated form of the molecular chaperone HSPA5. Autophagy 2018; 14:1870-1885. [PMID: 29976090 PMCID: PMC6152518 DOI: 10.1080/15548627.2018.1491212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/07/2018] [Indexed: 02/08/2023] Open
Abstract
Macroautophagy is induced under various stresses to remove cytotoxic materials, including misfolded proteins and their aggregates. These protein cargoes are collected by specific autophagic receptors such as SQSTM1/p62 (sequestosome 1) and delivered to phagophores for lysosomal degradation. To date, little is known about how cells sense and react to diverse stresses by inducing the activity of SQSTM1. Here, we show that the peroxiredoxin-like redox sensor PARK7/DJ-1 modulates the activity of SQSTM1 and the targeting of ubiquitin (Ub)-conjugated proteins to macroautophagy under oxidative stress caused by TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10). In this mechanism, TNFSF10 induces the N-terminal arginylation (Nt-arginylation) of the endoplasmic reticulum (ER)-residing molecular chaperone HSPA5/BiP/GRP78, leading to cytosolic accumulation of Nt-arginylated HSPA5 (R-HSPA5). In parallel, TNFSF10 induces the oxidation of PARK7. Oxidized PARK7 acts as a co-chaperone-like protein that binds the ER-derived chaperone R-HSPA5, a member of the HSPA/HSP70 family. By forming a complex with PARK7 (and possibly misfolded protein cargoes), R-HSPA5 binds SQSTM1 through its Nt-Arg, facilitating self-polymerization of SQSTM1 and the targeting of SQSTM1-cargo complexes to phagophores. The 3-way interaction among PARK7, R-HSPA5, and SQSTM1 is stabilized by the Nt-Arg residue of R-HSPA5. PARK7-deficient cells are impaired in the targeting of R-HSPA5 and SQSTM1 to phagophores and the removal of Ub-conjugated cargoes. Our results suggest that PARK7 functions as a co-chaperone for R-HSPA5 to modulate autophagic removal of misfolded protein cargoes generated by oxidative stress.
Collapse
Affiliation(s)
- Dae-Hee Lee
- Department of Oncology, Korea University Guro Hospital, Seoul, Republic of Korea
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daeho Kim
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Tae Kim
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Soyeon Jeong
- Department of Oncology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jung Lim Kim
- Department of Oncology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Sang Mi Shim
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ah Jung Heo
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Xinxin Song
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David L. Bartlett
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sang Cheul Oh
- Department of Oncology, Korea University Guro Hospital, Seoul, Republic of Korea
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Junho Lee
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- The Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yoshiro Saito
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Bo Yeon Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Republic of Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong J. Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Guo Y, Song Y, Guo Z, Hu M, Liu B, Duan H, Wang L, Yuan T, Wang D. Function of RAD6B and RNF8 in spermatogenesis. Cell Cycle 2018; 17:162-173. [PMID: 28825854 DOI: 10.1080/15384101.2017.1361066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Histone ubiquitination regulates sperm formation and is important for nucleosome removal during spermatogenesis. RNF8 is an E3 ubiquitin ligase, and RAD6B is an E2 ubiquitin-conjugating enzyme. Both proteins participate in DNA damage repair processes via histone ubiquitination. Loss of RNF8 or RAD6B can lead to sterility in male mice. However, the specific mechanisms regulating these ubiquitin-mediated processes are unclear. In this study, we found that RNF8 knockout mice were either subfertile or sterile based on the numbers of offspring they produced. We explored the mechanism by which RAD6B and RNF8 knockouts cause infertility in male mice and compared the effects of their loss on spermatogenesis. Our results demonstrate that RAD6B can polyubiquitinate histones H2 A and H2B. In addition, RNF8 was shown to monoubiquitinate histones H2 A and H2B. Furthermore, we observed that absence of histone ubiquitination was not the only reason for infertility. Senescence played a role in intensifying male sterility by affecting the number of germ cells during spermatogenesis. In summary, both histone ubiquitination and senescence play important roles in spermatogenesis.
Collapse
Affiliation(s)
- Yingli Guo
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Yanfeng Song
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Zhao Guo
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Mengjin Hu
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Bing Liu
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Hongyu Duan
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Le Wang
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Tianxia Yuan
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| | - Degui Wang
- a Department of Anatomy and Histology , Lanzhou University , School of Basic Medical Sciences , Lanzhou , China
| |
Collapse
|
26
|
Shim SM, Choi HR, Sung KW, Lee YJ, Kim ST, Kim D, Mun SR, Hwang J, Cha-Molstad H, Ciechanover A, Kim BY, Kwon YT. The endoplasmic reticulum-residing chaperone BiP is short-lived and metabolized through N-terminal arginylation. Sci Signal 2018; 11:11/511/eaan0630. [PMID: 29295953 DOI: 10.1126/scisignal.aan0630] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BiP and other endoplasmic reticulum (ER)-resident proteins are thought to be metabolically stable and to function primarily in the ER lumen. We sought to assess how the abundance of these proteins dynamically fluctuates in response to various stresses and how their subpopulations are relocated to non-ER compartments such as the cytosol. We showed that the molecular chaperone BiP (also known as GRP78) was short-lived under basal conditions and ER stress. The turnover of BiP was in part driven by its amino-terminal arginylation (Nt-arginylation) by the arginyltransferase ATE1, which generated an autophagic N-degron of the N-end rule pathway. ER stress elicited the formation of R-BiP, an effect that was increased when the proteasome was also inhibited. Nt-arginylation correlated with the cytosolic relocalization of BiP under the types of stress tested. The cytosolic relocalization of BiP did not require the functionality of the unfolded protein response or the Sec61- or Derlin1-containing translocon. A key inhibitor of the turnover and Nt-arginylation of BiP was HERP (homocysteine-responsive ER protein), a 43-kDa ER membrane-integrated protein that is an essential component of ER-associated protein degradation. Pharmacological inhibition of the ER-Golgi secretory pathway also suppressed R-BiP formation. Finally, we showed that cytosolic R-BiP induced by ER stress and proteasomal inhibition was routed to autophagic vacuoles and possibly additional metabolic fates. These results suggest that Nt-arginylation is a posttranslational modification that modulates the function, localization, and metabolic fate of ER-resident proteins.
Collapse
Affiliation(s)
- Sang Mi Shim
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Ha Rim Choi
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Ki Woon Sung
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Yoon Jee Lee
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Sung Tae Kim
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daeho Kim
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Su Ran Mun
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Joonsung Hwang
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon 28116, Republic of Korea
| | - Hyunjoo Cha-Molstad
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon 28116, Republic of Korea
| | - Aaron Ciechanover
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Tumor and Vascular Biology Research Center, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Bo Yeon Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon 28116, Republic of Korea.
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea. .,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
27
|
p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nat Commun 2017; 8:102. [PMID: 28740232 PMCID: PMC5524641 DOI: 10.1038/s41467-017-00085-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/01/2017] [Indexed: 11/09/2022] Open
Abstract
Macroautophagy mediates the selective degradation of proteins and non-proteinaceous cellular constituents. Here, we show that the N-end rule pathway modulates macroautophagy. In this mechanism, the autophagic adapter p62/SQSTM1/Sequestosome-1 is an N-recognin that binds type-1 and type-2 N-terminal degrons (N-degrons), including arginine (Nt-Arg). Both types of N-degrons bind its ZZ domain. By employing three-dimensional modeling, we developed synthetic ligands to p62 ZZ domain. The binding of Nt-Arg and synthetic ligands to ZZ domain facilitates disulfide bond-linked aggregation of p62 and p62 interaction with LC3, leading to the delivery of p62 and its cargoes to the autophagosome. Upon binding to its ligand, p62 acts as a modulator of macroautophagy, inducing autophagosome biogenesis. Through these dual functions, cells can activate p62 and induce selective autophagy upon the accumulation of autophagic cargoes. We also propose that p62 mediates the crosstalk between the ubiquitin-proteasome system and autophagy through its binding Nt-Arg and other N-degrons.Soluble misfolded proteins that fail to be degraded by the ubiquitin proteasome system (UPS) are redirected to autophagy via specific adaptors, such as p62. Here the authors show that p62 recognises N-degrons in these proteins, acting as a N-recognin from the proteolytic N-end rule pathway, and targets these cargos to autophagosomal degradation.
Collapse
|
28
|
Muñoz-Escobar J, Matta-Camacho E, Cho C, Kozlov G, Gehring K. Bound Waters Mediate Binding of Diverse Substrates to a Ubiquitin Ligase. Structure 2017; 25:719-729.e3. [PMID: 28392261 DOI: 10.1016/j.str.2017.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/03/2017] [Accepted: 03/09/2017] [Indexed: 11/16/2022]
Abstract
The N-end rule pathway controls the half-life of proteins based on their N-terminal residue. Positively charged type 1 N-degrons are recognized by a negatively charged pocket on the Zn finger named the UBR box. Here, we show that the UBR box is rigid, but bound water molecules in the pocket provide the structural plasticity required to bind different positively charged amino acids. Ultra-high-resolution crystal structures of arginine, histidine, and methylated arginine reveal that water molecules mediate the binding of N-degron peptides. Using a high-throughput binding assay and isothermal titration calorimetry, we demonstrate that the UBR box is able to bind methylated arginine and lysine peptides with high affinity and measure the preference for hydrophobic residues in the second position in the N-degron peptide. Finally, we show that the V122L mutation present in Johanson-Blizzard syndrome patients changes the specificity for the second position due to occlusion of the secondary pocket.
Collapse
Affiliation(s)
- Juliana Muñoz-Escobar
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Edna Matta-Camacho
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Cordelia Cho
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Guennadi Kozlov
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Kalle Gehring
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
29
|
Physiological functions and clinical implications of the N-end rule pathway. Front Med 2016; 10:258-70. [PMID: 27492620 DOI: 10.1007/s11684-016-0458-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/06/2016] [Indexed: 01/19/2023]
Abstract
The N-end rule pathway is a unique branch of the ubiquitin-proteasome system in which the determination of a protein's half-life is dependent on its N-terminal residue. The N-terminal residue serves as the degradation signal of a protein and thus called N-degron. N-degron can be recognized and modifed by several steps of post-translational modifications, such as oxidation, deamination, arginylation or acetylation, it then polyubiquitinated by the N-recognin for degradation. The molecular basis of the N-end rule pathway has been elucidated and its physiological functions have been revealed in the past 30 years. This pathway is involved in several biological aspects, including transcription, differentiation, chromosomal segregation, genome stability, apoptosis, mitochondrial quality control, cardiovascular development, neurogenesis, carcinogenesis, and spermatogenesis. Disturbance of this pathway often causes the failure of these processes, resulting in some human diseases. This review summarized the physiological functions of the N-end rule pathway, introduced the related biological processes and diseases, with an emphasis on the inner link between this pathway and certain symptoms.
Collapse
|
30
|
Galiano MR, Goitea VE, Hallak ME. Post-translational protein arginylation in the normal nervous system and in neurodegeneration. J Neurochem 2016; 138:506-17. [PMID: 27318192 DOI: 10.1111/jnc.13708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/24/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
Post-translational arginylation of proteins is an important regulator of many physiological pathways in cells. This modification was originally noted in protein degradation during neurodegenerative processes, with an apparently different physiological relevance between central and peripheral nervous system. Subsequent studies have identified a steadily increasing number of proteins and proteolysis-derived polypeptides as arginyltransferase (ATE1) substrates, including β-amyloid, α-synuclein, and TDP43 proteolytic fragments. Arginylation is involved in signaling processes of proteins and polypeptides that are further ubiquitinated and degraded by the proteasome. In addition, it is also implicated in autophagy/lysosomal degradation pathway. Recent studies using mutant mouse strains deficient in ATE1 indicate additional roles of this modification in neuronal physiology. As ATE1 is capable of modifying proteins either at the N-terminus or middle-chain acidic residues, determining which proteins function are modulated by arginylation represents a big challenge. Here, we review studies addressing various roles of ATE1 activity in nervous system function, and suggest future research directions that will clarify the role of post-translational protein arginylation in brain development and various neurological disorders. Arginyltransferase (ATE1), the enzyme responsible for post-translational arginylation, modulates the functions of a wide variety of proteins and polypeptides, and is also involved in the main degradation pathways of intracellular proteins. Regulatory roles of ATE1 have been well defined for certain organs. However, its roles in nervous system development and neurodegenerative processes remain largely unknown, and present exciting opportunities for future research, as discussed in this review.
Collapse
Affiliation(s)
- Mauricio R Galiano
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Victor E Goitea
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Marta E Hallak
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
31
|
Masamune A, Nakano E, Niihori T, Hamada S, Nagasaki M, Aoki Y, Shimosegawa T. Variants in the UBR1 gene are not associated with chronic pancreatitis in Japan. Pancreatology 2016; 16:814-8. [PMID: 27397733 DOI: 10.1016/j.pan.2016.06.662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES The UBR1 gene encodes the enzyme ubiquitin-protein ligase E3 component n-recognin 1. Loss-of-function mutations in the UBR1 gene cause Johanson-Blizzard syndrome, which involves pancreatic exocrine insufficiency. No previous studies have examined an association of UBR1 variants with pancreatitis, in part due to the large size of the gene. This study aimed to clarify whether UBR1 variants are associated with chronic pancreatitis (CP) by the application of targeted next generation sequencing. METHODS Exon sequences of the UBR1 gene from 389 Japanese patients with CP (188 idiopathic, 172 alcoholic, 20 hereditary, 9 familial) were captured by the HaloPlex target enrichment technology and subjected to next generation sequencing. RESULTS Ninety nine point two % of the coding regions of the UBR1 gene could be sequenced by ≥ 20 reads with a mean read depth of 595 and a median depth of 399. Fifteen non-synonymous variants including three novel ones [c.4514T > C (p.I1505T), c.4828C > G (p.H1610D) and c.4856A > T (p.D1619V)] and two synonymous variants were identified in the exonic regions. The frequency of any non-synonymous or synonymous variants was not different between the patients with CP and controls. CONCLUSIONS Variants in the UBR1 gene were not associated with CP in Japan.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Eriko Nakano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Division of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoko Aoki
- Division of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
32
|
Wagner AM, Warner JB, Garrett HE, Walters CR, Petersson EJ. Transferase-Mediated Labeling of Protein N-Termini with Click Chemistry Handles. Methods Mol Biol 2016; 1337:109-27. [PMID: 26285888 DOI: 10.1007/978-1-4939-2935-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The E. coli aminoacyl transferase (AaT) can be used to transfer a variety of unnatural amino acids, including those with azide or alkyne groups, to the α-amine of a protein with an N-terminal Lys or Arg. Subsequent functionalization through either copper-catalyzed or strain-promoted click reactions can be used to label the protein with fluorophores or biotin. This method can be used to directly detect AaT substrates or in a two-step protocol to detect substrates of the mammalian ATE1 transferase.
Collapse
Affiliation(s)
- Anne M Wagner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | | | | | | | | |
Collapse
|
33
|
Corona-Rivera JR, Zapata-Aldana E, Bobadilla-Morales L, Corona-Rivera A, Peña-Padilla C, Solis-Hernández E, Guzmán C, Richmond E, Zahl C, Zenker M, Sukalo M. Oblique facial clefts in Johanson-Blizzard syndrome. Am J Med Genet A 2016; 170:1495-501. [PMID: 26989884 DOI: 10.1002/ajmg.a.37630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/26/2016] [Indexed: 11/10/2022]
Abstract
Johanson-Blizzard syndrome (JBS) is considered as an infrequent, but clinically easily recognizable autosomal recessive entity by the pathognomonic combination of congenital exocrine pancreatic insufficiency and hypoplastic alae nasi, in addition to other distinctive findings such as scalp defects, hypothyroidism, and rectourogenital malformations. There are few reports of patients with JBS in association with facial clefting, referring all to types 2 to 6 of Tessier's classification that can be characterized properly as oblique facial clefts (OFCs). We describe the clinical aspects in four patients with JBS and extensive OFCs. In all of them, the diagnosis of JBS was confirmed by the demonstration of homozygous or compound-heterozygous mutations in the UBR1 gene. Additionally, we review three previously reported cases of JBS with OFCs. Taking into account a number of approximately 100 individuals affected by JBS that have been published in the literature we estimate that the frequency of OFCs in JBS is between 5% and 10%. This report emphasizes that extensive OFCs may be the severe end of the spectrum of facial malformations occurring in JBS. No obvious genotype phenotype correlation could be identified within this cohort. Thus, UBR1 should be included within the list of contributory genes of OFCs, although the exact mechanism remains unknown. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jorge Román Corona-Rivera
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetic Unit, Pediatric Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, México.,Department of Molecular Biology and Genomics, Dr. Enrique Corona Rivera Institute of Human Genetics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Mexico
| | - Eugenio Zapata-Aldana
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetic Unit, Pediatric Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, México
| | - Lucina Bobadilla-Morales
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetic Unit, Pediatric Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, México.,Department of Molecular Biology and Genomics, Dr. Enrique Corona Rivera Institute of Human Genetics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Mexico
| | - Alfredo Corona-Rivera
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetic Unit, Pediatric Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, México.,Department of Molecular Biology and Genomics, Dr. Enrique Corona Rivera Institute of Human Genetics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Mexico
| | - Christian Peña-Padilla
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetic Unit, Pediatric Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, México
| | - Elizabeth Solis-Hernández
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetic Unit, Pediatric Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, México
| | - Celina Guzmán
- Service of Pediatrics Gastroenterology, Hospital La Católica, San José, Costa Rica
| | - Erick Richmond
- Service of Endocrinology, National Childreńs Hospital, San José, Costa Rica
| | - Christian Zahl
- Department of Oral and Maxillo-Facial Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Maja Sukalo
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| |
Collapse
|
34
|
Liu YJ, Liu C, Chang Z, Wadas B, Brower CS, Song ZH, Xu ZL, Shang YL, Liu WX, Wang LN, Dong W, Varshavsky A, Hu RG, Li W. Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway. J Biol Chem 2016; 291:7426-38. [PMID: 26858254 DOI: 10.1074/jbc.m116.714964] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Indexed: 02/05/2023] Open
Abstract
The Ate1 arginyltransferase (R-transferase) is a component of the N-end rule pathway, which recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. Ate1 arginylates N-terminal Asp, Glu, or (oxidized) Cys. The resulting N-terminal Arg is recognized by ubiquitin ligases of the N-end rule pathway. In the yeastSaccharomyces cerevisiae, the separase-mediated cleavage of the Scc1/Rad21/Mcd1 cohesin subunit generates a C-terminal fragment that bears N-terminal Arg and is destroyed by the N-end rule pathway without a requirement for arginylation. In contrast, the separase-mediated cleavage of Rec8, the mammalian meiotic cohesin subunit, yields a fragment bearing N-terminal Glu, a substrate of the Ate1 R-transferase. Here we constructed and used a germ cell-confinedAte1(-/-)mouse strain to analyze the separase-generated C-terminal fragment of Rec8. We show that this fragment is a short-lived N-end rule substrate, that its degradation requires N-terminal arginylation, and that maleAte1(-/-)mice are nearly infertile, due to massive apoptotic death ofAte1(-/-)spermatocytes during the metaphase of meiosis I. These effects ofAte1ablation are inferred to be caused, at least in part, by the failure to destroy the C-terminal fragment of Rec8 in the absence of N-terminal arginylation.
Collapse
Affiliation(s)
- Yu-Jiao Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the College of Marine Life, Ocean University of China, Qingdao 266003, China, and
| | - Chao Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - ZeNan Chang
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Brandon Wadas
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Christopher S Brower
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, the Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Zhen-Hua Song
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Liang Xu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Shang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Xiao Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Na Wang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Dong
- the College of Marine Life, Ocean University of China, Qingdao 266003, China, and
| | - Alexander Varshavsky
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125,
| | - Rong-Gui Hu
- the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Li
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China,
| |
Collapse
|
35
|
Lee JH, Jiang Y, Kwon YT, Lee MJ. Pharmacological Modulation of the N-End Rule Pathway and Its Therapeutic Implications. Trends Pharmacol Sci 2015; 36:782-797. [PMID: 26434644 DOI: 10.1016/j.tips.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/13/2015] [Accepted: 07/16/2015] [Indexed: 11/26/2022]
Abstract
The N-end rule pathway is a proteolytic system in which single N-terminal amino acids of short-lived substrates determine their metabolic half-lives. Substrates of this pathway have been implicated in the pathogenesis of many diseases, including malignancies, neurodegeneration, and cardiovascular disorders. This review provides a comprehensive overview of current knowledge about the mechanism and functions of the N-end rule pathway. Pharmacological strategies for the modulation of target substrate degradation are also reviewed, with emphasis on their in vivo implications. Given the rapid advances in structural and biochemical understanding of the recognition components (N-recognins) of the N-end rule pathway, small-molecule inhibitors and activating ligands of N-recognins emerge as therapeutic agents with novel mechanisms of action.
Collapse
Affiliation(s)
- Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Yanxialei Jiang
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Protein Metabolism Medical Research Center, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Neuroscience Research Institute, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| |
Collapse
|
36
|
Atik T, Karakoyun M, Sukalo M, Zenker M, Ozkinay F, Aydoğdu S. Two novel UBR1 gene mutations ın a patient with Johanson Blizzard Syndrome: A mild phenotype without mental retardation. Gene 2015; 570:153-5. [PMID: 26149651 DOI: 10.1016/j.gene.2015.06.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/31/2015] [Accepted: 06/15/2015] [Indexed: 11/27/2022]
Abstract
Johanson-Blizzard Syndrome (JBS) (MIM #243800) is a rare autosomal recessive genetic disorder characterized by exocrine pancreatic insufficiency, abnormal facial appearance and varying degrees of mental retardation. Mutations in UBR1 gene (MIM *605981) are considered to be responsible for the syndrome. Here, we report a 3 year-old mentally normal JBS girl. The patient presented with exocrine pancreatic insufficiency as well as failure-to-thrive. On dysmorphological examination, she was noted to have an abnormal hair pattern with frontal upsweep and alae nasi hypoplasia. With these findings, JBS diagnosis was established clinically. Molecular analysis of the UBR1 gene revealed two inherited novel mutations; one coming from each parent. These novel mutations were c. 1280T>G and c. 2432+5G>C, and they were found to be disease causing via in-silico analysis. In conclusion, for patients with longstanding exocrine pancreatic insufficiency, it should be considered as being symptomatic of a far broader picture. To omit connection with rare genetic diseases, such as Johanson-Blizzard Syndrome, a detailed dysmorphological examination ought to be performed.
Collapse
Affiliation(s)
- Tahir Atik
- Division of Genetics, Department of Pediatrics, School of Medicine, Ege University, Izmir, Turkey.
| | - Miray Karakoyun
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, School of Medicine, Ege University, Izmir, Turkey
| | - Maja Sukalo
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Ferda Ozkinay
- Division of Genetics, Department of Pediatrics, School of Medicine, Ege University, Izmir, Turkey
| | - Sema Aydoğdu
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, School of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
37
|
Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat Cell Biol 2015; 17:917-29. [PMID: 26075355 PMCID: PMC4490096 DOI: 10.1038/ncb3177] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023]
Abstract
We show that ATE1-encoded Arg-transfer RNA transferase (R-transferase) of the N-end rule pathway mediates N-terminal arginylation of multiple endoplasmic reticulum (ER)-residing chaperones, leading to their cytosolic relocalization and turnover. N-terminal arginylation of BiP (also known as GRP78), protein disulphide isomerase and calreticulin is co-induced with autophagy during innate immune responses to cytosolic foreign DNA or proteasomal inhibition, associated with increased ubiquitylation. Arginylated BiP (R-BiP) is induced by and associated with cytosolic misfolded proteins destined for p62 (also known as sequestosome 1, SQSTM1) bodies. R-BiP binds the autophagic adaptor p62 through the interaction of its N-terminal arginine with the p62 ZZ domain. This allosterically induces self-oligomerization and aggregation of p62 and increases p62 interaction with LC3, leading to p62 targeting to autophagosomes and selective lysosomal co-degradation of R-BiP and p62 together with associated cargoes. In this autophagic mechanism, Nt-arginine functions as a delivery determinant, a degron and an activating ligand. Bioinformatics analysis predicts that many ER residents use arginylation to regulate non-ER processes.
Collapse
|
38
|
Kitamura K. The ClpS-like N-domain is essential for the functioning of Ubr11, an N-recognin in Schizosaccharomyces pombe. SPRINGERPLUS 2014; 3:257. [PMID: 26034658 PMCID: PMC4447728 DOI: 10.1186/2193-1801-3-257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/16/2014] [Indexed: 12/02/2022]
Abstract
Several Ubr ubiquitin ligases recognize the N-terminal amino acid of substrate proteins and promote their degradation via the Arg/N-end rule pathway. The primary destabilizing N-terminal amino acids in yeast are classified into type 1 (Arg, Lys, and His) and type 2 (Phe, Trp, Tyr, Leu, Ile, and Met-Ф) residues. The type 1 and type 2 residues bind to the UBR box and the ClpS/N-domain, respectively, in canonical Ubr ubiquitin ligases that act as N-recognins. In this study, the requirement for type 1 and type 2 amino acid recognition by Schizosaccharomyces pombe Ubr11 was examined in vivo. Consistent with the results of previous studies, the ubr11∆ null mutant was found to be defective in oligopeptide uptake and resistant to ergosterol synthesis inhibitors. Furthermore, the ubr11∆ mutant was also less sensitive to some protein synthesis inhibitors. A ubr11 ClpS/N-domain mutant, which retained ubiquitin ligase activity but could not recognize type 2 amino acids, phenocopied all known defects of the ubr11∆ mutant. However, the recognition of type 1 residues by Ubr11 was not required for its functioning, and no severe physiological abnormalities were observed in a ubr11 mutant defective in the recognition of type 1 residues. These results reinforce the fundamental importance of the ClpS/N-domain for the functioning of the N-recognin, Ubr11.
Collapse
|
39
|
Ubr3 E3 ligase regulates apoptosis by controlling the activity of DIAP1 in Drosophila. Cell Death Differ 2014; 21:1961-70. [PMID: 25146930 DOI: 10.1038/cdd.2014.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 12/31/2022] Open
Abstract
Apoptosis has essential roles in a variety of cellular and developmental processes. Although the pathway is well studied, how the activities of individual components in the pathway are regulated is less understood. In Drosophila, a key component in apoptosis is Drosophila inhibitor of apoptosis protein 1 (DIAP1), which is required to prevent caspase activation. Here, we demonstrate that Drosophila CG42593 (ubr3), encoding the homolog of mammalian UBR3, has an essential role in regulating the apoptosis pathway. We show that loss of ubr3 activity causes caspase-dependent apoptosis in Drosophila eye and wing discs. Our genetic epistasis analyses show that the apoptosis induced by loss of ubr3 can be suppressed by loss of initiator caspase Drosophila Nedd2-like caspase (Dronc), or by ectopic expression of the apoptosis inhibitor p35, but cannot be rescued by overexpression of DIAP1. Importantly, we show that the activity of Ubr3 in the apoptosis pathway is not dependent on its Ring-domain, which is required for its E3 ligase activity. Furthermore, we find that through the UBR-box domain, Ubr3 physically interacts with the neo-epitope of DIAP1 that is exposed after caspase-mediated cleavage. This interaction promotes the recruitment and ubiquitination of substrate caspases by DIAP1. Together, our data indicate that Ubr3 interacts with DIAP1 and positively regulates DIAP1 activity, possibly by maintaining its active conformation in the apoptosis pathway.
Collapse
|
40
|
Kogelman LJA, Pant SD, Fredholm M, Kadarmideen HN. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network, and pathway analyses. Front Genet 2014; 5:214. [PMID: 25071839 PMCID: PMC4087325 DOI: 10.3389/fgene.2014.00214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/20/2014] [Indexed: 11/29/2022] Open
Abstract
Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g., metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways that underlie it.
Collapse
Affiliation(s)
- Lisette J A Kogelman
- Animal Genetics, Bioinformatics and Breeding Section, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Sameer D Pant
- Animal Genetics, Bioinformatics and Breeding Section, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Merete Fredholm
- Animal Genetics, Bioinformatics and Breeding Section, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Haja N Kadarmideen
- Animal Genetics, Bioinformatics and Breeding Section, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
41
|
Sukalo M, Fiedler A, Guzmán C, Spranger S, Addor MC, McHeik JN, Oltra Benavent M, Cobben JM, Gillis LA, Shealy AG, Deshpande C, Bozorgmehr B, Everman DB, Stattin EL, Liebelt J, Keller KM, Bertola DR, van Karnebeek CDM, Bergmann C, Liu Z, Düker G, Rezaei N, Alkuraya FS, Oğur G, Alrajoudi A, Venegas-Vega CA, Verbeek NE, Richmond EJ, Kirbiyik O, Ranganath P, Singh A, Godbole K, Ali FAM, Alves C, Mayerle J, Lerch MM, Witt H, Zenker M. Mutations in the human UBR1 gene and the associated phenotypic spectrum. Hum Mutat 2014; 35:521-31. [PMID: 24599544 DOI: 10.1002/humu.22538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/24/2014] [Indexed: 11/08/2022]
Abstract
Johanson-Blizzard syndrome (JBS) is a rare, autosomal recessive disorder characterized by exocrine pancreatic insufficiency, typical facial features, dental anomalies, hypothyroidism, sensorineural hearing loss, scalp defects, urogenital and anorectal anomalies, short stature, and cognitive impairment of variable degree. This syndrome is caused by a defect of the E3 ubiquitin ligase UBR1, which is part of the proteolytic N-end rule pathway. Herein, we review previously reported (n = 29) and a total of 31 novel UBR1 mutations in relation to the associated phenotype in patients from 50 unrelated families. Mutation types include nonsense, frameshift, splice site, missense, and small in-frame deletions consistent with the hypothesis that loss of UBR1 protein function is the molecular basis of JBS. There is an association of missense mutations and small in-frame deletions with milder physical abnormalities and a normal intellectual capacity, thus suggesting that at least some of these may represent hypomorphic UBR1 alleles. The review of clinical data of a large number of molecularly confirmed JBS cases allows us to define minimal clinical criteria for the diagnosis of JBS. For all previously reported and novel UBR1 mutations together with their clinical data, a mutation database has been established at LOVD.
Collapse
Affiliation(s)
- Maja Sukalo
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hockerman GH, Dethrow NM, Hameed S, Doran M, Jaeger C, Wang WH, Pond AL. The Ubr2 Gene is Expressed in Skeletal Muscle Atrophying as a Result of Hind Limb Suspension, but not Merg1a Expression Alone. Eur J Transl Myol 2014; 24:3319. [PMID: 26913136 PMCID: PMC4163950 DOI: 10.4081/ejtm.2014.3319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Skeletal muscle (SKM) atrophy is a potentially debilitating condition induced by muscle disuse, denervation, many disease states, and aging. The ubiquitin proteasome pathway (UPP) contributes greatly to the protein loss suffered in muscle atrophy. The MERG1a K+ channel is known to induce UPP activity and atrophy in SKM. It has been further demonstrated that the mouse ether-a-gogo-related gene (Merg)1a channel modulates expression of MURF1, an E3 ligase component of the UPP, while it does not affect expression of the UPP E3 ligase Mafbx/ATROGIN1. Because the UBR2 E3 ligase is known to participate in SKM atrophy, we have investigated the effect of Merg1a expression and hind limb suspension on Ubr2 expression. Here, we report that hind limb suspension results in a significant 25.6% decrease in mouse gastrocnemius muscle fiber cross sectional area (CSA) and that electro-transfer of Merg1a alone into gastrocnemius muscles yields a 15.3% decrease in CSA after 7 days. More interestingly, we discovered that hind limb suspension caused a significant 8-fold increase in Merg1a expression and a significant 4.7-fold increase in Ubr2 transcript after 4 days, while electro-transfer of Merg1a into gastrocnemius muscles resulted in a significant 6.2-fold increase in Merg1a transcript after 4 days but had no effect on Ubr2 expression. In summary, the MERG1a K+ channel, known to induce atrophy and MURF1 E3 ligase expression, does not affect UBR2 E3 ligase transcript levels. Therefore, to date, the MERG1a channel’s contribution to UPP activity appears mainly to be through up-regulation of Murf1 gene expression.
Collapse
Affiliation(s)
- Gregory H Hockerman
- (1) Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy, Purdue University , West Lafayette, IN, USA
| | - Nicole M Dethrow
- (2) Anatomy Dept., Southern Illinois University School of Medicine , Carbondale, IL, USA
| | - Sohaib Hameed
- (2) Anatomy Dept., Southern Illinois University School of Medicine , Carbondale, IL, USA
| | - Maureen Doran
- (2) Anatomy Dept., Southern Illinois University School of Medicine , Carbondale, IL, USA
| | - Christine Jaeger
- (3) Basic Medical Sciences, School of Veterinary Medicine, Purdue University , West Lafayette, IN, USA
| | - Wen-Horng Wang
- (1) Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy, Purdue University , West Lafayette, IN, USA
| | - Amber L Pond
- (1) Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy, Purdue University, West Lafayette, IN, USA; (2) Anatomy Dept., Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|
43
|
Boso G, Tasaki T, Kwon YT, Somia NV. The N-end rule and retroviral infection: no effect on integrase. Virol J 2013; 10:233. [PMID: 23849394 PMCID: PMC3716682 DOI: 10.1186/1743-422x-10-233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/05/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Integration of double stranded viral DNA is a key step in the retroviral life cycle. Virally encoded enzyme, integrase, plays a central role in this reaction. Mature forms of integrase of several retroviruses (i.e. HIV-1 and MLV) bear conserved destabilizing N-terminal residues of the N-end rule pathway - a ubiquitin dependent proteolytic system in which the N-terminal residue of a protein determines its half life. Substrates of the N-end rule pathway are recognized by E3 ubiquitin ligases called N-recognins. We have previously shown that the inactivation of three of these N-recognins, namely UBR1, UBR2 and UBR4 in mouse embryonic fibroblasts (MEFs) leads to increased stability of ectopically expressed HIV-1 integrase. These findings have prompted us to investigate the involvement of the N-end rule pathway in the HIV-1 life cycle. RESULTS The infectivity of HIV-1 but not MLV was decreased in N-recognin deficient cells in which three N-recognins (UBR1, UBR2 and UBR4) were depleted. HIV-1 integrase mutants of N-terminal amino acids (coding for stabilizing or destabilizing residues) were severely impaired in their infectivity in both human and mouse cells. Quantitative PCR analysis revealed that this inhibition was mainly caused by a defect in reverse transcription. The decreased infectivity was independent of the N-end rule since cells deficient in N-recognins were equally refractory to infection by the integrase mutants. MLV integrase mutants showed no difference in their infectivity or intravirion processing of integrase. CONCLUSIONS The N-end rule pathway impacts the early phase of the HIV-1 life cycle; however this effect is not the result of the direct action of the N-end rule pathway on the viral integrase. The N-terminal amino acid residue of integrase is highly conserved and cannot be altered without causing a substantial decrease in viral infectivity.
Collapse
Affiliation(s)
- Guney Boso
- Developmental Biology and Genetics Graduate Program, Molecular, Cellular, University of Minnesota, Minneapolis, MN, USA
| | | | | | | |
Collapse
|
44
|
Wing SS. Deubiquitinases in skeletal muscle atrophy. Int J Biochem Cell Biol 2013; 45:2130-5. [PMID: 23680672 DOI: 10.1016/j.biocel.2013.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/03/2013] [Indexed: 11/29/2022]
Abstract
The ubiquitin proteasome system plays a critical role in skeletal muscle atrophy. A large body of research has revealed that many ubiquitin ligases are induced and play an important role in mediating the wasting. However, relatively little is known about the roles of deubiquitinases in this process. Although it might be expected that deubiquitinases would be downregulated in atrophying muscles to promote ubiquitination and degradation of muscle proteins, this has not to date been demonstrated. Instead several deubiquitinases are induced in atrophying muscle, in particular USP19 and USP14. USP19, USP2 and A20 are also implicated in myogenesis. USP19 has been most studied to date. Its expression is increased in both systemic and disuse forms of atrophy and can be regulated through a p38 MAP kinase signaling pathway. In cultured muscle cells, it decreases the expression of myofibrillar proteins by apparently suppressing their transcription indicating that the ubiquitin proteasome system may be activated in skeletal muscle to not only increase protein degradation, but also to suppress protein synthesis. Deubiquitinases may be upregulated in atrophy in order to maintain the pool of free ubiquitin required for the increased overall conjugation and degradation of muscle proteins as well as to regulate the stability and function of proteins that are essential in mediating the wasting. Although deubiquitinases are not well studied, these early insights indicate that some of these enzymes play important roles and may be therapeutic targets for the prevention and treatment of muscle atrophy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Simon S Wing
- Polypeptide Laboratory, Department of Medicine, McGill University and McGill University Health Centre, Canada.
| |
Collapse
|
45
|
Abstract
PINK1, a mitochondrial serine/threonine kinase, is the product of a gene mutated in an autosomal recessive form of Parkinson disease. PINK1 is constitutively degraded by an unknown mechanism and stabilized selectively on damaged mitochondria where it can recruit the E3 ligase PARK2/PARKIN to induce mitophagy. Here, we show that, under steady-state conditions, endogenous PINK1 is constitutively and rapidly degraded by E3 ubiquitin ligases UBR1, UBR2 and UBR4 through the N-end rule pathway. Following precursor import into mitochondria, PINK1 is cleaved in the transmembrane segment by a mitochondrial intramembrane protease PARL generating an N-terminal destabilizing amino acid and then retrotranslocates from mitochondria to the cytosol for N-end recognition and proteasomal degradation. Thus, sequential actions of mitochondrial import, PARL-processing, retrotranslocation and recognition by N-end rule E3 enzymes for the ubiquitin proteosomal degradation defines the rapid PINK1 turnover. PINK1 steady-state elimination by the N-end rule identifies a novel organelle to cytoplasm turnover pathway that yields a mechanism to flag damaged mitochondria for autophagic elimination.
Collapse
Affiliation(s)
- Koji Yamano
- Biochemistry Section; Surgical Neurology Branch; National Institute of Neurological Disorders and Stroke; National Institutes of Health; Bethesda, MD USA
| | | |
Collapse
|
46
|
UBR box N-recognin-4 (UBR4), an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy. Proc Natl Acad Sci U S A 2013; 110:3800-5. [PMID: 23431188 DOI: 10.1073/pnas.1217358110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The N-end rule pathway is a proteolytic system in which destabilizing N-terminal residues of short-lived proteins act as degradation determinants (N-degrons). Substrates carrying N-degrons are recognized by N-recognins that mediate ubiquitylation-dependent selective proteolysis through the proteasome. Our previous studies identified the mammalian N-recognin family consisting of UBR1/E3α, UBR2, UBR4/p600, and UBR5, which recognize destabilizing N-terminal residues through the UBR box. In the current study, we addressed the physiological function of a poorly characterized N-recognin, 570-kDa UBR4, in mammalian development. UBR4-deficient mice die during embryogenesis and exhibit pleiotropic abnormalities, including impaired vascular development in the yolk sac (YS). Vascular development in UBR4-deficient YS normally advances through vasculogenesis but is arrested during angiogenic remodeling of primary capillary plexus associated with accumulation of autophagic vacuoles. In the YS, UBR4 marks endoderm-derived, autophagy-enriched cells that coordinate differentiation of mesoderm-derived vascular cells and supply autophagy-generated amino acids during early embryogenesis. UBR4 of the YS endoderm is associated with a tissue-specific autophagic pathway that mediates bulk lysosomal proteolysis of endocytosed maternal proteins into amino acids. In cultured cells, UBR4 subpopulation is degraded by autophagy through its starvation-induced association with cellular cargoes destined to autophagic double membrane structures. UBR4 loss results in multiple misregulations in autophagic induction and flux, including synthesis and lipidation/activation of the ubiquitin-like protein LC3 and formation of autophagic double membrane structures. Our results suggest that UBR4 plays an important role in mammalian development, such as angiogenesis in the YS, in part through regulation of bulk degradation by lysosomal hydrolases.
Collapse
|
47
|
Jackman RW, Wu CL, Kandarian SC. The ChIP-seq-defined networks of Bcl-3 gene binding support its required role in skeletal muscle atrophy. PLoS One 2012; 7:e51478. [PMID: 23251550 PMCID: PMC3519692 DOI: 10.1371/journal.pone.0051478] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/07/2012] [Indexed: 12/11/2022] Open
Abstract
NF-kappaB transcriptional activation is required for skeletal muscle disuse atrophy. We are continuing to study how the activation of NF-kB regulates the genes that encode the protein products that cause atrophy. Using ChIP-sequencing we found that Bcl-3, an NF-kB transcriptional activator required for atrophy, binds to the promoters of a number of genes whose collective function describes two major aspects of muscle wasting. By means of bioinformatics analysis of ChIP-sequencing data we found Bcl-3 to be directing transcription networks of proteolysis and energy metabolism. The proteolytic arm of the Bcl-3 networks includes many E3 ligases associated with proteasomal protein degradation, including that of the N-end rule pathway. The metabolic arm appears to be involved in organizing the change from oxidative phosphorylation to glycolysis in atrophying muscle. For one gene, MuRF1, ChIP-sequencing data identified the location of Bcl-3 and p50 binding in the promoter region which directed the creation of deletant and base-substitution mutations of MuRF1 promoter constructs to determine the effect on gene transcription. The results provide the first direct confirmation that the NF-kB binding site is involved in the muscle unloading regulation of MuRF1. Finally, we have combined the ChIP-sequencing results with gene expression microarray data from unloaded muscle to map several direct targets of Bcl-3 that are transcription factors whose own targets describe a set of indirect targets for NF-kB in atrophy. ChIP-sequencing provides the first molecular explanation for the finding that Bcl3 knockout mice are resistant to disuse muscle atrophy. Mapping the transcriptional regulation of muscle atrophy requires an unbiased analysis of the whole genome, which we show is now possible with ChIP-sequencing.
Collapse
Affiliation(s)
- Robert W Jackman
- Department of Health Sciences, Boston University, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
48
|
Fujiwara H, Tanaka N, Yamashita I, Kitamura K. Essential role of Ubr11, but not Ubr1, as an N-end rule ubiquitin ligase in Schizosaccharomyces pombe. Yeast 2012; 30:1-11. [PMID: 23348717 DOI: 10.1002/yea.2936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/18/2012] [Indexed: 11/11/2022] Open
Abstract
The N-end rule pathway degrades proteins bearing a destabilization-inducing amino acid at the N-terminus. In this proteolytic system, Ubr ubiquitin ligases recognize and ubiquitylate substrates intended for degradation. Schizosaccharomyces pombe has two similar Ubr proteins, Ubr1 and Ubr11. Both proteins have unique roles in various cellular processes, although the ubr1∆ strain shows more severe defects. However, their involvement in the N-end rule pathway is unclear, and even the N-end rule pathway-dependent proteolytic activity has not been demonstrated in Sz. pombe. Here, we show that: (a) Sz. pombe has the N-end rule pathway in which only Ubr11, but not Ubr1, is responsible; and (b) the C-terminal fragment of the meiotic cohesin Rec8 (denoted as Rec8c) generated by separase-mediated cleavage is an endogenous substrate of the N-end rule pathway. Forced overexpression of stable Rec8c was deleterious in mitosis and caused a loss of the mini-chromosome. In unperturbed mitosis without overexpression, the rate of mini-chromosome loss was five-fold higher in the ubr11∆ strain. Since Rec8 is normally produced in meiosis, we examined whether meiosis and sporulation were affected in the ubr11∆ strain. In unperturbed meiosis, chromosome segregation occurred almost normally and viable spores were produced in the ubr11∆ cells, irrespective of the presence of undegraded endogenous Rec8c peptides.
Collapse
|
49
|
Fanzani A, Conraads VM, Penna F, Martinet W. Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J Cachexia Sarcopenia Muscle 2012; 3:163-79. [PMID: 22673968 PMCID: PMC3424188 DOI: 10.1007/s13539-012-0074-6] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/13/2012] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle atrophy is defined as a decrease in muscle mass and it occurs when protein degradation exceeds protein synthesis. Potential triggers of muscle wasting are long-term immobilization, malnutrition, severe burns, aging as well as various serious and often chronic diseases, such as chronic heart failure, obstructive lung disease, renal failure, AIDS, sepsis, immune disorders, cancer, and dystrophies. Interestingly, a cooperation between several pathophysiological factors, including inappropriately adapted anabolic (e.g., growth hormone, insulin-like growth factor 1) and catabolic proteins (e.g., tumor necrosis factor alpha, myostatin), may tip the balance towards muscle-specific protein degradation through activation of the proteasomal and autophagic systems or the apoptotic pathway. Based on the current literature, we present an overview of the molecular and cellular mechanisms that contribute to muscle wasting. We also focus on the multifacetted therapeutic approach that is currently employed to prevent the development of muscle wasting and to counteract its progression. This approach includes adequate nutritional support, implementation of exercise training, and possible pharmacological compounds.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Biomedical Sciences and Biotechnologies and Interuniversitary Institute of Myology (IIM), University of Brescia, viale Europa 11, 25123, Brescia, Italy,
| | | | | | | |
Collapse
|
50
|
UBR2 of the N-end rule pathway is required for chromosome stability via histone ubiquitylation in spermatocytes and somatic cells. PLoS One 2012; 7:e37414. [PMID: 22616001 PMCID: PMC3355131 DOI: 10.1371/journal.pone.0037414] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/19/2012] [Indexed: 11/20/2022] Open
Abstract
The N-end rule pathway is a proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells.
Collapse
|