1
|
Mathew V, Mei A, Giwa H, Cheong A, Chander A, Zou A, Blanton RM, Kashpur O, Cui W, Slonim D, Mahmoud T, O'Tierney-Ginn P, Mager J, Draper I, Wallingford MC. hnRNPL expression dynamics in the embryo and placenta. Gene Expr Patterns 2023; 48:119319. [PMID: 37148985 PMCID: PMC10330435 DOI: 10.1016/j.gep.2023.119319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 05/08/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein L (hnRNPL) is a conserved RNA binding protein (RBP) that plays an important role in the alternative splicing of gene transcripts, and thus in the generation of specific protein isoforms. Global deficiency in hnRNPL in mice results in preimplantation embryonic lethality at embryonic day (E) 3.5. To begin to understand the contribution of hnRNPL-regulated pathways in the normal development of the embryo and placenta, we determined hnRNPL expression profile and subcellular localization throughout development. Proteome and Western blot analyses were employed to determine hnRNPL abundance between E3.5 and E17.5. Histological analyses supported that the embryo and implantation site display distinct hnRNPL localization patterns. In the fully developed mouse placenta, nuclear hnRNPL was observed broadly in trophoblasts, whereas within the implantation site a discrete subset of cells showed hnRNPL outside the nucleus. In the first-trimester human placenta, hnRNPL was detected in the undifferentiated cytotrophoblasts, suggesting a role for this factor in trophoblast progenitors. Parallel in vitro studies utilizing Htr8 and Jeg3 cell lines confirmed expression of hnRNPL in cellular models of human trophoblasts. These studies [support] coordinated regulation of hnRNPL during the normal developmental program in the mammalian embryo and placenta.
Collapse
Affiliation(s)
- Vineetha Mathew
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Ariel Mei
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Hamida Giwa
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Agnes Cheong
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ashmita Chander
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Aaron Zou
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Olga Kashpur
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Donna Slonim
- Department of Computer Science, Tufts University, 177 College Avenue, Medford, MA, 02155, USA
| | - Taysir Mahmoud
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Perrie O'Tierney-Ginn
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Isabelle Draper
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Mary C Wallingford
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA; Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
2
|
Khan M, Hou S, Chen M, Lei H. Mechanisms of RNA export and nuclear retention. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1755. [PMID: 35978483 DOI: 10.1002/wrna.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 05/13/2023]
Abstract
With the identification of huge amount of noncoding RNAs in recent years, the concept of RNA localization has extended from traditional mRNA export to RNA export of mRNA and ncRNA as well as nuclear retention of ncRNA. This review aims to summarize the recent findings from studies on the mechanisms of export of different RNAs and nuclear retention of some lncRNAs in higher eukaryotes, with a focus on splicing-dependent TREX recruitment for the export of spliced mRNA and the sequence-dependent mechanism of mRNA export in the absence of splicing. In addition, evidence to support the involvement of m6 A modification in RNA export with the coordination between the methylase complex and TREX complex as well as sequence-dependent nuclear retention of lncRNA is recapitulated. Finally, a model of sequence-dependent RNA localization is proposed along with the many questions that remain to be answered. This article is categorized under: RNA Export and Localization > RNA Localization RNA Export and Localization > Nuclear Export/Import.
Collapse
Affiliation(s)
- Misbah Khan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mo Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Cui X, Hao C, Gong L, Kajitani N, Schwartz S. HnRNP D activates production of HPV16 E1 and E6 mRNAs by promoting intron retention. Nucleic Acids Res 2022; 50:2782-2806. [PMID: 35234917 PMCID: PMC8934624 DOI: 10.1093/nar/gkac132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) E1 and E6 proteins are produced from mRNAs with retained introns, but it has been unclear how these mRNAs are generated. Here, we report that hnRNP D act as a splicing inhibitor of HPV16 E1/E2- and E6/E7-mRNAs thereby generating intron-containing E1- and E6-mRNAs, respectively. N- and C-termini of hnRNP D contributed to HPV16 mRNA splicing control differently. HnRNP D interacted with the components of splicing machinery and with HPV16 RNA to exert its inhibitory function. As a result, the cytoplasmic levels of intron-retained HPV16 mRNAs were increased in the presence of hnRNP D. Association of hnRNP D with HPV16 mRNAs in the cytoplasm was observed, and this may correlate with unexpected inhibition of HPV16 E1- and E6-mRNA translation. Notably, hnRNP D40 interacted with HPV16 mRNAs in an HPV16-driven tonsillar cancer cell line and in HPV16-immortalized human keratinocytes. Furthermore, knockdown of hnRNP D in HPV16-driven cervical cancer cells enhanced production of the HPV16 E7 oncoprotein. Our results suggest that hnRNP D plays significant roles in the regulation of HPV gene expression and HPV-associated cancer development.
Collapse
Affiliation(s)
- Xiaoxu Cui
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Chengyu Hao
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden
| | - Lijing Gong
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden.,China Institute of Sport and Health Sciences, Beijing Sport University, Haidian District, Beijing 100084, China
| | - Naoko Kajitani
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden.,Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23 Uppsala, Sweden
| | - Stefan Schwartz
- Department of Laboratory Medicine, Lund University, BMC-B13, 221 84 Lund, Sweden.,Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC-B9, 751 23 Uppsala, Sweden
| |
Collapse
|
4
|
Zhou X, Zou L, Liao H, Luo J, Yang T, Wu J, Chen W, Wu K, Cen S, Lv D, Shu F, Yang Y, Li C, Li B, Mao X. Abrogation of HnRNP L enhances anti-PD-1 therapy efficacy via diminishing PD-L1 and promoting CD8 + T cell-mediated ferroptosis in castration-resistant prostate cancer. Acta Pharm Sin B 2022; 12:692-707. [PMID: 35256940 PMCID: PMC8897216 DOI: 10.1016/j.apsb.2021.07.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/20/2021] [Accepted: 07/09/2021] [Indexed: 01/18/2023] Open
Abstract
Owing to incurable castration-resistant prostate cancer (CRPC) ultimately developing after treating with androgen deprivation therapy (ADT), it is vital to devise new therapeutic strategies to treat CRPC. Treatments that target programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for human cancers with clinical benefit. However, many patients, especially prostate cancer, fail to respond to anti-PD-1/PD-L1 treatment, so it is an urgent need to seek a support strategy for improving the traditional PD-1/PD-L1 targeting immunotherapy. In the present study, analyzing the data from our prostate cancer tissue microarray, we found that PD-L1 expression was positively correlated with the expression of heterogeneous nuclear ribonucleoprotein L (HnRNP L). Hence, we further investigated the potential role of HnRNP L on the PD-L1 expression, the sensitivity of cancer cells to T-cell killing and the synergistic effect with anti-PD-1 therapy in CRPC. Indeed, HnRNP L knockdown effectively decreased PD-L1 expression and recovered the sensitivity of cancer cells to T-cell killing in vitro and in vivo, on the contrary, HnRNP L overexpression led to the opposite effect in CRPC cells. In addition, consistent with the previous study, we revealed that ferroptosis played a critical role in T-cell-induced cancer cell death, and HnRNP L promoted the cancer immune escape partly through targeting YY1/PD-L1 axis and inhibiting ferroptosis in CRPC cells. Furthermore, HnRNP L knockdown enhanced antitumor immunity by recruiting infiltrating CD8+ T cells and synergized with anti-PD-1 therapy in CRPC tumors. This study provided biological evidence that HnRNP L knockdown might be a novel therapeutic agent in PD-L1/PD-1 blockade strategy that enhanced anti-tumor immune response in CRPC.
Collapse
Key Words
- ADT, androgen deprivation therapy
- Anti-PD-1 therapy
- CRPC, castration-resistant prostate cancer
- Castration-resistant prostate cancer
- DMSO, dimethyl sulfoxide
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- Fer-1, ferrostatin-1
- Ferroptosis
- GSH, glutathione
- HnRNP L
- HnRNP L, heterogeneous nuclear ribonucleoprotein L
- IL, interleukin
- INF-γ, interferon gamma
- Immune checkpoint blockade
- Immune escape
- PD-1, programmed cell death protein 1
- PD-L1
- PD-L1, programmed death ligand1
- ROS, reactive oxygen species
- STAT, signal transducer and activator of transcription
- YY1
- qRT-PCR, quantitative reverse transcription polymerase chain reaction
Collapse
Affiliation(s)
- Xumin Zhou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Libin Zou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hangyu Liao
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junqi Luo
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Taowei Yang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jun Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenbin Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Kaihui Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shengren Cen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Daojun Lv
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Fangpeng Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yu Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chun Li
- Nursing Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Corresponding authors. Tel.: +86 20 62782725; fax: +86 20 62782725.
| | - Bingkun Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Corresponding authors. Tel.: +86 20 62782725; fax: +86 20 62782725.
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Corresponding authors. Tel.: +86 20 62782725; fax: +86 20 62782725.
| |
Collapse
|
5
|
Khan M, Hou S, Azam S, Lei H. Sequence-dependent recruitment of SRSF1 and SRSF7 to intronless lncRNA NKILA promotes nuclear export via the TREX/TAP pathway. Nucleic Acids Res 2021; 49:6420-6436. [PMID: 34096602 PMCID: PMC8216466 DOI: 10.1093/nar/gkab445] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
The TREX-TAP pathway is vital for mRNA export. For spliced mRNA, the TREX complex is recruited during splicing; however, for intronless mRNA, recruitment is sequence dependent. However, the export of cytoplasmic long noncoding RNA (lncRNA) is poorly characterized. We report the identification of a cytoplasmic accumulation region (CAR-N) in the intronless lncRNA, NKILA. CAR-N removal led to strong nuclear retention of NKILA, and CAR-N insertion promoted the export of cDNA transcripts. In vitro RNP purification via CAR-N, mass spectrometry, and siRNA screening revealed that SRSF1 and SRSF7 were vital to NKILA export, and identified a cluster of SRSF1/7 binding sites within a 55 nucleotide sequence in CAR-N. Significant nuclear enrichment of NKILA was observed for NKILA lacking CAR-N or the cluster of binding sites in knock-in models. Depletion of TREX-TAP pathway components resulted in strong nuclear retention of NKILA. RNA and protein immunoprecipitation verified that SRSF1/7 were bound to NKILA and interacted with UAP56 and ALYREF. Moreover, NKILA lacking CAR-N was unable to inhibit breast cancer cell migration. We concluded that the binding of SRSF1/7 to clustered motifs in CAR-N facilitated TREX recruitment, promoting the export of NKILA, and confirmed the importance of NKILA localization to its function.
Collapse
Affiliation(s)
- Misbah Khan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian 1160343, P.R. China
| | - Sikandar Azam
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, USA
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China
| |
Collapse
|
6
|
Gene Architecture and Sequence Composition Underpin Selective Dependency of Nuclear Export of Long RNAs on NXF1 and the TREX Complex. Mol Cell 2020; 79:251-267.e6. [PMID: 32504555 DOI: 10.1016/j.molcel.2020.05.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/23/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
The core components of the nuclear RNA export pathway are thought to be required for export of virtually all polyadenylated RNAs. Here, we depleted different proteins that act in nuclear export in human cells and quantified the transcriptome-wide consequences on RNA localization. Different genes exhibited substantially variable sensitivities, with depletion of NXF1 and TREX components causing some transcripts to become strongly retained in the nucleus while others were not affected. Specifically, NXF1 is preferentially required for export of single- or few-exon transcripts with long exons or high A/U content, whereas depletion of TREX complex components preferentially affects spliced and G/C-rich transcripts. Using massively parallel reporter assays, we identified short sequence elements that render transcripts dependent on NXF1 for their export and identified synergistic effects of splicing and NXF1. These results revise the current model of how nuclear export shapes the distribution of RNA within human cells.
Collapse
|
7
|
Xu L, Shen J, Jia J, Jia R. Inclusion of hnRNP L Alternative Exon 7 Is Associated with Good Prognosis and Inhibited by Oncogene SRSF3 in Head and Neck Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9612425. [PMID: 31828152 PMCID: PMC6885243 DOI: 10.1155/2019/9612425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/22/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVES Alternative splicing is increasingly associated with cancers. HnRNP L is a splicing factor that promotes carcinogenesis in head and neck squamous cell carcinoma (HNSCC) and other cancers. Alternative exon 7 of hnRNP L contains an in-frame stop codon. Exon 7-included transcripts can be degraded via nonsense-mediated decay or encode a truncated hnRNP L protein. Exon 7-excluded transcripts can encode full-length functional hnRNP L protein. HnRNP L has an autoregulation mechanism by promoting the inclusion of its own exon 7. This study aimed to understand the relationship between the alternative splicing of exon 7 and HNSCC. Oncogenic splicing factor SRSF3 has an alternative exon 4 and similar autoregulation mechanism. HnRNP L promotes SRSF3 exon 4 inclusion and then inhibits SRSF3 autoregulation. MATERIALS AND METHODS The relationship between alternative splicing of hnRNP L exon 7 and clinical characteristics of HNSCC in a TCGA dataset was analyzed and confirmed by RT-PCR in a cohort of 61 oral squamous cell carcinoma (OSCC) patients. The regulators of exon 7 splicing were screened in 29 splicing factors and confirmed by overexpression or silencing assay in HEK 293, CAL 27, and SCC-9 cell lines. RESULTS The inclusion of hnRNP L exon 7 was significantly negatively associated with the progression and prognosis of HNSCC, which was confirmed in the cohort of 61 OSCC patients. SRSF3 inhibited exon 7 inclusion and hnRNP L autoregulation and then promoted the expression of full-length functional hnRNP L protein. SRSF3 exon 4 inclusion was correlated with hnRNP L exon 7 inclusion in both HNSCC and breast cancer. HNSCC patients with both low hnRNP L exon 7 and SRSF3 exon 4 inclusion show poor overall survival. CONCLUSIONS Inclusion of hnRNP L alternative exon 7 is associated with good prognosis and inhibited by oncogene SRSF3 in HNSCC.
Collapse
Affiliation(s)
- Lingfeng Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiaoxiang Shen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, Xiamen Stomatology Hospital, Hospital and School of Stomatology, Xiamen Medical University, Xiamen, China
| | - Jun Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Kawasaki Y, Miyamoto M, Oda T, Matsumura K, Negishi L, Nakato R, Suda S, Yokota N, Shirahige K, Akiyama T. The novel lncRNA CALIC upregulates AXL to promote colon cancer metastasis. EMBO Rep 2019; 20:e47052. [PMID: 31353791 PMCID: PMC6680119 DOI: 10.15252/embr.201847052] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are aberrantly expressed in many disease conditions, including cancer. Accumulating evidence indicates that some lncRNAs may play critical roles in cancer progression and metastasis. Here, we identify a set of lncRNAs that are upregulated in metastatic subpopulations isolated from colon cancer HCT116 cells in vivo and show that one of these lncRNAs, which we name CALIC, is required for the metastatic activity of colon cancer cells. We show that CALIC associates with the RNA-binding protein hnRNP-L and imparts specificity to hnRNP-L-mediated gene expression. Furthermore, we demonstrate that the CALIC/hnRNP-L complex upregulates the tyrosine kinase receptor AXL and that knockdown of CALIC or AXL using shRNA in colon cancer cells attenuates their ability to form metastases in mice. These results suggest that the CALIC/hnRNP-L complex enhances the metastatic potential of colon cancer cells.
Collapse
Affiliation(s)
- Yoshihiro Kawasaki
- Laboratory of Molecular and Genetic InformationInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐kuTokyoJapan
| | - Masaya Miyamoto
- Laboratory of Molecular and Genetic InformationInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐kuTokyoJapan
| | - Takeaki Oda
- Laboratory of Molecular and Genetic InformationInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐kuTokyoJapan
| | - Kosuke Matsumura
- Laboratory of Molecular and Genetic InformationInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐kuTokyoJapan
| | - Lumi Negishi
- Laboratory of Molecular and Genetic InformationInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐kuTokyoJapan
| | - Ryuichiro Nakato
- Laboratory of Genome Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐kuTokyoJapan
| | - Sakiko Suda
- Laboratory of Molecular and Genetic InformationInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐kuTokyoJapan
| | - Naoko Yokota
- Laboratory of Genome Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐kuTokyoJapan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐kuTokyoJapan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic InformationInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐kuTokyoJapan
| |
Collapse
|
9
|
Suess B, Kemmerer K, Weigand JE. Splicing and Alternative Splicing Impact on Gene Design. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Beatrix Suess
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Katrin Kemmerer
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Julia E. Weigand
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| |
Collapse
|
10
|
HnRNP-L promotes prostate cancer progression by enhancing cell cycling and inhibiting apoptosis. Oncotarget 2017; 8:19342-19353. [PMID: 28038443 PMCID: PMC5386688 DOI: 10.18632/oncotarget.14258] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/01/2016] [Indexed: 01/23/2023] Open
Abstract
Expression of the RNA-binding protein HnRNP-L was previously shown to associate with tumorigenesis in liver and lung cancer. In this study, we examined the role of HnRNP-L in prostate cancer (Pca). We found that HnRNP-L is overexpressed in prostate tissue samples from 160 PC patients compared with tissue samples from 32 donors with cancers other than Pca. Moreover, HnRNP-L positively correlated with aggressive tumor characteristics. HnRNP-L knockdown inhibited cell proliferation and promoted cell apoptosis of Pca cell lines in vitro, and suppressed tumor growth when the cells were subcutaneously implanted in an athymic mouse model. Conversely, overexpression of HnRNP-L promoted cell proliferation and tumor growth while prohibiting cell apoptosis. HnRNP-L promoted cell proliferation and tumor growth in Pca in part by interacting with endogenous p53 mRNA, which was closely associated with cyclin p21. In addition, HnRNP-L affected cell apoptosis by directly binding the classical apoptosis protein BCL-2. These observations suggest HnRNP-L is an important regulatory factor that exerts pro-proliferation and anti-apoptosis effects in Pca through actions affecting the cell cycle and intrinsic apoptotic signaling. Thus HnRNP-L could potentially serve as a valuable molecular biomarker or therapeutic target in the treatment of Pca.
Collapse
|
11
|
Lv D, Wu H, Xing R, Shu F, Lei B, Lei C, Zhou X, Wan B, Yang Y, Zhong L, Mao X, Zou Y. HnRNP-L mediates bladder cancer progression by inhibiting apoptotic signaling and enhancing MAPK signaling pathways. Oncotarget 2017; 8:13586-13599. [PMID: 28088793 PMCID: PMC5355122 DOI: 10.18632/oncotarget.14600] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/03/2017] [Indexed: 12/28/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein L (hnRNP-L) is a promoter of various kinds of cancers, but its actions in bladder cancer (BC) are unclear. In this study, we investigated the function and the underlying mechanism of hnRNP-L in bladder carcinogenesis. Our results demonstrated that enhanced hnRNP-L expression in BC tissues was associated with poor overall survival of BC patients. Depletion of hnRNP-L significantly suppressed cell proliferation in vitro and inhibited xenograft tumor growth in vivo. Furthermore, downregulation of hnRNP-L resulted in G1-phase cell cycle arrest and enhanced apoptosis accompanied by inhibition of EMT and cell migration. All these cellular changes were reversed by ectopic expression of hnRNP-L. Deletion of hnRNP-L resulted in decreased expression of Bcl-2, enhanced expression of caspases-3, -6 and -9 and inhibition of the MAPK signaling pathway. These findings demonstrate that hnRNP-L contributes to poor prognosis and tumor progression of BC by inhibiting the intrinsic apoptotic signaling and enhancing MAPK signaling pathways.
Collapse
Affiliation(s)
- Daojun Lv
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Huayan Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Rongwei Xing
- Department of Urology, Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai 264200, P. R. China
| | - Fangpeng Shu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Bin Lei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Chengyong Lei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xumin Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Bo Wan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yu Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong Province, 518036, China
| | - Liren Zhong
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xiangming Mao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China.,Department of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong Province, 518036, China
| | - Yaguang Zou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
12
|
Seo JY, Kim DY, Kim SH, Kim HJ, Ryu HG, Lee J, Lee KH, Kim KT. Heterogeneous nuclear ribonucleoprotein (hnRNP) L promotes DNA damage-induced cell apoptosis by enhancing the translation of p53. Oncotarget 2017; 8:51108-51122. [PMID: 28881634 PMCID: PMC5584235 DOI: 10.18632/oncotarget.17003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
The tumor suppressor p53 is an essential gene in the induction of cell cycle arrest, DNA repair, and apoptosis. p53 protein is induced under cellular stress, blocking cell cycle progression and inducing DNA repair. Under DNA damage conditions, it has been reported that post-transcriptional regulation of p53 mRNA contributes to the increase in p53 protein level. Here we demonstrate that heterogeneous nuclear ribonucleoprotein (hnRNP) L enhances p53 mRNA translation. We found that hnRNP L is increased and binds to the 5'UTR of p53 mRNA in response to DNA damage. Increased hnRNP L caused enhancement of p53 mRNA translation. Conversely, p53 protein levels were decreased following hnRNP L knock-down, rendering them resistant to apoptosis and arrest in the G2/M phase after DNA damage. Thus, our findings suggest that hnRNP L functions as a positive regulator of p53 translation and promotes cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Ji-Young Seo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Do-Yeon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.,Department of Pharmacology, School of Dentistry, Kyungpook National University (KNU), Daegu, Gyeongbuk, Republic of Korea
| | - Seong-Hoon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Hyo-Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Juhyun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Kyung-Ha Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.,Division of Bio-technology and Convergence, Daegu Haany University (DHU), Gyeongsan-si, Gyeongbuk, Republic of Korea
| | - Kyong-Tai Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.,Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| |
Collapse
|
13
|
Loh TJ, Choi N, Moon H, Jang HN, Liu Y, Zhou J, Zheng X, Shen H. Suppression of 5' splice-sites through multiple exonic motifs by hnRNP L. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:363-373. [PMID: 28119102 DOI: 10.1016/j.bbagrm.2017.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
Selection of 5' splice-sites (5'SS) in alternative splicing plays an important role in gene regulation. Although regulatory mechanisms of heterogeneous nuclear ribonucleoprotein L (hnRNP L), a well-known splicing regulatory protein, have been studied in a substantial level, its role in 5'SS selection is not thoroughly defined. By using a KLF6 pre-mRNA alternative splicing model, we demonstrate in this report that hnRNP L inhibits proximal 5'SS but promotes two consecutive distal 5'SS splicing, antagonizing SRSF1 roles in KLF6 pre-mRNA splicing. In addition, three consecutive CA-rich sequences in a CA cassette immediately upstream of the proximal 5'SS are all required for hnRNP L functions. Importantly, the CA-cassette locations on the proximal exon do not affect hnRNP L roles. We further show that the proximal 5'SS but not the two distal 5'SSs are essential for hnRNP L activities. Notably, in a Bcl-x pre-mRNA model that contains two alternative 5'SS but includes CA-rich elements at distal exon, we demonstrate that hnRNP L also suppresses nearby 5'SS activation. Taken together, we conclude that hnRNP L suppresses 5'SS selection through multiple exonic motifs.
Collapse
Affiliation(s)
- Tiing Jen Loh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Namjeong Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Heegyum Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Ha Na Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Yongchao Liu
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Jianhua Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xuexiu Zheng
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea.
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
14
|
HnRNP L is important for the expression of oncogene SRSF3 and oncogenic potential of oral squamous cell carcinoma cells. Sci Rep 2016; 6:35976. [PMID: 27808105 PMCID: PMC5093901 DOI: 10.1038/srep35976] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/07/2016] [Indexed: 01/02/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the leading cause of death related to oral diseases. The mechanisms of OSCC development remain largely unknown. Heterogeneous nuclear ribonucleoprotein L (HnRNP L) is a multi-functional splicing factor. It has been reported to be an important regulator of apoptosis. However, the functions of hnRNP L in cancer need to be further explored. In the present study, we found that OSCC tissues expressed significantly higher levels of hnRNP L than normal tissues. Depletion of hnRNP L retarded cell growth, cell migration, and tumorigenesis of OSCC cells. HnRNP L regulates both the expression of oncogenic splicing factor SRSF3 and the alternative splicing of SRSF3 exon 4. Expression of hnRNP L is correlated with SRSF3 expression in OSCC tissues. These findings suggest that hnRNP L is important for the pathogenesis of OSCC and may be a novel potential therapeutic target of OSCC.
Collapse
|
15
|
Kulikova T, Chervyakova D, Zlotina A, Krasikova A, Gaginskaya E. Giant poly(A)-rich RNP aggregates form at terminal regions of avian lampbrush chromosomes. Chromosoma 2015; 125:709-24. [DOI: 10.1007/s00412-015-0563-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/12/2015] [Accepted: 11/24/2015] [Indexed: 01/30/2023]
|
16
|
Blatter M, Dunin-Horkawicz S, Grishina I, Maris C, Thore S, Maier T, Bindereif A, Bujnicki JM, Allain FHT. The Signature of the Five-Stranded vRRM Fold Defined by Functional, Structural and Computational Analysis of the hnRNP L Protein. J Mol Biol 2015; 427:3001-22. [PMID: 26051023 DOI: 10.1016/j.jmb.2015.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 12/23/2022]
Abstract
The RNA recognition motif (RRM) is the far most abundant RNA binding domain. In addition to the typical β1α1β2β3α2β4 fold, various sub-structural elements have been described and reportedly contribute to the high functional versatility of RRMs. The heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a highly abundant protein of 64 kDa comprising four RRM domains. Involved in many aspects of RNA metabolism, hnRNP L specifically binds to RNAs containing CA repeats or CA-rich clusters. However, a comprehensive structural description of hnRNP L including its sub-structural elements is missing. Here, we present the structural characterization of the RRM domains of hnRNP L and demonstrate their function in repressing exon 4 of SLC2A2. By comparison of the sub-structural elements between the two highly similar paralog families of hnRNP L and PTB, we defined signatures underlying interacting C-terminal coils (ICCs), the RRM34 domain interaction and RRMs with a C-terminal fifth β-strand, a variation we denoted vRRMs. Furthermore, computational analysis revealed new putative ICC-containing RRM families and allowed us to propose an evolutionary scenario explaining the origins of the ICC and fifth β-strand sub-structural extensions. Our studies provide insights of domain requirements in alternative splicing mediated by hnRNP L and molecular descriptions for the sub-structural elements. In addition, the analysis presented may help to classify other abundant RRM extensions and to predict structure-function relationships.
Collapse
Affiliation(s)
- Markus Blatter
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Inna Grishina
- Institute of Biochemistry, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Christophe Maris
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Stephane Thore
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Timm Maier
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Albrecht Bindereif
- Institute of Biochemistry, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Janusz M Bujnicki
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
17
|
Loh TJ, Cho S, Moon H, Jang HN, Williams DR, Jung DW, Kim IC, Ghigna C, Biamonti G, Zheng X, Shen H. hnRNP L inhibits CD44 V10 exon splicing through interacting with its upstream intron. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:743-50. [DOI: 10.1016/j.bbagrm.2015.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/27/2022]
|
18
|
Lenarcic EM, Ziehr BJ, Moorman NJ. An unbiased proteomics approach to identify human cytomegalovirus RNA-associated proteins. Virology 2015; 481:13-23. [PMID: 25765003 DOI: 10.1016/j.virol.2015.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/18/2014] [Accepted: 02/06/2015] [Indexed: 12/13/2022]
Abstract
Post-transcriptional events regulate herpesvirus gene expression, yet few herpesvirus RNA-binding proteins have been identified. We used an unbiased approach coupling oligo(dT) affinity capture with proteomics to identify viral RNA-associated proteins during infection. Using this approach, we identified and confirmed changes in the abundance or activity of two host RNA-associated proteins, DHX9 and DDX3, in cells infected with human cytomegalovirus (HCMV). We also identified and confirmed previously unreported activities for the HCMV US22 and pp71 proteins as RNA-associated viral proteins and confirmed that a known viral RNA-binding protein, pTRS1, associates with RNA in infected cells. Further, we found that HCMV pp71 co-sedimented with polysomes, associated with host and viral RNAs, and stimulated the overall rate of protein synthesis. These results demonstrate that oligo(dT) affinity capture coupled with proteomics provides a rapid and straightforward means to identify RNA-associated viral proteins during infection that may participate in the post-transcriptional control of gene expression.
Collapse
Affiliation(s)
- Erik M Lenarcic
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Benjamin J Ziehr
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Nathaniel J Moorman
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
19
|
HnRNP C, YB-1 and hnRNP L coordinately enhance skipping of human MUSK exon 10 to generate a Wnt-insensitive MuSK isoform. Sci Rep 2014; 4:6841. [PMID: 25354590 PMCID: PMC4213890 DOI: 10.1038/srep06841] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/13/2014] [Indexed: 12/11/2022] Open
Abstract
Muscle specific receptor tyrosine kinase (MuSK) is an essential postsynaptic transmembrane molecule that mediates clustering of acetylcholine receptors (AChR). MUSK exon 10 is alternatively skipped in human, but not in mouse. Skipping of this exon disrupts a cysteine-rich region (Fz-CRD), which is essential for Wnt-mediated AChR clustering. To investigate the underlying mechanisms of alternative splicing, we exploited block-scanning mutagenesis with human minigene and identified a 20-nucleotide block that contained exonic splicing silencers. Using RNA-affinity purification, mass spectrometry, and Western blotting, we identified that hnRNP C, YB-1 and hnRNP L are bound to MUSK exon 10. siRNA-mediated knockdown and cDNA overexpression confirmed the additive, as well as the independent, splicing suppressing effects of hnRNP C, YB-1 and hnRNP L. Antibody-mediated in vitro protein depletion and scanning mutagenesis additionally revealed that binding of hnRNP C to RNA subsequently promotes binding of YB-1 and hnRNP L to the immediate downstream sites and enhances exon skipping. Simultaneous tethering of two splicing trans-factors to the target confirmed the cooperative effect of YB-1 and hnRNP L on hnRNP C-mediated exon skipping. Search for a similar motif in the human genome revealed nine alternative exons that were individually or coordinately regulated by hnRNP C and YB-1.
Collapse
|
20
|
Chi B, Wang K, Du Y, Gui B, Chang X, Wang L, Fan J, Chen S, Wu X, Li G, Cheng H. A Sub-Element in PRE enhances nuclear export of intronless mRNAs by recruiting the TREX complex via ZC3H18. Nucleic Acids Res 2014; 42:7305-18. [PMID: 24782531 PMCID: PMC4066777 DOI: 10.1093/nar/gku350] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Viral RNA elements that facilitate mRNA export are useful tools for identifying cellular RNA export factors. Here we show that hepatitis B virus post-transcriptional element (PRE) is one such element, and using PRE several new cellular mRNA export factors were identified. We found that PRE drastically enhances the cytoplasmic accumulation of cDNA transcripts independent of any viral protein. Systematic deletion analysis revealed the existence of a 116 nt functional Sub-Element of PRE (SEP1). The RNP that forms on the SEP1 RNA was affinity purified, in which TREX components as well as several other proteins were identified. TREX components and the SEP1-associating protein ZC3H18 are required for SEP1-mediated mRNA export. Significantly, ZC3H18 directly binds to the SEP1 RNA, interacts with TREX and is required for stable association of TREX with the SEP1-containing mRNA. Requirements for SEP1-mediated mRNA export are similar to those for splicing-dependent mRNA export. Consistent with these similarities, several SEP1-interacting proteins, including ZC3H18, ARS2, Acinus and Brr2, are required for efficient nuclear export of polyA RNAs. Together, our data indicate that SEP1 enhances mRNA export by recruiting TREX via ZC3H18. The new mRNA export factors that we identified might be involved in cap- and splicing-dependent TREX recruitment to cellular mRNAs.
Collapse
Affiliation(s)
- Binkai Chi
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanhua Du
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Gui
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xingya Chang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lantian Wang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Fan
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - She Chen
- National Institute of Biological Sciences, 7 Science Park Road, Zhong Guan Cun Life Science Park, Beijing 102206, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong Cheng
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
21
|
Rossbach O, Hung LH, Khrameeva E, Schreiner S, König J, Curk T, Zupan B, Ule J, Gelfand MS, Bindereif A. Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L. RNA Biol 2014; 11:146-55. [PMID: 24526010 DOI: 10.4161/rna.27991] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a multifunctional RNA-binding protein that is involved in many different processes, such as regulation of transcription, translation, and RNA stability. We have previously characterized hnRNP L as a global regulator of alternative splicing, binding to CA-repeat, and CA-rich RNA elements. Interestingly, hnRNP L can both activate and repress splicing of alternative exons, but the precise mechanism of hnRNP L-mediated splicing regulation remained unclear. To analyze activities of hnRNP L on a genome-wide level, we performed individual-nucleotide resolution crosslinking-immunoprecipitation in combination with deep-sequencing (iCLIP-Seq). Sequence analysis of the iCLIP crosslink sites showed significant enrichment of C/A motifs, which perfectly agrees with the in vitro binding consensus obtained earlier by a SELEX approach, indicating that in vivo hnRNP L binding targets are mainly determined by the RNA-binding activity of the protein. Genome-wide mapping of hnRNP L binding revealed that the protein preferably binds to introns and 3' UTR. Additionally, position-dependent splicing regulation by hnRNP L was demonstrated: The protein represses splicing when bound to intronic regions upstream of alternative exons, and in contrast, activates splicing when bound to the downstream intron. These findings shed light on the longstanding question of differential hnRNP L-mediated splicing regulation. Finally, regarding 3' UTR binding, hnRNP L binding preferentially overlaps with predicted microRNA target sites, indicating global competition between hnRNP L and microRNA binding. Translational regulation by hnRNP L was validated for a subset of predicted target 3'UTRs.
Collapse
Affiliation(s)
- Oliver Rossbach
- Institute of Biochemistry; University of Giessen; Giessen, Germany
| | - Lee-Hsueh Hung
- Institute of Biochemistry; University of Giessen; Giessen, Germany
| | - Ekaterina Khrameeva
- Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow, Russia; Department of Bioengineering and Bioinformatics; Lomonosov Moscow State University; Moscow, Russia
| | - Silke Schreiner
- Institute of Biochemistry; University of Giessen; Giessen, Germany
| | - Julian König
- Institute of Molecular Biology (IMB); Mainz, Germany; Institute of Neurology; University College London; London, United Kingdom
| | - Tomaž Curk
- Faculty of Computer and Information Science; University of Ljubljana; Ljubljana, Slovenia
| | - Blaž Zupan
- Faculty of Computer and Information Science; University of Ljubljana; Ljubljana, Slovenia
| | - Jernej Ule
- Institute of Neurology; University College London; London, United Kingdom
| | - Mikhail S Gelfand
- Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow, Russia; Department of Bioengineering and Bioinformatics; Lomonosov Moscow State University; Moscow, Russia
| | | |
Collapse
|
22
|
Vogel R, Seyffert M, Pereira BDA, Fraefel C. Viral and Cellular Components of AAV2 Replication Compartments. Open Virol J 2013; 7:98-120. [PMID: 24222808 PMCID: PMC3822785 DOI: 10.2174/1874357901307010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 02/07/2023] Open
Abstract
Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in AAV2 and helpervirus infection.
Collapse
Affiliation(s)
| | | | | | - Cornel Fraefel
- Institute of Virology, University of Zurich, Winterthurerstr. 266a, CH-8057 Zurich, Switzerland
| |
Collapse
|
23
|
Rahman MA, Masuda A, Ohe K, Ito M, Hutchinson DO, Mayeda A, Engel AG, Ohno K. HnRNP L and hnRNP LL antagonistically modulate PTB-mediated splicing suppression of CHRNA1 pre-mRNA. Sci Rep 2013; 3:2931. [PMID: 24121633 PMCID: PMC3796306 DOI: 10.1038/srep02931] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/25/2013] [Indexed: 12/20/2022] Open
Abstract
CHRNA1 gene, encoding the muscle nicotinic acetylcholine receptor alpha subunit, harbors an inframe exon P3A. Inclusion of exon P3A disables assembly of the acetylcholine receptor subunits. A single nucleotide mutation in exon P3A identified in congenital myasthenic syndrome causes exclusive inclusion of exon P3A. The mutation gains a de novo binding affinity for a splicing enhancing RNA-binding protein, hnRNP LL, and displaces binding of a splicing suppressing RNA-binding protein, hnRNP L. The hnRNP L binds to another splicing repressor PTB through the proline-rich region and promotes PTB binding to the polypyrimidine tract upstream of exon P3A, whereas hnRNP LL lacking the proline-rich region cannot bind to PTB. Interaction of hnRNP L with PTB inhibits association of U2AF(65) and U1 snRNP with the upstream and downstream of P3A, respectively, which causes a defect in exon P3A definition. HnRNP L and hnRNP LL thus antagonistically modulate PTB-mediated splicing suppression of exon P3A.
Collapse
Affiliation(s)
- Mohammad Alinoor Rahman
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yau WY, Shih HC, Tsai MH, Sheu JC, Chen CH, Chow LP. Autoantibody recognition of an N-terminal epitope of hnRNP L marks the risk for developing HBV-related hepatocellular carcinoma. J Proteomics 2013; 94:346-58. [PMID: 24125732 DOI: 10.1016/j.jprot.2013.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/06/2013] [Accepted: 10/04/2013] [Indexed: 02/07/2023]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is associated with a poor prognosis and remains one of the leading causes of cancer death worldwide. Tumor-associated antigens (TAAs) and autoantibodies have been reported as potential markers in different cancers. Here, we employed an immunoproteomic approach to identify TAAs in the sera of patients with hepatitis B virus-related HCC (HBV-HCC). Immunoreactive spots were excised from 2-DE and analyzed by nano-LC-MS/MS. This analysis identified 16 HCC-associated antigens, including hnRNP L. The antigenicity of hnRNP L was further validated by immunoblotting using recombinant proteins. Autoantibodies against hnRNP L were found in 60% patients with HBV-HCC. Using sera from hnRNP L-positive patients, we found that most of these antibodies recognized glycine-rich region in the N-terminus of hnRNP L. In addition, high titers of autoantibodies against hnRNP L were found in HBV-HCC patients' sera and were associated with increased tumor size and reduced survival rate. hnRNP L protein was also found highly expressed in HCC tissue. Knockdown of hnRNP L significantly suppressed cell growth, migration, and invasion in vitro. Our results indicate that an N-terminal epitope of hnRNP L is a potential biomarker for the diagnosis of HBV-HCC and show that hnRNP L contributes to HCC progression. BIOLOGICAL SIGNIFICANCE In this paper, we employed an immunoproteomic approach to identify TAAs in the sera of patients with hepatitis B virus-related HCC (HBV-HCC). We identified hnRNP L as a tumor-associated antigen in HBV-relative HCC patients. Glycine-rich region located at the N-terminus of hnRNP L constitutes the major epitope. We also demonstrated that hnRNP L is involved in cell proliferation and metastasis.
Collapse
Affiliation(s)
- Wen-Yea Yau
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
25
|
Yao P, Potdar AA, Ray PS, Eswarappa SM, Flagg AC, Willard B, Fox PL. The HILDA complex coordinates a conditional switch in the 3'-untranslated region of the VEGFA mRNA. PLoS Biol 2013; 11:e1001635. [PMID: 23976881 PMCID: PMC3747992 DOI: 10.1371/journal.pbio.1001635] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
Cell regulatory circuits integrate diverse, and sometimes conflicting, environmental cues to generate appropriate, condition-dependent responses. Here, we elucidate the components and mechanisms driving a protein-directed RNA switch in the 3'UTR of vascular endothelial growth factor (VEGF)-A. We describe a novel HILDA (hypoxia-inducible hnRNP L-DRBP76-hnRNP A2/B1) complex that coordinates a three-element RNA switch, enabling VEGFA mRNA translation during combined hypoxia and inflammation. In addition to binding the CA-rich element (CARE), heterogeneous nuclear ribonucleoprotein (hnRNP) L regulates switch assembly and function. hnRNP L undergoes two previously unrecognized, condition-dependent posttranslational modifications: IFN-γ induces prolyl hydroxylation and von Hippel-Lindau (VHL)-mediated proteasomal degradation, whereas hypoxia stimulates hnRNP L phosphorylation at Tyr(359), inducing binding to hnRNP A2/B1, which stabilizes the protein. Also, phospho-hnRNP L recruits DRBP76 (double-stranded RNA binding protein 76) to the 3'UTR, where it binds an adjacent AU-rich stem-loop (AUSL) element, "flipping" the RNA switch by disrupting the GAIT (interferon-gamma-activated inhibitor of translation) element, preventing GAIT complex binding, and driving robust VEGFA mRNA translation. The signal-dependent, HILDA complex coordinates the function of a trio of neighboring RNA elements, thereby regulating translation of VEGFA and potentially other mRNA targets. The VEGFA RNA switch might function to ensure appropriate angiogenesis and tissue oxygenation during conflicting signals from combined inflammation and hypoxia. We propose the VEGFA RNA switch as an archetype for signal-activated, protein-directed, multi-element RNA switches that regulate posttranscriptional gene expression in complex environments.
Collapse
Affiliation(s)
- Peng Yao
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Alka A. Potdar
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Partho Sarothi Ray
- Department of Biology, Indian Institute of Science Education and Research, Kolkata, India
| | - Sandeepa M. Eswarappa
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Andrew C. Flagg
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Belinda Willard
- Mass Spectrometry Laboratory for Protein Sequencing, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Paul L. Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
26
|
Zhang W, Zeng F, Liu Y, Zhao Y, Lv H, Niu L, Teng M, Li X. Crystal structures and RNA-binding properties of the RNA recognition motifs of heterogeneous nuclear ribonucleoprotein L: insights into its roles in alternative splicing regulation. J Biol Chem 2013; 288:22636-49. [PMID: 23782695 DOI: 10.1074/jbc.m113.463901] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein L (hnRNP L) is an abundant RNA-binding protein implicated in many bioprocesses, including pre-mRNA processing, mRNA export of intronless genes, internal ribosomal entry site-mediated translation, and chromatin modification. It contains four RNA recognition motifs (RRMs) that bind with CA repeats or CA-rich elements. In this study, surface plasmon resonance spectroscopy assays revealed that all four RRM domains contribute to RNA binding. Furthermore, we elucidated the crystal structures of hnRNP L RRM1 and RRM34 at 2.0 and 1.8 Å, respectively. These RRMs all adopt the typical β1α1β2β3α2β4 topology, except for an unusual fifth β-strand in RRM3. RRM3 and RRM4 interact intimately with each other mainly through helical surfaces, leading the two β-sheets to face opposite directions. Structure-based mutations and surface plasmon resonance assay results suggested that the β-sheets of RRM1 and RRM34 are accessible for RNA binding. FRET-based gel shift assays (FRET-EMSA) and steady-state FRET assays, together with cross-linking and dynamic light scattering assays, demonstrated that hnRNP L RRM34 facilitates RNA looping when binding to two appropriately separated binding sites within the same target pre-mRNA. EMSA and isothermal titration calorimetry binding studies with in vivo target RNA suggested that hnRNP L-mediated RNA looping may occur in vivo. Our study provides a mechanistic explanation for the dual functions of hnRNP L in alternative splicing regulation as an activator or repressor.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Thiouracil cross-linking mass spectrometry: a cell-based method to identify host factors involved in viral amplification. J Virol 2013; 87:8697-712. [PMID: 23740976 DOI: 10.1128/jvi.00950-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic RNA viruses are known to utilize host factors; however, the identity of these factors and their role in the virus life cycle remain largely undefined. Here, we report a method to identify proteins bound to the viral RNA during amplification in cell culture: thiouracil cross-linking mass spectrometry (TUX-MS). TUX-MS relies on incorporation of a zero-distance cross-linker into the viral RNA during infection. Proteins bound to viral RNA are cross-linked prior to cell lysis, purified, and identified using mass spectrometry. Using the TUX-MS method, an unbiased screen for poliovirus (PV) host factors was conducted. All host and viral proteins that are known to interact with the poliovirus RNA were identified. In addition, TUX-MS identified an additional 66 host proteins that have not been previously described in poliovirus amplification. From these candidates, eight were selected and validated. Furthermore, we demonstrate that small interfering RNA (siRNA)-mediated knockdown of two of these uncharacterized host factors results in either a decrease in copy number of positive-stranded RNA or a decrease in PV translation. These data demonstrate that TUX-MS is a robust, unbiased method to identify previously unknown host cell factors that influence virus growth. This method is broadly applicable to a range of RNA viruses, such as flaviviruses, alphaviruses, picornaviruses, bunyaviruses, and coronaviruses.
Collapse
|
28
|
Lei H, Zhai B, Yin S, Gygi S, Reed R. Evidence that a consensus element found in naturally intronless mRNAs promotes mRNA export. Nucleic Acids Res 2012; 41:2517-25. [PMID: 23275560 PMCID: PMC3575797 DOI: 10.1093/nar/gks1314] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We previously showed that mRNAs synthesized from three genes that naturally lack introns contain a portion of their coding sequence, known as a cytoplasmic accumulation region (CAR), which is essential for stable accumulation of the intronless mRNAs in the cytoplasm. The CAR in each mRNA is unexpectedly large, ranging in size from ∼160 to 285 nt. Here, we identified one or more copies of a 10-nt consensus sequence in each CAR. To determine whether this element (designated CAR-E) functions in cytoplasmic accumulation of intronless mRNA, we multimerized the most conserved CAR-E and inserted it upstream of β-globin cDNA, which is normally retained/degraded in the nucleus. Significantly, the tandem CAR-E, but not its antisense counterpart, rescued cytoplasmic accumulation of β-globin cDNA transcripts. Moreover, dinucleotide mutations in the CAR-E abolished this rescue. We show that the CAR-E, but not the mutant CAR-E, associates with components of the TREX mRNA export machinery, the Prp19 complex and U2AF2. Moreover, knockdown of these factors results in nuclear retention of the intronless mRNAs. Together, these data suggest that the CAR-E promotes export of intronless mRNA by sequence-dependent recruitment of the mRNA export machinery.
Collapse
Affiliation(s)
- Haixin Lei
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
29
|
Reinboth J, Ascierto ML, Chen NG, Zhang Q, Yu YA, Aguilar RJ, Carretero R, Worschech A, Zhao Y, Wang E, Marincola FM, Szalay AA. Correlates between host and viral transcriptional program associated with different oncolytic vaccinia virus isolates. Hum Gene Ther Methods 2012; 23:285-96. [PMID: 23131031 DOI: 10.1089/hgtb.2012.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vaccinia virus (VACV) has emerged as an attractive tool in oncolytic virotherapy. VACV replication efficiency plays a crucial role in the therapeutic outcome. However, little is known about the influence of host factors on viral replication efficiency and permissiveness of a host cell line to infection and oncolysis. In this study, replication of the attenuated VACV GLV-1h68 strain and three wild-type VACV isolates was determined in two autologous human melanoma cell lines (888-MEL and 1936-MEL). Host gene expression and viral gene expression in infected cells were evaluated via respective expression array platforms. Microarray analyses followed by sequential statistical approaches characterized human genes that change specifically due to virus infection. Viral gene transcription correlated with viral replication in a time-dependent manner. A set of human genes revealed strong correlations with the respective viral gene expression. Finally we identified a set of human genes with possible predictive value for viral replication in an independent dataset. The results demonstrate a probable correlation between viral replication, early gene expression, and the respective host response, and thus a possible involvement of human host factors in viral early replication. The characterization of human target genes that influence viral replication could help answer the question of host cell permissiveness to oncolytic virotherapy and provide important information for the development of novel recombinant vaccinia viruses with improved features to enhance replication rate and hence trigger therapeutic outcome.
Collapse
Affiliation(s)
- Jennifer Reinboth
- Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Reinboth J, Ascierto ML, Chen NG, Zhang Q, Yu YA, Aguilar RJ, Carretero R, Worschech A, Zhao Y, Wang E, Marincola FM, Szalay AA. Correlates between host and viral transcriptional program associated with different oncolytic vaccinia virus isolates. Hum Gene Ther Methods 2012. [DOI: 10.1089/hum.2012.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Liu G, Razanau A, Hai Y, Yu J, Sohail M, Lobo VG, Chu J, Kung SKP, Xie J. A conserved serine of heterogeneous nuclear ribonucleoprotein L (hnRNP L) mediates depolarization-regulated alternative splicing of potassium channels. J Biol Chem 2012; 287:22709-16. [PMID: 22570490 DOI: 10.1074/jbc.m112.357343] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular mechanisms of gene regulation underlying the activity-dependent long term changes of cellular electrical properties, such as those during memory, are largely unknown. We have shown that alternative splicing can be dynamically regulated in response to membrane depolarization and Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) activation, through special CaM kinase responsive RNA elements. However, proteins that mediate this regulation and how they are affected by CaMKIV are not known. Here we show that the regulation of the stress axis-regulated exon of the Slo1 potassium channel transcripts by membrane depolarization requires a highly conserved CaMKIV target serine (Ser-513) of the heterogeneous ribonucleoprotein L. Ser-513 phosphorylation within the RNA recognition motif 4 enhanced heterogeneous ribonucleoprotein L interaction with the CaMKIV-responsive RNA element 1 of stress axis-regulated exon and inhibited binding of the large subunit of the U2 auxiliary factor U2AF65. Both of these activities were abolished by a S513A mutation. Thus, through Ser-513, membrane depolarization/calcium signaling controls a critical spliceosomal assembly step to regulate the variant subunit composition of potassium channels.
Collapse
Affiliation(s)
- Guodong Liu
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mediator complex regulates alternative mRNA processing via the MED23 subunit. Mol Cell 2012; 45:459-69. [PMID: 22264826 DOI: 10.1016/j.molcel.2011.12.022] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/29/2011] [Accepted: 12/12/2011] [Indexed: 11/22/2022]
Abstract
Mediator complex is an integrative hub for transcriptional regulation. Here we show that Mediator regulates alternative mRNA processing via its MED23 subunit. Combining tandem affinity purification and mass spectrometry, we identified a number of mRNA processing factors that bind to a soluble recombinant Mediator subunit, MED23, but not to several other Mediator components. One of these factors, hnRNP L, specifically interacts with MED23 in vitro and in vivo. Consistently, Mediator partially colocalizes with hnRNP L and the splicing machinery in the cell. Functionally, MED23 regulates a subset of hnRNP L-targeted alternative splicing (AS) and alternative cleavage and polyadenylation (APA) events, as shown by minigene reporters and exon array analysis. ChIP-seq analysis revealed that MED23 can regulate hnRNP L occupancy at their coregulated genes. Taken together, these results demonstrate a crosstalk between Mediator and the splicing machinery, providing a molecular basis for coupling mRNA processing to transcription.
Collapse
|
33
|
Export and stability of naturally intronless mRNAs require specific coding region sequences and the TREX mRNA export complex. Proc Natl Acad Sci U S A 2011; 108:17985-90. [PMID: 22010220 DOI: 10.1073/pnas.1113076108] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A great deal is known about the export of spliced mRNAs, but little is known about the export of mRNAs encoded by human cellular genes that naturally lack introns. Here, we investigated the requirements for export of three naturally intronless mRNAs (HSPB3, IFN-α1, and IFN-β1). Significantly, we found that all three mRNAs are stable and accumulate in the cytoplasm, whereas size-matched random RNAs are unstable and detected only in the nucleus. A portion of the coding region confers this stability and cytoplasmic localization on the naturally intronless mRNAs and a cDNA transcript, which is normally retained in the nucleus and degraded. A polyadenylation signal, TREX mRNA export components, and the mRNA export receptor TAP are required for accumulation of the naturally intronless mRNAs in the cytoplasm. We conclude that naturally intronless mRNAs contain specific sequences that result in efficient packaging into the TREX mRNA export complex, thereby supplanting the splicing requirement for efficient mRNA export.
Collapse
|
34
|
Kapustin Y, Chan E, Sarkar R, Wong F, Vorechovsky I, Winston RM, Tatusova T, Dibb NJ. Cryptic splice sites and split genes. Nucleic Acids Res 2011; 39:5837-44. [PMID: 21470962 PMCID: PMC3152350 DOI: 10.1093/nar/gkr203] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We describe a new program called cryptic splice finder (CSF) that can reliably identify cryptic splice sites (css), so providing a useful tool to help investigate splicing mutations in genetic disease. We report that many css are not entirely dormant and are often already active at low levels in normal genes prior to their enhancement in genetic disease. We also report a fascinating correlation between the positions of css and introns, whereby css within the exons of one species frequently match the exact position of introns in equivalent genes from another species. These results strongly indicate that many introns were inserted into css during evolution and they also imply that the splicing information that lies outside some introns can be independently recognized by the splicing machinery and was in place prior to intron insertion. This indicates that non-intronic splicing information had a key role in shaping the split structure of eukaryote genes.
Collapse
Affiliation(s)
- Yuri Kapustin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The hnRNPs (heterogeneous nuclear ribonucleoproteins) are RNA-binding proteins with important roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts, alternative splicing and translational regulation. Although they share some general characteristics, they vary greatly in terms of their domain composition and functional properties. Although the traditional grouping of the hnRNPs as a collection of proteins provided a practical framework, which has guided much of the research on them, this approach is becoming increasingly incompatible with current knowledge about their structural and functional divergence. Hence, we review the current literature to examine hnRNP diversity, and discuss how this impacts upon approaches to the classification of RNA-binding proteins in general.
Collapse
|
36
|
Identification of rep-associated factors in herpes simplex virus type 1-induced adeno-associated virus type 2 replication compartments. J Virol 2010; 84:8871-87. [PMID: 20573815 DOI: 10.1128/jvi.00725-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) is a human parvovirus that replicates only in cells coinfected with a helper virus, such as adenovirus or herpes simplex virus type 1 (HSV-1). We previously showed that nine HSV-1 factors are able to support AAV rep gene expression and genome replication. To elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis of cellular and HSV-1 factors associated with Rep proteins and thus potentially recruited within AAV replication compartments (AAV RCs). This study resulted in the identification of approximately 60 cellular proteins, among which factors involved in DNA and RNA metabolism represented the largest functional categories. Validation analyses indicated that the cellular DNA replication enzymes RPA, RFC, and PCNA were recruited within HSV-1-induced AAV RCs. Polymerase delta was not identified but subsequently was shown to colocalize with Rep within AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, we found that AAV replication is associated with the recruitment of components of the Mre11/Rad50/Nbs1 complex, Ku70 and -86, and the mismatch repair proteins MSH2, -3, and -6. Finally, several HSV-1 factors were also found to be associated with Rep, including UL12. We demonstrated for the first time that this protein plays a role during AAV replication by enhancing the resolution of AAV replicative forms and AAV particle production. Altogether, these analyses provide the basis to understand how AAV adapts its replication strategy to the nuclear environment induced by the helper virus.
Collapse
|
37
|
Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3' end processing regulation. Nucleic Acids Res 2009; 38:2757-74. [PMID: 20044349 PMCID: PMC2874999 DOI: 10.1093/nar/gkp1176] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA (mRNA) 3′ end formation is a nuclear process through which all eukaryotic primary transcripts are endonucleolytically cleaved and most of them acquire a poly(A) tail. This process, which consists in the recognition of defined poly(A) signals of the pre-mRNAs by a large cleavage/polyadenylation machinery, plays a critical role in gene expression. Indeed, the poly(A) tail of a mature mRNA is essential for its functions, including stability, translocation to the cytoplasm and translation. In addition, this process serves as a bridge in the network connecting the different transcription, capping, splicing and export machineries. It also participates in the quantitative and qualitative regulation of gene expression in a variety of biological processes through the selection of single or alternative poly(A) signals in transcription units. A large number of protein factors associates with this machinery to regulate the efficiency and specificity of this process and to mediate its interaction with other nuclear events. Here, we review the eukaryotic 3′ end processing machineries as well as the comprehensive set of regulatory factors and discuss the different molecular mechanisms of 3′ end processing regulation by proposing several overlapping models of regulation.
Collapse
Affiliation(s)
- Stefania Millevoi
- Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France.
| | | |
Collapse
|
38
|
Ote I, Lebrun M, Vandevenne P, Bontems S, Medina-Palazon C, Manet E, Piette J, Sadzot-Delvaux C. Varicella-zoster virus IE4 protein interacts with SR proteins and exports mRNAs through the TAP/NXF1 pathway. PLoS One 2009; 4:e7882. [PMID: 19924249 PMCID: PMC2775670 DOI: 10.1371/journal.pone.0007882] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/22/2009] [Indexed: 12/28/2022] Open
Abstract
Available data suggest that the Varicella-Zoster virus (VZV) IE4 protein acts as an important regulator on VZV and cellular genes expression and could exert its functions at post-transcriptional level. However, the molecular mechanisms supported by this protein are not yet fully characterized. In the present study, we have attempted to clarify this IE4-mediated gene regulation and identify some cellular partners of IE4. By yeast two-hybrid and immunoprecipitation analysis, we showed that IE4 interacts with three shuttling SR proteins, namely ASF/SF2, 9G8 and SRp20. We positioned the binding domain in the IE4 RbRc region and we showed that these interactions are not bridged by RNA. We demonstrated also that IE4 strongly interacts with the main SR protein kinase, SRPK1, and is phosphorylated in in vitro kinase assay on residue Ser-136 contained in the Rb domain. By Northwestern analysis, we showed that IE4 is able to bind RNA through its arginine-rich region and in immunoprecipitation experiments the presence of RNA stabilizes complexes containing IE4 and the cellular export factors TAP/NXF1 and Aly/REF since the interactions are RNase-sensitive. Finally, we determined that IE4 influences the export of reporter mRNAs and clearly showed, by TAP/NXF1 knockdown, that VZV infection requires the TAP/NXF1 export pathway to express some viral transcripts. We thus highlighted a new example of viral mRNA export factor and proposed a model of IE4-mediated viral mRNAs export.
Collapse
Affiliation(s)
- Isabelle Ote
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | - Marielle Lebrun
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | - Patricia Vandevenne
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | - Sébastien Bontems
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | | | - Evelyne Manet
- Laboratoire de Virologie Humaine, INSERM U758, ENS-Lyon, Lyon, France
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | - Catherine Sadzot-Delvaux
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
- * E-mail:
| |
Collapse
|
39
|
Vavassori S, Covey LR. Post-transcriptional regulation in lymphocytes: the case of CD154. RNA Biol 2009; 6:259-65. [PMID: 19395873 DOI: 10.4161/rna.6.3.8581] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The control of mRNA decay is emerging as an important control point and a major contributor to gene expression in both immune and non-immune cells. The identification of protein factors and cis-acting elements responsible for transcript degradation has illuminated a comprehensive picture of precisely orchestrated events required to both regulate and establish the decay process. One gene that is highly regulated at the post-transcriptional level is CD40 ligand (CD154 or CD40L). CD154 on CD4(+) T cells is tightly controlled by an interacting network of transcriptional and post-transcriptional processes that result in precise surface levels of protein throughout an extended time course of antigen stimulation. The activation-induced stabilization of the CD154 transcript by a polypyrimidine tract-binding protein (PTB)-complex is a key event that corresponds to the temporal expression of CD154. In this review, we discuss known and potential roles of major mRNA decay pathways in lymphocytes and focus on the unique post-transcriptional mechanisms leading to CD154 expression by activated CD4(+) T cells.
Collapse
Affiliation(s)
- Stefano Vavassori
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
40
|
Yuan W, Xie J, Long C, Erdjument-Bromage H, Ding X, Zheng Y, Tempst P, Chen S, Zhu B, Reinberg D. Heterogeneous nuclear ribonucleoprotein L Is a subunit of human KMT3a/Set2 complex required for H3 Lys-36 trimethylation activity in vivo. J Biol Chem 2009; 284:15701-7. [PMID: 19332550 PMCID: PMC2708867 DOI: 10.1074/jbc.m808431200] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The presence of histone H3 lysine 36 methylation (H3K36me) correlates with actively transcribed genes. In yeast, histone H3K36me mediated by KMT3 (also known as Set2) recruits a histone deacetylase complex, Rpd3s, to ensure the fidelity of transcription initiation. We report the purification of human KMT3a (also known as HYPB or hSet2) complex and the identification of a novel, higher eukaryotic specific subunit, heterogeneous nuclear ribonucleoprotein L (HnRNP-L). Interestingly, although KMT3a has intrinsic activity in vitro, HnRNP-L is essential in vivo. Moreover, KMT3a generates mono-, di-, and trimethylated products in vitro, but RNA interference against KMT3a or HnRNP-L down-regulates exclusively the H3K36me3 mark in vivo.
Collapse
Affiliation(s)
- Wen Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee DH, Lim MH, Youn DY, Jung SE, Ahn YS, Tsujimoto Y, Lee JH. hnRNP L binds to CA repeats in the 3'UTR of bcl-2 mRNA. Biochem Biophys Res Commun 2009; 382:583-7. [PMID: 19298794 DOI: 10.1016/j.bbrc.2009.03.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/12/2009] [Indexed: 10/21/2022]
Abstract
We previously reported that the CA-repeat sequence in the 3'-untranslated region (3'UTR) of bcl-2 mRNA is involved in the decay of bcl-2 mRNA. However, the trans-acting factor for the CA element in bcl-2 mRNA remains unidentified. The heterogeneous nuclear ribonucleoprotein L (hnRNP L), an intron splicing factor, has been reported to bind to CA repeats and CA clusters in the 3'UTR of several genes. We reported herein that the CA repeats of bcl-2 mRNA have the potential to form a distinct ribonuclear protein complex in cytoplasmic extracts of MCF-7 cells, as evidenced by RNA electrophoretic mobility shift assays (REMSA). A super-shift assay using the hnRNP L antibody completely shifted the complex. Immunoprecipitation with the hnRNP L antibody and MCF-7 cells followed by RT-PCR revealed that hnRNP L interacts with endogenous bcl-2 mRNA in vivo. Furthermore, the suppression of hnRNP L in MCF-7 cells by the transfection of siRNA for hnRNP L resulted in a delay in the degradation of RNA transcripts including CA repeats of bcl-2 mRNA in vitro, suggesting that the interaction between hnRNPL and CA repeats of bcl-2 mRNA participates in destabilizing bcl-2 mRNA.
Collapse
Affiliation(s)
- Dong-Hyoung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 505 Banpo-Dong, Seocho-gu, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
We recently characterized human hnRNP L as a global regulator of alternative splicing, binding to CA-repeat and CA-rich elements. Here we report that hnRNP L autoregulates its own expression on the level of alternative splicing. Intron 6 of the human hnRNP L gene contains a short exon that, if used, introduces a premature termination codon, resulting in nonsense-mediated decay (NMD). This "poison exon" is preceded by a highly conserved CA-rich cluster extending over 800 nucleotides that binds hnRNP L and functions as an unusually extended, intronic enhancer, promoting inclusion of the poison exon. As a result, excess hnRNP L activates NMD of its own mRNA, thereby creating a negative autoregulatory feedback loop and contributing to homeostasis of hnRNP L levels. We present experimental evidence for this mechanism, based on NMD inactivation, hnRNP L binding assays, and hnRNP L-dependent alternative splicing of heterologous constructs. In addition, we demonstrate that hnRNP L cross-regulates inclusion of an analogous poison exon in the hnRNP L-like pre-mRNA, which explains the reciprocal expression of the two closely related hnRNP L proteins.
Collapse
|
43
|
Herpes simplex virus type 1 thymidine kinase sequence fused to the lacz gene increases levels of {beta}-galactosidase activity per genome of high-capacity but not first-generation adenoviral vectors in vitro and in vivo. J Virol 2008; 83:2004-10. [PMID: 19073729 DOI: 10.1128/jvi.01298-08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Increased transgene expression per vector genome is an important goal in the optimization of viral vectors for gene therapy. Herein we demonstrate that herpes simplex virus type 1 (HSV1) thymidine kinase (TK) gene sequences (1,131 bp) fused to the 3' end of lacZ increase transgene expression from high-capacity adenoviral vectors (HCAd), but not from first-generation (Ad) vectors. The woodchuck hepatitis virus posttranscriptional regulatory element (WPRE), in contrast, increased transgene expression levels from Ad but not HCAd vectors. The differential activity of the HSV1 TK gene and WPRE sequences was detected both in vitro and in vivo and suggests potentially different mechanisms of action or the interaction of these elements with vector genomic sequences.
Collapse
|
44
|
Hwang B, Lim JH, Hahm B, Jang SK, Lee SW. hnRNP L is required for the translation mediated by HCV IRES. Biochem Biophys Res Commun 2008; 378:584-8. [PMID: 19061868 DOI: 10.1016/j.bbrc.2008.11.091] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Accepted: 11/18/2008] [Indexed: 01/04/2023]
Abstract
Translation of hepatitis C virus (HCV) RNA is initiated by internal loading of the ribosome into the HCV internal ribosome entry site (IRES). Previously, heterogeneous ribonucleoprotein L (hnRNP L) was shown to bind specifically to the 3' border region of the HCV IRES and enhance HCV mRNA translation. Here, we provide evidence for the functional requirement of hnRNP L for the HCV IRES-mediated translation initiation using specific RNA aptamers. In vitro selection techniques were employed to isolate RNA aptamers against hnRNP L, which were shown to contain consensus sequences with repetitive ACAC/U. The hnRNP L-specific RNA aptamers efficiently inhibited the in vitro translation reactions mediated by the HCV IRES in rabbit reticulocyte lysates. RNA ligands with only (ACAU)5 or (AC)10 nucleotide sequences could also specifically bind to hnRNP L, and specifically and effectively impeded in vitro translation reactions controlled by the HCV IRES. Importantly, the hnRNP L-specific RNA aptamers inhibited the HCV IRES function in cells in a dose-dependent manner, and the aptamer-mediated inhibition of the HCV IRES was considerably relieved by the addition of hnRNP L-expressing vector. These results strongly demonstrate the functional requirement of cellular hnRNP L for the HCV IRES activity.
Collapse
Affiliation(s)
- Byounghoon Hwang
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, 126, Jukjeon-dong, Suji-gu, Yongin 448-701, Republic of Korea
| | | | | | | | | |
Collapse
|
45
|
Yu J, Hai Y, Liu G, Fang T, Kung SKP, Xie J. The heterogeneous nuclear ribonucleoprotein L is an essential component in the Ca2+/calmodulin-dependent protein kinase IV-regulated alternative splicing through cytidine-adenosine repeats. J Biol Chem 2008; 284:1505-13. [PMID: 19017650 DOI: 10.1074/jbc.m805113200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of gene expression through alternative pre-mRNA splicing is common in metazoans and is often controlled by intracellular signaling pathways that are important in cell physiology. We have shown that the alternative splicing of a number of genes is controlled by membrane depolarization and Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) through CaMKIV-responsive RNA elements (CaRRE1 and CaRRE2); however, the trans-acting factors remain unknown. Here we show that the heterogeneous nuclear ribonucleoprotein (hnRNP) L is a CaRRE1 binding factor in nuclear extracts. An hnRNP L high affinity CA (cytidine-adenosine) repeat element is sufficient to mediate CaMKIV and hnRNP L repression of splicing in a location (3'-splice site proximity)-dependent way. Depletion of hnRNP L by RNA interference followed by rescue with coexpressed exogenous hnRNP L demonstrates that hnRNP L mediates the CaMKIV-regulated splicing through CA repeats in heterologous contexts. Depletion of hnRNP L also led to increased inclusion of the stress axis-regulated exon and a CA repeat-harboring exon under depolarization or with activated CaMKIV. Moreover, hnRNP L binding to CaRRE1 was increased by CaMKIV and, conversely, was reduced by pretreatments with protein phosphatases. Therefore, hnRNP L is an essential component of CaMKIV-regulated alternative splicing through CA repeats, with its phosphorylation likely playing a critical role.
Collapse
Affiliation(s)
- Jiankun Yu
- Department of Physiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Qi YJ, He QY, Ma YF, Du YW, Liu GC, Li YJ, Tsao GSW, Ngai SM, Chiu JF. Proteomic identification of malignant transformation-related proteins in esophageal squamous cell carcinoma. J Cell Biochem 2008; 104:1625-35. [PMID: 18320592 DOI: 10.1002/jcb.21727] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Esophageal cancer (EC) persists to be a leading cancer-related death in northern China. Clinical outcome of EC is the most dismal among many types of digestive tumors because EC at early stage is asymptomatic. The current study used 2-DE-based proteomics to identify differentially expressed proteins between esophageal cancer cell lines and immortal cell line. Fifteen proteins were identified with differences of more than five folds, comprising the down-regulation of annexin A2, histone deacetylase 10 isoform beta and protein disulfide-isomerase ER-60 precursor, and the up-regulation of heat shock 70 kDa protein 9B precursor, solute carrier family 44 Member 3, heterogeneous nuclear ribonucleoprotein L (hnRNP L), eukaryotic translation initiation factor 4A isoform 2, triosephosphate isomerase1 (TPI), peroxiredoxin1 (PRX1), forminotransferase cyclodeaminase form (FTCD), fibrinogen gamma-A chain precursor, kinesin-like DNA binding protein, lamin A/C, cyclophilin A (CypA), and transcription factor MTSG1. Expression pattern of annexin A2 was verified by Western blotting, immunocytochemistry and immunohistochemistry analysis. The implication of these protein alterations correlated to the esophageal malignant transformation is discussed.
Collapse
Affiliation(s)
- Yi-Jun Qi
- Key Laboratory of Cellular and Molecular Immunology, Institute of Immunology, College of Medicine, Henan University, Keifeng, Henan 475000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Topp JD, Jackson J, Melton AA, Lynch KW. A cell-based screen for splicing regulators identifies hnRNP LL as a distinct signal-induced repressor of CD45 variable exon 4. RNA (NEW YORK, N.Y.) 2008; 14:2038-49. [PMID: 18719244 PMCID: PMC2553740 DOI: 10.1261/rna.1212008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The human CD45 gene encodes a protein-tyrosine phosphatase that exhibits differential isoform expression in resting and activated T cells due to alternative splicing of three variable exons. Previously, we have used biochemical methods to identify two regulatory proteins, hnRNP L and PSF, which contribute to the activation-induced skipping of CD45 via the ESS1 regulatory element in variable exon 4. Here we report the identification of a third CD45 regulatory factor, hnRNP L-like (hnRNP LL), via a cell-based screen for clonal variants that exhibit an activation-like phenotype of CD45 splicing even under resting conditions. Microarray analysis of two splicing-altered clones revealed increased expression of hnRNP LL relative to wild-type cells. We further demonstrate that both the expression of hnRNP LL protein and its binding to ESS1 are up-regulated in wild-type cells upon activation. Forced overexpression of hnRNP LL in wild-type cells results in an increase in exon repression, while knock-down of hnRNP LL eliminates activation-induced exon skipping. Interestingly, analysis of the binding of hnRNP L and hnRNP LL to mutants of ESS1 reveals that these proteins have overlapping, but distinct binding requirements. Together, these data establish that hnRNP LL plays a critical and unique role in the signal-induced regulation of CD45 and demonstrate the utility of cell-based screens for the identification of novel splicing regulatory factors.
Collapse
Affiliation(s)
- Justin D Topp
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA
| | | | | | | |
Collapse
|
48
|
Hamilton BJ, Wang XW, Collins J, Bloch D, Bergeron A, Henry B, Terry BM, Zan M, Mouland AJ, Rigby WFC. Separate cis-trans pathways post-transcriptionally regulate murine CD154 (CD40 ligand) expression: a novel function for CA repeats in the 3'-untranslated region. J Biol Chem 2008; 283:25606-25616. [PMID: 18640985 PMCID: PMC2533087 DOI: 10.1074/jbc.m802492200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 07/08/2008] [Indexed: 12/14/2022] Open
Abstract
We report a role for CA repeats in the 3'-untranslated region (3'-UTR) in regulating CD154 expression. Human CD154 is encoded by an unstable mRNA; this instability is conferred in cis by a portion of its 3'-UTR that includes a polypyrimidine-rich region and CA dinucleotide repeat. We demonstrate similar instability activity with the murine CD154 3'-UTR. This instability element mapped solely to a conserved 100-base CU-rich region alone, which we call a CU-rich response element. Surprisingly, the CA dinucleotide-rich region also regulated reporter expression but at the level of translation. This activity was associated with poly(A) tail shortening and regulated by heterogeneous nuclear ribonucleoprotein L levels. We conclude that the CD154 3'-UTR contains dual cis-acting elements, one of which defines a novel function for exonic CA dinucleotide repeats. These findings suggest a mechanism for the association of 3'-UTR CA-rich response element polymorphisms with CD154 overexpression and the subsequent risk of autoimmune disease.
Collapse
Affiliation(s)
| | - Xiao-Wei Wang
- Department of Medicine, Lebanon, New Hampshire 03756
| | - Jane Collins
- Department of Medicine, Lebanon, New Hampshire 03756
| | - Donald Bloch
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Alan Bergeron
- Department of Microbiology and Immunology, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756
| | - Brian Henry
- Department of Medicine, Lebanon, New Hampshire 03756
| | | | - Moe Zan
- Department of Medicine, Lebanon, New Hampshire 03756
| | - Andrew J Mouland
- Lady Davis Institute for Medical Research and McGill University, Montreal, Quebec H3T 1E2, Canada
| | - William F C Rigby
- Department of Medicine, Lebanon, New Hampshire 03756; Department of Microbiology and Immunology, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756.
| |
Collapse
|
49
|
Oberdoerffer S, Moita LF, Neems D, Freitas RP, Hacohen N, Rao A. Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL. Science 2008; 321:686-91. [PMID: 18669861 DOI: 10.1126/science.1157610] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The transition from naïve to activated T cells is marked by alternative splicing of pre-mRNA encoding the transmembrane phosphatase CD45. Using a short hairpin RNA interference screen, we identified heterogeneous ribonucleoprotein L-like (hnRNPLL) as a critical inducible regulator of CD45 alternative splicing. HnRNPLL was up-regulated in stimulated T cells, bound CD45 transcripts, and was both necessary and sufficient for CD45 alternative splicing. Depletion or overexpression of hnRNPLL in B and T cell lines and primary T cells resulted in reciprocal alteration of CD45RA and RO expression. Exon array analysis suggested that hnRNPLL acts as a global regulator of alternative splicing in activated T cells. Induction of hnRNPLL during hematopoietic cell activation and differentiation may allow cells to rapidly shift their transcriptomes to favor proliferation and inhibit cell death.
Collapse
Affiliation(s)
- Shalini Oberdoerffer
- Department of Pathology, Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
50
|
Hung LH, Heiner M, Hui J, Schreiner S, Benes V, Bindereif A. Diverse roles of hnRNP L in mammalian mRNA processing: a combined microarray and RNAi analysis. RNA (NEW YORK, N.Y.) 2008; 14:284-96. [PMID: 18073345 PMCID: PMC2212255 DOI: 10.1261/rna.725208] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Alternative mRNA splicing patterns are determined by the combinatorial control of regulator proteins and their target RNA sequences. We have recently characterized human hnRNP L as a global regulator of alternative splicing, binding to diverse C/A-rich elements. To systematically identify hnRNP L target genes on a genome-wide level, we have combined splice-sensitive microarray analysis and an RNAi-knockdown approach. As a result, we describe 11 target genes of hnRNP L that were validated by RT-PCR and that represent several new modes of hnRNP L-dependent splicing regulation, involving both activator and repressor functions: first, intron retention; second, inclusion or skipping of cassette-type exons; third, suppression of multiple exons; and fourth, alternative poly(A) site selection. In sum, this approach revealed a surprising diversity of splicing-regulatory processes as well as poly(A) site selection in which hnRNP L is involved.
Collapse
Affiliation(s)
- Lee-Hsueh Hung
- Institute of Biochemistry, Justus-Liebig-University of Giessen, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|