1
|
Wedegaertner H, Bosompra O, Kufareva I, Trejo J. Divergent regulation of α-arrestin ARRDC3 function by ubiquitination. Mol Biol Cell 2023; 34:ar93. [PMID: 37223976 PMCID: PMC10398895 DOI: 10.1091/mbc.e23-02-0055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
The α-arrestin ARRDC3 is a recently discovered tumor suppressor in invasive breast cancer that functions as a multifaceted adaptor protein to control protein trafficking and cellular signaling. However, the molecular mechanisms that control ARRDC3 function are unknown. Other arrestins are known to be regulated by posttranslational modifications, suggesting that ARRDC3 may be subject to similar regulatory mechanisms. Here we report that ubiquitination is a key regulator of ARRDC3 function and is mediated primarily by two proline-rich PPXY motifs in the ARRDC3 C-tail domain. Ubiquitination and the PPXY motifs are essential for ARRDC3 function in regulating GPCR trafficking and signaling. Additionally, ubiquitination and the PPXY motifs mediate ARRDC3 protein degradation, dictate ARRDC3 subcellular localization, and are required for interaction with the NEDD4-family E3 ubiquitin ligase WWP2. These studies demonstrate a role for ubiquitination in regulating ARRDC3 function and reveal a mechanism by which ARRDC3 divergent functions are controlled.
Collapse
Affiliation(s)
- Helen Wedegaertner
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA92093
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA92093
| | - Oye Bosompra
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA92093
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA92093
| | - Irina Kufareva
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA92093
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
2
|
Jing H, Wu X, Xiang M, Wang C, Novakovic VA, Shi J. Microparticle Phosphatidylserine Mediates Coagulation: Involvement in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:cancers15071957. [PMID: 37046617 PMCID: PMC10093313 DOI: 10.3390/cancers15071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor progression and cancer metastasis has been linked to the release of microparticles (MPs), which are shed upon cell activation or apoptosis and display parental cell antigens, phospholipids such as phosphatidylserine (PS), and nucleic acids on their external surfaces. In this review, we highlight the biogenesis of MPs as well as the pathophysiological processes of PS externalization and its involvement in coagulation activation. We review the available evidence, suggesting that coagulation factors (mainly tissue factor, thrombin, and fibrin) assist in multiple steps of tumor dissemination, including epithelial-mesenchymal transition, extracellular matrix remodeling, immune escape, and tumor angiogenesis to support the formation of the pre-metastatic niche. Platelets are not just bystander cells in circulation but are functional players in primary tumor growth and metastasis. Tumor-induced platelet aggregation protects circulating tumor cells (CTCs) from the blood flow shear forces and immune cell attack while also promoting the binding of CTCs to endothelial cells and extravasation, which activates tumor invasion and sustains metastasis. Finally, in terms of therapy, lactadherin can inhibit coagulation by competing effectively with coagulation factors for PS binding sites and may similarly delay tumor progression. Furthermore, we also investigate the therapeutic potential of coagulation factor inhibitors within the context of cancer treatment. The development of multiple therapies targeting platelet activation and platelet-tumor cell interactions may not only reduce the lethal consequences of thrombosis but also impede tumor growth and spread.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02132, USA
| |
Collapse
|
3
|
Tissue factor-dependent coagulation activation in intracranial neoplasms: a comparative study. Blood Coagul Fibrinolysis 2022; 33:438-448. [PMID: 36165076 DOI: 10.1097/mbc.0000000000001164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of the study was to investigate the concentration and activity of tissue factor (TF) and Tissue factor pathway inhibitor (TFPI) as well as the concentration of thrombin-antithrombin (TAT) complexes in patients with primary and metastatic intracranial neoplasms. The study included 69 patients with an average age of 62 years. Twenty-one patients were diagnosed with gliomas, 18 meningioma stage II (M) patients, and 30 metastatic brain tumour cases (Meta). The control group consisted of 30 individuals with a mean age of 57 years. In the plasma of all the participants and in tumour tissue-derived homogenate, the concentrations and activities of TF, TFPI, the concentration of TAT complexes and the concentration of total protein were measured. The results were converted per 1 mg of protein. The concentration of TF was over 80 times higher in the tumour tissue-derived homogenate in respect to patients' plasma levels. Plasma TF activity in intracranial cancer patients was almost six times higher compared with noncancer counterparts, while in the tumour tissue-derived homogenate it was more than 14 times higher than in the intracranial cancer patients' plasma, whereas the concentration of TFPI in the tumour tissue-derived homogenate was significantly lower than in the patients' plasma. However, a significantly higher TFPI activity in the tumour tissue derived than in the patients' plasma was reported. The high concentration and activity of TF, along with the coexisting low concentration and activity of TFPI in the plasma of intracranial tumour patients, is associated with a higher prothrombotic risk in these patients.
Collapse
|
4
|
Nag JK, Malka H, Sedley S, Appasamy P, Rudina T, Levi T, Hoffman A, Gilon C, Uziely B, Bar-Shavit R. PH-Binding Motif in PAR4 Oncogene: From Molecular Mechanism to Drug Design. Mol Cancer Ther 2022; 21:1415-1429. [PMID: 36066448 DOI: 10.1158/1535-7163.mct-21-0946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
While the role of G-protein-coupled receptors (GPCR) in cancer is acknowledged, their underlying signaling pathways are understudied. Protease-activated receptors (PAR), a subgroup of GPCRs, form a family of four members (PAR1-4) centrally involved in epithelial malignancies. PAR4 emerges as a potent oncogene, capable of inducing tumor generation. Here, we demonstrate identification of a pleckstrin-homology (PH)-binding motif within PAR4, critical for colon cancer growth. In addition to PH-Akt/PKB association, other PH-containing signal proteins such as Gab1 and Sos1 also associate with PAR4. Point mutations are in the C-tail of PAR4 PH-binding domain; F347 L and D349A, but not E346A, abrogate these associations. Pc(4-4), a lead backbone cyclic peptide, was selected out of a mini-library, directed toward PAR2&4 PH-binding motifs. It effectively attenuates PAR2&4-Akt/PKB associations; PAR4 instigated Matrigel invasion and migration in vitro and tumor development in vivo. EGFR/erbB is among the most prominent cancer targets. AYPGKF peptide ligand activation of PAR4 induces EGF receptor (EGFR) Tyr-phosphorylation, effectively inhibited by Pc(4-4). The presence of PAR2 and PAR4 in biopsies of aggressive breast and colon cancer tissue specimens is demonstrated. We propose that Pc(4-4) may serve as a powerful drug not only toward PAR-expressing tumors but also for treating EGFR/erbB-expressing tumors in cases of resistance to traditional therapies. Overall, our studies are expected to allocate new targets for cancer therapy. Pc(4-4) may become a promising candidate for future therapeutic cancer treatment.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hodaya Malka
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shoshana Sedley
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Priyanga Appasamy
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tatyana Rudina
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tgst Levi
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amnon Hoffman
- School of Pharmacy, Institute for Drug Research, The Hebrew University, Jerusalem, Israel
| | - Chaim Gilon
- Department of Organic Chemistry, Institute of Chemistry, The Hebrew University, Jerusalem, Israel
| | - Beatrice Uziely
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
5
|
Arakaki AKS, Pan WA, Wedegaertner H, Roca-Mercado I, Chinn L, Gujral TS, Trejo J. α-Arrestin ARRDC3 tumor suppressor function is linked to GPCR-induced TAZ activation and breast cancer metastasis. J Cell Sci 2021; 134:237789. [PMID: 33722977 DOI: 10.1242/jcs.254888] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The α-arrestin domain containing protein 3 (ARRDC3) is a tumor suppressor in triple-negative breast carcinoma (TNBC), a highly metastatic subtype of breast cancer that lacks targeted therapies. Thus, understanding the mechanisms and targets of ARRDC3 in TNBC is important. ARRDC3 regulates trafficking of protease-activated receptor 1 (PAR1, also known as F2R), a G-protein-coupled receptor (GPCR) implicated in breast cancer metastasis. Loss of ARRDC3 causes overexpression of PAR1 and aberrant signaling. Moreover, dysregulation of GPCR-induced Hippo signaling is associated with breast cancer progression. However, the mechanisms responsible for Hippo dysregulation remain unknown. Here, we report that the Hippo pathway transcriptional co-activator TAZ (also known as WWTR1) is the major effector of GPCR signaling and is required for TNBC migration and invasion. Additionally, ARRDC3 suppresses PAR1-induced Hippo signaling via sequestration of TAZ, which occurs independently of ARRDC3-regulated PAR1 trafficking. The ARRDC3 C-terminal PPXY motifs and TAZ WW domain are crucial for this interaction and are required for suppression of TNBC migration and lung metastasis in vivo. These studies are the first to demonstrate a role for ARRDC3 in regulating GPCR-induced TAZ activity in TNBC and reveal multi-faceted tumor suppressor functions of ARRDC3. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Wen-An Pan
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Helen Wedegaertner
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ivette Roca-Mercado
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Logan Chinn
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
7
|
Pather K, Augustine TN. Tamoxifen induces hypercoagulation and alterations in ERα and ERβ dependent on breast cancer sub-phenotype ex vivo. Sci Rep 2020; 10:19256. [PMID: 33159119 PMCID: PMC7648622 DOI: 10.1038/s41598-020-75779-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022] Open
Abstract
Tamoxifen shows efficacy in reducing breast cancer-related mortality but clinically, is associated with increased risk for thromboembolic events. We aimed to determine whether breast tumour sub-phenotype could predict propensity for thrombosis. We present two ex vivo Models of Tamoxifen-therapy, Model 1 in which treatment recapitulates accumulation within breast tissue, by treating MCF7 and T47D cells directly prior to exposure to blood constituents; and Model 2 in which we recreate circulating Tamoxifen by treating blood constituents prior to exposure to cancer cells. Blood constituents included whole blood, platelet-rich plasma and platelet-poor plasma. Hypercoagulation was assessed as a function of thrombin activity, expression of CD62P and CD63 activation markers defined as an index of platelet activation, and platelet morphology; while oestrogen receptor expression was assessed using immunocytochemistry with quantitative analysis. We determined, in concert with clinical studies and contrary to selected laboratory investigations, that Tamoxifen induces hypercoagulation, dependent on sub-phenotypes, with the T47D cell line capacity most enhanced. We determined a weak positive correlation between oestrogen receptor expression, and CD62P and CD63; indicating an association between tumour invasion profiles and hypercoagulation, however, other yet unknown factors may play a predictive role in defining hypercoagulation.
Collapse
Affiliation(s)
- K Pather
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - T N Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
8
|
Zecchin D, Moore C, Michailidis F, Horswell S, Rana S, Howell M, Downward J. Combined targeting of G protein-coupled receptor and EGF receptor signaling overcomes resistance to PI3K pathway inhibitors in PTEN-null triple negative breast cancer. EMBO Mol Med 2020; 12:e11987. [PMID: 32672423 PMCID: PMC7411640 DOI: 10.15252/emmm.202011987] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has poorer prognosis compared to other types of breast cancers due to the lack of effective therapies and markers for patient stratification. Loss of PTEN tumor suppressor gene expression is a frequent event in TNBC, resulting in over-activation of the PI 3-kinase (PI3K) pathway and sensitivity to its inhibition. However, PI3K pathway inhibitors show limited efficacy as monotherapies on these tumors. We report a whole-genome screen to identify targets whose inhibition enhanced the effects of different PI3K pathway inhibitors on PTEN-null TNBC. This identified a signaling network that relies on both the G protein-coupled receptor for thrombin (PAR1/F2R) and downstream G protein βγ subunits and also epidermal growth factor receptor (EGFR) for the activation of the PI3K isoform p110β and AKT. Compensation mechanisms involving these two branches of the pathway could bypass PI3K blockade, but combination targeting of both EGFR and PI3Kβ suppressed ribosomal protein S6 phosphorylation and exerted anti-tumor activity both in vitro and in vivo, suggesting a new potential therapeutic strategy for PTEN-null TNBC.
Collapse
Affiliation(s)
| | | | | | | | - Sareena Rana
- Oncogene BiologyFrancis Crick InstituteLondonUK
- Lung Cancer GroupInstitute of Cancer ResearchLondonUK
| | - Michael Howell
- High Throughput Screening LaboratoriesFrancis Crick InstituteLondonUK
| | - Julian Downward
- Oncogene BiologyFrancis Crick InstituteLondonUK
- Lung Cancer GroupInstitute of Cancer ResearchLondonUK
| |
Collapse
|
9
|
Li X, Rosciglione S, Laniel A, Lavoie C. Combining RNAi and Immunofluorescence Approaches to Investigate Post-endocytic Sorting of GPCRs into Multivesicular Bodies. Methods Mol Biol 2019; 1947:303-322. [PMID: 30969424 DOI: 10.1007/978-1-4939-9121-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Following stimulation, G protein-coupled receptors (GPCRs) are internalized and transported to early endosomes where they are either recycled back to the plasma membrane for another round of activation or targeted to the lysosomes for degradation and long-term signal termination. This latter requires internalization of receptors into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs) for complete degradation following fusion with lysosomes. This endosomal sorting step is highly regulated and has profound functional consequences. This chapter describes how RNAi and confocal microscopy methods can be combined to evaluate whether a protein of interest (herein Gαs) is involved in GPCR sorting into ILVs of MVBs.
Collapse
Affiliation(s)
- Xuezhi Li
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stéphanie Rosciglione
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Andréanne Laniel
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christine Lavoie
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
10
|
Transcriptional Landscape of PARs in Epithelial Malignancies. Int J Mol Sci 2018; 19:ijms19113451. [PMID: 30400241 PMCID: PMC6275037 DOI: 10.3390/ijms19113451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/22/2018] [Accepted: 10/27/2018] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of cell receptors, act as important regulators of diverse signaling pathways. Our understanding of the impact of GPCRs in tumors is emerging, yet there is no therapeutic platform based on GPCR driver genes. As cancer progresses, it disrupts normal epithelial organization and maintains the cells outside their normal niche. The dynamic and flexible microenvironment of a tumor contains both soluble and matrix-immobilized proteases that contribute to the process of cancer advancement. An example is the activation of cell surface protease-activated receptors (PARs). Mammalian PARs are a subgroup of GPCRs that form a family of four members, PAR1–4, which are uniquely activated by proteases found in the microenvironment. PAR1 and PAR2 play central roles in tumor biology, and PAR3 acts as a coreceptor. The significance of PAR4 in neoplasia is just beginning to emerge. PAR1 has been shown to be overexpressed in malignant epithelia, in direct correlation with tumor aggressiveness, but there is no expression in normal epithelium. In this review, the involvement of key transcription factors such as Egr1, p53, Twist, AP2, and Sp1 that control PAR1 expression levels specifically, as well as hormone transcriptional regulation by both estrogen receptors (ER) and androgen receptors (AR) are discussed. The cloning of the human protease-activated receptor 2; Par2 (hPar2) promoter region and transcriptional regulation of estrogen (E2) via binding of the E2–ER complex to estrogen response elements (ERE) are shown. In addition, evidence that TEA domain 4 (TEAD4) motifs are present within the hPar2 promoter is presented since the YAP oncogene, which plays a central part in tumor etiology, acts via the TEAD4 transcription factor. As of now, no information is available on regulation of the hPar3 promoter. With regard to hPar4, only data showing CpG methylation promoter regulation is available. Characterization of the PAR transcriptional landscape may identify powerful targets for cancer therapies.
Collapse
|
11
|
Zhang H, Jiang P, Zhang C, Lee S, Wang W, Zou H. PAR4 overexpression promotes colorectal cancer cell proliferation and migration. Oncol Lett 2018; 16:5745-5752. [PMID: 30333860 PMCID: PMC6176407 DOI: 10.3892/ol.2018.9407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/02/2018] [Indexed: 12/12/2022] Open
Abstract
Protease-activated receptor 4 (PAR4), a member of the G-protein-coupled receptor family, was previously identified to be involved in the progression of cancer. Previous study revealed that the expression of PAR4 was increased in colorectal cancer tissues compared with the associated normal tissues, particularly in positive lymph node and poorly differentiated types of cancer. We hypothesized that PAR4 serves a function in the progression of colorectal cancer. In the present study, overexpression of PAR4 in colorectal cancer LoVo cells promoted proliferation, anchorage-independent growth and migration. In vivo, PAR4 increased LoVo cell tumorgenicity. In contrast, knockdown of PAR4 in HT-29 cells decreased proliferation, anchorage-independent growth and migration. Mechanistic studies revealed that PAR4 increased the phosphorylation of extracellular-signal-regulated kinase 1/2 in colorectal cancer cells, which is the potential molecular mechanism that promotes cellular proliferation and migration. Taken together, the results of the present study indicated that overexpression of PAR4 promoted colorectal cancer cell proliferation, survival and metastasis, indicating that PAR4 is a promising therapeutic target for preventing colon cancer progression.
Collapse
Affiliation(s)
- Hongshan Zhang
- Department of Cardiac Function, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Ping Jiang
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chuanrao Zhang
- Department of Functional Experimental Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Siman Lee
- Department of Biochemistry, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wei Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Hao Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
12
|
Arakaki AKS, Pan WA, Trejo J. GPCRs in Cancer: Protease-Activated Receptors, Endocytic Adaptors and Signaling. Int J Mol Sci 2018; 19:ijms19071886. [PMID: 29954076 PMCID: PMC6073120 DOI: 10.3390/ijms19071886] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large diverse family of cell surface signaling receptors implicated in various types of cancers. Several studies indicate that GPCRs control many aspects of cancer progression including tumor growth, invasion, migration, survival and metastasis. While it is known that GPCR activity can be altered in cancer through aberrant overexpression, gain-of-function activating mutations, and increased production and secretion of agonists, the precise mechanisms of how GPCRs contribute to cancer progression remains elusive. Protease-activated receptors (PARs) are a unique class of GPCRs implicated in cancer. PARs are a subfamily of GPCRs comprised of four members that are irreversibly activated by proteolytic cleavage induced by various proteases generated in the tumor microenvironment. Given the unusual proteolytic irreversible activation of PARs, expression of receptors at the cell surface is a key feature that influences signaling responses and is exquisitely controlled by endocytic adaptor proteins. Here, we discuss new survey data from the Cancer Genome Atlas and the Genotype-Tissue Expression projects analysis of expression of all PAR family member expression in human tumor samples as well as the role and function of the endocytic sorting machinery that controls PAR expression and signaling of PARs in normal cells and in cancer.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- Biomedical Sciences Graduate Program, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| | - Wen-An Pan
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
13
|
Nag JK, Kancharla A, Maoz M, Turm H, Agranovich D, Gupta CL, Uziely B, Bar-Shavit R. Low-density lipoprotein receptor-related protein 6 is a novel coreceptor of protease-activated receptor-2 in the dynamics of cancer-associated β-catenin stabilization. Oncotarget 2018; 8:38650-38667. [PMID: 28418856 PMCID: PMC5503561 DOI: 10.18632/oncotarget.16246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 02/17/2017] [Indexed: 01/28/2023] Open
Abstract
Protease-activated receptor-2 (PAR2) plays a central role in cancer; however, the molecular machinery of PAR2-instigated tumors remains to be elucidated. We show that PAR2 is a potent inducer of β-catenin stabilization, a core process in cancer biology, leading to its transcriptional activity. Novel association of low-density lipoprotein-related protein 6 (LRP6), a known coreceptor of Frizzleds (Fz), with PAR2 takes place following PAR2 activation. The association between PAR2 and LRP6 was demonstrated employing co-immunoprecipitation, bioluminescence resonance energy transfer (BRET), and confocal microscopy analysis. The association was further supported by ZDOCK protein-protein server. PAR2-LRP6 interaction promotes rapid phosphorylation of LRP6, which results in the recruitment of Axin. Confocal microscopy of PAR2-driven mammary gland tumors in vivo, as well as in vitro confirms the association between PAR2 and LRP6. Indeed, shRNA silencing of LRP6 potently inhibits PAR2-induced β-catenin stabilization, demonstrating its critical role in the induced path. We have previously shown a novel link between protease-activated receptor-1 (PAR1) and β-catenin stabilization, both in a transgenic (tg) mouse model with overexpression of human PAR1 (hPar1) in the mammary glands, and in cancer epithelial cell lines. Unlike in PAR1-Gα13 axis, both Gα12 and Gα13 are equally involved in PAR2-induced β-catenin stabilization. Disheveled (DVL) is translocated to the cell nucleus through the DVL-PDZ domain. Collectively, our data demonstrate a novel PAR2-LRP6-Axin interaction as a key axis of PAR2-induced β-catenin stabilization in cancer. This newly described axis enhances our understanding of cancer biology, and opens new avenues for future development of anti-cancer therapies.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Arun Kancharla
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Myriam Maoz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Hagit Turm
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Daniel Agranovich
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Chhedi Lal Gupta
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Beatrice Uziely
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
14
|
Arakaki AKS, Pan WA, Lin H, Trejo J. The α-arrestin ARRDC3 suppresses breast carcinoma invasion by regulating G protein-coupled receptor lysosomal sorting and signaling. J Biol Chem 2018; 293:3350-3362. [PMID: 29348172 DOI: 10.1074/jbc.ra117.001516] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/16/2018] [Indexed: 12/17/2022] Open
Abstract
Aberrant G protein-coupled receptor (GPCR) expression and activation has been linked to tumor initiation, progression, invasion, and metastasis. However, compared with other cancer drivers, the exploitation of GPCRs as potential therapeutic targets has been largely ignored, despite the fact that GPCRs are highly druggable. Therefore, to advance the potential status of GPCRs as therapeutic targets, it is important to understand how GPCRs function together with other cancer drivers during tumor progression. We now report that the α-arrestin domain-containing protein-3 (ARRDC3) acts as a tumor suppressor in part by controlling signaling and trafficking of the GPCR, protease-activated receptor-1 (PAR1). In a series of highly invasive basal-like breast carcinomas, we found that expression of ARRDC3 is suppressed whereas PAR1 is aberrantly overexpressed because of defective lysosomal sorting that results in persistent signaling. Using a lentiviral doxycycline-inducible system, we demonstrate that re-expression of ARRDC3 in invasive breast carcinoma is sufficient to restore normal PAR1 trafficking through the ALG-interacting protein X (ALIX)-dependent lysosomal degradative pathway. We also show that ARRDC3 re-expression attenuates PAR1-stimulated persistent signaling of c-Jun N-terminal kinase (JNK) in invasive breast cancer. Remarkably, restoration of ARRDC3 expression significantly reduced activated PAR1-induced breast carcinoma invasion, which was also dependent on JNK signaling. These findings are the first to identify a critical link between the tumor suppressor ARRDC3 and regulation of GPCR trafficking and signaling in breast cancer.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- From the Biomedical Sciences Graduate Program and.,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Wen-An Pan
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Huilan Lin
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
15
|
Thrombin-Induced Calpain Activation Promotes Protease-Activated Receptor 1 Internalization. Int J Cell Biol 2017; 2017:1908310. [PMID: 29250115 PMCID: PMC5700505 DOI: 10.1155/2017/1908310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/02/2017] [Accepted: 10/15/2017] [Indexed: 12/19/2022] Open
Abstract
The serine protease thrombin activates Protease-Activated Receptors (PARs), a family of G-protein-coupled receptors (GPCRs) activated by the proteolytic cleavage of their extracellular N-terminal domain. Four members of this family have been identified: PAR1–4. The activation of Protease-Activated Receptor 1(PAR1), the prototype of this receptor family, leads to an increase in intracellular Ca+2 concentration ([Ca+2]i) mediated by Gq11α coupling and phospholipase C (PLC) activation. We have previously shown that the stimulation of PAR1 by thrombin promotes intracellular signaling leading to RPE cell transformation, proliferation, and migration which characterize fibroproliferative eye diseases leading to blindness. Within this context, the elucidation of the mechanisms involved in PAR1 inactivation is of utmost importance. Due to the irreversible nature of PAR1 activation, its inactivation must be efficiently regulated in order to terminate signaling. Using ARPE-19 human RPE cell line, we characterized thrombin-induced [Ca+2]i increase and demonstrated the calcium-dependent activation of μ-calpain mediated by PAR1. Calpains are a family of calcium-activated cysteine proteases involved in multiple cellular processes including the internalization of membrane proteins through clathrin-coated vesicles. We demonstrated that PAR1-induced calpain activation results in the degradation of α-spectrin by calpain, essential for receptor endocytosis, and the consequent decrease in PAR1 membrane expression. Collectively, the present results identify a novel μ-calpain-dependent mechanism for PAR1 inactivation following exposure to thrombin.
Collapse
|
16
|
Ebrahimi S, Rahmani F, Behnam-Rassouli R, Hoseinkhani F, Parizadeh MR, Keramati MR, Khazaie M, Avan A, Hassanian SM. Proinflammatory signaling functions of thrombin in cancer. J Cell Physiol 2017; 232:2323-2329. [PMID: 28004386 DOI: 10.1002/jcp.25753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Thrombin-induced activation of protease-activated receptors (PARs) represents a link between inflammation and cancer. Proinflammatory signaling functions of thrombin are associated with several inflammatory diseases including neurodegenerative, cardiovascular, and of special interest in this review cancer. Thrombin-induced inflammatory responses up-regulates expression of cytokines, adhesion molecules, angiogenic factors, and matrix-degrading proteases that facilitate tumor cells proliferation, angiogenesis, invasion, and metastasis. This review summarizes the current knowledge about the mechanisms of thrombin-mediated proinflammatory responses in cancer pathology for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fatemeh Hoseinkhani
- Department of Medical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Parizadeh
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keramati
- Cancer Molecular Pathology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaie
- Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Mori J, Tanikawa C, Ohnishi N, Funauchi Y, Toyoshima O, Ueda K, Matsuda K. EPSIN 3, A Novel p53 Target, Regulates the Apoptotic Pathway and Gastric Carcinogenesis. Neoplasia 2017; 19:185-195. [PMID: 28152424 PMCID: PMC5288315 DOI: 10.1016/j.neo.2016.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND & AIM: p53 activation by cellular stresses induces the transcription of hundreds of its target genes. To elucidate the entire picture of its downstream pathway, we screened a cDNA microarray dataset of adriamycin-treated HCT116 p53−/− or p53+/+ cells and identified EPSIN 3 as a novel p53 target. METHODS: Potential p53 binding sequences in the EPSIN 3 locus were evaluated by reporter and CHIP assays. To investigate the role of EPSIN 3 in the p53 downstream pathway, we assessed DNA damage-induced apoptosis in EPSIN 3-knockdown HCT116 cells or Epsin 3-deficient mice. In addition, we evaluated EPSIN 3 expression levels in various tissues, including gastric adenocarcinoma, human gastric mucosa with or without Helicobacter pylori infection, and mouse acute gastritis tissues induced by indomethacin. RESULTS: In response to DNA damage, p53 induced the expression of EPSIN 3 through the p53 binding elements in the EPSIN 3 promoter and the first intron. Knockdown of EPSIN 3 resulted in resistance to DNA damage-induced apoptosis both in vitro and in vivo. EPSIN 3 expression was down-regulated in gastric cancer tissues compared with normal tissues. In addition, Helicobacter pylori infection and indomethacin-induced acute gastritis repressed EPSIN 3 expression in gastric mucosa. CONCLUSIONS: EPSIN 3 is a novel p53 target and a key mediator of apoptosis. Chronic or acute mucosal inflammation as well as p53 inactivation induced down-regulation of EPSIN 3 and subsequently caused apoptosis resistance, which is a hallmark of cancer cells.
Collapse
Affiliation(s)
- Jinichi Mori
- Laboratory of Clinical Genome sequencing, Department of Computational biology and medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naomi Ohnishi
- Project for Realization of Personalized Cancer Medicine, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuki Funauchi
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Koji Ueda
- Project for Realization of Personalized Cancer Medicine, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome sequencing, Department of Computational biology and medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, Japan; Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
18
|
Zhang X, Kim KM. Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis. Biomol Ther (Seoul) 2017; 25:26-43. [PMID: 28035080 PMCID: PMC5207461 DOI: 10.4062/biomolther.2016.186] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022] Open
Abstract
Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with β-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
19
|
Abstract
Although many studies have demonstrated that components of the hemostatic system may be involved in signaling leading to cancer progression, the potential mechanisms by which they contribute to cancer dissemination are not yet precisely understood. Among known coagulant factors, tissue factor (TF) and thrombin play a pivotal role in cancer invasion. They may be generated in the tumor microenvironment independently of blood coagulation and can induce cell signaling through activation of protease-activated receptors (PARs). PARs are transmembrane G-protein-coupled receptors (GPCRs) that are activated by a unique proteolytic mechanism. They play important roles in vascular physiology, neural tube closure, hemostasis, and inflammation. All of these agents (TF, thrombin, PARs—mainly PAR-1 and PAR-2) are thought to promote cancer invasion and metastasis at least in part by facilitating tumor cell migration, angiogenesis, and interactions with host vascular cells, including platelets, fibroblasts, and endothelial cells lining blood vessels. Here, we discuss the role of PARs and their activators in cancer progression, focusing on TF- and thrombin-mediated actions. Therapeutic options tailored specifically to inhibit PAR-induced signaling in cancer patients are presented as well.
Collapse
|
20
|
Longitudinal association of hemostatic factors with risk for cancers of the breast, colorectum, and lung among postmenopausal women. Eur J Cancer Prev 2016; 25:449-56. [DOI: 10.1097/cej.0000000000000193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Ciftci R, Tas F, Bilgin E, Keskin S, Yildiz I, Duranyildiz D, Saip P, Karanlik H, Vatansever S. Clinical significance of serum protease-activated receptor 1 (PAR1) level in patients with breast cancer. JOURNAL OF ONCOLOGICAL SCIENCES 2016. [DOI: 10.1016/j.jons.2016.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Grimsey NJ, Coronel LJ, Cordova IC, Trejo J. Recycling and Endosomal Sorting of Protease-activated Receptor-1 Is Distinctly Regulated by Rab11A and Rab11B Proteins. J Biol Chem 2015; 291:2223-36. [PMID: 26635365 DOI: 10.1074/jbc.m115.702993] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 11/06/2022] Open
Abstract
Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that undergoes proteolytic irreversible activation by coagulant and anti-coagulant proteases. Given the irreversible activation of PAR1, signaling by the receptor is tightly regulated through desensitization and intracellular trafficking. PAR1 displays both constitutive and agonist-induced internalization. Constitutive internalization of PAR1 is important for generating an internal pool of naïve receptors that replenish the cell surface and facilitate resensitization, whereas agonist-induced internalization of PAR1 is critical for terminating G protein signaling. We showed that PAR1 constitutive internalization is mediated by the adaptor protein complex-2 (AP-2), whereas AP-2 and epsin control agonist-induced PAR1 internalization. However, the mechanisms that regulate PAR1 recycling are not known. In the present study we screened a siRNA library of 140 different membrane trafficking proteins to identify key regulators of PAR1 intracellular trafficking. In addition to known mediators of PAR1 endocytosis, we identified Rab11B as a critical regulator of PAR1 trafficking. We found that siRNA-mediated depletion of Rab11B and not Rab11A blocks PAR1 recycling, which enhanced receptor lysosomal degradation. Although Rab11A is not required for PAR1 recycling, depletion of Rab11A resulted in intracellular accumulation of PAR1 through disruption of basal lysosomal degradation of the receptor. Moreover, enhanced degradation of PAR1 observed in Rab11B-deficient cells is blocked by depletion of Rab11A and the autophagy related-5 protein, suggesting that PAR1 is shuttled to an autophagic degradation pathway in the absence of Rab11B recycling. Together these findings suggest that Rab11A and Rab11B differentially regulate intracellular trafficking of PAR1 through distinct endosomal sorting mechanisms.
Collapse
Affiliation(s)
- Neil J Grimsey
- From the Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Luisa J Coronel
- From the Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Isabel Canto Cordova
- From the Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - JoAnn Trejo
- From the Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
23
|
Abstract
Although emerging roles of protease-activated receptor1&2 (PAR1&2) in cancer are recognized, their underlying signalling events are poorly understood. Here we show signal-binding motifs in PAR1&2 that are critical for breast cancer growth. This occurs via the association of the pleckstrin homology (PH) domain with Akt/PKB as a key signalling event of PARs. Other PH-domain signal-proteins such as Etk/Bmx and Vav3 also associate with PAR1 and PAR2 through their PH domains. PAR1 and PAR2 bind with priority to Etk/Bmx. A point mutation in PAR2, H349A, but not in R352A, abrogates PH-protein association and is sufficient to markedly reduce PAR2-instigated breast tumour growth in vivo and placental extravillous trophoblast (EVT) invasion in vitro. Similarly, the PAR1 mutant hPar1-7A, which is unable to bind the PH domain, reduces mammary tumours and EVT invasion, endowing these motifs with physiological significance and underscoring the importance of these previously unknown PAR1 and PAR2 PH-domain-binding motifs in both pathological and physiological invasion processes. Protease-activated-receptor 1 and 2 (PAR1 and PAR2) are key players in tumor growth. In this study, the authors identify PAR1 and PAR2 domains that bind oncogenic signalling proteins driving breast cancer progression in vivo and placental extravillous trophoblast invasion in vitro.
Collapse
|
24
|
Gonda K, Miyashita M, Higuchi H, Tada H, Watanabe TM, Watanabe M, Ishida T, Ohuchi N. Predictive diagnosis of the risk of breast cancer recurrence after surgery by single-particle quantum dot imaging. Sci Rep 2015; 5:14322. [PMID: 26392299 PMCID: PMC4585722 DOI: 10.1038/srep14322] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 08/24/2015] [Indexed: 01/06/2023] Open
Abstract
In breast cancer, the prognosis of human epidermal growth factor receptor 2 (HER2)-positive patients (20-25%) has been dramatically improved by the clinical application of the anti-HER2 antibody drugs trastuzumab and pertuzumab. However, the clinical outcomes of HER2-negative cases with a poor prognosis have not improved, and novel therapeutic antibody drugs or diagnostic molecular markers of prognosis are urgently needed. Here, we targeted protease-activated receptor 1 (PAR1) as a new biomarker for HER2-negative patients. The developed anti-PAR1 antibody inhibited PAR1 activation by matrix metalloprotease 1 and thereby prevented cancer-cell migration and invasion. To estimate PAR1 expression levels in HER2-negative patient tissues using the antibody, user-friendly immunohistochemistry with fluorescence nanoparticles or quantum dots (QDs) was developed. Previously, immunohistochemistry with QDs was affected by tissue autofluorescence, making quantitative measurement extremely difficult. We significantly improved the quantitative sensitivity of immunohistochemistry with QDs by using an autofluorescence-subtracted image and single-QD imaging. The immunohistochemistry showed that PAR1 expression was strongly correlated with relapse-free survival time in HER2-negative breast cancer patients. Therefore, the developed anti-PAR1 antibody is a strong candidate for use as an anticancer drug and a prognostic biomarker for HER2-negative patients.
Collapse
Affiliation(s)
- Kohsuke Gonda
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.,Department of Nano-Medical Science, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Minoru Miyashita
- Department of Surgical Oncology, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hideo Higuchi
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo Bunkyou-ku Tokyo 113-0033, Japan
| | - Hiroshi Tada
- Department of Surgical Oncology, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Quantitative Biology Center, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Hospital, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Takanori Ishida
- Department of Surgical Oncology, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Noriaki Ohuchi
- Department of Nano-Medical Science, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.,Department of Surgical Oncology, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
25
|
Lidfeldt J, Bendahl PO, Forsare C, Malmström P, Fernö M, Belting M. Protease Activated Receptors 1 and 2 Correlate Differently with Breast Cancer Aggressiveness Depending on Tumor ER Status. PLoS One 2015; 10:e0134932. [PMID: 26244666 PMCID: PMC4526525 DOI: 10.1371/journal.pone.0134932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/16/2015] [Indexed: 01/14/2023] Open
Abstract
Experimental models implicate protease activated receptors (PARs) as important sensors of the proteolytic tumor microenvironment during breast cancer development. However, the role of the major PARs, PAR-1 and PAR-2, in human breast tumors remains to be elucidated. Here, we have investigated how PAR-1 and PAR-2 protein expression correlate with established clinicopathological variables and patient outcome in a well-characterized cohort of 221 breast cancer patients. Univariable and multivariable hazard ratios (HR) were estimated by the Cox proportional hazards model, distant disease-free survival (DDFS) and overall survival by the Kaplan–Meier method, and survival in different strata was determined by the log-rank test. Associations between PARs and clinicopathological variables were analyzed using Pearson’s χ2-test. We find that PAR-2 associates with DDFS (HR = 3.1, P = 0.003), whereas no such association was found with PAR-1 (HR = 1.2, P = 0.6). Interestingly, the effect of PAR-2 was confined to the ER-positive sub-group (HR = 5.5, P = 0.003 vs. HR = 1.2 in ER-negative; P = 0.045 for differential effect), and PAR-2 was an independent prognostic factor specifically in ER-positive tumors (HR = 3.9, P = 0.045). On the contrary, PAR-1 correlated with worse prognosis specifically in the ER-negative group (HR = 2.6, P = 0.069 vs. HR = 0.5, P = 0.19 in ER-positive; P = 0.026 for differential effect). This study provides novel insight into the respective roles of PAR-1 and PAR-2 in human breast cancer and suggests a hitherto unknown association between PARs and ER signaling that warrants further investigation.
Collapse
Affiliation(s)
- Jon Lidfeldt
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | - Pär-Ola Bendahl
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | - Carina Forsare
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | - Per Malmström
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Mårten Fernö
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden
- Department of Oncology, Skåne University Hospital, Lund, Sweden
- * E-mail:
| |
Collapse
|
26
|
Lim HC, Multhaupt HAB, Couchman JR. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Mol Cancer 2015; 14:15. [PMID: 25623282 PMCID: PMC4326193 DOI: 10.1186/s12943-014-0279-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022] Open
Abstract
Background Cell surface proteoglycans interact with numerous regulators of cell behavior through their glycosaminoglycan chains. The syndecan family of transmembrane proteoglycans are virtually ubiquitous cell surface receptors that are implicated in the progression of some tumors, including breast carcinoma. This may derive from their regulation of cell adhesion, but roles for specific syndecans are unresolved. Methods The MDA-MB231 human breast carcinoma cell line was exposed to exogenous glycosaminoglycans and changes in cell behavior monitored by western blotting, immunocytochemistry, invasion and collagen degradation assays. Selected receptors including PAR-1 and syndecans were depleted by siRNA treatments to assess cell morphology and behavior. Immunohistochemistry for syndecan-2 and its interacting partner, caveolin-2 was performed on human breast tumor tissue arrays. Two-tailed paired t-test and one-way ANOVA with Tukey’s post-hoc test were used in the analysis of data. Results MDA-MB231 cells were shown to be highly sensitive to exogenous heparan sulfate or heparin, promoting increased spreading, focal adhesion and adherens junction formation with concomitantly reduced invasion and matrix degradation. The molecular basis for this effect was revealed to have two components. First, thrombin inhibition contributed to enhanced cell adhesion and reduced invasion. Second, a specific loss of cell surface syndecan-2 was noted. The ensuing junction formation was dependent on syndecan-4, whose role in promoting actin cytoskeletal organization is known. Syndecan-2 interacts with, and may regulate, caveolin-2. Depletion of either molecule had the same adhesion-promoting influence, along with reduced invasion, confirming a role for this complex in maintaining the invasive phenotype of mammary carcinoma cells. Finally, both syndecan-2 and caveolin-2 were upregulated in tissue arrays from breast cancer patients compared to normal mammary tissue. Moreover their expression levels were correlated in triple negative breast cancers. Conclusion Cell surface proteoglycans, notably syndecan-2, may be important regulators of breast carcinoma progression through regulation of cytoskeleton, cell adhesion and invasion.
Collapse
Affiliation(s)
- Hooi Ching Lim
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark. .,Current address: Stem Cell Center, Lund University, Lund, Sweden.
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
27
|
Koizume S, Miyagi Y. Breast cancer phenotypes regulated by tissue factor-factor VII pathway: Possible therapeutic targets. World J Clin Oncol 2014; 5:908-920. [PMID: 25493229 PMCID: PMC4259953 DOI: 10.5306/wjco.v5.i5.908] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/31/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a leading cause of cancer death in women, worldwide. Fortunately, breast cancer is relatively chemosensitive, with recent advances leading to the development of effective therapeutic strategies, significantly increasing disease cure rate. However, disease recurrence and treatment of cases lacking therapeutic molecular targets, such as epidermal growth factor receptor 2 and hormone receptors, referred to as triple-negative breast cancers, still pose major hurdles in the treatment of breast cancer. Thus, novel therapeutic approaches to treat aggressive breast cancers are essential. Blood coagulation factor VII (fVII) is produced in the liver and secreted into the blood stream. Tissue factor (TF), the cellular receptor for fVII, is an integral membrane protein that plays key roles in the extrinsic coagulation cascade. TF is overexpressed in breast cancer tissues. The TF-fVII complex may be formed in the absence of injury, because fVII potentially exists in the tissue fluid within cancer tissues. The active form of this complex (TF-fVIIa) may stimulate the expression of numerous malignant phenotypes in breast cancer cells. Thus, the TF-fVII pathway is a potentially attractive target for breast cancer treatment. To date, a number of studies investigating the mechanisms by which TF-fVII signaling contributes to breast cancer progression, have been conducted. In this review, we summarize the mechanisms controlling TF and fVII synthesis and regulation in breast cancer cells. Our current understanding of the TF-fVII pathway as a mediator of breast cancer progression will be also described. Finally, we will discuss how this knowledge can be applied to the design of future therapeutic strategies.
Collapse
|
28
|
Mechanisms underlying increased vascular smooth muscle contractility in the rabbit basilar artery following subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2014; 120:95-8. [PMID: 25366606 DOI: 10.1007/978-3-319-04981-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Increased vascular contractility plays an important role in the development of cerebral vasospasm following subarachnoid hemorrhage (SAH). Here, we summarize our current knowledge regarding molecular mechanisms that contribute to increased smooth muscle contractility of rabbit basilar artery following SAH. Our studies demonstrated that upregulation of receptor expression, impairment of feedback regulation of receptor activity, and enhancement of myofilament Ca²⁺ sensitization might lead to increased smooth muscle contractility following SAH.
Collapse
|
29
|
Fazzini A, D’Antongiovanni V, Giusti L, Da Valle Y, Ciregia F, Piano I, Caputo A, D’Ursi AM, Gargini C, Lucacchini A, Mazzoni MR. Altered protease-activated receptor-1 expression and signaling in a malignant pleural mesothelioma cell line, NCI-H28, with homozygous deletion of the β-catenin gene. PLoS One 2014; 9:e111550. [PMID: 25364818 PMCID: PMC4218765 DOI: 10.1371/journal.pone.0111550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 09/29/2014] [Indexed: 01/13/2023] Open
Abstract
Protease activated receptors (PARs) are G-protein coupled receptors that are activated by an unique proteolytic mechanism. These receptors play crucial roles in hemostasis and thrombosis but also in inflammation and vascular development. PARs have also been implicated in tumor progression, invasion and metastasis. In this study, we investigated expression and signaling of PAR1 in nonmalignant pleural mesothelial (Met-5A) and malignant pleural mesothelioma (NCI-H28) cells. We found that the expression level of PAR1 was markedly higher in NCI-H28 cells compared to Met-5A and human primary mesothelial cells. Other three malignant pleural mesothelioma cell lines, i.e. REN, Ist-Mes2, and Mero-14, did not show any significant PAR1 over-expression compared to Met-5A cell line. Thrombin and PAR1 activating peptides enhanced Met-5A and NCI-H28 cell proliferation but in NCI-H28 cells higher thrombin concentrations were required to obtain the same proliferation increase. Similarly, thrombin caused extracellular signal-regulated kinase 1/2 activation in both cell lines but NCI-H28 cells responded at higher agonist concentrations. We also determined that PAR1 signaling through Gq and G12/13 proteins is severely altered in NCI-H28 cells compared to Met-5A cells. On the contrary, PAR1 signaling through Gi proteins was persistently maintained in NCI-H28 cells. Furthermore, we demonstrated a reduction of cell surface PAR1 expression in NCI-H28 and malignant pleural mesothelioma REN cells. Thus, our results provide evidences for dysfunctional PAR1 signaling in NCI-H28 cells together with reduced plasma membrane localization. The role of PAR1 in mesothelioma progression is just emerging and our observations can promote further investigations focused on this G-protein coupled receptor.
Collapse
Affiliation(s)
| | | | - Laura Giusti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Sayyah J, Bartakova A, Nogal N, Quilliam LA, Stupack DG, Brown JH. The Ras-related protein, Rap1A, mediates thrombin-stimulated, integrin-dependent glioblastoma cell proliferation and tumor growth. J Biol Chem 2014; 289:17689-98. [PMID: 24790104 DOI: 10.1074/jbc.m113.536227] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rap1 is a Ras family GTPase with a well documented role in ERK/MAP kinase signaling and integrin activation. Stimulation of the G-protein-coupled receptor PAR-1 with thrombin in human 1321N1 glioblastoma cells led to a robust increase in Rap1 activation. This response was sustained for up to 6 h and mediated through RhoA and phospholipase D (PLD). Thrombin treatment also induced a 5-fold increase in cell adhesion to fibronectin, which was blocked by down-regulating PLD or Rap1A or by treatment with a β1 integrin neutralizing antibody. In addition, thrombin treatment led to increases in phospho-focal adhesion kinase (tyrosine 397), ERK1/2 phosphorylation and cell proliferation, which were significantly inhibited in cells treated with β1 integrin antibody or Rap1A siRNA. To assess the role of Rap1A in tumor formation in vivo, we compared growth of 1321N1 cells stably expressing control, Rap1A or Rap1B shRNA in a mouse xenograft model. Deletion of Rap1A, but not of Rap1B, reduced tumor mass by >70% relative to control. Similar observations were made with U373MG glioblastoma cells in which Rap1A was down-regulated. Collectively, these findings implicate a Rap1A/β1 integrin pathway, activated downstream of G-protein-coupled receptor stimulation and RhoA, in glioblastoma cell proliferation. Moreover, our data demonstrate a critical role for Rap1A in glioblastoma tumor growth in vivo.
Collapse
Affiliation(s)
| | - Alena Bartakova
- Pathology, University of California at San Diego, La Jolla, California 92093 and
| | | | - Lawrence A Quilliam
- the Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana 46202
| | - Dwayne G Stupack
- Pathology, University of California at San Diego, La Jolla, California 92093 and
| | | |
Collapse
|
31
|
Wang YJ, Guo XL, Li SA, Zhao YQ, Liu ZC, Lee WH, Xiang Y, Zhang Y. Prohibitin is involved in the activated internalization and degradation of protease-activated receptor 1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1393-401. [PMID: 24732013 DOI: 10.1016/j.bbamcr.2014.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 01/09/2023]
Abstract
The protease-activated receptor 1 (PAR1) is a G-protein-coupled receptor that is irreversibly activated by either thrombin or metalloprotease 1. Due this irrevocable activation, activated internalization and degradation are critical for PAR1 signaling termination. Prohibitin (PHB) is an evolutionarily conserved, ubiquitously expressed, pleiotropic protein and belongs to the stomatin/prohibitin/flotillin/HflK/C (SPFH) domain family. In a previous study, we found that PHB localized on the platelet membrane and participated in PAR1-mediated human platelet aggregation, suggesting that PHB likely regulates the signaling of PAR1. Unfortunately, PHB's exact function in PAR1 internalization and degradation is unclear. In the current study, flow cytometry revealed that PHB expressed on the surface of endothelial cells (HUVECs) but not cancer cells (MDA-MB-231). Further confocal microscopy revealed that PHB dynamically associates with PAR1 in a time-dependent manner following induction with PAR1-activated peptide (PAR1-AP), though differently between HUVECs and MDA-MB-231 cells. Depletion of PHB by RNA interference significantly inhibited PAR1 activated internalization and led to sustained Erk1/2 phosphorylation in the HUVECs; however, a similar effect was not observed in MDA-MB-231 cells. For both the endothelial and cancel cells, PHB repressed PAR1 degradation, while knockdown of PHB led to increased PAR1 degradation, and PHB overexpression inhibited PAR1 degradation. These results suggest that persistent PAR1 signaling due to the absence of membrane PHB and decreased PAR1 degradation caused by the upregulation of intracellular PHB in cancer cells (such as MDA-MB-231 cells) may render cells highly invasive. As such, PHB may be a novel target in future anti-cancer therapeutics, or in more refined cancer malignancy diagnostics.
Collapse
Affiliation(s)
- Yan-Jie Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao-Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences Kunming, Yunnan 650204, China
| | - Sheng-An Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yu-Qi Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zi-Chao Liu
- Department of Life Science and Technology, Kunming University, Kunming, Yunnan 650214, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yang Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
32
|
Chen B, Siderovski DP, Neubig RR, Lawson MA, Trejo J. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins. J Biol Chem 2013; 289:1580-91. [PMID: 24297163 DOI: 10.1074/jbc.m113.528273] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.
Collapse
Affiliation(s)
- Buxin Chen
- From the Departments of Pharmacology and
| | | | | | | | | |
Collapse
|
33
|
Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis. PLoS One 2013; 8:e63607. [PMID: 23675494 PMCID: PMC3651095 DOI: 10.1371/journal.pone.0063607] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 04/05/2013] [Indexed: 11/19/2022] Open
Abstract
The incidence of carcinoma increases greatly with aging, but the cellular and molecular mechanisms underlying this correlation are only partly known. It is established that senescent fibroblasts promote the malignant progression of already-transformed cells through secretion of inflammatory mediators. We investigated here whether the senescent fibroblast secretome might have an impact on the very first stages of carcinogenesis. We chose the cultured normal primary human epidermal keratinocyte model, because after these cells reach the senescence plateau, cells with transformed and tumorigenic properties systematically and spontaneously emerge from the plateau. In the presence of medium conditioned by autologous senescent dermal fibroblasts, a higher frequency of post-senescence emergence was observed and the post-senescence emergent cells showed enhanced migratory properties and a more marked epithelial-mesenchymal transition. Using pharmacological inhibitors, siRNAs, and blocking antibodies, we demonstrated that the MMP-1 and MMP-2 matrix metalloproteinases, known to participate in late stages of cancer invasion and metastasis, are responsible for this enhancement of early migratory capacity. We present evidence that MMPs act by activating the protease-activated receptor 1 (PAR-1), whose expression is specifically increased in post-senescence emergent keratinocytes. The physiopathological relevance of these results was tested by analyzing MMP activity and PAR-1 expression in skin sections. Both were higher in skin sections from aged subjects than in ones from young subjects. Altogether, our results suggest that during aging, the dermal and epidermal skin compartments might be activated coordinately for initiation of skin carcinoma, via a paracrine axis in which MMPs secreted by senescent fibroblasts promote very early epithelial-mesenchymal transition of keratinocytes undergoing transformation and oversynthesizing the MMP-activatable receptor PAR-1.
Collapse
|
34
|
Canto I, Trejo J. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting. J Biol Chem 2013; 288:15900-12. [PMID: 23580642 DOI: 10.1074/jbc.m113.469866] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.
Collapse
Affiliation(s)
- Isabel Canto
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
35
|
Alonso V, Friedman PA. Minireview: ubiquitination-regulated G protein-coupled receptor signaling and trafficking. Mol Endocrinol 2013; 27:558-72. [PMID: 23471539 DOI: 10.1210/me.2012-1404] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest and most diverse superfamily of membrane proteins and mediate most cellular responses to hormones and neurotransmitters. Posttranslational modifications are considered the main regulators of all GPCRs. In addition to phosphorylation, glycosylation, and palmitoylation, increasing evidence as reviewed here reveals that ubiquitination also regulates the magnitude and temporospatial aspects of GPCR signaling. Posttranslational protein modification by ubiquitin is a key molecular mechanism governing proteins degradation. Ubiquitination mediates the covalent conjugation of ubiquitin, a highly conserved polypeptide of 76 amino acids, to protein substrates. This process is catalyzed by 3 enzymes acting in tandem: an E1, ubiquitin-activating enzyme; an E2, ubiquitin-carrying enzyme; and an E3, ubiquitin ligase. Ubiquitination is counteracted by deubiquitinating enzymes that deconjugate ubiquitin-modified proteins and rescue the substrate from proteasomal degradation. Although ubiquitination is known to target many GPCRs for lysosomal or proteasomal degradation, emerging findings define novel roles for the basal status of ubiquitination and for rapid deubiquitination and transubiquitination controlling cell surface expression and cellular responsiveness of some GPCRs. In this review, we highlight the classical and novel roles of ubiquitin in the regulation of GPCR function, signaling, and trafficking.
Collapse
Affiliation(s)
- Verónica Alonso
- Institute of Applied Molecular Medicine, San Pablo-CEU University School of Medicine, Madrid, 28668, Spain
| | | |
Collapse
|
36
|
van Ryn J, Goss A, Hauel N, Wienen W, Priepke H, Nar H, Clemens A. The discovery of dabigatran etexilate. Front Pharmacol 2013; 4:12. [PMID: 23408233 PMCID: PMC3569592 DOI: 10.3389/fphar.2013.00012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/23/2013] [Indexed: 01/18/2023] Open
Abstract
Thromboembolic disease is a major cause of mortality and morbidity in the developed world and is caused by an excessive stimulation of coagulation. Thrombin is a key serine protease in the coagulation cascade and numerous efforts have been made to develop safe and effective orally active direct thrombin inhibitors (DTIs). Current anticoagulant therapy includes the use of indirect thrombin inhibitors (e.g., heparins, low-molecular-weight-heparins) and vitamin K antagonists such as warfarin. However there are several caveats in the clinical use of these agents including narrow therapeutic window, parenteral delivery, and food- and drug-drug interactions. Dabigatran is a synthetic, reversible DTI with high affinity and specificity for its target binding both free and clot-bound thrombin, and offers a favorable pharmacokinetic profile. Large randomized clinical trials have demonstrated that dabigatran provides comparable or superior thromboprophylaxis in multiple thromboembolic disease indications compared to standard of care. This minireview will highlight the discovery and development of dabigatran, the first in a class of new oral anticoagulant agents to be licensed worldwide for the prevention of thromboembolism in the setting of orthopedic surgery and stroke prevent in atrial fibrillation.
Collapse
Affiliation(s)
- Joanne van Ryn
- Department of CardioMetabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riss, Baden-Württemberg, Germany
| | - Ashley Goss
- Department of CardioMetabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc.Ridgefield, CT, USA
| | - Norbert Hauel
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riss, Baden-Württemberg, Germany
| | - Wolfgang Wienen
- Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riss, Baden-Württemberg, Germany
| | - Henning Priepke
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riss, Baden-Württemberg, Germany
| | - Herbert Nar
- Department of Lead Identification and Optimization Support, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riss, Baden-Württemberg, Germany
| | - Andreas Clemens
- Global Clinical Development and Medical Affairs, Boehringer Ingelheim Pharma GmbH & Co. KGIngelheim, Baden-Württemberg, Germany
| |
Collapse
|
37
|
Abstract
The Hippo signaling pathway plays a crucial role in tissue growth and tumorigenesis. Core components of the Hippo pathway include the MST1/2 and Lats1/2 kinases. Acting downstream from the Hippo pathway are the YAP/TAZ transcription coactivators, which are inhibited through phosphorylation by Lats. However, upstream signals that regulate the Hippo pathway have not been well delineated. Here we report that stimulation of protease-activated receptors (PARs) activates YAP/TAZ by decreasing phosphorylation and increasing nuclear localization. PAR1 acts through G(12/13) and Rho GTPase to inhibit the Lats1/2 kinase. Our observations establish thrombin as a physiological signal for the Hippo pathway and implicate Hippo-YAP as a key downstream signaling branch of PAR activation.
Collapse
|
38
|
Dores MR, Paing MM, Lin H, Montagne WA, Marchese A, Trejo J. AP-3 regulates PAR1 ubiquitin-independent MVB/lysosomal sorting via an ALIX-mediated pathway. Mol Biol Cell 2012; 23:3612-23. [PMID: 22833563 PMCID: PMC3442409 DOI: 10.1091/mbc.e12-03-0251] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A GPCR ubiquitin-independent MVB/lysosomal sorting pathway is regulated by the adaptor protein complex-3 (AP-3) and ALIX, a noncanonical ESCRT component. AP-3 binds to a PAR1 C-tail–localized, tyrosine-based motif and mediates PAR1 lysosomal degradation. AP-3 also facilitates PAR1 interaction with ALIX, suggesting that AP-3 functions before PAR1 engagement of ALIX and MVB/lysosomal sorting. The sorting of signaling receptors within the endocytic system is important for appropriate cellular responses. After activation, receptors are trafficked to early endosomes and either recycled or sorted to lysosomes and degraded. Most receptors trafficked to lysosomes are modified with ubiquitin and recruited into an endosomal subdomain enriched in hepatocyte growth factor–regulated tyrosine kinase substrate (HRS), a ubiquitin-binding component of the endosomal-sorting complex required for transport (ESCRT) machinery, and then sorted into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs)/lysosomes. However, not all receptors use ubiquitin or the canonical ESCRT machinery to sort to MVBs/lysosomes. This is exemplified by protease-activated receptor-1 (PAR1), a G protein–coupled receptor for thrombin, which sorts to lysosomes independent of ubiquitination and HRS. We recently showed that the adaptor protein ALIX binds to PAR1, recruits ESCRT-III, and mediates receptor sorting to ILVs of MVBs. However, the mechanism that initiates PAR1 sorting at the early endosome is not known. We now report that the adaptor protein complex-3 (AP-3) regulates PAR1 ubiquitin-independent sorting to MVBs through an ALIX-dependent pathway. AP-3 binds to a PAR1 cytoplasmic tail–localized tyrosine-based motif and mediates PAR1 lysosomal degradation independent of ubiquitination. Moreover, AP-3 facilitates PAR1 interaction with ALIX, suggesting that AP-3 functions before PAR1 engagement of ALIX and MVB/lysosomal sorting.
Collapse
Affiliation(s)
- Michael R Dores
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
39
|
Dores MR, Chen B, Lin H, Soh UJK, Paing MM, Montagne WA, Meerloo T, Trejo J. ALIX binds a YPX(3)L motif of the GPCR PAR1 and mediates ubiquitin-independent ESCRT-III/MVB sorting. ACTA ACUST UNITED AC 2012; 197:407-19. [PMID: 22547407 PMCID: PMC3341166 DOI: 10.1083/jcb.201110031] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sorting of signaling receptors to lysosomes is an essential regulatory process in mammalian cells. During degradation, receptors are modified with ubiquitin and sorted by endosomal sorting complex required for transport (ESCRT)-0, -I, -II, and -III complexes into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs). However, it remains unclear whether a single universal mechanism mediates MVB sorting of all receptors. We previously showed that protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is internalized after activation and sorted to lysosomes independent of ubiquitination and the ubiquitin-binding ESCRT components hepatocyte growth factor-regulated tyrosine kinase substrate and Tsg101. In this paper, we report that PAR1 sorted to ILVs of MVBs through an ESCRT-III-dependent pathway independent of ubiquitination. We further demonstrate that ALIX, a charged MVB protein 4-ESCRT-III interacting protein, bound to a YPX(3)L motif of PAR1 via its central V domain to mediate lysosomal degradation. This study reveals a novel MVB/lysosomal sorting pathway for signaling receptors that bypasses the requirement for ubiquitination and ubiquitin-binding ESCRTs and may be applicable to a subset of GPCRs containing YPX(n)L motifs.
Collapse
Affiliation(s)
- Michael R Dores
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kameda K, Kikkawa Y, Hirano M, Matsuo S, Sasaki T, Hirano K. Combined argatroban and anti-oxidative agents prevents increased vascular contractility to thrombin and other ligands after subarachnoid haemorrhage. Br J Pharmacol 2012; 165:106-19. [PMID: 21564089 DOI: 10.1111/j.1476-5381.2011.01485.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Increased vascular contractility plays a fundamental role in cerebral vasospasm in subarachnoid haemorrhage (SAH). We investigated the role of thrombin and its receptor, proteinase-activated receptor 1 (PAR1), and other G protein-coupled receptors in the increased contractility, and examined the preventive effects of the thrombin inhibitor, argatroban, and anti-oxidative agents, vitamin C and tempol. EXPERIMENTAL APPROACH A rabbit model of SAH was utilized. Contractile responses of the isolated basilar artery and the level of oxidative stress of brain tissues were evaluated. KEY RESULTS Contractile responses to thrombin and PAR1-activating peptide (PAR1-AP) were enhanced and prolonged after SAH. The thrombin-induced contraction persisted even after terminating thrombin stimulation. When sequentially stimulated with PAR1-AP, the second response was maintained in SAH, while it was substantially attenuated in the control. Only a combination of argatroban with vitamin C or tempol prevented both the enhancement and prolongation of the contractile response to PAR1-AP and restored the reversibility of the thrombin-induced contraction. The responses to angiotensin II, vasopressin and PGF(2α) were enhanced and prolonged after SAH to varying degrees, and responded differently to the treatment. The response to vasopressin exhibited a similar phenomenon to that seen with PAR1-AP. Oxidative stress was increased in SAH, and normalized by the treatment with argatroban, vitamin C or their combination. CONCLUSIONS AND IMPLICATIONS Increased vascular reactivity to agonists in SAH was attributable to the enhancement and prolongation of the contractile response. A combination of argatroban and anti-oxidative agents was required to prevent both the enhancement and prolongation of the contractile response.
Collapse
Affiliation(s)
- Katsuharu Kameda
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
42
|
The thrombin inhibitor, argatroban, inhibits breast cancer metastasis to bone. Breast Cancer 2012; 20:241-6. [PMID: 22359194 DOI: 10.1007/s12282-012-0334-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 01/03/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND Breast cancer has the potential to metastasize to bone, causing debilitating symptoms. Although many tumor cells have thrombin-generating systems originating from tissue factor (TF), therapy in terms of the coagulation system is not well established. To elucidate the efficacy of the thrombin inhibitor, argatroban, on bone metastasis, we investigated TF activation and vascular endothelial growth factor (VEGF) secretion on treatment with thrombin and argatroban. METHODS MDA-231 breast cancer cells were treated with thrombin in presence or absence of argatroban, and TF activity was measured in the form of activated factor X. Enzyme-linked immunosorbent assay (ELISA) was used to measure VEGF concentrations in the medium. MDA-231 cells were injected into the left heart ventricle of mice, and then argatroban or saline was administered intraperitoneally for 28 days. After 28 days, incidence of bone metastasis was evaluated in the limbs by radiography. RESULTS TF activity and VEGF secretion were upregulated by thrombin. Argatroban inhibited the enhancement of TF activity and VEGF secretion induced by thrombin. In vivo analysis revealed that the number of metastasized limbs in the argatroban group was significantly lower compared with the saline group (P < 0.05). CONCLUSIONS Thrombin not only enhances VEGF secretion but also has a positive feedback mechanism to reexpress TF. These results indicate that inhibition of thrombin is of great value in suppression of tumor metastasis. Argatroban is a noteworthy and useful thrombin inhibitor because it has already been used in the clinical setting and has antimetastatic effects in vivo.
Collapse
|
43
|
Salah Z, Uziely B, Jaber M, Maoz M, Cohen I, Hamburger T, Maly B, Peretz T, Bar-Shavit R. Regulation of human protease-activated receptor 1 (hPar1) gene expression in breast cancer by estrogen. FASEB J 2012; 26:2031-42. [PMID: 22291441 DOI: 10.1096/fj.11-194704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A pivotal role is attributed to the estrogen-receptor (ER) pathway in mediating the effect of estrogen in breast cancer progression. Yet the precise mechanisms of cancer development by estrogen remain poorly understood. Advancing tumor categorization a step forward, and identifying cellular gene fingerprints to accompany histopathological assessment may provide targets for therapy as well as vehicles for evaluating the response to treatment. We report here that in breast carcinoma, estrogen may induce tumor development by eliciting protease-activated receptor-1 (PAR(1)) gene expression. Induction of PAR(1) was shown by electrophoretic mobility shift assay, luciferase reporter gene driven by the hPar(1) promoter, and chromatin-immunoprecipitation analyses. Functional estrogen regulation of hPar1 in breast cancer was demonstrated by an endothelial tube-forming network. Notably, tissue-microarray analyses from an established cohort of women diagnosed with invasive breast carcinoma exhibited a significantly shorter disease-free (P=0.006) and overall (P=0.02) survival of patients that were positive for ER and PAR(1), compared to ER-positive but PAR(1)-negative patients. We propose that estrogen transcriptionally regulates hPar(1), culminating in an aggressive gene imprint in breast cancer. While ER(+) patients are traditionally treated with hormone therapy, the presence of PAR(1) identifies a group of patients that requires additional treatment, such as anti-PAR(1) biological vehicles or chemotherapy.
Collapse
Affiliation(s)
- Zaidoun Salah
- Sharett Institute of Oncology, Hadassah-Hebrew University Hospital, P.O. Box 12000, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zigler M, Kamiya T, Brantley EC, Villares GJ, Bar-Eli M. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis. Cancer Res 2011; 71:6561-6. [PMID: 22009534 PMCID: PMC3206157 DOI: 10.1158/0008-5472.can-11-1432] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Progression of melanoma is dependent on cross-talk between tumor cells and the adjacent microenvironment. The thrombin receptor, protease-activated receptor-1 (PAR-1), plays a key role in exerting this function during melanoma progression. PAR-1 and its activating factors, which are expressed on tumor cells and the surrounding stroma, induce not only coagulation but also cell signaling, which promotes the metastatic phenotype. Several adhesion molecules, cytokines, growth factors, and proteases have recently been identified as downstream targets of PAR-1 and have been shown to modulate interactions between tumor cells and the microenvironment in the process of melanoma growth and metastasis. Inhibiting such interactions by targeting PAR-1 could potentially be a useful therapeutic modality for melanoma patients.
Collapse
Affiliation(s)
- Maya Zigler
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
45
|
Bar-Shavit R, Turm H, Salah Z, Maoz M, Cohen I, Weiss E, Uziely B, Grisaru-Granovsky S. PAR1 plays a role in epithelial malignancies: transcriptional regulation and novel signaling pathway. IUBMB Life 2011; 63:397-402. [PMID: 21557443 DOI: 10.1002/iub.452] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/16/2011] [Accepted: 02/16/2011] [Indexed: 12/15/2022]
Abstract
Protease-activated receptor 1 (PAR(1)) is the first and prototype member of an established PAR family comprising four members. The role of PAR(1) in tumor biology has been established, and is characterized by a consistent direct correlation between overexpression of its levels and epithelial tumor aggressiveness. We have found that high expression of the human Par(1) (hPar(1)) gene in epithelial tumors is controlled largely at the transcriptional level. This led us to assign Egr-1, a transcription activator, as an inducer of hPar(1), and p53, a tumor suppressor gene, as an inhibitor, both acting to achieve fine tuning of hPar(1) in prostate carcinoma. High PAR(1) levels maintain prosurvival signals in tumor cells while silencing or ablation of the gene induce apoptosis. Studies of our hPar(1) transgenic mice, which overexpress hPar(1) in the mammary glands, revealed a novel PAR(1)-induced β-catenin stabilization function. The components connecting PAR(1) to β-catenin stabilization have been determined, assigning at first G(α)(13) as a selective immediate component. The PAR(1)-G(α) (13) axis recruits disheveled (DVL), an upstream signaling partner of the canonical Wnt signaling pathway. Silencing of DVL by siRNA-DVL potently abrogates PAR(1)-induced β-catenin stabilization, demonstrating its critical role in the process. We, thus, propose that transcriptional regulation of hPar(1) gene over expression in epithelia malignancies initiates a novel signaling pathway, directly connecting to β-catenin stabilization, a core event in both tumorigenesis and developmental processes.
Collapse
Affiliation(s)
- Rachel Bar-Shavit
- Department of Oncology, Sharett Institute, Hadassah University Hospital, Jerusalem, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Voisin T, El Firar A, Fasseu M, Rouyer-Fessard C, Descatoire V, Walker F, Paradis V, Bedossa P, Henin D, Lehy T, Laburthe M. Aberrant expression of OX1 receptors for orexins in colon cancers and liver metastases: an openable gate to apoptosis. Cancer Res 2011; 71:3341-51. [PMID: 21415167 DOI: 10.1158/0008-5472.can-10-3473] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance to apoptosis is a recurrent theme in colon cancer. We have shown previously that the 7-transmembrane spanning receptor OX1R for orexins promotes robust apoptosis in the human colon cancer cell line HT29 through an entirely novel mechanism involving phosphorylation of tyrosine-based motifs in OX1R. Here, we investigated the status of OX1R in a large series of human colorectal tumors and hepatic metastases. All primary colorectal tumors regardless of their localization and Duke's stages and all hepatic metastases tested expressed OX1R mRNA and/or protein. In sharp contrast, adjacent normal colonocytes or hepatocytes as well as control normal tissues were negative. Next, we showed that nine human colon cancer cell lines established from primary tumors or metastases expressed OX1R mRNA and underwent important apoptosis on orexin-A challenge. Most interestingly, orexin-A also promoted robust apoptosis in cells that are resistant to the most commonly used drug in colon cancer chemotherapy, 5-fluorouracil. When human colon cancer cells were xenografted in nude mice, orexin-A administered at day 0 strongly slowed the tumor growth and even reversed the development of established tumors when administered 7 days after cell inoculation. Orexin-A also acts by promoting tumor apoptosis in vivo because caspase-3 is activated in tumors on orexin treatment of nude mice. These findings support that OX1R is an Achilles heel of colon cancers, even after metastasis or chemoresistance. They suggest that OX1R agonists might be novel candidates for colon cancer therapy.
Collapse
|
47
|
Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 2011; 130:248-82. [PMID: 21277892 DOI: 10.1016/j.pharmthera.2011.01.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/18/2022]
Abstract
Discovered in the 1990s, protease activated receptors(1) (PARs) are membrane-spanning cell surface proteins that belong to the G protein coupled receptor (GPCR) family. A defining feature of these receptors is their irreversible activation by proteases; mainly serine. Proteolytic agonists remove the PAR extracellular amino terminal pro-domain to expose a new amino terminus, or tethered ligand, that binds intramolecularly to induce intracellular signal transduction via a number of molecular pathways that regulate a variety of cellular responses. By these mechanisms PARs function as cell surface sensors of extracellular and cell surface associated proteases, contributing extensively to regulation of homeostasis, as well as to dysfunctional responses required for progression of a number of diseases. This review examines common and distinguishing structural features of PARs, mechanisms of receptor activation, trafficking and signal termination, and discusses the physiological and pathological roles of these receptors and emerging approaches for modulating PAR-mediated signaling in disease.
Collapse
Affiliation(s)
- Mark N Adams
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane Qld 4101, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Uziely B, Turm H, Maoz M, Cohen I, Maly B, Bar-Shavit R. Par genes: molecular probes to pathological assessment in breast cancer progression. PATHOLOGY RESEARCH INTERNATIONAL 2011; 2011:178265. [PMID: 21318117 PMCID: PMC3035039 DOI: 10.4061/2011/178265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/04/2011] [Indexed: 01/21/2023]
Abstract
Taking the issue of tumor categorization a step forward and
establish molecular imprints to accompany histopathological
assessment is a challenging task. This is important since often
patients with similar clinical and pathological tumors may respond
differently to a given treatment. Protease-activated receptor-1
(PAR1), a G protein-coupled receptor (GPCR),
is the first member
of the mammalian PAR family consisting of four genes. PAR1 and
PAR2 play a central role in breast cancer. The release of
N-terminal peptides during activation and the exposure of a
cryptic internal ligand in PARs, endow these receptors with the
opportunity to serve as a “mirror-image”
index reflecting the level of cell surface PAR1&2-in body fluids. It is possible to
use the levels of PAR-released peptide in patients and
accordingly determine the choice of treatment. We have both
identified PAR1 C-tail as a scaffold site for the immobilization
of signaling partners, and the critical minimal binding site. This
binding region may be used for future therapeutic modalities in
breast cancer, since abrogation of the binding inhibits PAR1
induced breast cancer. Altogether, both PAR1 and PAR2 may serve as
molecular probes for breast cancer diagnosis and valuable targets
for therapy.
Collapse
Affiliation(s)
- Beatrice Uziely
- Departments of Oncology, Hadassah-University Hospital P.O. Box 12000, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
49
|
Wang FQ, Fisher J, Fishman DA. MMP-1-PAR1 axis mediates LPA-induced epithelial ovarian cancer (EOC) invasion. Gynecol Oncol 2010; 120:247-55. [PMID: 21093894 DOI: 10.1016/j.ygyno.2010.10.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/19/2010] [Accepted: 10/25/2010] [Indexed: 02/08/2023]
Abstract
OBJECTIVES MMP-1 is over-expressed in many cancers, with high expression often associated with poor survival. In the present study, we examined the expression of MMP-1 in EOC and its role in EOC invasion. Moreover, we evaluated the role of a newly identified MMP-1-protease activated receptor (PAR)-1 axis in LPA-induced EOC invasion. METHODS MMP-1 and PAR1 mRNA expression in EOC cell lines was determined by real time PCR. MMP-1 mRNA expression in 96 normal and carcinoma ovarian tissue specimens was analyzed using a TissueScan real time PCR array. MMP-1 concentration in conditioned medium was measured by MMP-1 ELISA. PAR1 protein expression was detected by Western blotting. Cell invasion was evaluated by in vitro Matrigel invasion assay. RESULTS In ovarian tumor tissues more MMP-1 expression was observed than in normal ovarian tissues (p<0.05), and its expression correlated with tumor grade (grade 3>grade 2>grade 1). Human recombinant MMP-1 as well as serum free conditioned medium containing high levels of MMP-1 from DOV13 and R182 cells significantly promoted DOV13 cell invasion (p<0.05), implicating a direct role of MMP-1 in EOC invasion. Moreover, MMP-1 induced DOV13 invasion was significantly blocked by PAR1 siRNA silencing. Furthermore, MMP-1 and PAR1 were both significantly induced by LPA (20 μM), and siRNA silencing of MMP-1 and PAR1 both significantly reduced LPA's invasion-promoting effect in DOV13 cells (p<0.05). CONCLUSIONS Our results suggest that the MMP-1-PAR1 axis is involved in EOC invasion and at least partially mediates LPA-induced EOC invasion. Therefore, blocking MMP-1 or PAR1 may represent a new therapeutic option for metastatic EOC.
Collapse
Affiliation(s)
- Feng-qiang Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
50
|
Cooperation of tissue factor cytoplasmic domain and PAR2 signaling in breast cancer development. Blood 2010; 116:6106-13. [PMID: 20861457 DOI: 10.1182/blood-2010-06-289314] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Constitutive expression of tissue factor (TF) by cancer cells triggers local activation of the coagulation cascade and promotes breast cancer progression through cell signaling involving protease activated receptor (PAR)2. In human breast cancer, TF and PAR2 are up-regulated and TF cytoplasmic domain phosphorylation is correlated with relapse. Here we show that cancer cell PAR2 signaling promotes angiogenesis independent of PAR2 phosphorylation at the recognized β-arrestin recruitment site. Similar to PAR2(-/-) mice, TF cytoplasmic domain-deleted (TF(ΔCT)) mice have delayed spontaneous breast cancer development in the polyoma middle T model. Simultaneous deletion of PAR2 in TF(ΔCT) mice did not further delay tumor appearance, consistent with overlapping roles of TF and PAR2 in promoting the angiogenic switch in early stages of breast cancer. In advanced carcinomas, tumor-associated macrophages were reduced in TF(ΔCT) and TF(ΔCT)/PAR2(-/-) mice, and increased tumor vessel diameters of TF(ΔCT) mice were partially reversed by PAR2-deficiency, indicating that the TF cytoplasmic domain has additional roles that are interdependent with PAR2 signaling in regulating host angiogenic responses. These experiments demonstrate a crosstalk of tumor cell TF cytoplasmic domain and PAR2 signaling and provide a possible mechanism for the close correlation between TF phosphorylation and cancer recurrence of TF and PAR2-positive clinical breast cancer.
Collapse
|