1
|
Imam N, Choudhury S, Heinze KG, Schindelin H. Differential modulation of collybistin conformational dynamics by the closely related GTPases Cdc42 and TC10. Front Synaptic Neurosci 2022; 14:959875. [PMID: 35989712 PMCID: PMC9386560 DOI: 10.3389/fnsyn.2022.959875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Interneuronal synaptic transmission relies on the proper spatial organization of presynaptic neurotransmitter release and its reception on the postsynaptic side by cognate neurotransmitter receptors. Neurotransmitter receptors are incorporated into and arranged within the plasma membrane with the assistance of scaffolding and adaptor proteins. At inhibitory GABAergic postsynapses, collybistin, a neuronal adaptor protein, recruits the scaffolding protein gephyrin and interacts with various neuronal factors including cell adhesion proteins of the neuroligin family, the GABA A receptor α2-subunit and the closely related small GTPases Cdc42 and TC10 (RhoQ). Most collybistin splice variants harbor an N-terminal SH3 domain and exist in an autoinhibited/closed state. Cdc42 and TC10, despite sharing 67.4% amino acid sequence identity, interact differently with collybistin. Here, we delineate the molecular basis of the collybistin conformational activation induced by TC10 with the aid of recently developed collybistin FRET sensors. Time-resolved fluorescence-based FRET measurements reveal that TC10 binds to closed/inactive collybistin leading to relief of its autoinhibition, contrary to Cdc42, which only interacts with collybistin when forced into an open state by the introduction of mutations destabilizing the closed state of collybistin. Taken together, our data describe a TC10-driven signaling mechanism in which collybistin switches from its autoinhibited closed state to an open/active state.
Collapse
Affiliation(s)
- Nasir Imam
- Institute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Susobhan Choudhury
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Katrin G. Heinze
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Shimell JJ, Shah BS, Cain SM, Thouta S, Kuhlmann N, Tatarnikov I, Jovellar DB, Brigidi GS, Kass J, Milnerwood AJ, Snutch TP, Bamji SX. The X-Linked Intellectual Disability Gene Zdhhc9 Is Essential for Dendrite Outgrowth and Inhibitory Synapse Formation. Cell Rep 2020; 29:2422-2437.e8. [PMID: 31747610 DOI: 10.1016/j.celrep.2019.10.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/09/2019] [Accepted: 10/13/2019] [Indexed: 11/29/2022] Open
Abstract
Palmitoylation is a reversible post-translational lipid modification that facilitates vesicular transport and subcellular localization of modified proteins. This process is catalyzed by ZDHHC enzymes that are implicated in several neurological and neurodevelopmental disorders. Loss-of-function mutations in ZDHHC9 have been identified in patients with X-linked intellectual disability (XLID) and associated with increased epilepsy risk. Loss of Zdhhc9 function in hippocampal cultures leads to shorter dendritic arbors and fewer inhibitory synapses, altering the ratio of excitatory-to-inhibitory inputs formed onto Zdhhc9-deficient cells. While Zdhhc9 promotes dendrite outgrowth through the palmitoylation of the GTPase Ras, it promotes inhibitory synapse formation through the palmitoylation of another GTPase, TC10. Zdhhc9 knockout mice exhibit seizure-like activity together with increased frequency and amplitude of both spontaneous and miniature excitatory and inhibitory postsynaptic currents. These findings present a plausible mechanism for how the loss of ZDHHC9 function may contribute to XLID and epilepsy.
Collapse
Affiliation(s)
- Jordan J Shimell
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Bhavin S Shah
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Stuart M Cain
- Michael Smith Laboratories, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Samrat Thouta
- Michael Smith Laboratories, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Naila Kuhlmann
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Igor Tatarnikov
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - D Blair Jovellar
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - G Stefano Brigidi
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jennifer Kass
- Michael Smith Laboratories, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Austen J Milnerwood
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
3
|
Bridges E, Sheldon H, Kleibeuker E, Ramberger E, Zois C, Barnard A, Harjes U, Li JL, Masiero M, MacLaren R, Harris A. RHOQ is induced by DLL4 and regulates angiogenesis by determining the intracellular route of the Notch intracellular domain. Angiogenesis 2020; 23:493-513. [PMID: 32506201 PMCID: PMC7311507 DOI: 10.1007/s10456-020-09726-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/27/2020] [Indexed: 02/04/2023]
Abstract
Angiogenesis, the formation of new blood vessels by endothelial cells, is a finely tuned process relying on the balance between promoting and repressing signalling pathways. Among these, Notch signalling is critical in ensuring appropriate response of endothelial cells to pro-angiogenic stimuli. However, the downstream targets and pathways effected by Delta-like 4 (DLL4)/Notch signalling and their subsequent contribution to angiogenesis are not fully understood. We found that the Rho GTPase, RHOQ, is induced by DLL4 signalling and that silencing RHOQ results in abnormal sprouting and blood vessel formation both in vitro and in vivo. Loss of RHOQ greatly decreased the level of Notch signalling, conversely overexpression of RHOQ promoted Notch signalling. We describe a new feed-forward mechanism regulating DLL4/Notch signalling, whereby RHOQ is induced by DLL4/Notch and is essential for the NICD nuclear translocation. In the absence of RHOQ, Notch1 becomes targeted for degradation in the autophagy pathway and NICD is sequestered from the nucleus and targeted for degradation in lysosomes.
Collapse
Affiliation(s)
- Esther Bridges
- Cancer Research UK Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Helen Sheldon
- Cancer Research UK Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Esther Kleibeuker
- Cancer Research UK Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Evelyn Ramberger
- Cancer Research UK Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Christos Zois
- Cancer Research UK Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Alun Barnard
- Oxford Eye Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Ulrike Harjes
- Cancer Research UK Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ji-Liang Li
- Cancer Research UK Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Massimo Masiero
- Cancer Research UK Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Radcliffe Department of Medicine, NDCLS, Oxford, OX3 9DU, UK
| | - Robert MacLaren
- Oxford Eye Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Adrian Harris
- Cancer Research UK Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
4
|
D'Alessandro R, Meldolesi J. News about non-secretory exocytosis: mechanisms, properties, and functions. J Mol Cell Biol 2020; 11:736-746. [PMID: 30605539 PMCID: PMC6821209 DOI: 10.1093/jmcb/mjy084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
The fusion by exocytosis of many vesicles to the plasma membrane induces the discharge to the extracellular space of their abundant luminal cargoes. Other exocytic vesicles, however, do not contain cargoes, and thus, their fusion is not followed by secretion. Therefore, two distinct processes of exocytosis exist, one secretory and the other non-secretory. The present review deals with the knowledge of non-secretory exocytosis developed during recent years. Among such developments are the dual generation of the exocytic vesicles, initially released either from the trans-Golgi network or by endocytosis; their traffic with activation of receptors, channels, pumps, and transporters; the identification of their tethering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor complexes that govern membrane fusions; the growth of axons and the membrane repair. Examples of potential relevance of these processes for pathology and medicine are also reported. The developments presented here offer interesting chances for future progress in the field.
Collapse
Affiliation(s)
| | - Jacopo Meldolesi
- Scientific Institute San Raffaele and Vita Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| |
Collapse
|
5
|
Kilisch M, Mayer S, Mitkovski M, Roehse H, Hentrich J, Schwappach B, Papadopoulos T. A GTPase-induced switch in phospholipid affinity of collybistin contributes to synaptic gephyrin clustering. J Cell Sci 2020; 133:jcs.232835. [PMID: 31932505 DOI: 10.1242/jcs.232835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/19/2019] [Indexed: 11/20/2022] Open
Abstract
Synaptic transmission between neurons relies on the exact spatial organization of postsynaptic transmitter receptors, which are recruited and positioned by dedicated scaffolding and regulatory proteins. At GABAergic synapses, the regulatory protein collybistin (Cb, also known as ARHGEF9) interacts with small GTPases, cell adhesion proteins and phosphoinositides to recruit the scaffolding protein gephyrin and GABAA receptors to nascent synapses. We dissected the interaction of Cb with the small Rho-like GTPase TC10 (also known as RhoQ) and phospholipids. Our data define a protein-lipid interaction network that controls the clustering of gephyrin at synapses. Within this network, TC10 and monophosphorylated phosphoinositides, particulary phosphatidylinositol 3-phosphate (PI3P), provide a coincidence detection platform that allows the accumulation and activation of Cb in endomembranes. Upon activation, TC10 induces a phospholipid affinity switch in Cb, which allows Cb to specifically interact with phosphoinositide species present at the plasma membrane. We propose that this GTPase-based regulatory switch mechanism represents an important step in the process of tethering of Cb-dependent scaffolds and receptors at nascent postsynapses.
Collapse
Affiliation(s)
- Markus Kilisch
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Simone Mayer
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein Str. 3, Göttingen 37075, Germany
| | - Miso Mitkovski
- MPI-EM Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Hermann-Rein Str. 3, Göttingen 37075, Germany
| | - Heiko Roehse
- MPI-EM Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Hermann-Rein Str. 3, Göttingen 37075, Germany
| | - Jennifer Hentrich
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Theofilos Papadopoulos
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| |
Collapse
|
6
|
Olayioye MA, Noll B, Hausser A. Spatiotemporal Control of Intracellular Membrane Trafficking by Rho GTPases. Cells 2019; 8:cells8121478. [PMID: 31766364 PMCID: PMC6952795 DOI: 10.3390/cells8121478] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
As membrane-associated master regulators of cytoskeletal remodeling, Rho GTPases coordinate a wide range of biological processes such as cell adhesion, motility, and polarity. In the last years, Rho GTPases have also been recognized to control intracellular membrane sorting and trafficking steps directly; however, how Rho GTPase signaling is regulated at endomembranes is still poorly understood. In this review, we will specifically address the local Rho GTPase pools coordinating intracellular membrane trafficking with a focus on the endo- and exocytic pathways. We will further highlight the spatiotemporal molecular regulation of Rho signaling at endomembrane sites through Rho regulatory proteins, the GEFs and GAPs. Finally, we will discuss the contribution of dysregulated Rho signaling emanating from endomembranes to the development and progression of cancer.
Collapse
|
7
|
Vartak N, Papke B, Grecco HE, Rossmannek L, Waldmann H, Hedberg C, Bastiaens PIH. The autodepalmitoylating activity of APT maintains the spatial organization of palmitoylated membrane proteins. Biophys J 2014; 106:93-105. [PMID: 24411241 DOI: 10.1016/j.bpj.2013.11.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 02/07/2023] Open
Abstract
The localization and signaling of S-palmitoylated peripheral membrane proteins is sustained by an acylation cycle in which acyl protein thioesterases (APTs) depalmitoylate mislocalized palmitoylated proteins on endomembranes. However, the APTs are themselves reversibly S-palmitoylated, which localizes thioesterase activity to the site of the antagonistc palmitoylation activity on the Golgi. Here, we resolve this conundrum by showing that palmitoylation of APTs is labile due to autodepalmitoylation, creating two interconverting thioesterase pools: palmitoylated APT on the Golgi and depalmitoylated APT in the cytoplasm, with distinct functionality. By imaging APT-substrate catalytic intermediates, we show that it is the depalmitoylated soluble APT pool that depalmitoylates substrates on all membranes in the cell, thereby establishing its function as release factor of mislocalized palmitoylated proteins in the acylation cycle. The autodepalmitoylating activity on the Golgi constitutes a homeostatic regulation mechanism of APT levels at the Golgi that ensures robust partitioning of APT substrates between the plasma membrane and the Golgi.
Collapse
Affiliation(s)
- Nachiket Vartak
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Bjoern Papke
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Hernan E Grecco
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Lisaweta Rossmannek
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany; Faculty of Chemistry, Technical University Dortmund, Dortmund, Germany
| | - Christian Hedberg
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany; Faculty of Chemistry, Technical University Dortmund, Dortmund, Germany.
| |
Collapse
|
8
|
Zhang X, Heckmann BL, Liu J. Studying lipolysis in adipocytes by combining siRNA knockdown and adenovirus-mediated overexpression approaches. Methods Cell Biol 2013; 116:83-105. [PMID: 24099289 DOI: 10.1016/b978-0-12-408051-5.00006-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3T3-L1 adipocytes are widely used as a model system for studying hormone-stimulated lipolysis. However, these cells were limited in their utility for gain- and loss-of-function studies due to the low efficiency of their transfection with plasmid DNA or small interfering RNA (siRNA) oligos. In this chapter, we provide a review of two methods established for manipulation of protein expression in differentiated mature adipocytes. The use of electroporation allows a high-efficiency delivery of siRNA oligos and subsequent knockdown of specific gene expression. A centrifugation-assisted infection with recombinant adenovirus, on the other hand, enables robust overexpression of ectopic proteins. Most importantly, by combining siRNA electroporation with adenovirus infection, simultaneous manipulation of levels of two different proteins can be achieved in differentiated adipocytes. Through subsequent analyses of lipase activity in cell extracts and fatty acid or glycerol release from living cells, mutual interdependence between the two proteins in the context of basal and hormone-stimulated adipocyte lipolysis can be evaluated.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, Arizona, USA; Metabolic HEALth Program, Mayo Clinic in Arizona, Scottsdale, Arizona, USA
| | | | | |
Collapse
|
9
|
A palmitoylation switch mechanism regulates Rac1 function and membrane organization. EMBO J 2011; 31:534-51. [PMID: 22157745 DOI: 10.1038/emboj.2011.446] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 11/16/2011] [Indexed: 01/02/2023] Open
Abstract
The small GTPase Rac1 plays important roles in many processes, including cytoskeletal reorganization, cell migration, cell-cycle progression and gene expression. The initiation of Rac1 signalling requires at least two mechanisms: GTP loading via the guanosine triphosphate (GTP)/guanosine diphosphate (GDP) cycle, and targeting to cholesterol-rich liquid-ordered plasma membrane microdomains. Little is known about the molecular mechanisms governing this specific compartmentalization. We show that Rac1 can incorporate palmitate at cysteine 178 and that this post-translational modification targets Rac1 for stabilization at actin cytoskeleton-linked ordered membrane regions. Palmitoylation of Rac1 requires its prior prenylation and the intact C-terminal polybasic region and is regulated by the triproline-rich motif. Non-palmitoylated Rac1 shows decreased GTP loading and lower association with detergent-resistant (liquid-ordered) membranes (DRMs). Cells expressing no Rac1 or a palmitoylation-deficient mutant have an increased content of disordered membrane domains, and markers of ordered membranes isolated from Rac1-deficient cells do not correctly partition in DRMs. Importantly, cells lacking Rac1 palmitoylation show spreading and migration defects. These data identify palmitoylation as a mechanism for Rac1 function in actin cytoskeleton remodelling by controlling its membrane partitioning, which in turn regulates membrane organization.
Collapse
|
10
|
Protein palmitoylation and subcellular trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2981-94. [DOI: 10.1016/j.bbamem.2011.07.009] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
|
11
|
Valero RA, Oeste CL, Stamatakis K, Ramos I, Herrera M, Boya P, Pérez-Sala D. Structural determinants allowing endolysosomal sorting and degradation of endosomal GTPases. Traffic 2010; 11:1221-33. [PMID: 20573066 DOI: 10.1111/j.1600-0854.2010.01091.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid control of protein degradation is usually achieved through the ubiquitin-proteasome pathway. We recently found that the short-lived GTPase RhoB is degraded in lysosomes. Moreover, the fusion of the RhoB C-terminal sequence CINCCKVL, containing the isoprenylation and palmitoylation sites, to other proteins directs their sorting into multivesicular bodies (MVBs) and rapid lysosomal degradation. Here, we show that this process is highly specific for RhoB. Alteration of late endosome lipid dynamics produced the accumulation of RhoB, but not of other endosomal GTPases, including Rab5, Rab7, Rab9 or Rab11, into enlarged MVB. Other isoprenylated and bipalmitoylated GTPases, such as H-Ras, Rap2A, Rap2B and TC10, were not accumulated into MVB and were stable. Remarkably, although TC10, which is highly homologous to RhoB, was stable, a sequence derived from its C-terminus (CINCCLIT) elicited MVB sorting and degradation of a green fluorescent protein (GFP)-chimeric protein. This led us to identify a cluster of basic amino acids (KKH) in the TC10 hypervariable region, constituting a secondary signal potentially involved in electrostatic interactions with membrane lipids. Mutation of this cluster allowed TC10 MVB sorting and degradation, whereas inserting it into RhoB hypervariable region rescued this protein from its lysosomal degradation pathway. These findings define a highly specific structural module for entering the MVB pathway and rapid lysosomal degradation.
Collapse
Affiliation(s)
- Ruth A Valero
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Requirement of the SH4 and tyrosine-kinase domains but not the kinase activity of Lyn for its biosynthetic targeting to caveolin-positive Golgi membranes. Biochim Biophys Acta Gen Subj 2009; 1790:1345-52. [DOI: 10.1016/j.bbagen.2009.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/18/2009] [Accepted: 07/13/2009] [Indexed: 11/23/2022]
|
13
|
Sato I, Obata Y, Kasahara K, Nakayama Y, Fukumoto Y, Yamasaki T, Yokoyama KK, Saito T, Yamaguchi N. Differential trafficking of Src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain. J Cell Sci 2009; 122:965-75. [PMID: 19258394 DOI: 10.1242/jcs.034843] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Src-family tyrosine kinases (SFKs), which participate in a variety of signal transduction events, are known to localize to the cytoplasmic face of the plasma membrane through lipid modification. Recently, we showed that Lyn, an SFK member, is exocytosed to the plasma membrane via the Golgi region along the secretory pathway. We show here that SFK trafficking is specified by the palmitoylation state. Yes is also a monopalmitoylated SFK and is biosynthetically transported from the Golgi pool of caveolin to the plasma membrane. This pathway can be inhibited in the trans-Golgi network (TGN)-to-cell surface delivery by temperature block at 19 degrees C or dominant-negative Rab11 GTPase. A large fraction of Fyn, a dually palmitoylated SFK, is directly targeted to the plasma membrane irrespective of temperature block of TGN exit. Fyn(C6S), which lacks the second palmitoylation site, is able to traffic in the same way as Lyn and Yes. Moreover, construction of Yes(S6C) and chimeric Lyn or Yes with the Fyn N-terminus further substantiates the importance of the dual palmitoylation site for plasma membrane targeting. Taken together with our recent finding that Src, a nonpalmitoylated SFK, is rapidly exchanged between the plasma membrane and late endosomes/lysosomes, these results suggest that SFK trafficking is specified by the palmitoylation state in the SH4 domain.
Collapse
Affiliation(s)
- Izumi Sato
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Differential subcellular compartmentalization of the three main Ras isoforms (H-Ras, N-Ras and K-Ras) is believed to underlie their biological differences. Modulatable interactions between cellular membranes and Ras C-terminal hypervariable region motifs determine differences in trafficking and the relative proportions of each isoform in cell-surface signalling nanoclusters and intracellular endoplasmic reticulum/Golgi, endosomal and mitochondrial compartments. Ras regulators, effectors and scaffolds are also differentially distributed, potentially enabling preferential coupling to specific signalling pathways in each subcellular location. Here we summarize the mechanisms underlying compartment-specific Ras signalling and the outputs generated.
Collapse
|
15
|
Watson RT, Saltiel AR, Pessin JE, Kanzaki M. Subcellular Compartmentalization of Insulin Signaling Processes and GLUT4 Trafficking Events. MECHANISMS OF INSULIN ACTION 2007:33-51. [DOI: 10.1007/978-0-387-72204-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Omerovic J, Laude AJ, Prior IA. Ras proteins: paradigms for compartmentalised and isoform-specific signalling. Cell Mol Life Sci 2007; 64:2575-89. [PMID: 17628742 PMCID: PMC2561238 DOI: 10.1007/s00018-007-7133-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ras GTPases mediate a wide variety of cellular processes by converting a multitude of extracellular stimuli into specific biological responses including proliferation, differentiation and survival. In mammalian cells, three ras genes encode four Ras isoforms (H-Ras, K-Ras4A, K-Ras4B and N-Ras) that are highly homologous but functionally distinct. Differences between the isoforms, including their post-translational modifications and intracellular sorting, mean that Ras has emerged as an important model system of compartmentalised signalling and membrane biology. Ras isoforms in different subcellular locations are proposed to recruit distinct upstream and downstream accessory proteins and activate multiple signalling pathways. Here, we summarise data relating to isoform-specific signalling, its role in disease and the mechanisms promoting compartmentalised signalling. Further understanding of this field will reveal the role of Ras signalling in development, cellular homeostasis and cancer and may suggest new therapeutic approaches.
Collapse
Affiliation(s)
- J. Omerovic
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| | - A. J. Laude
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| | - I. A. Prior
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| |
Collapse
|
17
|
Zheng H, McKay J, Buss JE. H-Ras does not need COP I- or COP II-dependent vesicular transport to reach the plasma membrane. J Biol Chem 2007; 282:25760-8. [PMID: 17588947 DOI: 10.1074/jbc.m700437200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although vesicular transport of the H-Ras protein from the Golgi to the plasma membrane is well known, additional trafficking steps, both to and from the plasma membrane, have also been described. Notably, both vesicular and nonvesicular transport mechanisms have been proposed. The initial trafficking of H-Ras to the plasma membrane was therefore examined in more detail. In untreated cells, H-Ras appeared at the plasma membrane more rapidly than a protein carried by the conventional exocytic pathway, and no H-Ras was visible on Golgi membranes in >80% of the cells. H-Ras was still able to reach the plasma membrane when COP II-directed transport was disrupted by two different mutant forms of Sar1, when COP I-mediated vesicular traffic from the endoplasmic reticulum to the Golgi was inhibited with brefeldin A, or when microtubules were disrupted by nocodazole. Although some H-Ras was present in the secretory pathway, protein that reached the membranes of the endoplasmic reticulum-Golgi intermediate compartment was unable to move further in the presence of nocodozale. These results identify an alternative mechanism for H-Ras trafficking that circumvents conventional COPI-, COPII-, and microtubule-dependent vesicular transport. Thus, H-Ras has two simultaneous but distinct means of transport and need not depend on vesicular trafficking for its delivery to the plasma membrane.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
18
|
Kenworthy AK. Fluorescence-based methods to image palmitoylated proteins. Methods 2006; 40:198-205. [PMID: 17012033 DOI: 10.1016/j.ymeth.2006.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Accepted: 06/15/2006] [Indexed: 11/16/2022] Open
Abstract
A well known function of palmitoylation is to promote protein binding to cell membranes. Until recently, it was unclear what additional roles, if any, palmitoylation has in controlling protein localization in cells. Recent studies of palmitoylated forms of the small GTPase Ras have now revealed that palmitoylation plays multiple roles in the regulation of protein trafficking, including targeting proteins into the secretory pathway and recycling proteins between the plasma membrane and Golgi complex. We here describe how quantitative fluorescence microscopy and photobleaching approaches can be used to study the intracellular targeting and trafficking of GFP-tagged palmitoylated proteins in living cells. We discuss (1) general considerations for fluorescence recovery after photobleaching (FRAP) measurements of GFP-tagged proteins; (2) FRAP-based assays to test the strength of binding of palmitoylated proteins to cell membranes; (3) methods to establish the kinetics and mechanisms of recycling of palmitoylated proteins between the Golgi complex and the plasma membrane; (4) the use of the palmitoylation inhibitor 2-bromo-palmitate as a tool to study the dynamic regulation of protein targeting and trafficking by palmitate turnover.
Collapse
Affiliation(s)
- Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Ashery U, Yizhar O, Rotblat B, Kloog Y. Nonconventional Trafficking of Ras Associated with Ras Signal Organization. Traffic 2006; 7:119-26. [PMID: 16824054 DOI: 10.1111/j.1600-0854.2006.00459.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ras signaling to its downstream effectors appears to include combinations of extracellular-signal-regulated Ras activation at the plasma membrane (PM) and endomembranes, dynamic lateral segregation in the PM, and translocation of Ras from the PM to intracellular compartments. These processes are governed by the C-terminal polybasic farnesyl domain in K-Ras 4B and by the cysteine-palmitoylated C-terminal farnesyl domains in H-Ras and N-Ras. K-Ras 4B has no palmitoylated cysteines. Depalmitoylation/repalmitoylation of H-/N-Ras proteins promotes their cellular redistribution and signaling by mechanisms as yet unknown, possibly involving chaperones. Palmitoylation of H-/N-Ras also promotes their association with 'rasosomes', randomly diffusing nanoparticles that apparently provide a means by which multiple copies of activated Ras and its signal can spread rapidly. Ubiquitination of H-Ras evidently targets it to the endosomes. The polybasic farnesyl domain of K-Ras 4B was shown to act as a target for Ca++/calmodulin, which sequesters the active protein from the PM, thereby facilitating its trafficking to Golgi apparatus and early endosomes. Protein kinase C-dependent phosphorylation of S181 in K-Ras 4B was shown to provide a regulated farnesyl-electrostatic switch on K-Ras 4B, which promotes its translocation to the mitochondria. All these translocation events are characterized by nonconventional trafficking of the farnesyl-modified Ras proteins and seem to govern the selectivity and probably also the robustness of the Ras signal. In this review, we discuss the various modifications and interactions of the farnesylated C-terminus, the trafficking of Ras proteins in the PM and between the PM and the endomembranes, and the relevance of the subcellular localization of Ras for Ras function.
Collapse
Affiliation(s)
- Uri Ashery
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | |
Collapse
|
20
|
Barrès R, Grémeaux T, Gual P, Gonzalez T, Gugenheim J, Tran A, Le Marchand-Brustel Y, Tanti JF. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation. Mol Endocrinol 2006; 20:2864-75. [PMID: 16803868 PMCID: PMC1892539 DOI: 10.1210/me.2005-0455] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma mRNA was expressed in differentiated adipocytes and APS and Enigma were colocalized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin-induced actin rearrangements, whereas the expression of Enigma without its LIM domains was without effect. A physiological link between increased expression of Enigma and an alteration in insulin-induced glucose uptake was suggested by the increase in Enigma mRNA expression in adipose tissue of diabetic obese patients. Taken together, these data strongly suggest that the interaction between APS and Enigma is involved in insulin-induced Glut 4 translocation by regulating cortical actin remodeling and raise the possibility that modification of APS/Enigma ratio could participate in the alteration of insulin-induced glucose uptake in adipose tissue.
Collapse
Affiliation(s)
- Romain Barrès
- Signalisation moléculaire et obésité
INSERM : U568 IFR50Université de Nice Sophia-AntipolisFaculte de Medecine
Avenue de Valombrose
06107 NICE CEDEX 2,FR
| | - Thierry Grémeaux
- Signalisation moléculaire et obésité
INSERM : U568 IFR50Université de Nice Sophia-AntipolisFaculte de Medecine
Avenue de Valombrose
06107 NICE CEDEX 2,FR
| | - Philippe Gual
- Signalisation moléculaire et obésité
INSERM : U568 IFR50Université de Nice Sophia-AntipolisFaculte de Medecine
Avenue de Valombrose
06107 NICE CEDEX 2,FR
| | - Teresa Gonzalez
- Signalisation moléculaire et obésité
INSERM : U568 IFR50Université de Nice Sophia-AntipolisFaculte de Medecine
Avenue de Valombrose
06107 NICE CEDEX 2,FR
| | - Jean Gugenheim
- Service de Chirurgie Digestive et Centre de Transplantation Hépatique
CHU de NICE06107 Nice,FR
| | - Albert Tran
- Fédération d'Hépatologie
CHU Nice06107 Nice,FR
| | - Yannick Le Marchand-Brustel
- Signalisation moléculaire et obésité
INSERM : U568 IFR50Université de Nice Sophia-AntipolisFaculte de Medecine
Avenue de Valombrose
06107 NICE CEDEX 2,FR
| | - Jean-François Tanti
- Signalisation moléculaire et obésité
INSERM : U568 IFR50Université de Nice Sophia-AntipolisFaculte de Medecine
Avenue de Valombrose
06107 NICE CEDEX 2,FR
- * Correspondence should be adressed to: Jean-François Tanti
| |
Collapse
|
21
|
Abstract
In skeletal muscle and adipose tissue, insulin-stimulated glucose uptake is dependent upon translocation of the insulin-responsive glucose transporter GLUT4 from intracellular storage compartments to the plasma membrane. This insulin-induced redistribution of GLUT4 protein is achieved through a series of highly organized membrane trafficking events, orchestrated by insulin receptor signals. Recently, several key molecules linking insulin receptor signals and membrane trafficking have been identified, and emerging evidence supports the importance of subcellular compartmentalization of signaling components at the right time and in the right place. In addition, the translocation of GLUT4 in adipocytes requires insulin stimulation of dynamic actin remodeling at the inner surface of the plasma membrane (cortical actin) and in the perinuclear region. This results from at least two independent insulin receptor signals, one leading to the activation of phosphatidylinositol (PI) 3-kinase and the other to the activation of the Rho family small GTP-binding protein TC10. Thus, both spatial and temporal regulations of actin dynamics, both beneath the plasma membrane and around endomembranes, by insulin receptor signals are also involved in the process of GLUT4 translocation.
Collapse
Affiliation(s)
- Makoto Kanzaki
- TUBERO/Tohoku University Biomedical Engineering Research Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Wang G, Deschenes RJ. Plasma membrane localization of Ras requires class C Vps proteins and functional mitochondria in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:3243-55. [PMID: 16581797 PMCID: PMC1446948 DOI: 10.1128/mcb.26.8.3243-3255.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ras proteins are synthesized as cytosolic precursors, but then undergo posttranslational lipid addition, membrane association, and subcellular targeting to the plasma membrane. Although the enzymes responsible for farnesyl and palmitoyl lipid addition have been described, the mechanism by which these modifications contribute to the subcellular localization of Ras is not known. Following addition of the farnesyl group, Ras associates with the endoplasmic reticulum (ER), where palmitoylation occurs in Saccharomyces cerevisiae. The subsequent translocation of Ras from the ER to the plasma membrane does not require the classical secretory pathway or a functional Golgi apparatus. Vesicular and nonvesicular transport pathways for Ras proteins have been proposed, but the pathway is not known. Here we describe a genetic screen designed to identify mutants defective in Ras trafficking in S. cerevisiae. The screen implicates, for the first time, the class C VPS complex in Ras trafficking. Vps proteins are best characterized for their role in endosome and vacuole membrane fusion. However, the role of the class C Vps complex in Ras trafficking is distinct from its role in endosome and vacuole vesicle fusion, as a mitochondrial involvement was uncovered. Disruption of class C VPS genes results in mitochondrial defects and an accumulation of Ras proteins on mitochondrial membranes. Ras also fractionates with mitochondria in wild-type cells, where it is detected on the outer mitochondrial membrane by virtue of its sensitivity to protease treatment. These results point to a previously uncharacterized role of mitochondria in the subcellular trafficking of Ras proteins.
Collapse
Affiliation(s)
- Geng Wang
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
23
|
Inoue M, Chiang SH, Chang L, Chen XW, Saltiel AR. Compartmentalization of the exocyst complex in lipid rafts controls Glut4 vesicle tethering. Mol Biol Cell 2006; 17:2303-11. [PMID: 16525015 PMCID: PMC1446102 DOI: 10.1091/mbc.e06-01-0030] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lipid raft microdomains act as organizing centers for signal transduction. We report here that the exocyst complex, consisting of Exo70, Sec6, and Sec8, regulates the compartmentalization of Glut4-containing vesicles at lipid raft domains in adipocytes. Exo70 is recruited by the G protein TC10 after activation by insulin and brings with it Sec6 and Sec8. Knockdowns of these proteins block insulin-stimulated glucose uptake. Moreover, their targeting to lipid rafts is required for glucose uptake and Glut4 docking at the plasma membrane. The assembly of this complex also requires the PDZ domain protein SAP97, a member of the MAGUKs family, which binds to Sec8 upon its translocation to the lipid raft. Exocyst assembly at lipid rafts sets up targeting sites for Glut4 vesicles, which transiently associate with these microdomains upon stimulation of cells with insulin. These results suggest that the TC10/exocyst complex/SAP97 axis plays an important role in the tethering of Glut4 vesicles to the plasma membrane in adipocytes.
Collapse
Affiliation(s)
- Mayumi Inoue
- Life Sciences Institute, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
24
|
Bryan BA, Mitchell DC, Zhao L, Ma W, Stafford LJ, Teng BB, Liu M. Modulation of muscle regeneration, myogenesis, and adipogenesis by the Rho family guanine nucleotide exchange factor GEFT. Mol Cell Biol 2006; 25:11089-101. [PMID: 16314529 PMCID: PMC1316953 DOI: 10.1128/mcb.25.24.11089-11101.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rho family guanine nucleotide exchange factors (GEFs) regulate diverse cellular processes including cytoskeletal reorganization, cell adhesion, and differentiation via activation of the Rho GTPases. However, no studies have yet implicated Rho-GEFs as molecular regulators of the mesenchymal cell fate decisions which occur during development and repair of tissue damage. In this study, we demonstrate that the steady-state protein level of the Rho-specific GEF GEFT is modulated during skeletal muscle regeneration and that gene transfer of GEFT into cardiotoxin-injured mouse tibialis anterior muscle exerts a powerful promotion of skeletal muscle regeneration in vivo. In order to molecularly characterize this regenerative effect, we extrapolate the mechanism of action by examining the consequence of GEFT expression in multipotent cell lines capable of differentiating into a number of cell types, including muscle and adipocyte lineages. Our data demonstrate that endogenous GEFT is transcriptionally upregulated during myogenic differentiation and downregulated during adipogenic differentiation. Exogenous expression of GEFT promotes myogenesis of C2C12 cells via activation of RhoA, Rac1, and Cdc42 and their downstream effector proteins, while a dominant-negative mutant of GEFT inhibits this process. Moreover, we show that GEFT inhibits insulin-induced adipogenesis in 3T3L1 preadipocytes. In summary, we provide the first evidence that the Rho family signaling pathways act as potential regulators of skeletal muscle regeneration and provide the first reported molecular mechanism illustrating how a mammalian Rho family GEF controls this process by modulating mesenchymal cell fate decisions.
Collapse
Affiliation(s)
- Brad A Bryan
- The Institute of Biosciences and Technology and Department of Medical Biochemistry and Genetics, University of Texas Health Science Center at Houston, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Goodwin JS, Drake KR, Rogers C, Wright L, Lippincott-Schwartz J, Philips MR, Kenworthy AK. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. ACTA ACUST UNITED AC 2005; 170:261-72. [PMID: 16027222 PMCID: PMC2171405 DOI: 10.1083/jcb.200502063] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Palmitoylation is postulated to regulate Ras signaling by modulating its intracellular trafficking and membrane microenvironment. The mechanisms by which palmitoylation contributes to these events are poorly understood. Here, we show that dynamic turnover of palmitate regulates the intracellular trafficking of HRas and NRas to and from the Golgi complex by shifting the protein between vesicular and nonvesicular modes of transport. A combination of time-lapse microscopy and photobleaching techniques reveal that in the absence of palmitoylation, GFP-tagged HRas and NRas undergo rapid exchange between the cytosol and ER/Golgi membranes, and that wild-type GFP-HRas and GFP-NRas are recycled to the Golgi complex by a nonvesicular mechanism. Our findings support a model where palmitoylation kinetically traps Ras on membranes, enabling the protein to undergo vesicular transport. We propose that a cycle of depalmitoylation and repalmitoylation regulates the time course and sites of Ras signaling by allowing the protein to be released from the cell surface and rapidly redistributed to intracellular membranes.
Collapse
Affiliation(s)
- J Shawn Goodwin
- Department of Molecular Physiology and Biophysics and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Berzat AC, Buss JE, Chenette EJ, Weinbaum CA, Shutes A, Der CJ, Minden A, Cox AD. Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif. J Biol Chem 2005; 280:33055-65. [PMID: 16046391 DOI: 10.1074/jbc.m507362200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wrch-1 is a Rho family GTPase that shares strong sequence and functional similarity with Cdc42. Like Cdc42, Wrch-1 can promote anchorage-independent growth transformation. We determined that activated Wrch-1 also promoted anchorage-dependent growth transformation of NIH 3T3 fibroblasts. Wrch-1 contains a distinct carboxyl-terminal extension not found in Cdc42, suggesting potential differences in subcellular location and function. Consistent with this, we found that Wrch-1 associated extensively with plasma membrane and endosomes, rather than with cytosol and perinuclear membranes like Cdc42. Like Cdc42, Wrch-1 terminates in a CAAX tetrapeptide (where C is cysteine, A is aliphatic amino acid, and X is any amino acid) motif (CCFV), suggesting that Wrch-1 may be prenylated similarly to Cdc42. Most surprisingly, unlike Cdc42, Wrch-1 did not incorporate isoprenoid moieties, and Wrch-1 membrane localization was not altered by inhibitors of protein prenylation. Instead, we showed that Wrch-1 is modified by the fatty acid palmitate, and pharmacologic inhibition of protein palmitoylation caused mislocalization of Wrch-1. Most interestingly, mutation of the second cysteine of the CCFV motif (CCFV > CSFV), but not the first, abrogated both Wrch-1 membrane localization and transformation. These results suggest that Wrch-1 membrane association, subcellular localization, and biological activity are mediated by a novel membrane-targeting mechanism distinct from that of Cdc42 and other isoprenylated Rho family GTPases.
Collapse
Affiliation(s)
- Anastacia C Berzat
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, 27599-7512, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Smotrys JE, Linder ME. Palmitoylation of intracellular signaling proteins: regulation and function. Annu Rev Biochem 2004; 73:559-87. [PMID: 15189153 DOI: 10.1146/annurev.biochem.73.011303.073954] [Citation(s) in RCA: 460] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein S-palmitoylation is the thioester linkage of long-chain fatty acids to cysteine residues in proteins. Addition of palmitate to proteins facilitates their membrane interactions and trafficking, and it modulates protein-protein interactions and enzyme activity. The reversibility of palmitoylation makes it an attractive mechanism for regulating protein activity, and this feature has generated intensive investigation of this modification. The regulation of palmitoylation occurs through the actions of protein acyltransferases and protein acylthioesterases. Identification of the protein acyltransferases Erf2/Erf4 and Akr1 in yeast has provided new insight into the palmitoylation reaction. These molecules work in concert with thioesterases, such as acyl-protein thioesterase 1, to regulate the palmitoylation status of numerous signaling molecules, ultimately influencing their function. This review discusses the function and regulation of protein palmitoylation, focusing on intracellular proteins that participate in cell signaling or protein trafficking.
Collapse
Affiliation(s)
- Jessica E Smotrys
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
28
|
Kanzaki M, Mora S, Hwang JB, Saltiel AR, Pessin JE. Atypical protein kinase C (PKCzeta/lambda) is a convergent downstream target of the insulin-stimulated phosphatidylinositol 3-kinase and TC10 signaling pathways. ACTA ACUST UNITED AC 2004; 164:279-90. [PMID: 14734537 PMCID: PMC2172328 DOI: 10.1083/jcb.200306152] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin stimulation of adipocytes resulted in the recruitment of atypical PKC (PKCzeta/lambda) to plasma membrane lipid raft microdomains. This redistribution of PKCzeta/lambda was prevented by Clostridium difficile toxin B and by cholesterol depletion, but was unaffected by inhibition of phosphatidylinositol (PI) 3-kinase activity. Expression of the constitutively active GTP-bound form of TC10 (TC10Q/75L), but not the inactive GDP-bound mutant (TC10/T31N), targeted PKCzeta/lambda to the plasma membrane through an indirect association with the Par6-Par3 protein complex. In parallel, insulin stimulation as well as TC10/Q75L resulted in the activation loop phosphorylation of PKCzeta. Although PI 3-kinase activation also resulted in PKCzeta/lambda phosphorylation, it was not recruited to the plasma membrane. Furthermore, insulin-induced GSK-3beta phosphorylation was mediated by both PI 3-kinase-PKB and the TC10-Par6-atypical PKC signaling pathways. Together, these data demonstrate that PKCzeta/lambda can serve as a convergent downstream target for both the PI 3-kinase and TC10 signaling pathways, but only the TC10 pathway induces a spatially restricted targeting to the plasma membrane.
Collapse
Affiliation(s)
- Makoto Kanzaki
- Dept. of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | | | | | | | |
Collapse
|
29
|
Fournier KM, González MI, Robinson MB. Rapid trafficking of the neuronal glutamate transporter, EAAC1: evidence for distinct trafficking pathways differentially regulated by protein kinase C and platelet-derived growth factor. J Biol Chem 2004; 279:34505-13. [PMID: 15197183 DOI: 10.1074/jbc.m404032200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuronal glutamate transporter, EAAC1, appears to both limit spillover between excitatory synapses and provide precursor for the synthesis of the inhibitory neurotransmitter, gamma-aminobutyric acid. There is evidence for a large intracellular pool of EAAC1 from which transporter is redistributed to the cell surface following activation of protein kinase C (PKC) or platelet-derived growth factor (PDGF) receptor by seemingly independent pathways. A variety of biotinylation strategies were employed to measure trafficking of EAAC1 to and from the plasma membrane and to examine the effects of phorbol ester and PDGF on these events. Biotinylation of cell surface protein under trafficking-permissive conditions (37 degrees C) resulted in a 2-fold increase in the amount of biotinylated EAAC1 within 15 min in C6 glioma and in primary neuronal cultures, suggesting that EAAC1 has a half-life of approximately 5-7 min for residence at the plasma membrane. Both phorbol ester and PDGF increased the amount of transporter labeled under these conditions. Using a reversible biotinylation strategy, a similarly rapid internalization of EAAC1 was observed in C6 glioma. Phorbol ester, but not PDGF, blocked this measure of internalization. Incubation at 18 degrees C, which blocks some forms of intracellular membrane trafficking, inhibited PKC- and PDGF-dependent redistribution of EAAC1 but had no effect on basal trafficking of EAAC1. These studies suggest that both PKC and PDGF accelerate delivery of EAAC1 to the cell surface and that PKC has an additional effect on endocytosis. The data also suggest that basal and regulated pools of EAAC1 exist in distinct compartments.
Collapse
Affiliation(s)
- Keith M Fournier
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA 19104-4318, USA
| | | | | |
Collapse
|
30
|
Kanzaki M, Furukawa M, Raab W, Pessin JE. Phosphatidylinositol 4,5-bisphosphate regulates adipocyte actin dynamics and GLUT4 vesicle recycling. J Biol Chem 2004; 279:30622-33. [PMID: 15123724 DOI: 10.1074/jbc.m401443200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the potential role of phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P2) in the regulation of actin polymerization and GLUT4 translocation, the type I phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) were expressed in 3T3L1 adipocytes. In preadipocytes (fibroblasts) PIP5K expression promoted actin polymerization on membrane-bound vesicles to form motile actin comets. In contrast, expression of PIP5K in differentiated 3T3L1 adipocytes resulted in the formation of enlarged vacuole-like structures coated with F-actin, cortactin, dynamin, and N-WASP. Treatment with either latrunculin B (an inhibitor for actin polymerization) or Clostridium difficile toxin B (a general Rho family inhibitor) resulted in a relatively slower disappearance of coated F-actin from these vacuoles, but the vacuoles themselves remained unaffected. Functionally, the increased PI(4,5)P2 levels resulted in an inhibition of transferrin receptor and GLUT4 endocytosis and a slow accumulation of these proteins in the PI(4,5)P2-enriched vacuoles along with the non-clathrin-derived endosome marker (caveolin) and the AP-2 adaptor complex. However, these structures were devoid of early endosome markers (EEA1, clathrin) and the biosynthetic membrane secretory machinery markers p115 (Golgi) and syntaxin 6 (trans-Golgi Network). Taken together, these data demonstrate that PI(4,5)P2 has distinct morphologic and functional properties depending upon specific cell context. In adipocytes, altered PI(4,5)P2 metabolism has marked effects on GLUT4 endocytosis and intracellular vesicle trafficking due to the derangement of actin dynamics.
Collapse
Affiliation(s)
- Makoto Kanzaki
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| | | | | | | |
Collapse
|
31
|
Watson RT, Kanzaki M, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 2004; 25:177-204. [PMID: 15082519 DOI: 10.1210/er.2003-0011] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the discovery of insulin roughly 80 yr ago, much has been learned about how target cells receive, interpret, and respond to this peptide hormone. For example, we now know that insulin activates the tyrosine kinase activity of its cell surface receptor, thereby triggering intracellular signaling cascades that regulate many cellular processes. With respect to glucose homeostasis, these include the function of insulin to suppress hepatic glucose production and to increase glucose uptake in muscle and adipose tissues, the latter resulting from the translocation of the glucose transporter 4 (GLUT4) to the cell surface membrane. Although simple in broad outline, elucidating the molecular intricacies of these receptor-signaling pathways and membrane-trafficking processes continues to challenge the creative ingenuity of scientists, and many questions remain unresolved, or even perhaps unasked. The identification and functional characterization of specific molecules required for both insulin signaling and GLUT4 vesicle trafficking remain key issues in our pursuit of developing specific therapeutic agents to treat and/or prevent this debilitating disease process. To this end, the combined efforts of numerous research groups employing a range of experimental approaches has led to a clearer molecular picture of how insulin regulates the membrane trafficking of GLUT4.
Collapse
Affiliation(s)
- Robert T Watson
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
32
|
Chunqiu Hou J, Pessin JE. Lipid Raft targeting of the TC10 amino terminal domain is responsible for disruption of adipocyte cortical actin. Mol Biol Cell 2003; 14:3578-91. [PMID: 12972548 PMCID: PMC196551 DOI: 10.1091/mbc.e03-01-0012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Overexpression of the Rho family member TC10alpha, disrupts adipocyte cortical actin structure and inhibits insulin-stimulated GLUT4 translocation when targeted to lipid raft microdomains. This appears to be independent of effecter domain function because overexpression of the wild-type (TC10/WT), constitutively GTP-bound (TC10/Q75L), and constitutively GDP bound (TC10/T31N) all inhibit adipocyte cortical actin structure and GLUT4 translocation. To examine the structural determinants responsible for these effects, we generated a series of chimera proteins between TC10 with that of H-Ras and K-Ras. Chimera containing the 79 (TC10-79/H-Ras), 41 (TC10-41/H-Ras), or 16 (TC10-16/H-Ras) amino acids of the TC10 amino terminal extension fused to H-Ras disrupted cortical actin and inhibited insulin-stimulated GLUT4 translocation. In contrast, the same amino terminal TC10 extensions fused to K-Ras had no significant effect on either GLUT4 translocation or cortical actin structure. Similarly, expression of TC10beta was without effect, whereas fusion of the amino terminal 8 amino acid of TC10alpha onto TC10beta resulted in an inhibition of insulin-stimulated GLUT4 translocation. Within the amino terminal extension point mutation analysis demonstrated that both a GAG and GPG sequences when lipid raft targeted was essential for these effects. Furthermore, expression of the amino terminal TC10 deletions DeltaNT-TC10/WT or DeltaNT-TC10/T31N had no detectable effect on cortical actin organization and did not perturb insulin-stimulated GLUT4 translocation. Surprisingly, however, expression of DeltaNT-TC10/Q75L remained fully capable of inhibiting insulin-stimulated GLUT4 translocation without affecting cortical actin. These data demonstrate that inhibitory effect of TC10 overexpression on adipocyte cortical actin organization is due to the specific lipid raft targeting of the unusual TC10 amino terminal extension.
Collapse
Affiliation(s)
- June Chunqiu Hou
- The Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | |
Collapse
|
33
|
Abstract
Ras signalling has classically been thought to occur exclusively at the inner surface of a relatively uniform plasma membrane. Recent studies have shown that Ras proteins interact dynamically with specific microdomains of the plasma membrane as well as with other internal cell membranes. These different membrane microenvironments modulate Ras signal output and highlight the complex interplay between Ras location and function.
Collapse
Affiliation(s)
- John F Hancock
- Institute for Molecular Bioscience and Department of Molecular and Cellular Pathology, University of Queensland, Brisbane, Australia 4072.
| |
Collapse
|