1
|
Huang J, Zhang J, Song P, Huang J, Yang Z, Han J, Wu L, Guo X. p38α-eIF6-Nsun2 axis promotes ILC3's rapid response to protect host from intestinal inflammation. J Exp Med 2025; 222:e20240624. [PMID: 39589554 PMCID: PMC11602552 DOI: 10.1084/jem.20240624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/01/2024] [Accepted: 10/08/2024] [Indexed: 11/27/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are important for maintaining gut homeostasis. Upon stimulation, ILC3s can rapidly produce cytokines to protect against infections and colitis. However, the regulation of ILC3 quick response is still unclear. Here, we find that eIF6 aggregates with Nsun2 and cytokine mRNA in ILC3s at steady state, which inhibits the methyltransferase activity of Nsun2 and the nuclear export of cytokine mRNA, resulting in the nuclear reservation of cytokine mRNA. Upon stimulation, phosphorylated p38α phosphorylates eIF6, which in turn releases Nsun2 activity, and promotes the nuclear export of cytokine mRNA and rapid cytokine production. Genetic disruption of p38α, Nsun2, or eIF6 in ILC3s influences the mRNA nuclear export and protein expression of the protective cytokines, thus leading to increased susceptibility to colitis. Together, our data identify a crucial role of the p38α-eIF6-Nsun2 axis in regulating rapid ILC3 immune response at the posttranscriptional level, which is critical for gut homeostasis maintenance and protection against gut inflammation.
Collapse
Affiliation(s)
- Jida Huang
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jing Zhang
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Panwei Song
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jiaoyan Huang
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Zi Yang
- Protein Preparation and Identification Facilities at Technology Center for Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Li Wu
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Friedson B, Willis SD, Shcherbik N, Campbell AN, Cooper KF. The CDK8 kinase module: A novel player in the transcription of translation initiation and ribosomal genes. Mol Biol Cell 2025; 36:ar2. [PMID: 39565680 PMCID: PMC11742111 DOI: 10.1091/mbc.e24-04-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
Survival following stress is dependent upon reprogramming transcription and translation. Communication between these programs following stress is critical for adaptation but is not clearly understood. The Cdk8 kinase module (CKM) of the Mediator complex modulates the transcriptional response to various stresses. Its involvement in regulating translational machinery has yet to be elucidated, highlighting an existing gap in knowledge. Here, we report that the CKM positively regulates a subset of ribosomal protein (RP) and translation initiation factor (TIF)-encoding genes under physiological conditions in Saccharomyces cerevisiae. In mouse embryonic fibroblasts and HCT116 cells, the CKM regulates unique sets of RP and TIF genes, demonstrating some conservation of function across species. In yeast, this is mediated by Cdk8 phosphorylation of one or more transcription factors which control RP and TIF expression. Conversely, the CKM is disassembled following nutrition stress, permitting repression of RP and TIF genes. The CKM also plays a transcriptional role important for promoting cell survival, particularly during translational machinery stress triggered by ribosome-targeting antibiotics. Furthermore, in mammalian cells, the activity of CDK8 and its paralogue, CDK19, promotes cell survival following ribosome inhibition. These results provide mechanistic insights into the CKM's role in regulating expression of a subset of genes associated with translation.
Collapse
Affiliation(s)
- Brittany Friedson
- Department of Molecular Biology, Virtual Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Stephen D. Willis
- Department of Molecular Biology, Virtual Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Natalia Shcherbik
- Department of Molecular Biology, Virtual Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Alicia N. Campbell
- Department of Molecular Biology, Virtual Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Katrina F. Cooper
- Department of Molecular Biology, Virtual Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| |
Collapse
|
3
|
Kubitscheck U, Siebrasse JP. Pre-ribosomal particles from nucleoli to cytoplasm. Nucleus 2024; 15:2373052. [PMID: 38940456 PMCID: PMC11216097 DOI: 10.1080/19491034.2024.2373052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
The analysis of nucleocytoplasmic transport of proteins and messenger RNA has been the focus of advanced microscopic approaches. Recently, it has been possible to identify and visualize individual pre-ribosomal particles on their way through the nuclear pore complex using both electron and light microscopy. In this review, we focused on the transport of pre-ribosomal particles in the nucleus on their way to and through the pores.
Collapse
Affiliation(s)
- Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Jan Peter Siebrasse
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Zhu B, Guo Y, Lv S, Ling X, You S. Hepatic phenotypes of EFL1-related Shwachman-Diamond syndrome in a biopsy-validated study. J Hepatol 2024; 81:e102-e104. [PMID: 38703831 DOI: 10.1016/j.jhep.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Affiliation(s)
- Bing Zhu
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | | | - Sa Lv
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | | | - Shaoli You
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
5
|
Lee JS, Dan T, Zhang H, Cheng Y, Rehfeld F, Brugarolas J, Mendell JT. An ultraconserved snoRNA-like element in long noncoding RNA CRNDE promotes ribosome biogenesis and cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604857. [PMID: 39091767 PMCID: PMC11291168 DOI: 10.1101/2024.07.23.604857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Cancer cells frequently upregulate ribosome production to support tumorigenesis. While small nucleolar RNAs (snoRNAs) are critical for ribosome biogenesis, the roles of other classes of noncoding RNAs in this process remain largely unknown. Here we performed CRISPRi screens to identify essential long noncoding RNAs (lncRNAs) in renal cell carcinoma (RCC) cells. This revealed that an alternatively-spliced isoform of lncRNA Colorectal Neoplasia Differentially Expressed containing an ultraconserved element (UCE), referred to as CRNDE UCE, is required for RCC cell proliferation. CRNDE UCE localizes to the nucleolus and promotes 60S ribosomal subunit biogenesis. The UCE of CRNDE functions as an unprocessed C/D box snoRNA that directly interacts with ribosomal RNA precursors. This facilitates delivery of eIF6, a key 60S biogenesis factor, which binds to CRNDE UCE through a sequence element adjacent to the UCE. These findings highlight the functional versatility of snoRNA sequences and expand the known mechanisms through which noncoding RNAs orchestrate ribosome biogenesis.
Collapse
Affiliation(s)
- Jong-Sun Lee
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tu Dan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yujing Cheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Frederick Rehfeld
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James Brugarolas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Roshan P, Biswas A, Anagnos S, Luebbers R, Harish K, Ahmed S, Li M, Nguyen N, Zhou G, Tedeschi F, Hathuc V, Lin Z, Hamilton Z, Origanti S. Modulation of ribosomal subunit associations by eIF6 is critical for mitotic exit and cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600220. [PMID: 38979253 PMCID: PMC11230244 DOI: 10.1101/2024.06.24.600220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Moderating the pool of active ribosomal subunits is critical for maintaining global translation rates. A factor crucial for modulating the 60S ribosomal subunits is eukaryotic translation initiation factor 6. Release of eIF6 from 60S is essential to permit 60S interactions with 40S. Here, using the N106S mutant of eIF6, we show that disrupting eIF6 interaction with 60S leads to an increase in vacant 80S. It further highlights a dichotomy in the anti-association activity of eIF6 that is distinct from its role in 60S biogenesis and shows that the nucleolar localization of eIF6 is not dependent on uL14-BCCIP interactions. Limiting active ribosomal pools markedly deregulates translation especially in mitosis and leads to chromosome segregation defects, mitotic exit delays and mitotic catastrophe. Ribo-Seq analysis of the eIF6-N106S mutant shows a significant downregulation in the translation efficiencies of mitotic factors and specifically transcripts with long 3'UTRs. eIF6-N106S mutation also limits cancer invasion, and this role is correlated with the overexpression of eIF6 only in high-grade invasive cancers suggesting that deregulation of eIF6 is probably not an early event in cancers. Thus, this study highlights the segregation of eIF6 functions and its role in moderating 80S availability for mitotic translation and cancer progression.
Collapse
|
7
|
Guo H, Lv J, Su X, Chen L, Ren J, Liu L, Ren M, Liu S, Dai M, Ren G, Gao F. Rice OseIF6.1 encodes a eukaryotic translation initiation factor and is essential for the development of grain and anther. FRONTIERS IN PLANT SCIENCE 2024; 15:1366986. [PMID: 38576779 PMCID: PMC10991840 DOI: 10.3389/fpls.2024.1366986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
The eIF6 proteins are distributed extensively in eukaryotes and play diverse and essential roles. The bona fide eIF6 protein in Arabidopsis, At-eIF6;1, is essential for embryogenesis. However, the role of eIF6 proteins in rice growth and development remains elusive and requires further investigation. Here, we characterized the functions of OseIF6.1, which is homologous to At-eIF6;1. OseIF6.1 encodes an eukaryotic translation initiation factor with a conserved eIF6 domain. The knockdown of OseIF6.1 resulted in a decrease in grain length and pollen sterility, whereas the overexpression of OseIF6.1 displayed opposite phenotypes. Further studies revealed that OseIF6.1 regulates grain shape by influencing cell expansion and proliferation. In addition, OseIF6.1 interacts with OsNMD3, which is a nuclear export adaptor for the 60S ribosomal subunit. The knockdown of OsNMD3 in plants exhibited reduced fertility and seed setting. Therefore, our findings have significantly enriched the current understanding of the role of OseIF6.1 in rice growth and development.
Collapse
Affiliation(s)
- Hongming Guo
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jianqun Lv
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiangwen Su
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Juansheng Ren
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Liping Liu
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Mingxin Ren
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Song Liu
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Mingli Dai
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Guangjun Ren
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Fangyuan Gao
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
8
|
Baum B, Spang A. On the origin of the nucleus: a hypothesis. Microbiol Mol Biol Rev 2023; 87:e0018621. [PMID: 38018971 PMCID: PMC10732040 DOI: 10.1128/mmbr.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
SUMMARYIn this hypothesis article, we explore the origin of the eukaryotic nucleus. In doing so, we first look afresh at the nature of this defining feature of the eukaryotic cell and its core functions-emphasizing the utility of seeing the eukaryotic nucleoplasm and cytoplasm as distinct regions of a common compartment. We then discuss recent progress in understanding the evolution of the eukaryotic cell from archaeal and bacterial ancestors, focusing on phylogenetic and experimental data which have revealed that many eukaryotic machines with nuclear activities have archaeal counterparts. In addition, we review the literature describing the cell biology of representatives of the TACK and Asgardarchaeaota - the closest known living archaeal relatives of eukaryotes. Finally, bringing these strands together, we propose a model for the archaeal origin of the nucleus that explains much of the current data, including predictions that can be used to put the model to the test.
Collapse
Affiliation(s)
- Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
| |
Collapse
|
9
|
Elliff J, Biswas A, Roshan P, Kuppa S, Patterson A, Mattice J, Chinnaraj M, Burd R, Walker SE, Pozzi N, Antony E, Bothner B, Origanti S. Dynamic states of eIF6 and SDS variants modulate interactions with uL14 of the 60S ribosomal subunit. Nucleic Acids Res 2023; 51:1803-1822. [PMID: 36651285 PMCID: PMC9976893 DOI: 10.1093/nar/gkac1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Assembly of ribosomal subunits into active ribosomal complexes is integral to protein synthesis. Release of eIF6 from the 60S ribosomal subunit primes 60S to associate with the 40S subunit and engage in translation. The dynamics of eIF6 interaction with the uL14 (RPL23) interface of 60S and its perturbation by somatic mutations acquired in Shwachman-Diamond Syndrome (SDS) is yet to be clearly understood. Here, by using a modified strategy to obtain high yields of recombinant human eIF6 we have uncovered the critical interface entailing eight key residues in the C-tail of uL14 that is essential for physical interactions between 60S and eIF6. Disruption of the complementary binding interface by conformational changes in eIF6 disease variants provide a mechanism for weakened interactions of variants with the 60S. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) analyses uncovered dynamic configurational rearrangements in eIF6 induced by binding to uL14 and exposed an allosteric interface regulated by the C-tail of eIF6. Disrupting key residues in the eIF6-60S binding interface markedly limits proliferation of cancer cells, which highlights the significance of therapeutically targeting this interface. Establishing these key interfaces thus provide a therapeutic framework for targeting eIF6 in cancers and SDS.
Collapse
Affiliation(s)
- Jonah Elliff
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
- Department of Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Aparna Biswas
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Poonam Roshan
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Jenna Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Mathivanan Chinnaraj
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Ryan Burd
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Sarah E Walker
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Sofia Origanti
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| |
Collapse
|
10
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Meng W, Xiao H, Mei P, Chen J, Wang Y, Zhao R, Liao Y. Critical Roles of METTL3 in Translation Regulation of Cancer. Biomolecules 2023; 13:biom13020243. [PMID: 36830614 PMCID: PMC9953158 DOI: 10.3390/biom13020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Aberrant translation, a characteristic feature of cancer, is regulated by the complex and sophisticated RNA binding proteins (RBPs) in the canonical translation machinery. N6-methyladenosine (m6A) modifications are the most abundant internal modifications in mRNAs mediated by methyltransferase-like 3 (METTL3). METTL3 is commonly aberrantly expressed in different tumors and affects the mRNA translation of many oncogenes or dysregulated tumor suppressor genes in a variety of ways. In this review, we discuss the critical roles of METTL3 in translation regulation and how METTL3 and m6A reader proteins in collaboration with RBPs within the canonical translation machinery promote aberrant translation in tumorigenesis, providing an overview of recent efforts aiming to 'translate' these results to the clinic.
Collapse
Affiliation(s)
- Wangyang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peiyuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiaping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
12
|
Liang J, Liu F, Yang Y, Li X, Cai G, Cao J, Zhang B. Diagnostic and prognostic utility of eIF6 in glioblastoma: a study based on TCGA and CGGA databases. Am J Transl Res 2022; 14:5040-5049. [PMID: 35958479 PMCID: PMC9360856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Among various glioma types, glioblastoma multiforme (GBM) is one of those with the highest malignancy. Although overexpression of eukaryotic translation initiation factor 6 (eIF6), a factor that regulates protein translation initiation, is believed to promote tumor development, its function and potential molecular mechanisms in glioma progression remain uncharacterized. Consequently, we evaluated its diagnostic and prognostic utility in GBM patients. METHODS Sample data from two databases, The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), were utilized to investigate the role of eIF6 as well as its mechanism of action in gliomas. We analyzed eIF6 expression in normal tissues as well as cancerous samples of different stages of glioma. The diagnostic and prognostic value of eIF6 were analyzed using the Receiver Operating Characteristic Curve (ROC) and Kaplan-Meier analysis, respectively. Furthermore, its underlying molecular mechanism in GBM was further revealed by gene set enrichment analysis (GSEA). RESULTS Transcriptome data analyses of the two databases showed that eIF6 was upregulated in glioma tissues compared with normal counterparts. eIF6 was at high levels in WHO grade IV gliomas versus grade II and III gliomas (P<0.05). In addition, eIF6 was highly expressed in elderly and Asian glioma patients. Furthermore, eIF6 expression was found to be lower in isocitrate dehydrogenase (IDH)-mutated tumors. Patients with high eIF6 level presented shorter overall survival than cases with low eIF6 level (P<0.05), and eIF6 had favorable accuracy in predicting the prognosis of glioma patients. GSEA revealed that high eIF6 expression was mainly concentrated in cell cycle and DNA repair related pathways. CONCLUSIONS eIF6 is highly expressed in gliomas and positively associated with the degree of malignancy. Patients with high eIF6 expression present poor survival. Therefore, eIF6 has the potential to be a diagnostic biomarker and a potential therapeutic target for glioma development and GBM.
Collapse
Affiliation(s)
- Jian Liang
- Department of Neurosurgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)Shenzhen 518020, Guangdong, China
| | - Fengyu Liu
- Department of Neurosurgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)Shenzhen 518020, Guangdong, China
| | - Yaoqiang Yang
- Department of Neurosurgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)Shenzhen 518020, Guangdong, China
| | - Xing Li
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, Guangdong, China
| | - Guangmou Cai
- Department of Neurosurgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)Shenzhen 518020, Guangdong, China
| | - Jianxuan Cao
- Department of Neurosurgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)Shenzhen 518020, Guangdong, China
| | - Bo Zhang
- Department of Neurosurgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)Shenzhen 518020, Guangdong, China
| |
Collapse
|
13
|
Guo H, Cui Y, Huang L, Ge L, Xu X, Xue D, Tang M, Zheng J, Yi Y, Chen L. The RNA binding protein OsLa influences grain and anther development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1397-1414. [PMID: 35322500 DOI: 10.1111/tpj.15746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
La proteins are found widely in eukaryotes and play a variety of vital roles. AtLa1 has been identified as an La protein that is necessary for embryogenesis in Arabidopsis; however, the existence and biological functions of La proteins in rice (Oryza sativa L.) remain unclear. In this study, we identified and characterized two La proteins in rice that are homologous to AtLa1 and named them OsLa1 and OsLa2. Both the OsLa1 and OsLa2 genes encode RNA-binding proteins with an La domain and two RNA-binding domains. Mutant OsLa1 reduced grain length and pollen fertility, whereas OsLa1 overexpression caused the opposite phenotypes. Further experiments indicated that OsLa1 modulates grain size by influencing cell expansion. Interestingly, mutant OsLa2 resulted in thin grains with decreased weight and a low seed-setting rate. We also found that OsLa1 interacted with OsLa2 and that both OsLa1 and OsLa2 interacted with OseIF6.1, a eukaryotic translation initiation factor involved in ribosome biogenesis. In addition, OsLa1 was able to bind to OseIF6.1 mRNA to modulate its expression. Complete OseIF6.1 knockout caused lethality and OseIF6.1/oseif6.1 heterozygous plants displayed low fertility and low seed setting. Together, our results enrich our knowledge of the role of La proteins in rice growth and development, as well as the relationship between La and eIF6 in rice.
Collapse
Affiliation(s)
- Hongming Guo
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Linjuan Huang
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Li Ge
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaorong Xu
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Danyang Xue
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ming Tang
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Jingsheng Zheng
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Jaako P, Faille A, Tan S, Wong CC, Escudero-Urquijo N, Castro-Hartmann P, Wright P, Hilcenko C, Adams DJ, Warren AJ. eIF6 rebinding dynamically couples ribosome maturation and translation. Nat Commun 2022; 13:1562. [PMID: 35322020 PMCID: PMC8943182 DOI: 10.1038/s41467-022-29214-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Protein synthesis is a cyclical process consisting of translation initiation, elongation, termination and ribosome recycling. The release factors SBDS and EFL1—both mutated in the leukemia predisposition disorder Shwachman-Diamond syndrome — license entry of nascent 60S ribosomal subunits into active translation by evicting the anti-association factor eIF6 from the 60S intersubunit face. We find that in mammalian cells, eIF6 holds all free cytoplasmic 60S subunits in a translationally inactive state and that SBDS and EFL1 are the minimal components required to recycle these 60S subunits back into additional rounds of translation by evicting eIF6. Increasing the dose of eIF6 in mice in vivo impairs terminal erythropoiesis by sequestering post-termination 60S subunits in the cytoplasm, disrupting subunit joining and attenuating global protein synthesis. These data reveal that ribosome maturation and recycling are dynamically coupled by a mechanism that is disrupted in an inherited leukemia predisposition disorder. Jaako et al. discover a conserved tier of translational control that dynamically couples ribosome assembly and recycling. This mechanism is corrupted in an inherited bone marrow failure disorder associated with an increased risk of blood cancer.
Collapse
Affiliation(s)
- Pekka Jaako
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Alexandre Faille
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Shengjiang Tan
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Chi C Wong
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Department of Pathology, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK
| | - Norberto Escudero-Urquijo
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Pablo Castro-Hartmann
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Penny Wright
- Department of Pathology, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK
| | - Christine Hilcenko
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK. .,Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK. .,Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
| |
Collapse
|
15
|
Keen AN, Payne LA, Mehta V, Rice A, Simpson LJ, Pang KL, del Rio Hernandez A, Reader JS, Tzima E. Eukaryotic initiation factor 6 regulates mechanical responses in endothelial cells. J Cell Biol 2022; 221:e202005213. [PMID: 35024764 PMCID: PMC8763864 DOI: 10.1083/jcb.202005213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022] Open
Abstract
The repertoire of extratranslational functions of components of the protein synthesis apparatus is expanding to include control of key cell signaling networks. However, very little is known about noncanonical functions of members of the protein synthesis machinery in regulating cellular mechanics. We demonstrate that the eukaryotic initiation factor 6 (eIF6) modulates cellular mechanobiology. eIF6-depleted endothelial cells, under basal conditions, exhibit unchanged nascent protein synthesis, polysome profiles, and cytoskeleton protein expression, with minimal effects on ribosomal biogenesis. In contrast, using traction force and atomic force microscopy, we show that loss of eIF6 leads to reduced stiffness and force generation accompanied by cytoskeletal and focal adhesion defects. Mechanistically, we show that eIF6 is required for the correct spatial mechanoactivation of ERK1/2 via stabilization of an eIF6-RACK1-ERK1/2-FAK mechanocomplex, which is necessary for force-induced remodeling. These results reveal an extratranslational function for eIF6 and a novel paradigm for how mechanotransduction, the cellular cytoskeleton, and protein translation constituents are linked.
Collapse
Affiliation(s)
- Adam N. Keen
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Luke A. Payne
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Vedanta Mehta
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - Lisa J. Simpson
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kar Lai Pang
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Armando del Rio Hernandez
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - John S. Reader
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ellie Tzima
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Nuclear export of the pre-60S ribosomal subunit through single nuclear pores observed in real time. Nat Commun 2021; 12:6211. [PMID: 34707094 PMCID: PMC8551241 DOI: 10.1038/s41467-021-26323-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/02/2021] [Indexed: 11/08/2022] Open
Abstract
Ribosomal biogenesis has been studied by biochemical, genetic and electron microscopic approaches, but live cell data on the in vivo kinetics are still missing. Here we analyse the export kinetics of the large ribosomal subunit (pre-60S particle) through single NPCs in human cells. We established a stable cell line co-expressing Halo-tagged eIF6 and GFP-fused NTF2 to simultaneously label pre-60S particles and NPCs, respectively. By combining single molecule tracking and super resolution confocal microscopy we visualize the dynamics of single pre-60S particles during export through single NPCs. For export events, maximum particle accumulation is found in the centre of the pore, while unsuccessful export terminates within the nuclear basket. The export has a single rate limiting step and a duration of ∼24 milliseconds. Only about 1/3 of attempted export events are successful. Our results show that the mass flux through a single NPC can reach up to ~125 MDa·s-1 in vivo.
Collapse
|
17
|
Sun L, Liu S, Wang X, Zheng X, Chen Y, Shen H. eIF6 promotes the malignant progression of human hepatocellular carcinoma via the mTOR signaling pathway. J Transl Med 2021; 19:216. [PMID: 34016142 PMCID: PMC8139032 DOI: 10.1186/s12967-021-02877-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Eukaryotic translation initiation factor 6 (eIF6) has a crucial function in the maturation of 60S ribosomal subunits, and it controls the initiation of protein translation. Although emerging studies indicate that eIF6 is aberrantly expressed in various types of cancers, the functions and underlying molecular mechanisms of eIF6 in the pathological progression of hepatocellular carcinoma (HCC) remain unclear. This study aimed to evaluate the potential diagnostic and prognostic value of eIF6 in patients with HCC. METHODS HCC samples enrolled from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and our cohort were used to explore the role and mechanism of eIF6 in HCC. The diagnostic power of eIF6 was verified by receiver operating characteristic curve (ROC) analysis and its prognostic value was assessed by Kaplan-Meier analysis, and then related biological functions of eIF6 were determined in vitro and in vivo cancer models. In addition, potential molecular mechanism of eIF6 in HCC was unveiled by the gene set enrichment analysis and western blot assay. RESULTS We demonstrated that eIF6 expression was markedly increased in HCC, and elevated eIF6 expression correlated with pathological progression of HCC. Besides, eIF6 served as not only a new diagnostic biomarker but also an independent risk factor for OS in HCC patients. Functional studies indicated that the deletion of eIF6 displayed tumor-suppressor activity in HCC cells. Furthermore, we found that eIF6 could activate the mTOR-related signaling pathway and regulate the expression level of its target genes, such as CCND1, CDK4, CDK6, MYC, CASP3 and CTNNBL1, and these activities promoted proliferation and invasion of HCC cells. CONCLUSIONS The findings of this study provided a novel basis for understanding the potential role of eIF6 in promoting tumor growth and invasion, and exploited a promising strategy for improving diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Liping Sun
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuguang Liu
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaopai Wang
- Department of Pathology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Xuefeng Zheng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
| | - Ya Chen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hong Shen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Lo Gullo G, De Santis ML, Paiardini A, Rosignoli S, Romagnoli A, La Teana A, Londei P, Benelli D. The Archaeal Elongation Factor EF-2 Induces the Release of aIF6 From 50S Ribosomal Subunit. Front Microbiol 2021; 12:631297. [PMID: 33841359 PMCID: PMC8024482 DOI: 10.3389/fmicb.2021.631297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
The translation factor IF6 is a protein of about 25 kDa shared by the Archaea and the Eukarya but absent in Bacteria. It acts as a ribosome anti-association factor that binds to the large subunit preventing the joining to the small subunit. It must be released from the large ribosomal subunit to permit its entry to the translation cycle. In Eukarya, this process occurs by the coordinated action of the GTPase Efl1 and the docking protein SBDS. Archaea do not possess a homolog of the former factor while they have a homolog of SBDS. In the past, we have determined the function and ribosomal localization of the archaeal (Sulfolobus solfataricus) IF6 homolog (aIF6) highlighting its similarity to the eukaryotic counterpart. Here, we analyzed the mechanism of aIF6 release from the large ribosomal subunit. We found that, similarly to the Eukarya, the detachment of aIF6 from the 50S subunit requires a GTPase activity which involves the archaeal elongation factor 2 (aEF-2). However, the release of aIF6 from the 50S subunits does not require the archaeal homolog of SBDS, being on the contrary inhibited by its presence. Molecular modeling, using published structural data of closely related homologous proteins, elucidated the mechanistic interplay between the aIF6, aSBDS, and aEF2 on the ribosome surface. The results suggest that a conformational rearrangement of aEF2, upon GTP hydrolysis, promotes aIF6 ejection. On the other hand, aSBDS and aEF2 share the same binding site, whose occupation by SBDS prevents aEF2 binding, thereby inhibiting aIF6 release.
Collapse
Affiliation(s)
- Giada Lo Gullo
- Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome, Italy
| | | | | | - Serena Rosignoli
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Alice Romagnoli
- Department of Life and Environmental Science, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Anna La Teana
- Department of Life and Environmental Science, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Paola Londei
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Dario Benelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Arabidopsis REI-LIKE proteins activate ribosome biogenesis during cold acclimation. Sci Rep 2021; 11:2410. [PMID: 33510206 PMCID: PMC7844247 DOI: 10.1038/s41598-021-81610-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Arabidopsis REIL proteins are cytosolic ribosomal 60S-biogenesis factors. After shift to 10 °C, reil mutants deplete and slowly replenish non-translating eukaryotic ribosome complexes of root tissue, while controlling the balance of non-translating 40S- and 60S-subunits. Reil mutations respond by hyper-accumulation of non-translating subunits at steady-state temperature; after cold-shift, a KCl-sensitive 80S sub-fraction remains depleted. We infer that Arabidopsis may buffer fluctuating translation by pre-existing non-translating ribosomes before de novo synthesis meets temperature-induced demands. Reil1 reil2 double mutants accumulate 43S-preinitiation and pre-60S-maturation complexes and alter paralog composition of ribosomal proteins in non-translating complexes. With few exceptions, e.g. RPL3B and RPL24C, these changes are not under transcriptional control. Our study suggests requirement of de novo synthesis of eukaryotic ribosomes for long-term cold acclimation, feedback control of NUC2 and eIF3C2 transcription and links new proteins, AT1G03250, AT5G60530, to plant ribosome biogenesis. We propose that Arabidopsis requires biosynthesis of specialized ribosomes for cold acclimation.
Collapse
|
20
|
The composition and turnover of the Arabidopsis thaliana 80S cytosolic ribosome. Biochem J 2021; 477:3019-3032. [PMID: 32744327 PMCID: PMC7452503 DOI: 10.1042/bcj20200385] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Cytosolic 80S ribosomes contain proteins of the mature cytosolic ribosome (r-proteins) as well as proteins with roles in ribosome biogenesis, protein folding or modification. Here, we refined the core r-protein composition in Arabidopsis thaliana by determining the abundance of different proteins during enrichment of ribosomes from cell cultures using peptide mass spectrometry. The turnover rates of 26 40S subunit r-proteins and 29 60S subunit r-proteins were also determined, showing that half of the ribosome population is replaced every 3–4 days. Three enriched proteins showed significantly shorter half-lives; a protein annotated as a ribosomal protein uL10 (RPP0D, At1g25260) with a half-life of 0.5 days and RACK1b and c with half-lives of 1–1.4 days. The At1g25260 protein is a homologue of the human Mrt4 protein, a trans-acting factor in the assembly of the pre-60S particle, while RACK1 has known regulatory roles in cell function beyond its role in the 40S subunit. Our experiments also identified 58 proteins that are not from r-protein families but co-purify with ribosomes and co-express with r-proteins; 26 were enriched more than 10-fold during ribosome enrichment. Some of these enriched proteins have known roles in translation, while others are newly proposed ribosome-associated factors in plants. This analysis provides an improved understanding of A. thaliana ribosome protein content, shows that most r-proteins turnover in unison in vivo, identifies a novel set of potential plant translatome components, and how protein turnover can help identify r-proteins involved in ribosome biogenesis or regulation in plants.
Collapse
|
21
|
Ye C, Liu B, Lu H, Liu J, Rabson AB, Jacinto E, Pestov DG, Shen Z. BCCIP is required for nucleolar recruitment of eIF6 and 12S pre-rRNA production during 60S ribosome biogenesis. Nucleic Acids Res 2021; 48:12817-12832. [PMID: 33245766 PMCID: PMC7736804 DOI: 10.1093/nar/gkaa1114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023] Open
Abstract
Ribosome biogenesis is a fundamental process required for cell proliferation. Although evolutionally conserved, the mammalian ribosome assembly system is more complex than in yeasts. BCCIP was originally identified as a BRCA2 and p21 interacting protein. A partial loss of BCCIP function was sufficient to trigger genomic instability and tumorigenesis. However, a complete deletion of BCCIP arrested cell growth and was lethal in mice. Here, we report that a fraction of mammalian BCCIP localizes in the nucleolus and regulates 60S ribosome biogenesis. Both abrogation of BCCIP nucleolar localization and impaired BCCIP-eIF6 interaction can compromise eIF6 recruitment to the nucleolus and 60S ribosome biogenesis. BCCIP is vital for a pre-rRNA processing step that produces 12S pre-rRNA, a precursor to the 5.8S rRNA. However, a heterozygous Bccip loss was insufficient to impair 60S biogenesis in mouse embryo fibroblasts, but a profound reduction of BCCIP was required to abrogate its function in 60S biogenesis. These results suggest that BCCIP is a critical factor for mammalian pre-rRNA processing and 60S generation and offer an explanation as to why a subtle dysfunction of BCCIP can be tumorigenic but a complete depletion of BCCIP is lethal.
Collapse
Affiliation(s)
- Caiyong Ye
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Bochao Liu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Huimei Lu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Jingmei Liu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Arnold B Rabson
- Department of Pharmacology, and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| |
Collapse
|
22
|
Jungers CF, Elliff JM, Masson-Meyers DS, Phiel CJ, Origanti S. Regulation of eukaryotic translation initiation factor 6 dynamics through multisite phosphorylation by GSK3. J Biol Chem 2020; 295:12796-12813. [PMID: 32703900 DOI: 10.1074/jbc.ra120.013324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/16/2020] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic translation initiation factor 6 (eIF6) is essential for the synthesis of 60S ribosomal subunits and for regulating the association of 60S and 40S subunits. A mechanistic understanding of how eIF6 modulates translation in response to stress, specifically starvation-induced stress, is lacking. We here show a novel mode of eIF6 regulation by glycogen synthase kinase 3 (GSK3) that is predominantly active in response to serum starvation. Both GSK3α and GSK3β phosphorylate human eIF6. Multiple residues in the C terminus of eIF6 are phosphorylated by GSK3 in a sequential manner. In response to serum starvation, eIF6 accumulates in the cytoplasm, and this altered localization depends on phosphorylation by GSK3. Disruption of eIF6 phosphorylation exacerbates the translation inhibitory response to serum starvation and stalls cell growth. These results suggest that eIF6 regulation by GSK3 contributes to the attenuation of global protein synthesis that is critical for adaptation to starvation-induced stress.
Collapse
Affiliation(s)
- Courtney F Jungers
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Jonah M Elliff
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | | | - Christopher J Phiel
- Department of Integrative Biology, University of Colorado Denver, Colorado, USA
| | - Sofia Origanti
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA .,Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Kopka J. Systematic Review of Plant Ribosome Heterogeneity and Specialization. FRONTIERS IN PLANT SCIENCE 2020; 11:948. [PMID: 32670337 PMCID: PMC7332886 DOI: 10.3389/fpls.2020.00948] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/10/2020] [Indexed: 05/25/2023]
Abstract
Plants dedicate a high amount of energy and resources to the production of ribosomes. Historically, these multi-protein ribosome complexes have been considered static protein synthesis machines that are not subject to extensive regulation but only read mRNA and produce polypeptides accordingly. New and increasing evidence across various model organisms demonstrated the heterogeneous nature of ribosomes. This heterogeneity can constitute specialized ribosomes that regulate mRNA translation and control protein synthesis. A prominent example of ribosome heterogeneity is seen in the model plant, Arabidopsis thaliana, which, due to genome duplications, has multiple paralogs of each ribosomal protein (RP) gene. We support the notion of plant evolution directing high RP paralog divergence toward functional heterogeneity, underpinned in part by a vast resource of ribosome mutants that suggest specialization extends beyond the pleiotropic effects of single structural RPs or RP paralogs. Thus, Arabidopsis is a highly suitable model to study this phenomenon. Arabidopsis enables reverse genetics approaches that could provide evidence of ribosome specialization. In this review, we critically assess evidence of plant ribosome specialization and highlight steps along ribosome biogenesis in which heterogeneity may arise, filling the knowledge gaps in plant science by providing advanced insights from the human or yeast fields. We propose a data analysis pipeline that infers the heterogeneity of ribosome complexes and deviations from canonical structural compositions linked to stress events. This analysis pipeline can be extrapolated and enhanced by combination with other high-throughput methodologies, such as proteomics. Technologies, such as kinetic mass spectrometry and ribosome profiling, will be necessary to resolve the temporal and spatial aspects of translational regulation while the functional features of ribosomal subpopulations will become clear with the combination of reverse genetics and systems biology approaches.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Yin-Chen Hsieh
- Bioinformatics Subdivision, Wageningen University, Wageningen, Netherlands
| | - Joachim Kopka
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
24
|
Mechanism of ribosome shutdown by RsfS in Staphylococcus aureus revealed by integrative structural biology approach. Nat Commun 2020; 11:1656. [PMID: 32245971 PMCID: PMC7125091 DOI: 10.1038/s41467-020-15517-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/05/2020] [Indexed: 11/08/2022] Open
Abstract
For the sake of energy preservation, bacteria, upon transition to stationary phase, tone down their protein synthesis. This process is favored by the reversible binding of small stress-induced proteins to the ribosome to prevent unnecessary translation. One example is the conserved bacterial ribosome silencing factor (RsfS) that binds to uL14 protein onto the large ribosomal subunit and prevents its association with the small subunit. Here we describe the binding mode of Staphylococcus aureus RsfS to the large ribosomal subunit and present a 3.2 Å resolution cryo-EM reconstruction of the 50S-RsfS complex together with the crystal structure of uL14-RsfS complex solved at 2.3 Å resolution. The understanding of the detailed landscape of RsfS-uL14 interactions within the ribosome shed light on the mechanism of ribosome shutdown in the human pathogen S. aureus and might deliver a novel target for pharmacological drug development and treatment of bacterial infections.
Collapse
|
25
|
Golob-Schwarzl N, Wodlej C, Kleinegger F, Gogg-Kamerer M, Birkl-Toeglhofer AM, Petzold J, Aigelsreiter A, Thalhammer M, Park YN, Haybaeck J. Eukaryotic translation initiation factor 6 overexpression plays a major role in the translational control of gallbladder cancer. J Cancer Res Clin Oncol 2019; 145:2699-2711. [PMID: 31586263 PMCID: PMC6800842 DOI: 10.1007/s00432-019-03030-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gallbladder cancer (GBC) is a rare neoplasia of the biliary tract with high mortality rates and poor prognosis. Signs and symptoms of GBC are not specific and often arise at late stage of disease. For this reason, diagnosis is typically made when the cancer is already in advanced stages, and prognosis for survival is less than 5 years in 90% of cases. Biomarkers to monitor disease progression and novel therapeutic alternative targets for these tumors are strongly required. Commonly, dysregulated protein synthesis contributes to carcinogenesis and cancer progression. In this case, protein synthesis directs translation of specific mRNAs, and, in turn, promotes cell survival, invasion, angiogenesis, and metastasis of tumors. In eukaryotes, protein synthesis is regulated at its initiation, which is a rate-limiting step involving eukaryotic translation initiation factors (eIFs). We hypothesize that eIFs represent crossroads in the development of GBC, and might serve as potential biomarkers. The study focus was the role of eIF6 (an anti-association factor for the ribosomal subunits) in GBC. METHODS In human GBC samples, the expression of eIF6 was analyzed biochemically at the protein (immunohistochemistry, immunoblot analyses) and mRNA levels (qRT-PCR). RESULTS High levels of eIF6 correlated with shorter overall survival in biliary tract cancer (BTC) patients (n = 28). Immunohistochemical data from tissue microarrays (n = 114) demonstrated significantly higher expression levels of eIF6 in GBC compared to non-neoplastic tissue. Higher eIF6 expression on protein (immunoblot) and mRNA (qRT-PCR) level was confirmed by analyzing fresh frozen GBC patient samples (n = 14). Depletion of eIF6 (using specific siRNA-mediated knockdown) in Mz-ChA-2 and TFK-1 cell lines inhibited cell proliferation and induced apoptosis. CONCLUSION Our data indicates that eIF6 overexpression plays a major role in the translational control of GBC, and indicates its potential as a new biomarker and therapeutic target in GBC.
Collapse
Affiliation(s)
- Nicole Golob-Schwarzl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Christina Wodlej
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, Graz, Austria
| | - Florian Kleinegger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Department for Biomedical Research, Core Facility Alternative Biomodels and Preclinical Imaging, Medical University of Graz, Graz, Austria
| | - Margit Gogg-Kamerer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Johannes Petzold
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Ariane Aigelsreiter
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Michael Thalhammer
- Department of General Surgery, Medical University of Graz, Graz, Austria
| | - Young Nyun Park
- Department of Pathology, Yonsei University, College of Medicine Soul, Seoul, South Korea
| | - Johannes Haybaeck
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
- Center for Biomarker Research in Medicine, Graz, Austria.
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University, Leipziger Straße 44, 39210, Magdeburg, Germany.
- Department of Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
26
|
Weisser M, Ban N. Extensions, Extra Factors, and Extreme Complexity: Ribosomal Structures Provide Insights into Eukaryotic Translation. Cold Spring Harb Perspect Biol 2019; 11:11/9/a032367. [PMID: 31481454 DOI: 10.1101/cshperspect.a032367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the basic aspects of protein synthesis are preserved in all kingdoms of life, there are many important structural and functional differences between bacterial and the more complex eukaryotic ribosomes. High-resolution cryo-electron microscopy (cryo-EM) and X-ray crystallography structures of eukaryotic ribosomes have revealed the complex architectures of eukaryotic ribosomes and species-specific variations in protein and ribosomal RNA (rRNA) extensions. They also enabled structural studies of a range of eukaryotic ribosomal complexes involved in translation initiation, elongation, and termination, revealing unique mechanistic features of the eukaryotic translation process, especially with respect to the identification and recognition of translation start and stop codons on messenger RNAs (mRNAs). Most recently, structural biology has provided insights into the eukaryotic ribosomal biogenesis pathway by visualizing several of its complex intermediates. This review highlights the past decade's structural work on eukaryotic ribosomes and its implications on our understanding of eukaryotic translation.
Collapse
Affiliation(s)
- Melanie Weisser
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nenad Ban
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
27
|
Espinar-Marchena F, Rodríguez-Galán O, Fernández-Fernández J, Linnemann J, de la Cruz J. Ribosomal protein L14 contributes to the early assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 46:4715-4732. [PMID: 29788267 PMCID: PMC5961077 DOI: 10.1093/nar/gky123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022] Open
Abstract
The contribution of most ribosomal proteins to ribosome synthesis has been quite well analysed in Saccharomyces cerevisiae. However, few yeast ribosomal proteins still await characterization. Herein, we show that L14, an essential 60S ribosomal protein, assembles in the nucleolus at an early stage into pre-60S particles. Depletion of L14 results in a deficit in 60S subunits and defective processing of 27SA2 and 27SA3 to 27SB pre-rRNAs. As a result, 27S pre-rRNAs are subjected to turnover and export of pre-60S particles is blocked. These phenotypes likely appear as the direct consequence of the reduced pre-60S particle association not only of L14 upon its depletion but also of a set of neighboring ribosomal proteins located at the solvent interface of 60S subunits and the adjacent region surrounding the polypeptide exit tunnel. These pre-60S intermediates also lack some essential trans-acting factors required for 27SB pre-rRNA processing but accumulate practically all factors required for processing of 27SA3 pre-rRNA. We have also analysed the functional interaction between the eukaryote-specific carboxy-terminal extensions of the neighboring L14 and L16 proteins. Our results indicate that removal of the most distal parts of these extensions cause slight translation alterations in mature 60S subunits.
Collapse
Affiliation(s)
- Francisco Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| | - Jan Linnemann
- Institut für Biochemie III, Universität Regensburg, 93053, Regensburg, Germany
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| |
Collapse
|
28
|
Abstract
On January 21, 2017, I received an E-mail from Herb Tabor that I had been simultaneously hoping for and dreading for several years: an invitation to write a "Reflections" article for the Journal of Biological Chemistry On the one hand, I was honored to receive an invitation from Herb, a man I have admired for over 40 years, known for 24 years, and worked with as a member of the Editorial Board and Associate Editor of the Journal of Biological Chemistry for 17 years. On the other hand, the invitation marked the waning of my career as an academic scientist. With these conflicting emotions, I wrote this article with the goals of recording my career history and recognizing the many mentors, trainees, and colleagues who have contributed to it and, perhaps with pretension, with the desire that students who are beginning a career in research will find inspiration in the path I have taken and appreciate the importance of luck.
Collapse
Affiliation(s)
- David W Russell
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| |
Collapse
|
29
|
Roy D, Kahler DJ, Yun C, Hubbard EJA. Functional Interactions Between rsks-1/S6K, glp-1/Notch, and Regulators of Caenorhabditis elegans Fertility and Germline Stem Cell Maintenance. G3 (BETHESDA, MD.) 2018; 8:3293-3309. [PMID: 30126834 PMCID: PMC6169383 DOI: 10.1534/g3.118.200511] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
Abstract
The proper accumulation and maintenance of stem cells is critical for organ development and homeostasis. The Notch signaling pathway maintains stem cells in diverse organisms and organ systems. In Caenorhabditis elegans, GLP-1/Notch activity prevents germline stem cell (GSC) differentiation. Other signaling mechanisms also influence the maintenance of GSCs, including the highly-conserved TOR substrate ribosomal protein S6 kinase (S6K). Although C. elegans bearing either a null mutation in rsks-1/S6K or a reduction-of-function (rf) mutation in glp-1/Notch produce half the normal number of adult germline progenitors, virtually all these single mutant animals are fertile. However, glp-1(rf) rsks-1(null) double mutant animals are all sterile, and in about half of their gonads, all GSCs differentiate, a distinctive phenotype associated with a significant reduction or loss of GLP-1 signaling. How rsks-1/S6K promotes GSC fate is unknown. Here, we determine that rsks-1/S6K acts germline-autonomously to maintain GSCs, and that it does not act through Cyclin-E or MAP kinase in this role. We found that interfering with translation also enhances glp-1(rf), but that regulation through rsks-1 cannot fully account for this effect. In a genome-scale RNAi screen for genes that act similarly to rsks-1/S6K, we identified 56 RNAi enhancers of glp-1(rf) sterility, many of which were previously not known to interact functionally with Notch. Further investigation revealed at least six candidates that, by genetic criteria, act linearly with rsks-1/S6K. These include genes encoding translation-related proteins, cacn-1/Cactin, an RNA exosome component, and a Hedgehog-related ligand. We found that additional Hedgehog-related ligands may share functional relationships with glp-1/Notch and rsks-1/S6K in maintaining germline progenitors.
Collapse
Affiliation(s)
- Debasmita Roy
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York, NY 10016
| | - David J Kahler
- NYU High Throughput Biology Laboratory, NYU Langone Health, New York, NY 10016
| | - Chi Yun
- NYU High Throughput Biology Laboratory, NYU Langone Health, New York, NY 10016
| | - E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
30
|
Beine-Golovchuk O, Firmino AAP, Dąbrowska A, Schmidt S, Erban A, Walther D, Zuther E, Hincha DK, Kopka J. Plant Temperature Acclimation and Growth Rely on Cytosolic Ribosome Biogenesis Factor Homologs. PLANT PHYSIOLOGY 2018; 176:2251-2276. [PMID: 29382692 PMCID: PMC5841729 DOI: 10.1104/pp.17.01448] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/19/2018] [Indexed: 05/21/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) REI1-LIKE (REIL) proteins, REIL1 and REIL2, are homologs of a yeast ribosome biogenesis factor that participates in late cytoplasmic 60S ribosomal subunit maturation. Here, we report that the inhibited growth of the reil1-1 reil2-1 mutant at 10°C can be rescued by the expression of amino-terminal FLUORESCENT PROTEIN (FP)-REIL fusions driven by the UBIQUITIN10 promoter, allowing the analysis of REIL function in planta. Arabidopsis REIL1 appears to be functionally conserved, based on the cytosolic localization of FP-REIL1 and the interaction of native REIL1 with the 60S subunit in wild-type plants. In contrast to its yeast homologs, REIL1 also was present in translating ribosome fractions. Systems analysis revealed that wild-type Arabidopsis remodels the cytosolic translation machinery when grown at 10°C by accumulating cytosolic ribosome subunits and inducing the expression of cytosolic ribosomal RNA, ribosomal genes, ribosome biogenesis factors, and translation initiation or elongation factors. In the reil1-1 reil2-1 mutant, all processes associated with inhibited growth were delayed, although the plants maintained cellular integrity or acquired freezing tolerance. REIL proteins also were implicated in plant-specific processes: nonacclimated reil1-1 reil2-1 exhibited cold-acclimation responses, including activation of the DREB/CBF regulon. In addition, acclimated reil1-1 reil2-1 plants failed to activate FLOWERING LOCUS T expression in mature leaves. Therefore, in the wild type, REIL function may contribute to temperature perception by suppressing premature cold responses during growth at nonstressful temperatures. In conclusion, we suggest that Arabidopsis REIL proteins influence cold-induced plant ribosome remodeling and enhance the accumulation of cytosolic ribosome subunits after cold shift either by de novo synthesis or by recycling them from the translating ribosome fraction.
Collapse
Affiliation(s)
- Olga Beine-Golovchuk
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | | | - Adrianna Dąbrowska
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Stefanie Schmidt
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
31
|
Konikkat S, Biedka S, Woolford JL. The assembly factor Erb1 functions in multiple remodeling events during 60S ribosomal subunit assembly in S. cerevisiae. Nucleic Acids Res 2017; 45:4853-4865. [PMID: 28115637 PMCID: PMC5416829 DOI: 10.1093/nar/gkw1361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/19/2017] [Indexed: 11/14/2022] Open
Abstract
A major gap in our understanding of ribosome assembly is knowing the precise function of each of the ∼200 assembly factors. The steps in subunit assembly in which these factors participate have been examined for the most part by depleting each protein from cells. Depletion of the assembly factor Erb1 prevents stable assembly of seven other interdependent assembly factors with pre-60S subunits, resulting in turnover of early preribosomes, before the ITS1 spacer can be removed from 27SA3 pre-rRNA. To investigate more specific functions of Erb1, we constructed eight internal deletions of 40-60 amino acid residues each, spanning the amino-terminal half of Erb1. The erb1Δ161-200 and erb1Δ201-245 deletion mutations block a later step than depletion of Erb1, namely cleavage of the C2 site that initiates removal of the ITS2 spacer. Two other remodeling events fail to occur in these erb1 mutants: association of twelve different assembly factors with domain V of 25S rRNA, including the neighborhood surrounding the peptidyl transferase center, and stable association of ribosomal proteins with rRNA surrounding the polypeptide exit tunnel. This suggests that successful initiation of construction of these functional centers is a checkpoint for committing to spacer removal.
Collapse
Affiliation(s)
- Salini Konikkat
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Stephanie Biedka
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
32
|
Ting YH, Lu TJ, Johnson AW, Shie JT, Chen BR, Kumar S S, Lo KY. Bcp1 Is the Nuclear Chaperone of Rpl23 in Saccharomyces cerevisiae. J Biol Chem 2016; 292:585-596. [PMID: 27913624 DOI: 10.1074/jbc.m116.747634] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 11/21/2016] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic ribosomes are composed of rRNAs and ribosomal proteins. Ribosomal proteins are translated in the cytoplasm and imported into the nucleus for assembly with the rRNAs. It has been shown that chaperones or karyopherins responsible for import can maintain the stability of ribosomal proteins by neutralizing unfavorable positive charges and thus facilitate their transports. Among 79 ribosomal proteins in yeast, only a few are identified with specific chaperones. Besides the classic role in maintaining protein stability, chaperones have additional roles in transport, chaperoning the assembly site, and dissociation of ribosomal proteins from karyopherins. Bcp1 has been shown to be necessary for the export of Mss4, a phosphatidylinositol 4-phosphate 5-kinase, and required for ribosome biogenesis. However, its specific function in ribosome biogenesis has not been described. Here, we show that Bcp1 dissociates Rpl23 from the karyopherins and associates with Rpl23 afterward. Loss of Bcp1 causes instability of Rpl23 and deficiency of 60S subunits. In summary, Bcp1 is a novel 60S biogenesis factor via chaperoning Rpl23 in the nucleus.
Collapse
Affiliation(s)
- Ya-Han Ting
- From the Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ting-Jun Lu
- From the Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Arlen W Johnson
- the Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Jing-Ting Shie
- From the Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Bo-Ru Chen
- From the Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Suresh Kumar S
- From the Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.,the Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Kai-Yin Lo
- From the Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei 10617, Taiwan,
| |
Collapse
|
33
|
Greber BJ. Mechanistic insight into eukaryotic 60S ribosomal subunit biogenesis by cryo-electron microscopy. RNA (NEW YORK, N.Y.) 2016; 22:1643-1662. [PMID: 27875256 PMCID: PMC5066618 DOI: 10.1261/rna.057927.116] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Eukaryotic ribosomes, the protein-producing factories of the cell, are composed of four ribosomal RNA molecules and roughly 80 proteins. Their biogenesis is a complex process that involves more than 200 biogenesis factors that facilitate the production, modification, and assembly of ribosomal components and the structural transitions along the maturation pathways of the pre-ribosomal particles. Here, I review recent structural and mechanistic insights into the biogenesis of the large ribosomal subunit that were furthered by cryo-electron microscopy of natively purified pre-60S particles and in vitro reconstituted ribosome assembly factor complexes. Combined with biochemical, genetic, and previous structural data, these structures have provided detailed insights into the assembly and maturation of the central protuberance of the 60S subunit, the network of biogenesis factors near the ribosomal tunnel exit, and the functional activation of the large ribosomal subunit during cytoplasmic maturation.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720-3220, USA
| |
Collapse
|
34
|
Wang W, Xu M, Liu X, Tu J. The Rice Eukaryotic Translation Initiation Factor 3 Subunit e (OseIF3e) Influences Organ Size and Pollen Maturation. FRONTIERS IN PLANT SCIENCE 2016; 7:1399. [PMID: 27703462 PMCID: PMC5028392 DOI: 10.3389/fpls.2016.01399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/02/2016] [Indexed: 05/24/2023]
Abstract
Eukaryotic translation initiation factor 3 (eIF3) is a large protein complex that participates in most translation initiation processes. While eIF3 has been well characterized, less is known about the roles of individual eIF3 subunits, particularly in plants. Here, we identified and characterized OseIF3e in rice (Oryza sativa L.). OseIF3e was constitutively expressed in various tissues, but most strongly in vigorously growing organs. Transgenic OseIF3e-silenced rice plants showed inhibited growth in seedling and vegetative stages. Repression of OseIF3e led to defects in pollen maturation but did not affect pollen mitosis. In rice, eIF3e interacted with eIF3 subunits b, d, e, f, h, and k, and with eIF6, forming homo- and heterodimers to initiate translation. Furthermore, OseIF3e was shown by yeast two-hybrid assay to specifically bind to inhibitors of cyclin-dependent kinases 1, 5, and 6. This interaction was mediated by the sequence of amino acid residues at positions 118-138, which included a conserved motif (IGPEQIETLYQFAKF). These results suggested although OseIF3e is not a "functional core" subunit of eIF3, it still plays crucial roles in rice growth and development, in combination with other factors. We proposed a pathway by which OseIF3e influence organ size and pollen maturation in rice, providing an opportunity to optimize plant architecture for crop breeding.
Collapse
|
35
|
Yang YT, Ting YH, Liang KJ, Lo KY. The Roles of Puf6 and Loc1 in 60S Biogenesis Are Interdependent, and Both Are Required for Efficient Accommodation of Rpl43. J Biol Chem 2016; 291:19312-23. [PMID: 27458021 DOI: 10.1074/jbc.m116.732800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Indexed: 12/22/2022] Open
Abstract
Puf6 and Loc1 have two important functional roles in the cells, asymmetric mRNA distribution and ribosome biogenesis. Puf6 and Loc1 are localized predominantly in the nucleolus. They bind ASH1 mRNA, repress its translation, and facilitate the transport to the daughter cells. Asymmetric mRNA distribution is important for cell differentiation. Besides their roles in mRNA localization, Puf6 and Loc1 have been shown to be involved in 60S biogenesis. In puf6Δ or loc1Δ cells, pre-rRNA processing and 60S export are impaired and 60S subunits are underaccumulated. The functional studies of Puf6 and Loc1 have been focused on ASH1 mRNA pathway, but their roles in 60S biogenesis are still not clear. In this study, we found that Puf6 and Loc1 interact directly with each other and both proteins interact with the ribosomal protein Rpl43 (L43e). Notably, the roles of Puf6 and Loc1 in 60S biogenesis are interdependent, and both are required for efficient accommodation of Rpl43. Loc1 is further required to maintain the protein level of Rpl43. Additionally, the recruitment of Rpl43 is required for the release of Puf6 and Loc1. We propose that Puf6 and Loc1 facilitate Rpl43 loading and are sequentially released from 60S after incorporation of Rpl43 into ribosomes in yeast.
Collapse
Affiliation(s)
- Yi-Ting Yang
- From the Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Han Ting
- From the Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kei-Jen Liang
- From the Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Yin Lo
- From the Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
36
|
Talkish J, Biedka S, Jakovljevic J, Zhang J, Tang L, Strahler JR, Andrews PC, Maddock JR, Woolford JL. Disruption of ribosome assembly in yeast blocks cotranscriptional pre-rRNA processing and affects the global hierarchy of ribosome biogenesis. RNA (NEW YORK, N.Y.) 2016; 22:852-66. [PMID: 27036125 PMCID: PMC4878612 DOI: 10.1261/rna.055780.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/18/2016] [Indexed: 05/11/2023]
Abstract
In higher eukaryotes, pre-rRNA processing occurs almost exclusively post-transcriptionally. This is not the case in rapidly dividing yeast, as the majority of nascent pre-rRNAs are processed cotranscriptionally, with cleavage at the A2 site first releasing a pre-40S ribosomal subunit followed by release of a pre-60S ribosomal subunit upon transcription termination. Ribosome assembly is driven in part by hierarchical association of assembly factors and r-proteins. Groups of proteins are thought to associate with pre-ribosomes cotranscriptionally during early assembly steps, whereas others associate later, after transcription is completed. Here we describe a previously uncharacterized phenotype observed upon disruption of ribosome assembly, in which normally late-binding proteins associate earlier, with pre-ribosomes containing 35S pre-rRNA. As previously observed by many other groups, we show that disruption of 60S subunit biogenesis results in increased amounts of 35S pre-rRNA, suggesting that a greater fraction of pre-rRNAs are processed post-transcriptionally. Surprisingly, we found that early pre-ribosomes containing 35S pre-rRNA also contain proteins previously thought to only associate with pre-ribosomes after early pre-rRNA processing steps have separated maturation of the two subunits. We believe the shift to post-transcriptional processing is ultimately due to decreased cellular division upon disruption of ribosome assembly. When cells are grown under stress or to high density, a greater fraction of pre-rRNAs are processed post-transcriptionally and follow an alternative processing pathway. Together, these results affirm the principle that ribosome assembly occurs through different, parallel assembly pathways and suggest that there is a kinetic foot-race between the formation of protein binding sites and pre-rRNA processing events.
Collapse
Affiliation(s)
- Jason Talkish
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Stephanie Biedka
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jelena Jakovljevic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jingyu Zhang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Lan Tang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - John R Strahler
- Department of Biological Chemistry, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Philip C Andrews
- Department of Biological Chemistry, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Janine R Maddock
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
37
|
Ott AK, Locher L, Koch M, Deuerling E. Functional Dissection of the Nascent Polypeptide-Associated Complex in Saccharomyces cerevisiae. PLoS One 2015; 10:e0143457. [PMID: 26618777 PMCID: PMC4664479 DOI: 10.1371/journal.pone.0143457] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022] Open
Abstract
Both the yeast nascent polypeptide-associated complex (NAC) and the Hsp40/70-based chaperone system RAC-Ssb are systems tethered to the ribosome to assist cotranslational processes such as folding of nascent polypeptides. While loss of NAC does not cause phenotypic changes in yeast, the simultaneous deletion of genes coding for NAC and the chaperone Ssb (nacΔssbΔ) leads to strongly aggravated defects compared to cells lacking only Ssb, including impaired growth on plates containing L-canavanine or hygromycin B, aggregation of newly synthesized proteins and a reduced translational activity due to ribosome biogenesis defects. In this study, we dissected the functional properties of the individual NAC-subunits (α-NAC, β-NAC and β’-NAC) and of different NAC heterodimers found in yeast (αβ-NAC and αβ’-NAC) by analyzing their capability to complement the pleiotropic phenotype of nacΔssbΔ cells. We show that the abundant heterodimer αβ-NAC but not its paralogue αβ’-NAC is able to suppress all phenotypic defects of nacΔssbΔ cells including global protein aggregation as well as translation and growth deficiencies. This suggests that αβ-NAC and αβ’-NAC are functionally distinct from each other. The function of αβ-NAC strictly depends on its ribosome association and on its high level of expression. Expression of individual β-NAC, β’-NAC or α-NAC subunits as well as αβ’-NAC ameliorated protein aggregation in nacΔssbΔ cells to different extents while only β-NAC was able to restore growth defects suggesting chaperoning activities for β-NAC sufficient to decrease the sensitivity of nacΔssbΔ cells against L-canavanine or hygromycin B. Interestingly, deletion of the ubiquitin-associated (UBA)-domain of the α-NAC subunit strongly enhanced the aggregation preventing activity of αβ-NAC pointing to a negative regulatory role of this domain for the NAC chaperone activity in vivo.
Collapse
Affiliation(s)
- Ann-Kathrin Ott
- Molecular Microbiology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Konstanz Research School of Chemical Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Lisa Locher
- Molecular Microbiology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Konstanz Research School of Chemical Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Miriam Koch
- Molecular Microbiology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Konstanz Research School of Chemical Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Elke Deuerling
- Molecular Microbiology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
38
|
Protective Effects of Scutellarin on Human Cardiac Microvascular Endothelial Cells against Hypoxia-Reoxygenation Injury and Its Possible Target-Related Proteins. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:278014. [PMID: 26557144 PMCID: PMC4628680 DOI: 10.1155/2015/278014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/25/2015] [Accepted: 04/25/2015] [Indexed: 11/17/2022]
Abstract
Scutellarin (SCU) is one of the main components of traditional Chinese medicine plant Erigeron breviscapus (Vant.) Hand.-Mazz. In this paper, we studied the protective effects of SCU on human cardiac microvascular endothelial cells (HCMECs) against hypoxia-reoxygenation (HR) injury and its possible target-related proteins. Results of MTT assay showed that pretreatment of SCU at doses of 1, 5, and 10 μM for 2 h could significantly inhibit the decrease in cell viability of HCMECs induced by HR injury. Subcellular fractions of cells treated with vehicle control, 1 μM SCU, HR injury, or 1 μM SCU + HR injury were separated by ultracentrifugation. The protein expression profiles of cytoplasm and membrane/nuclei fractions were checked using protein two-dimensional electrophoresis (2-DE). Proteins differentially expressed between control and SCU-treated group, control and HR group, or HR and SCU + HR group were identified using mass spectrometry (MS/MS). Possible interaction network of these target-related proteins was predicted using bioinformatic analysis. The influence of SCU on the expression levels of these proteins was confirmed using Western blotting assay. The results indicated that proteins such as p27BBP protein (EIF6), heat shock 60 kDa protein 1 (HSPD1), and chaperonin containing TCP1 subunit 6A isoform (CCT6A) might play important roles in the effects of SCU.
Collapse
|
39
|
Ricciardi S, Miluzio A, Brina D, Clarke K, Bonomo M, Aiolfi R, Guidotti LG, Falciani F, Biffo S. Eukaryotic translation initiation factor 6 is a novel regulator of reactive oxygen species-dependent megakaryocyte maturation. J Thromb Haemost 2015; 13:2108-18. [PMID: 26391622 DOI: 10.1111/jth.13150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 09/05/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Ribosomopathies constitute a class of inherited disorders characterized by defects in ribosome biogenesis and function. Classically, bone marrow (BM) failure is a clinical symptom shared between these syndromes, including Shwachman-Bodian-Diamond syndrome (SBDS). Eukaryotic translation initiation factor 6 (eIF6) is a critical translation factor that rescues the quasilethal effect of the loss of the SBDS protein. OBJECTIVES To determine whether eIF6 activity is necessary for BM development. METHODS We used eIF6(+/-) mice and primary BM megakaryocytes to investigate the involvement of eIF6 in the regulation of hematopoiesis. RESULTS We provide evidence that reduced eIF6 expression negatively impacts on megakaryopoiesis. We show that inhibition of eIF6 leads to a reduction in cell size and mean ploidy level of megakaryocytes and a delay in megakaryocyte maturation by blocking the G1 /S transition. Consistent with this phenotype, only few megakaryocyte-forming proplatelets were found in eIF6(+/-) cells. We also discovered that, in eIF6(+/-) cells, the steady-state abundance of mitochondrial respiratory chain complex I-encoding mRNAs is decreased, resulting in decreased reactive oxygen species (ROS) production. Intriguingly, connectivity map analysis showed that eIF6-mediated changes overlap with specific translational inhibitors. eIF6 is a translation factor acting downstream of insulin/phorbol 12-myristate 13-acetate (PMA) stimulation. PMA treatment significantly restored eIF6(+/-) megakaryocyte maturation, indicating that activation of eIF6 is essential for the rescue of the phenotype. CONCLUSIONS Taken together, our results show a role for eIF6-driven translation in megakaryocyte development, and unveil the novel connection between translational control and ROS production in this cell subset.
Collapse
Affiliation(s)
- S Ricciardi
- Molecular Histology and Cell Growth Unit, National Institute of Molecular Genetics - INGM, 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - A Miluzio
- Molecular Histology and Cell Growth Unit, National Institute of Molecular Genetics - INGM, 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - D Brina
- Molecular Histology and Cell Growth Unit, National Institute of Molecular Genetics - INGM, 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - K Clarke
- Centre for Computational Biology and Modeling, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Bonomo
- Centre for Computational Biology and Modeling, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - R Aiolfi
- Immunopathology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - L G Guidotti
- Immunopathology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - F Falciani
- Centre for Computational Biology and Modeling, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - S Biffo
- Molecular Histology and Cell Growth Unit, National Institute of Molecular Genetics - INGM, 'Romeo ed Enrica Invernizzi', Milan, Italy
| |
Collapse
|
40
|
Weis F, Giudice E, Churcher M, Jin L, Hilcenko C, Wong CC, Traynor D, Kay RR, Warren AJ. Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat Struct Mol Biol 2015; 22:914-9. [PMID: 26479198 PMCID: PMC4871238 DOI: 10.1038/nsmb.3112] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/17/2015] [Indexed: 12/20/2022]
Abstract
SBDS protein (deficient in the inherited leukemia-predisposition disorder Shwachman-Diamond syndrome) and the GTPase EFL1 (an EF-G homolog) activate nascent 60S ribosomal subunits for translation by catalyzing eviction of the antiassociation factor eIF6 from nascent 60S ribosomal subunits. However, the mechanism is completely unknown. Here, we present cryo-EM structures of human SBDS and SBDS-EFL1 bound to Dictyostelium discoideum 60S ribosomal subunits with and without endogenous eIF6. SBDS assesses the integrity of the peptidyl (P) site, bridging uL16 (mutated in T-cell acute lymphoblastic leukemia) with uL11 at the P-stalk base and the sarcin-ricin loop. Upon EFL1 binding, SBDS is repositioned around helix 69, thus facilitating a conformational switch in EFL1 that displaces eIF6 by competing for an overlapping binding site on the 60S ribosomal subunit. Our data reveal the conserved mechanism of eIF6 release, which is corrupted in both inherited and sporadic leukemias.
Collapse
Affiliation(s)
- Félix Weis
- Cambridge Institute for Medical Research, Cambridge, UK
- Medical Research Council Laboratory of Molecular Biology, University of Cambridge Research Unit, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Emmanuel Giudice
- Université de Rennes 1, Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6290, Institut de Génétique et Développement de Rennes, Rennes, France
| | - Mark Churcher
- Medical Research Council Laboratory of Molecular Biology, University of Cambridge Research Unit, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Li Jin
- Medical Research Council Laboratory of Molecular Biology, University of Cambridge Research Unit, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Christine Hilcenko
- Cambridge Institute for Medical Research, Cambridge, UK
- Medical Research Council Laboratory of Molecular Biology, University of Cambridge Research Unit, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Chi C Wong
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, UK
| | - David Traynor
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Robert R Kay
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge, UK
- Medical Research Council Laboratory of Molecular Biology, University of Cambridge Research Unit, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
41
|
Brina D, Miluzio A, Ricciardi S, Biffo S. eIF6 anti-association activity is required for ribosome biogenesis, translational control and tumor progression. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1849:830-5. [PMID: 25252159 DOI: 10.1016/j.bbagrm.2014.09.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/12/2014] [Accepted: 09/14/2014] [Indexed: 12/13/2022]
Abstract
Here we discuss the function of eukaryotic initiation factor 6 (eIF6; Tif6 in yeast). eIF6 binds 60S ribosomal subunits and blocks their joining to 40S. In this context, we propose that eIF6 impedes unproductive 80S formation, namely, the formation of 80S subunits without mRNA. Genetic evidence shows that eIF6 has a dual function: in yeast and mammals, nucleolar eIF6 is necessary for the biogenesis of 60S subunits. In mammals, cytoplasmic eIF6 is required for insulin and growth factor-stimulated translation. In contrast to other translation factors, eIF6 activity is not under mTOR control. The physiological significance of eIF6 impacts on cancer and on inherited Shwachman-Bodian-Diamond syndrome. eIF6 is overexpressed in specific human tumors. In a murine model of lymphomagenesis, eIF6 depletion leads to a striking increase of survival, without adverse effects. Shwachman-Bodian-Diamond syndrome is caused by loss of function of SBDS protein. In yeast, point mutations of Tif6, the yeast homolog of eIF6, rescue the quasi-lethal effect due to the loss of the SBDS homolog, Sdo1. We propose that eIF6 is a node regulator of ribosomal function and predict that prioritizing its pharmacological targeting will be of benefit in cancer and Shwachman-Bodian-Diamond syndrome. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Daniela Brina
- INGM, "Romeo ed Enrica Invernizzi," Milano 20122, Italy
| | | | - Sara Ricciardi
- INGM, "Romeo ed Enrica Invernizzi," Milano 20122, Italy; DISIT, Alessandria 15100, Italy
| | - Stefano Biffo
- INGM, "Romeo ed Enrica Invernizzi," Milano 20122, Italy; DISIT, Alessandria 15100, Italy.
| |
Collapse
|
42
|
Pinzaglia M, Montaldo C, Polinari D, Simone M, La Teana A, Tripodi M, Mancone C, Londei P, Benelli D. EIF6 over-expression increases the motility and invasiveness of cancer cells by modulating the expression of a critical subset of membrane-bound proteins. BMC Cancer 2015; 15:131. [PMID: 25886394 PMCID: PMC4381359 DOI: 10.1186/s12885-015-1106-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/20/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Eukaryotic Initiation factor 6 (eIF6) is a peculiar translation initiation factor that binds to the large 60S ribosomal subunits, controlling translation initiation and participating in ribosome biogenesis. In the past, knowledge about the mechanisms adopted by the cells for controlling protein synthesis by extracellular stimuli has focused on two translation initiation factors (eIF4E and eIF2), however, recent data suggest eIF6 as a newcomer in the control of downstream of signal transduction pathways. eIF6 is over-expressed in tumors and its decreased expression renders cells less prone to tumor growth. A previous work from our laboratory has disclosed that over-expression of eIF6 in transformed cell lines markedly increased cell migration and invasion. METHODS Here, we performed a quantitative proteomic analysis of membrane-associated proteins in A2780 ovarian cancer cells over-expressing eIF6. Differentially expressed proteins upon eIF6 overproduction were further investigated in silico by Ingenuity Pathway Analysis (IPA). RT-qPCR and Western blot were performed in order to validate the proteomic data. Furthermore, the effects of a potent and selective inhibitor ML-141 in A2780 cells were evaluated using transwell migration assay. Finally, we explored the effects of eIF6 over-expression on WM793 primary melanoma cell lines. RESULTS We demonstrated that: (i) the genes up-regulated upon eIF6 overproduction mapped to a functional network corresponding to cellular movements in a highly significant way; (ii) cdc42 plays a pivotal role as an effector of enhanced migratory phenotype induced upon eIF6 over-expression; (iii) the variations in abundance observed for cdc42 protein occur at a post-transcriptional level; (iv) the increased cell migration/invasion upon eIF6 over-expression was generalizable to other cell line models. CONCLUSIONS Collectively, our data confirm and further extend the role of eIF6 in enhancing cell migration/invasion. We show that a number of membrane-associated proteins indeed vary in abundance upon eIF6 over-expression, and that the up-regulated proteins can be located within a functional network controlling cell motility and tumor metastasis. Full understanding of the role eIF6 plays in the metastatic process is important, also in view of the fact that this factor is a potentially druggable target to be exploited for new anti-cancer therapies.
Collapse
Affiliation(s)
- Michela Pinzaglia
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Via Regina Elena 324, 00161, Rome, Italy.
| | - Claudia Montaldo
- L. Spallanzani National Institute for Infectious Diseases, IRCCS, Via Portuense 292, 00149, Rome, Italy.
| | - Dorina Polinari
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Via Regina Elena 324, 00161, Rome, Italy.
| | - Mattei Simone
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany.
| | - Anna La Teana
- Department of Life and Environmental Science, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Marco Tripodi
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Via Regina Elena 324, 00161, Rome, Italy. .,L. Spallanzani National Institute for Infectious Diseases, IRCCS, Via Portuense 292, 00149, Rome, Italy.
| | - Carmine Mancone
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Via Regina Elena 324, 00161, Rome, Italy. .,L. Spallanzani National Institute for Infectious Diseases, IRCCS, Via Portuense 292, 00149, Rome, Italy.
| | - Paola Londei
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Via Regina Elena 324, 00161, Rome, Italy.
| | - Dario Benelli
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Via Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
43
|
Ruggero D, Shimamura A. Marrow failure: a window into ribosome biology. Blood 2014; 124:2784-92. [PMID: 25237201 PMCID: PMC4215310 DOI: 10.1182/blood-2014-04-526301] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/27/2014] [Indexed: 12/16/2022] Open
Abstract
Diamond-Blackfan anemia, Shwachman-Diamond syndrome, and dyskeratosis congenita are inherited syndromes characterized by marrow failure, congenital anomalies, and cancer predisposition. Genetic and molecular studies have uncovered distinct abnormalities in ribosome biogenesis underlying each of these 3 disorders. How defects in ribosomes, the essential organelles required for protein biosynthesis in all cells, cause tissue-specific abnormalities in human disease remains a question of fundamental scientific and medical importance. Here we review the overlapping and distinct clinical features of these 3 syndromes and discuss current knowledge regarding the ribosomal pathways disrupted in each of these disorders. We also explore the increasing complexity of ribosome biology and how this informs our understanding of developmental biology and human disease.
Collapse
Affiliation(s)
- Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Akiko Shimamura
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Pediatric Hematology/Oncology, Seattle Children's Hospital, Seattle, WA; and Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
44
|
Wang Y, Sun H, Du W, Blanzieri E, Viero G, Xu Y, Liang Y. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks. PLoS One 2014; 9:e108716. [PMID: 25268881 PMCID: PMC4182551 DOI: 10.1371/journal.pone.0108716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/03/2014] [Indexed: 12/02/2022] Open
Abstract
Essential proteins are those that are indispensable to cellular survival and development. Existing methods for essential protein identification generally rely on knock-out experiments and/or the relative density of their interactions (edges) with other proteins in a Protein-Protein Interaction (PPI) network. Here, we present a computational method, called EW, to first rank protein-protein interactions in terms of their Edge Weights, and then identify sub-PPI-networks consisting of only the highly-ranked edges and predict their proteins as essential proteins. We have applied this method to publicly-available PPI data on Saccharomyces cerevisiae (Yeast) and Escherichia coli (E. coli) for essential protein identification, and demonstrated that EW achieves better performance than the state-of-the-art methods in terms of the precision-recall and Jackknife measures. The highly-ranked protein-protein interactions by our prediction tend to be biologically significant in both the Yeast and E. coli PPI networks. Further analyses on systematically perturbed Yeast and E. coli PPI networks through randomly deleting edges demonstrate that the proposed method is robust and the top-ranked edges tend to be more associated with known essential proteins than the lowly-ranked edges.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- Department of Information and Communication Technology, University of Trento, Povo, Italy
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Huiyan Sun
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Wei Du
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Enrico Blanzieri
- Department of Information and Communication Technology, University of Trento, Povo, Italy
- * E-mail: (YCL); (EB)
| | - Gabriella Viero
- Institute of Biophysics, National Research Council, University of Trento, Povo, Italy
| | - Ying Xu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Yanchun Liang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- * E-mail: (YCL); (EB)
| |
Collapse
|
45
|
Cytoskeletal proteins associate with components of the ribosomal maturation and translation apparatus in Xenopus stage I oocytes. ZYGOTE 2014; 23:669-82. [DOI: 10.1017/s0967199414000409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryActin-based cytoskeleton (CSK) and microtubules may bind to RNAs and related molecules implicated in translation. However, many questions remain to be answered regarding the role of cytoskeletal components in supporting the proteins involved in steps in the maturation and translation processes. Here, we performed co-immunoprecipitation and immunofluorescence to examine the association between spectrins, keratins and tubulin and proteins involved in 60S ribosomal maturation and translation in Xenopus stage I oocytes, including ribosomal rpl10, eukaryotic initiation factor 6 (Eif6), thesaurins A/B, homologs of the eEF1α elongation factor, and P0, the ribosomal stalk protein. We found that rpl10 and eif6 cross-reacted with the actin-based CSK and with tubulin. rpl10 co-localizes with spectrin, particularly in the perinuclear region. eif6 is similarly localized. Given that upon ribosomal maturation, the insertion of rpl10 into the 60S subunit occurs simultaneously with the release of eif6, one can hypothesise that actin-based CSK and microtubules provide the necessary scaffold for the insertion/release of these two molecules and, subsequently, for eif6 transport and binding to the mature 60S subunit. P0 and thesaurins cross-reacted with only spectrin and cytokeratins. Thesaurins aggregated at the oocyte periphery, rendering this a territory favourable site for protein synthesis; the CSK may support the interaction between thesaurins and sites of the translating ribosome. Moreover, given that the assembly of the ribosome stalk, where P0 is located, to the 60S subunit is essential for the release of eif6, it can be hypothesised that the CSK can facilitate the binding of the stalk to the 60S.
Collapse
|
46
|
Wyler E, Wandrey F, Badertscher L, Montellese C, Alper D, Kutay U. The beta-isoform of the BRCA2 and CDKN1A(p21)-interacting protein (BCCIP) stabilizes nuclear RPL23/uL14. FEBS Lett 2014; 588:3685-91. [DOI: 10.1016/j.febslet.2014.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
47
|
Ribosome assembly factors Pwp1 and Nop12 are important for folding of 5.8S rRNA during ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 2014; 34:1863-77. [PMID: 24636992 DOI: 10.1128/mcb.01322-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous work from our lab suggests that a group of interdependent assembly factors (A(3) factors) is necessary to create early, stable preribosomes. Many of these proteins bind at or near internal transcribed spacer 2 (ITS2), but in their absence, ITS1 is not removed from rRNA, suggesting long-range communication between these two spacers. By comparing the nonessential assembly factors Nop12 and Pwp1, we show that misfolding of rRNA is sufficient to perturb early steps of biogenesis, but it is the lack of A(3) factors that results in turnover of early preribosomes. Deletion of NOP12 significantly inhibits 27SA(3) pre-rRNA processing, even though the A(3) factors are present in preribosomes. Furthermore, pre-rRNAs are stable, indicating that the block in processing is not sufficient to trigger turnover. This is in contrast to the absence of Pwp1, in which the A(3) factors are not present and pre-rRNAs are unstable. In vivo RNA structure probing revealed that the pre-rRNA processing defects are due to misfolding of 5.8S rRNA. In the absence of Nop12 and Pwp1, rRNA helix 5 is not stably formed. Interestingly, the absence of Nop12 results in the formation of an alternative yet unproductive helix 5 when cells are grown at low temperatures.
Collapse
|
48
|
Zemp I, Wandrey F, Rao S, Ashiono C, Wyler E, Montellese C, Kutay U. CK1δ and CK1ε are components of human 40S subunit precursors required for cytoplasmic 40S maturation. J Cell Sci 2014; 127:1242-53. [PMID: 24424021 DOI: 10.1242/jcs.138719] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Biogenesis of 40S pre-ribosomal subunits requires many trans-acting factors, among them several protein kinases. In this study, we show that the human casein kinase 1 (CK1) isoforms δ and ε are required for cytoplasmic maturation steps of 40S subunit precursors. We show that both CK1δ and CK1ε isoforms are components of pre-40S subunits, on which they phosphorylate the ribosome biogenesis factors ENP1/BYSL and LTV1. Inhibition or co-depletion of CK1δ and CK1ε results in failure to recycle a series of trans-acting factors including ENP1/BYSL, LTV1, RRP12, DIM2/PNO1, RIO2 and NOB1 from pre-40S particles after nuclear export. Furthermore, co-depletion of CK1δ and CK1ε leads to defects in 18S-E pre-rRNA processing. Together, these data demonstrate that CK1δ and CK1ε play a decisive role in triggering late steps of pre-40S maturation that are required for acquisition of functionality of 40S ribosomal subunits in protein translation.
Collapse
Affiliation(s)
- Ivo Zemp
- Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
49
|
Asano N, Atsuumi H, Nakamura A, Tanaka Y, Tanaka I, Yao M. Direct interaction between EFL1 and SBDS is mediated by an intrinsically disordered insertion domain. Biochem Biophys Res Commun 2014; 443:1251-6. [DOI: 10.1016/j.bbrc.2013.12.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/24/2013] [Indexed: 01/24/2023]
|
50
|
Schmidt S, Dethloff F, Beine-Golovchuk O, Kopka J. The REIL1 and REIL2 proteins of Arabidopsis thaliana are required for leaf growth in the cold. PLANT PHYSIOLOGY 2013; 163:1623-39. [PMID: 24038679 PMCID: PMC3850186 DOI: 10.1104/pp.113.223925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/09/2013] [Indexed: 05/03/2023]
Abstract
The evolutionarily conserved proteins REI1-LIKE (REIL1) and REIL2 have four conserved zinc finger domains and are Arabidopsis thaliana homologs of the cytosolic 60S ribosomal maturation factor Rei1p (for Required for isotropic bud growth1 protein) from yeast (Saccharomyces cerevisiae) and its paralog Reh1p (for REI1 homologue1 protein). The yeast and A. thaliana paralogs result from independent gene duplications. The A. thaliana REIL paralogs are required specifically in the cold (10°C) but not for growth at optimal temperature (20°C). A reil1-1 reil2-1 double mutant is arrested at 10°C prior to the emergence of the first rosette leaf. Two allelic reil2 mutants, reil2-1 and reil2-2, form small spoon-shaped leaves at 10°C. This phenomenon reverts after emergence of the inflorescence in the cold or upon shift to 20°C. Except for a slightly delayed germination, a reil1-1 mutant shows no further growth phenotype under the currently investigated conditions. A comparative analysis demonstrates conserved coexpression of orthologous genes from yeast and A. thaliana that are coregulated with yeast rei1 or with A. thaliana REIL2, respectively. The conserved correlations point to a role of A. thaliana REIL proteins in the maturation of the eukaryotic ribosomal 60S subunit. We support this conclusion by heterologous complementation of the cold-induced growth defect of the yeast Δrei1 deletion.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D–14476 Potsdam-Golm, Germany
| | - Frederik Dethloff
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D–14476 Potsdam-Golm, Germany
| | - Olga Beine-Golovchuk
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D–14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D–14476 Potsdam-Golm, Germany
| |
Collapse
|