1
|
Chatterjee D, Svoboda RA, Huisman DH, Vieira HM, Rao C, Askew JW, Fisher KW, Lewis RE. KSR1 regulates small-cell lung carcinoma tumor initiation and cisplatin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581815. [PMID: 38464216 PMCID: PMC10925196 DOI: 10.1101/2024.02.23.581815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Small-cell lung cancer (SCLC) is designated a recalcitrant cancer due to its five-year relative survival rate of less than 7%. First line SCLC treatment has changed modestly in the last 40 years. The NeuroD1 subtype of SCLC (SCLC-N) commonly harbors MYC amplifications and other hallmarks of aggressive behavior. Finding novel therapeutic options that effectively eliminate residual disease observed after initial response to therapy is essential to improving SCLC patient outcome. Here we show that Kinase Suppressor of Ras 1 (KSR1), a molecular scaffold for the Raf/MEK/ERK signaling cascade is critical for clonogenicity and tumor initiation in vitro and in vivo in the highly aggressive, metastatic and therapy resistant NeuroD1 subtype of SCLC. Tumor-initiating cells (TICs) are reported as the sanctuary population within the bulk tumor responsible for therapeutic resistance and relapse. Previous studies concluded ERK activation was inhibitory to growth and tumor development. We show that signaling through KSR1 is conserved in SCLC-N and that it regulates tumor initiation through interaction with ERK. We further show that KSR1 mediates cisplatin resistance in SCLC-N cells. While 50% of control SCLC-N cells show resistance after 6 weeks of exposure to cisplatin, CRISPR/Cas9-mediated KSR1 knockout prevents resistance in >90% of SCLC-N cells. KSR1 KO also significantly enhances the ability of cisplatin to decrease SCLC-N TICs, indicating that targeting KSR1 might be selectively toxic to cells responsible for therapeutic resistance and tumor initiation. Thus, KSR1 function in SCLC-N serves as a novel model for understanding the role of KSR1-dependent signaling in normal and malignant tissues. These findings shed light on a key distinct protein responsible for regulation in SCLC-N tumors, and a potential subtype specific therapeutic target.
Collapse
|
2
|
Lutze RD, Ingersoll MA, Thotam A, Joseph A, Fernandes J, Teitz T. ERK1/2 Inhibition via the Oral Administration of Tizaterkib Alleviates Noise-Induced Hearing Loss While Tempering down the Immune Response. Int J Mol Sci 2024; 25:6305. [PMID: 38928015 PMCID: PMC11204379 DOI: 10.3390/ijms25126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Noise-induced hearing loss (NIHL) is a major cause of hearing impairment and is linked to dementia and mental health conditions, yet no FDA-approved drugs exist to prevent it. Downregulating the mitogen-activated protein kinase (MAPK) cellular pathway has emerged as a promising approach to attenuate NIHL, but the molecular targets and the mechanism of protection are not fully understood. Here, we tested specifically the role of the kinases ERK1/2 in noise otoprotection using a newly developed, highly specific ERK1/2 inhibitor, tizaterkib, in preclinical animal models. Tizaterkib is currently being tested in phase 1 clinical trials for cancer treatment and has high oral bioavailability and low predicted systemic toxicity in mice and humans. In this study, we performed dose-response measurements of tizaterkib's efficacy against permanent NIHL in adult FVB/NJ mice, and its minimum effective dose (0.5 mg/kg/bw), therapeutic index (>50), and window of opportunity (<48 h) were determined. The drug, administered orally twice daily for 3 days, 24 h after 2 h of 100 dB or 106 dB SPL noise exposure, at a dose equivalent to what is prescribed currently for humans in clinical trials, conferred an average protection of 20-25 dB SPL in both female and male mice. The drug shielded mice from the noise-induced synaptic damage which occurs following loud noise exposure. Equally interesting, tizaterkib was shown to decrease the number of CD45- and CD68-positive immune cells in the mouse cochlea following noise exposure. This study suggests that repurposing tizaterkib and the ERK1/2 kinases' inhibition could be a promising strategy for the treatment of NIHL.
Collapse
Affiliation(s)
- Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Alena Thotam
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Anjali Joseph
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Joshua Fernandes
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
- The Scintillon Research Institute, San Diego, CA 92121, USA
| |
Collapse
|
3
|
Ingersoll MA, Lutze RD, Kelmann RG, Kresock DF, Marsh JD, Quevedo RV, Zuo J, Teitz T. KSR1 Knockout Mouse Model Demonstrates MAPK Pathway's Key Role in Cisplatin- and Noise-induced Hearing Loss. J Neurosci 2024; 44:e2174232024. [PMID: 38548338 PMCID: PMC11063821 DOI: 10.1523/jneurosci.2174-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Hearing loss is a major disability in everyday life and therapeutic interventions to protect hearing would benefit a large portion of the world population. Here we found that mice devoid of the protein kinase suppressor of RAS 1 (KSR1) in their tissues (germline KO mice) exhibit resistance to both cisplatin- and noise-induced permanent hearing loss compared with their wild-type KSR1 littermates. KSR1 is a scaffold protein that brings in proximity the mitogen-activated protein kinase (MAPK) proteins BRAF, MEK1/2 and ERK1/2 and assists in their activation through a phosphorylation cascade induced by both cisplatin and noise insults in the cochlear cells. KSR1, BRAF, MEK1/2, and ERK1/2 are all ubiquitously expressed in the cochlea. Deleting the KSR1 protein tempered down the MAPK phosphorylation cascade in the cochlear cells following both cisplatin and noise insults and conferred hearing protection of up to 30 dB SPL in three tested frequencies in male and female mice. Treatment with dabrafenib, an FDA-approved oral BRAF inhibitor, protected male and female KSR1 wild-type mice from both cisplatin- and noise-induced hearing loss. Dabrafenib treatment did not enhance the protection of KO KSR1 mice, providing evidence dabrafenib works primarily through the MAPK pathway. Thus, either elimination of the KSR1 gene expression or drug inhibition of the MAPK cellular pathway in mice resulted in profound protection from both cisplatin- and noise-induced hearing loss. Inhibition of the MAPK pathway, a cellular pathway that responds to damage in the cochlear cells, can prove a valuable strategy to protect and treat hearing loss.
Collapse
Affiliation(s)
- Matthew A Ingersoll
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Richard D Lutze
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Regina G Kelmann
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Daniel F Kresock
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Jordan D Marsh
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Rene V Quevedo
- Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Jian Zuo
- Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Tal Teitz
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| |
Collapse
|
4
|
Daley BR, Vieira HM, Rao C, Hughes JM, Beckley ZM, Huisman DH, Chatterjee D, Sealover NE, Cox K, Askew JW, Svoboda RA, Fisher KW, Lewis RE, Kortum RL. SOS1 and KSR1 modulate MEK inhibitor responsiveness to target resistant cell populations based on PI3K and KRAS mutation status. Proc Natl Acad Sci U S A 2023; 120:e2313137120. [PMID: 37972068 PMCID: PMC10666034 DOI: 10.1073/pnas.2313137120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
KRAS is the most commonly mutated oncogene. Targeted therapies have been developed against mediators of key downstream signaling pathways, predominantly components of the RAF/MEK/ERK kinase cascade. Unfortunately, single-agent efficacy of these agents is limited both by intrinsic and acquired resistance. Survival of drug-tolerant persister cells within the heterogeneous tumor population and/or acquired mutations that reactivate receptor tyrosine kinase (RTK)/RAS signaling can lead to outgrowth of tumor-initiating cells (TICs) and drive therapeutic resistance. Here, we show that targeting the key RTK/RAS pathway signaling intermediates SOS1 (Son of Sevenless 1) or KSR1 (Kinase Suppressor of RAS 1) both enhances the efficacy of, and prevents resistance to, the MEK inhibitor trametinib in KRAS-mutated lung (LUAD) and colorectal (COAD) adenocarcinoma cell lines depending on the specific mutational landscape. The SOS1 inhibitor BI-3406 enhanced the efficacy of trametinib and prevented trametinib resistance by targeting spheroid-initiating cells in KRASG12/G13-mutated LUAD and COAD cell lines that lacked PIK3CA comutations. Cell lines with KRASQ61 and/or PIK3CA mutations were insensitive to trametinib and BI-3406 combination therapy. In contrast, deletion of the RAF/MEK/ERK scaffold protein KSR1 prevented drug-induced SIC upregulation and restored trametinib sensitivity across all tested KRAS mutant cell lines in both PIK3CA-mutated and PIK3CA wild-type cancers. Our findings demonstrate that vertical inhibition of RTK/RAS signaling is an effective strategy to prevent therapeutic resistance in KRAS-mutated cancers, but therapeutic efficacy is dependent on both the specific KRAS mutant and underlying comutations. Thus, selection of optimal therapeutic combinations in KRAS-mutated cancers will require a detailed understanding of functional dependencies imposed by allele-specific KRAS mutations.
Collapse
Affiliation(s)
- Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Heidi M. Vieira
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Chaitra Rao
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Jacob M. Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Zaria M. Beckley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Dianna H. Huisman
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Deepan Chatterjee
- Department of Integrative Physiology and Molecular Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Katherine Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - James W. Askew
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert A. Svoboda
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Kurt W. Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert E. Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| |
Collapse
|
5
|
Ingersoll MA, Lutze RD, Kelmann RG, Kresock DF, Marsh JD, Quevedo RV, Zuo J, Teitz T. KSR1 knockout mouse model demonstrates MAPK pathway's key role in cisplatin- and noise-induced hearing loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566316. [PMID: 38014104 PMCID: PMC10680565 DOI: 10.1101/2023.11.08.566316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hearing loss is a major disability in everyday life and therapeutic interventions to protect hearing would benefit a large portion of the world population. Here we found that mice devoid of the protein kinase suppressor of RAS 1 (KSR1) in their tissues (germline KO mice) exhibit resistance to both cisplatin- and noise-induced permanent hearing loss compared to their wild-type KSR1 littermates. KSR1 is expressed in the cochlea and is a scaffold protein that brings in proximity the mitogen-activated protein kinase (MAPK) proteins BRAF, MEK and ERK and assists in their activation through a phosphorylation cascade induced by both cisplatin and noise insults in the cochlear cells. Deleting the KSR1 protein tempered down the MAPK phosphorylation cascade in the cochlear cells following both cisplatin and noise insults and conferred hearing protection of up to 30 dB SPL in three tested frequencies in mice. Treatment with dabrafenib, an FDA-approved oral BRAF inhibitor, downregulated the MAPK kinase cascade and protected the KSR1 wild-type mice from both cisplatin- and noise-induced hearing loss. Dabrafenib treatment did not enhance the protection of KO KSR1 mice, as excepted, providing evidence dabrafenib works primarily through the MAPK pathway. Thus, either elimination of the KSR1 gene expression or drug inhibition of the MAPK cellular pathway in mice resulted in profound protection from both cisplatin- and noise-induce hearing loss. Inhibition of the MAPK pathway, a cellular pathway that responds to damage in the cochlear cells, can prove a valuable strategy to protect and treat hearing loss.
Collapse
Affiliation(s)
- Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Daniel F. Kresock
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jordan D. Marsh
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Rene V. Quevedo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
6
|
Lutze RD, Ingersoll MA, Thotam A, Joseph A, Fernandes J, Teitz T. ERK1/2 Inhibition Alleviates Noise-Induced Hearing Loss While Tempering Down the Immune Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563007. [PMID: 37905140 PMCID: PMC10614960 DOI: 10.1101/2023.10.18.563007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Noise-induced hearing loss (NIHL) is a major cause of hearing impairment, yet no FDA-approved drugs exist to prevent it. Targeting the mitogen activated protein kinase (MAPK) cellular pathway has emerged as a promising approach to attenuate NIHL. Tizaterkib is an orally bioavailable, highly specific ERK1/2 inhibitor, currently in Phase-1 anticancer clinical trials. Here, we tested tizaterkib's efficacy against permanent NIHL in mice at doses equivalent to what humans are currently prescribed in clinical trials. The drug given orally 24 hours after noise exposure, protected an average of 20-25 dB SPL in three frequencies, in female and male mice, had a therapeutic window >50, and did not confer additional protection to KSR1 genetic knockout mice, showing the drug works through the MAPK pathway. Tizaterkib shielded from noise-induced cochlear synaptopathy, and a 3-day, twice daily, treatment with the drug was the optimal determined regimen. Importantly, tizaterkib was shown to decrease the number of CD45 and CD68 positive immune cells in the cochlea following noise exposure, which could be part of the protective mechanism of MAPK inhibition.
Collapse
Affiliation(s)
- Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Alena Thotam
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Anjali Joseph
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Joshua Fernandes
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
7
|
Martín-Vega A, Ruiz-Peinado L, García-Gómez R, Herrero A, de la Fuente-Vivas D, Parvathaneni S, Caloto R, Morante M, von Kriegsheim A, Bustelo XR, Sacks DB, Casar B, Crespo P. Scaffold coupling: ERK activation by trans-phosphorylation across different scaffold protein species. SCIENCE ADVANCES 2023; 9:eadd7969. [PMID: 36791195 PMCID: PMC9931222 DOI: 10.1126/sciadv.add7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
RAS-ERK (extracellular signal-regulated kinase) pathway signals are modulated by scaffold proteins that assemble the components of different kinase tiers into a sequential phosphorylation cascade. In the prevailing model scaffold proteins function as isolated entities, where the flux of phosphorylation events progresses downstream linearly, to achieve ERK phosphorylation. We show that different types of scaffold proteins, specifically KSR1 (kinase suppressor of Ras 1) and IQGAP1 (IQ motif-containing guanosine triphosphatase activating protein 1), can bind to each other, forming a complex whereby phosphorylation reactions occur across both species. MEK (mitogen-activated protein kinase kinase) bound to IQGAP1 can phosphorylate ERK docked at KSR1, a process that we have named "trans-phosphorylation." We also reveal that ERK trans-phosphorylation participates in KSR1-regulated adipogenesis, and it also underlies the modest cytotoxicity exhibited by KSR-directed inhibitors. Overall, we identify interactions between scaffold proteins and trans-phosphorylation as an additional level of regulation in the ERK cascade, with broad implications in signaling and the design of scaffold protein-aimed therapeutics.
Collapse
Affiliation(s)
- Ana Martín-Vega
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Laura Ruiz-Peinado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Rocío García-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Herrero
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Dalia de la Fuente-Vivas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Swetha Parvathaneni
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rubén Caloto
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca 37007, Spain
| | - Marta Morante
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Xosé R. Bustelo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca 37007, Spain
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Medicine, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
- Department of Pathology, George Washington University, 2121 I St NW, Washington, DC 20052, USA
- University of Cape Town, UCT Faculty of Health Sciences, Barnard Fuller Building, Anzio Rd, Observatory, Cape Town, 7935 South Africa
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
8
|
Kaur N, Lum M, Lewis RE, Black AR, Black JD. A novel anti-proliferative PKCα-Ras-ERK signaling axis in intestinal epithelial cells. J Biol Chem 2022; 298:102121. [PMID: 35697074 PMCID: PMC9270260 DOI: 10.1016/j.jbc.2022.102121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 01/02/2023] Open
Abstract
We have previously shown that the serine/threonine kinase PKCα triggers MAPK/ERK kinase (MEK)-dependent G1→S cell cycle arrest in intestinal epithelial cells, characterized by downregulation of cyclin D1 and inhibitor of DNA-binding protein 1 (Id1) and upregulation of the cyclin-dependent kinase inhibitor p21Cip1. Here, we use pharmacological inhibitors, genetic approaches, siRNA-mediated knockdown, and immunoprecipitation to further characterize anti-proliferative ERK signaling in intestinal cells. We show that PKCα signaling intersects the Ras-Raf-MEK-ERK kinase cascade at the level of Ras small GTPases, and that anti-proliferative effects of PKCα require active Ras, Raf, MEK and ERK, core ERK pathway components that are also essential for pro-proliferative ERK signaling induced by epidermal growth factor (EGF). However, PKCα-induced anti-proliferative signaling differs from EGF signaling in that it is independent of the Ras guanine nucleotide exchange factors (Ras-GEFs), SOS1/2, and involves prolonged rather than transient ERK activation. PKCα forms complexes with A-Raf, B-Raf and C-Raf that dissociate upon pathway activation, and all three Raf isoforms can mediate PKCα-induced anti-proliferative effects. At least two PKCα-ERK pathways that collaborate to promote growth arrest were identified: one pathway requiring the Ras-GEF, RasGRP3, and H-Ras, leads to p21Cip1 upregulation, while additional pathway(s) mediate PKCα-induced cyclin D1 and Id1 downregulation. PKCα also induces ERK-dependent SOS1 phosphorylation, indicating possible negative crosstalk between anti-proliferative and growth-promoting ERK signaling. Importantly, the spatio-temporal activation of PKCα and ERK in the intestinal epithelium in vivo supports the physiological relevance of these pathways and highlights the importance of anti-proliferative ERK signaling to tissue homeostasis in the intestine.
Collapse
Affiliation(s)
- Navneet Kaur
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michelle Lum
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert E Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
9
|
Gao C, Wang SW, Lu JC, Chai XQ, Li YC, Zhang PF, Huang XY, Cai JB, Zheng YM, Guo XJ, Shi GM, Ke AW, Fan J. KSR2-14-3-3ζ complex serves as a biomarker and potential therapeutic target in sorafenib-resistant hepatocellular carcinoma. Biomark Res 2022; 10:25. [PMID: 35468812 PMCID: PMC9036720 DOI: 10.1186/s40364-022-00361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Kinase suppressor of Ras 2 (KSR2) is a regulator of MAPK signaling that is overactivated in most hepatocellular carcinoma (HCC). We sought to determine the role of KSR2 in HCC pathogenesis. Methods We tested the level of KSR2 in HCC tissues and cell lines by tissue microarray, qPCR, and western blotting. Functionally, we determined the effects of KSR2 on the proliferation, migration, and invasion of HCC cells through colony formation assays, scratch assays, transwell migration assays, and xenograft tumor models. Co-immunoprecipitation (co-IP) experiments were used to assess the interaction of phospho-serine binding protein 14–3-3ζ and KSR2, and the effects of this interaction on growth and proliferation of human HCC cells were tested by co-overexpression and knockdown experiments. Additionally, we used flow cytometry to examine whether the KSR2 and 14–3-3ζ interaction conveys HCC resistance to sorafenib. Results KSR2 was significantly upregulated in HCC tissues and cell lines, and high KSR2 expression associated with poor prognosis in HCC patients. KSR2 knockdown significantly suppressed HCC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, co-IP experiments identified that 14–3-3ζ complexed with KSR2, and elevated 14–3-3ζ increased KSR2 protein levels in HCC cells. Importantly, Kaplan–Meier survival analysis showed that patients with both high KSR2 and high 14–3-3ζ expression levels had the shortest survival times and poorest prognoses. Interestingly, HCC cells overexpressing both KSR2 and 14–3-3ζ, rather than either protein alone, showed hyperactivated MAPK signaling and resistance to sorafenib. Conclusions Our results provide new insights into the pro-tumorigenic role of KSR2 and its regulation of the MAPK pathway in HCC. The KSR2–14–3-3ζ interaction may be a therapeutic target to enhance the sorafenib sensitivity of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00361-9.
Collapse
Affiliation(s)
- Chao Gao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Si-Wei Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Jia-Cheng Lu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Chai
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Yuan-Cheng Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Peng-Fei Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Xiao-Yong Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Jia-Bin Cai
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Yi-Min Zheng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Xiao-Jun Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Guo-Ming Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Ai-Wu Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China.
| | - Jia Fan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Paniagua G, Jacob HKC, Brehey O, García-Alonso S, Lechuga CG, Pons T, Musteanu M, Guerra C, Drosten M, Barbacid M. KSR induces RAS-independent MAPK pathway activation and modulates the efficacy of KRAS inhibitors. Mol Oncol 2022; 16:3066-3081. [PMID: 35313064 PMCID: PMC9441002 DOI: 10.1002/1878-0261.13213] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
The kinase suppressor of rat sarcoma (RAS) proteins (KSR1 and KSR2) have long been considered as scaffolding proteins required for optimal mitogen‐activated protein kinase (MAPK) pathway signalling. However, recent evidence suggests that they play a more complex role within this pathway. Here, we demonstrate that ectopic expression of KSR1 or KSR2 is sufficient to activate the MAPK pathway and to induce cell proliferation in the absence of RAS proteins. In contrast, the ectopic expression of KSR proteins is not sufficient to induce cell proliferation in the absence of either rapidly accelerated fibrosarcoma (RAF) or MAPK‐ERK kinase proteins, indicating that they act upstream of RAF. Indeed, KSR1 requires dimerization with at least one member of the RAF family to stimulate proliferation, an event that results in the translocation of the heterodimerized RAF protein to the cell membrane. Mutations in the conserved aspartic acid–phenylalanine–glycine motif of KSR1 that affect ATP binding impair the induction of cell proliferation. We also show that increased expression levels of KSR1 decrease the responsiveness to the KRASG12C inhibitor sotorasib in human cancer cell lines, thus suggesting that increased levels of expression of KSR may make tumour cells less dependent on KRAS oncogenic signalling.
Collapse
Affiliation(s)
- Guillem Paniagua
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Harrys K C Jacob
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.,Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Florida, 33136, USA
| | - Oksana Brehey
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Sara García-Alonso
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Carmen G Lechuga
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Tirso Pons
- Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), Spanish National Research Council, 28049, Madrid, Spain
| | - Monica Musteanu
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Carmen Guerra
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Matthias Drosten
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.,Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Mariano Barbacid
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| |
Collapse
|
11
|
Gomez GA, Rundle CH, Xing W, Kesavan C, Pourteymoor S, Lewis RE, Powell DR, Mohan S. Contrasting effects of <i>Ksr2</i>, an obesity gene, on trabecular bone volume and bone marrow adiposity. eLife 2022; 11:82810. [PMID: 36342465 PMCID: PMC9640193 DOI: 10.7554/elife.82810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
Pathological obesity and its complications are associated with an increased propensity for bone fractures. Humans with certain genetic polymorphisms at the kinase suppressor of ras2 (KSR2) locus develop severe early-onset obesity and type 2 diabetes. Both conditions are phenocopied in mice with <i>Ksr2</i> deleted, but whether this affects bone health remains unknown. Here we studied the bones of global <i>Ksr2</i> null mice and found that <i>Ksr2</i> negatively regulates femoral, but not vertebral, bone mass in two genetic backgrounds, while the paralogous gene, <i>Ksr1</i>, was dispensable for bone homeostasis. Mechanistically, KSR2 regulates bone formation by influencing adipocyte differentiation at the expense of osteoblasts in the bone marrow. Compared with <i>Ksr2</i>'s known role as a regulator of feeding by its function in the hypothalamus, pair-feeding and osteoblast-specific conditional deletion of <i>Ksr2</i> reveals that <i>Ksr2</i> can regulate bone formation autonomously. Despite the gains in appendicular bone mass observed in the absence of <i>Ksr2</i>, bone strength, as well as fracture healing response, remains compromised in these mice. This study highlights the interrelationship between adiposity and bone health and provides mechanistic insights into how <i>Ksr2</i>, an adiposity and diabetic gene, regulates bone metabolism.
Collapse
Affiliation(s)
| | - Charles H Rundle
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | - Weirong Xing
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | - Chandrasekhar Kesavan
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | | | | | | | - Subburaman Mohan
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| |
Collapse
|
12
|
Gatticchi L, Petricciuolo M, Scarpelli P, Macchioni L, Corazzi L, Roberti R. Tm7sf2 gene promotes adipocyte differentiation of mouse embryonic fibroblasts and improves insulin sensitivity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118897. [PMID: 33121932 DOI: 10.1016/j.bbamcr.2020.118897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
Adipogenesis is a finely orchestrated program involving a transcriptional cascade coordinated by CEBP and PPAR family members and by hormonally induced signaling pathways. Alterations in any of these factors result into impaired formation of fully differentiated adipocytes. Tm7sf2 gene encodes for a Δ(14)-sterol reductase primarily involved in cholesterol biosynthesis. Furthermore, TM7SF2 modulates the expression of the master gene of adipogenesis PPARγ, suggesting a role in the regulation of adipose tissue homeostasis. We investigated the differentiation of Tm7sf2-/- MEFs into adipocytes, compared to Tm7sf2+/+ MEFs. Tm7sf2 expression was increased at late stage of differentiation in wild type cells, while Tm7sf2-/- MEFs exhibited a reduced capacity to differentiate into mature adipocytes. Indeed, Tm7sf2-/- MEFs had lower neutral lipid accumulation and reduced expression of adipogenic regulators. At early stage, the reduction in C/EBPβ expression impaired mitotic clonal expansion, which is needed by preadipocytes for adipogenesis induction. At late stage, the expression and activity of C/EBPα and PPARγ were inhibited in Tm7sf2-/- cells, leading to the reduced expression of adipocyte genes like Srebp-1c, Fasn, Scd-1, Adipoq, Fabp4, and Glut4. Loss of the acquisition of adipocyte phenotype was accompanied by a reduction in the levels of Irs1, and phosphorylated Akt and ERK1/2, indicating a blunted insulin signaling in differentiating Tm7sf2-/- cells. Moreover, throughout the differentiation process, increased expression of the antiadipogenic Mmp3 was observed in MEFs lacking Tm7sf2. These findings indicate Tm7sf2 as a novel factor influencing adipocyte differentiation that could be relevant to adipose tissue development and maintenance of metabolic health.
Collapse
Affiliation(s)
- Leonardo Gatticchi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06132 Perugia, Italy.
| | - Maya Petricciuolo
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06132 Perugia, Italy
| | - Paolo Scarpelli
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06132 Perugia, Italy
| | - Lara Macchioni
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06132 Perugia, Italy.
| | - Lanfranco Corazzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06132 Perugia, Italy.
| | - Rita Roberti
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06132 Perugia, Italy.
| |
Collapse
|
13
|
Moretti E, Collodel G, Belmonte G, Noto D, Giurisato E. Defective spermatogenesis and testosterone levels in kinase suppressor of Ras1 (KSR1)-deficient mice. Reprod Fertil Dev 2019; 31:1369-1377. [PMID: 30981290 DOI: 10.1071/rd18386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/08/2019] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to clarify the role of the protein kinase suppressor of Ras1 (KSR1) in spermatogenesis. Spermatogenesis in ksr1 -/- mice was studied in testicular tissue and epididymal spermatozoa by light and transmission electron microscopy and by immunofluorescence using antibodies to ghrelin and 3β-hydroxysteroid dehydrogenase (3β-HSD). Blood testosterone levels were also assessed. ksr1 -/- mice showed reduced epididymal sperm concentration and motility as compared with wild- type (wt) mice. Testis tissue from ksr1 -/- mice revealed a prevalent spermatogenetic arrest at the spermatocyte stage; the interstitial tissue was hypertrophic and the cytoplasm of the Leydig cells was full of lipid droplets. Ghrelin signal was present in the seminiferous tubules and, particularly, in the interstitial tissue of wt mice; however, in ksr1 -/- mice ghrelin expression was very weak in both the interstitial tissue and tubules. On the contrary, the signal of 3β-HSD was weak in the interstitial tissue of wt and strong in ksr1 -/- mice. Testosterone levels were significantly increased in the blood of ksr1 -/- mice (P <0.05) as compared with wt. The results obtained reveal the importance of the KSR scaffold proteins in the spermatogenetic process. The study of the molecular mechanisms associated with spermatogenetic defects in a mouse model is essential to understand the factors involved in human spermatogenesis.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Le Scotte, Viale Bracci, 14, 53100 Siena, Italy
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Le Scotte, Viale Bracci, 14, 53100 Siena, Italy; and Corresponding author
| | - Giuseppe Belmonte
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Le Scotte, Viale Bracci, 14, 53100 Siena, Italy
| | - Daria Noto
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Le Scotte, Viale Bracci, 14, 53100 Siena, Italy
| | - Emanuele Giurisato
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Le Scotte, Viale Bracci, 14, 53100 Siena, Italy; and Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
14
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
15
|
Focal Adhesion Kinase and ROCK Signaling Are Switch-Like Regulators of Human Adipose Stem Cell Differentiation towards Osteogenic and Adipogenic Lineages. Stem Cells Int 2018; 2018:2190657. [PMID: 30275837 PMCID: PMC6157106 DOI: 10.1155/2018/2190657] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/07/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
Adipose tissue is an attractive stem cell source for soft and bone tissue engineering applications and stem cell therapies. The adipose-derived stromal/stem cells (ASCs) have a multilineage differentiation capacity that is regulated through extracellular signals. The cellular events related to cell adhesion and cytoskeleton have been suggested as central regulators of differentiation fate decision. However, the detailed knowledge of these molecular mechanisms in human ASCs remains limited. This study examined the significance of focal adhesion kinase (FAK), Rho-Rho-associated protein kinase (Rho-ROCK), and their downstream target extracellular signal-regulated kinase 1/2 (ERK1/2) on hASCs differentiation towards osteoblasts and adipocytes. Analyses of osteogenic markers RUNX2A, alkaline phosphatase, and matrix mineralization revealed an essential role of active FAK, ROCK, and ERK1/2 signaling for the osteogenesis of hASCs. Inhibition of these kinases with specific small molecule inhibitors diminished osteogenesis, while inhibition of FAK and ROCK activity led to elevation of adipogenic marker genes AP2 and LEP and lipid accumulation implicating adipogenesis. This denotes to a switch-like function of FAK and ROCK signaling in the osteogenic and adipogenic fates of hASCs. On the contrary, inhibition of ERK1/2 kinase activity deceased adipogenic differentiation, indicating that activation of ERK signaling is required for both adipogenic and osteogenic potential. Our findings highlight the reciprocal role of cell adhesion mechanisms and actin dynamics in regulation of hASC lineage commitment. This study enhances the knowledge of molecular mechanisms dictating hASC differentiation and thus opens possibilities for more efficient control of hASC differentiation.
Collapse
|
16
|
Pfuhlmann K, Pfluger PT, Schriever SC, Müller TD, Tschöp MH, Stemmer K. Dual specificity phosphatase 6 deficiency is associated with impaired systemic glucose tolerance and reversible weight retardation in mice. PLoS One 2017; 12:e0183488. [PMID: 28873424 PMCID: PMC5584967 DOI: 10.1371/journal.pone.0183488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023] Open
Abstract
Here, we aimed to investigate the potential role of DUSP6, a dual specificity phosphatase, that specifically inactivates extracellular signal-regulated kinase (ERK), for the regulation of body weight and glucose homeostasis. We further assessed whether metabolic challenges affect Dusp6 expression in selected brain areas or white adipose tissue. Hypothalamic Dusp6 mRNA levels remained unchanged in chow-fed lean vs. high fat diet (HFD) fed obese C57Bl/6J mice, and in C57Bl/6J mice undergoing prolonged fasting or refeeding with fat free diet (FFD) or HFD. Similarly, Dusp6 expression levels were unchanged in selected brain regions of Lepob mice treated with 1 mg/kg of leptin for 6 days, compared to pair-fed or saline-treated Lepob controls. Dusp6 expression levels remained unaltered in vitro in primary adipocytes undergoing differentiation, but were increased in eWAT of HFD-fed obese C57Bl/6J mice, compared to chow-fed lean controls. Global chow-fed DUSP6 KO mice displayed reduced body weight and lean mass and slightly increased fat mass at a young age, which is indicative for early-age weight retardation. Subsequent exposure to HFD led to a significant increase in lean mass and body weight in DUSP6 deficient mice, compared to WT controls. Nevertheless, after 26 weeks of high-fat diet exposure, we observed comparable body weight, fat and lean mass in DUSP6 WT and KO mice, suggesting overall normal susceptibility to develop obesity. In line with the increased weight gain to compensate for early-age weight retardation, HFD-fed DUSP6 KO displayed increased expression levels of anabolic genes involved in lipid and cholesterol metabolism in the epididymal white adipose tissue (eWAT), compared to WT controls. Glucose tolerance was perturbed in both chow-fed lean or HFD-fed obese DUSP6 KO, compared to their respective WT controls. Overall, our data indicate that DUSP6 deficiency has limited impact on the regulation of energy metabolism, but impairs systemic glucose tolerance. Our data are in conflict to earlier reports that propose protection from diet-induced obesity and glucose intolerance in DUSP6 deficient mice. Reasons for the discrepancies remain elusive, but may entail differential genetic backgrounds, environmental factors such as the type and source of HFD, or alterations in the gut microbiome between facilities.
Collapse
Affiliation(s)
- Katrin Pfuhlmann
- Research Unit NeuroBiology of Diabetes, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Paul T. Pfluger
- Research Unit NeuroBiology of Diabetes, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sonja C. Schriever
- Research Unit NeuroBiology of Diabetes, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias H. Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
17
|
Frodyma D, Neilsen B, Costanzo-Garvey D, Fisher K, Lewis R. Coordinating ERK signaling via the molecular scaffold Kinase Suppressor of Ras. F1000Res 2017; 6:1621. [PMID: 29026529 PMCID: PMC5583734 DOI: 10.12688/f1000research.11895.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/17/2022] Open
Abstract
Many cancers, including those of the colon, lung, and pancreas, depend upon the signaling pathways induced by mutated and constitutively active Ras. The molecular scaffolds Kinase Suppressor of Ras 1 and 2 (KSR1 and KSR2) play potent roles in promoting Ras-mediated signaling through the Raf/MEK/ERK kinase cascade. Here we summarize the canonical role of KSR in cells, including its central role as a scaffold protein for the Raf/MEK/ERK kinase cascade, its regulation of various cellular pathways mediated through different binding partners, and the phenotypic consequences of KSR1 or KSR2 genetic inactivation. Mammalian KSR proteins have a demonstrated role in cellular and organismal energy balance with implications for cancer and obesity. Targeting KSR1 in cancer using small molecule inhibitors has potential for therapy with reduced toxicity to the patient. RNAi and small molecule screens using KSR1 as a reference standard have the potential to expose and target vulnerabilities in cancer. Interestingly, although KSR1 and KSR2 are similar in structure, KSR2 has a distinct physiological role in regulating energy balance. Although KSR proteins have been studied for two decades, additional analysis is required to elucidate both the regulation of these molecular scaffolds and their potent effect on the spatial and temporal control of ERK activation in health and disease.
Collapse
Affiliation(s)
- Danielle Frodyma
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Beth Neilsen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Diane Costanzo-Garvey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kurt Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Robert Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
18
|
Neilsen BK, Frodyma DE, Lewis RE, Fisher KW. KSR as a therapeutic target for Ras-dependent cancers. Expert Opin Ther Targets 2017; 21:499-509. [PMID: 28333549 DOI: 10.1080/14728222.2017.1311325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Targeting downstream effectors required for oncogenic Ras signaling is a potential alternative or complement to the development of more direct approaches targeting Ras in the treatment of Ras-dependent cancers. Areas covered: Here we review literature pertaining to the molecular scaffold Kinase Suppressor of Ras (KSR) and its role in promoting signals critical to tumor maintenance. We summarize the phenotypes in knockout models, describe the role of KSR in cancer, and outline the structure and function of the KSR1 and KSR2 proteins. We then focus on the most recent literature that describes the crystal structure of the kinase domain of KSR2 in complex with MEK1, KSR-RAF dimerization particularly in response to RAF inhibition, and novel attempts to target KSR proteins directly. Expert opinion: KSR is a downstream effector of Ras-mediated tumorigenesis that is dispensable for normal growth and development, making it a desirable target for the development of novel therapeutics with a high therapeutic index. Recent advances have revealed that KSR can be functionally inhibited using a small molecule that stabilizes KSR in an inactive conformation. The efficacy and potential for this novel approach to be used clinically in the treatment of Ras-driven cancers is still being investigated.
Collapse
Affiliation(s)
- Beth K Neilsen
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Danielle E Frodyma
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Robert E Lewis
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,b Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Kurt W Fisher
- b Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
19
|
Rasal2 deficiency reduces adipogenesis and occurrence of obesity-related disorders. Mol Metab 2017; 6:494-502. [PMID: 28580280 PMCID: PMC5444017 DOI: 10.1016/j.molmet.2017.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/15/2017] [Indexed: 01/23/2023] Open
Abstract
Objective Identification of additional regulatory factors involved in the onset of obesity is important to understand the mechanisms underlying this prevailing disease and its associated metabolic disorders and to develop therapeutic strategies. Through isolation and analysis of a mutant, we aimed to uncover the function of a Ras-GAP gene, Rasal2 (Ras protein activator like 2), in the development of obesity and related metabolic disorders and to obtain valuable insights regarding the mechanism underlying the function. Methods An obesity-based genetic screen was performed to identify an insertional mutation that disrupts the expression of Rasal2 (Rasal2PB/PB mice). Important metabolic parameters, such as fat mass and glucose tolerance, were measured in Rasal2PB/PB mice. The impact of Rasal2 on adipogenesis was evaluated in the mutant mice and in 3T3-L1 preadipocytes treated with Rasal2 siRNA. Ras and ERK activities were then evaluated in Rasal2-deficient preadipocytes or mice, and their functional relationships with Rasal2 on adipogenesis were investigated by employing Ras and MEK inhibitors. Results Rasal2PB/PB mice showed drastic decrease in Rasal2 expression and a lean phenotype. The mutant mice displayed decreased adiposity and resistance to high-fat diet induced metabolic disorders. Further analysis indicated that Rasal2 deficiency leads to impaired adipogenesis in vivo and in vitro. Moreover, while Rasal2 deficiency resulted in increased activity of both Ras and ERK in preadipocytes, reducing Ras, but not ERK, suppressed the impaired adipogenesis. Conclusions Rasal2 promotes adipogenesis, which may critically contribute to its role in the development of obesity and related metabolic disorders and may do so by repressing Ras activity in an ERK-independent manner. Rasal2-deficient mice show decreased adiposity fed on either high-fat or normal-chow diet. Rasal2-deficient mice are resistant to high-fat diet-induced obesity and related metabolic disorders. Rasal2 deficiency causes a decrease in adipogenesis in vivo and in vitro. Rasal2 likely regulates adipogenesis by repressing Ras activity through an ERK-independent mechanism.
Collapse
|
20
|
Guo L, Costanzo-Garvey DL, Smith DR, Neilsen BK, MacDonald RG, Lewis RE. Kinase Suppressor of Ras 2 (KSR2) expression in the brain regulates energy balance and glucose homeostasis. Mol Metab 2016; 6:194-205. [PMID: 28180061 PMCID: PMC5279912 DOI: 10.1016/j.molmet.2016.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/03/2022] Open
Abstract
Objective Kinase Suppressor of Ras 2 (KSR2) is a molecular scaffold coordinating Raf/MEK/ERK signaling that is expressed at high levels in the brain. KSR2 disruption in humans and mice causes obesity and insulin resistance. Understanding the anatomical location and mechanism of KSR2 function should lead to a better understanding of physiological regulation over energy balance. Methods Mice bearing floxed alleles of KSR2 (KSR2fl/fl) were crossed with mice expressing the Cre recombinase expressed by the Nestin promoter (Nes-Cre) to produce Nes-CreKSR2fl/fl mice. Growth, body composition, food consumption, cold tolerance, insulin and free fatty acid levels, glucose, and AICAR tolerance were measured in gender and age matched KSR2−/− mice Results Nes-CreKSR2fl/fl mice lack detectable levels of KSR2 in the brain. The growth and onset of obesity of Nes-CreKSR2fl/fl mice parallel those observed in KSR2−/− mice. As in KSR2−/− mice, Nes-CreKSR2fl/fl are glucose intolerant with elevated fasting and cold intolerance. Male Nes-CreKSR2fl/fl mice are hyperphagic, but female Nes-CreKSR2fl/fl mice are not. Unlike KSR2−/− mice, Nes-CreKSR2fl/fl mice respond normally to leptin and AICAR, which may explain why the degree of obesity of adult Nes-CreKSR2fl/fl mice is not as severe as that observed in KSR2−/− animals. Conclusions These observations suggest that, in the brain, KSR2 regulates energy balance via control of feeding behavior and adaptive thermogenesis, while a second KSR2-dependent mechanism, functioning through one or more other tissues, modulates sensitivity to leptin and activators of the energy sensor AMPK. Brain-specific KSR2 knockout causes obesity and glucose intolerance in both genders, but hyperphagia only in male mice. Brain-specific KSR2 knockout suppresses body temperature, before obesity. KSR2 in the brain regulates energy balance via control of feeding behavior and adaptive thermogenesis.
Collapse
Affiliation(s)
- Lili Guo
- Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, 987696 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA.
| | - Diane L Costanzo-Garvey
- Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, 987696 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA.
| | - Deandra R Smith
- Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, 987696 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA.
| | - Beth K Neilsen
- Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, 987696 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA.
| | - Richard G MacDonald
- Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, 987696 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA; Department of Biochemistry and Molecular Biology, 985870 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Robert E Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, 987696 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA.
| |
Collapse
|
21
|
Lake D, Corrêa SAL, Müller J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci 2016; 73:4397-4413. [PMID: 27342992 PMCID: PMC5075022 DOI: 10.1007/s00018-016-2297-8] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 01/04/2023]
Abstract
The extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signalling pathway regulates many cellular functions, including proliferation, differentiation, and transformation. To reliably convert external stimuli into specific cellular responses and to adapt to environmental circumstances, the pathway must be integrated into the overall signalling activity of the cell. Multiple mechanisms have evolved to perform this role. In this review, we will focus on negative feedback mechanisms and examine how they shape ERK1/2 MAPK signalling. We will first discuss the extensive number of negative feedback loops targeting the different components of the ERK1/2 MAPK cascade, specifically the direct posttranslational modification of pathway components by downstream protein kinases and the induction of de novo gene synthesis of specific pathway inhibitors. We will then evaluate how negative feedback modulates the spatiotemporal signalling dynamics of the ERK1/2 pathway regarding signalling amplitude and duration as well as subcellular localisation. Aberrant ERK1/2 activation results in deregulated proliferation and malignant transformation in model systems and is commonly observed in human tumours. Inhibition of the ERK1/2 pathway thus represents an attractive target for the treatment of malignant tumours with increased ERK1/2 activity. We will, therefore, discuss the effect of ERK1/2 MAPK feedback regulation on cancer treatment and how it contributes to reduced clinical efficacy of therapeutic agents and the development of drug resistance.
Collapse
Affiliation(s)
- David Lake
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Sonia A L Corrêa
- School of Life Sciences, University of Warwick, Coventry, UK
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Jürgen Müller
- Warwick Medical School, University of Warwick, Coventry, UK.
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
22
|
Rinaldi L, Delle Donne R, Sepe M, Porpora M, Garbi C, Chiuso F, Gallo A, Parisi S, Russo L, Bachmann V, Huber RG, Stefan E, Russo T, Feliciello A. praja2 regulates KSR1 stability and mitogenic signaling. Cell Death Dis 2016; 7:e2230. [PMID: 27195677 PMCID: PMC4917648 DOI: 10.1038/cddis.2016.109] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022]
Abstract
The kinase suppressor of Ras 1 (KSR1) has a fundamental role in mitogenic signaling by scaffolding components of the Ras/MAP kinase pathway. In response to Ras activation, KSR1 assembles a tripartite kinase complex that optimally transfers signals generated at the cell membrane to activate ERK. We describe a novel mechanism of ERK attenuation based on ubiquitin-dependent proteolysis of KSR1. Stimulation of membrane receptors by hormones or growth factors induced KSR1 polyubiquitination, which paralleled a decline of ERK1/2 signaling. We identified praja2 as the E3 ligase that ubiquitylates KSR1. We showed that praja2-dependent regulation of KSR1 is involved in the growth of cancer cells and in the maintenance of undifferentiated pluripotent state in mouse embryonic stem cells. The dynamic interplay between the ubiquitin system and the kinase scaffold of the Ras pathway shapes the activation profile of the mitogenic cascade. By controlling KSR1 levels, praja2 directly affects compartmentalized ERK activities, impacting on physiological events required for cell proliferation and maintenance of embryonic stem cell pluripotency.
Collapse
Affiliation(s)
- L Rinaldi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - R Delle Donne
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - M Sepe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - M Porpora
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - C Garbi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - F Chiuso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - A Gallo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - S Parisi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - L Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - V Bachmann
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.,Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore 138671, Singapore
| | - R G Huber
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.,Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore 138671, Singapore
| | - E Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.,Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore 138671, Singapore
| | - T Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - A Feliciello
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| |
Collapse
|
23
|
Chae SY, Seo SG, Yang H, Yu JG, Suk SJ, Jung ES, Ji H, Kwon JY, Lee HJ, Lee KW. Anti-adipogenic effect of erucin in early stage of adipogenesis by regulating Ras activity in 3T3-L1 preadipocytes. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
24
|
Abstract
RAF family kinases were among the first oncoproteins to be described more than 30 years ago. They primarily act as signalling relays downstream of RAS, and their close ties to cancer have fuelled a large number of studies. However, we still lack a systems-level understanding of their regulation and mode of action. The recent discovery that the catalytic activity of RAF depends on an allosteric mechanism driven by kinase domain dimerization is providing a vital new piece of information towards a comprehensive model of RAF function. The fact that current RAF inhibitors unexpectedly induce ERK signalling by stimulating RAF dimerization also calls for a deeper structural characterization of this family of kinases.
Collapse
|
25
|
Moretti E, Collodel G, Mazzi L, Russo I, Giurisato E. Ultrastructural study of spermatogenesis in KSR2 deficient mice. Transgenic Res 2015; 24:741-51. [DOI: 10.1007/s11248-015-9886-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/03/2015] [Indexed: 02/07/2023]
|
26
|
Hwang SL, Jeong YT, Li X, Kim YD, Lu Y, Chang YC, Lee IK, Chang HW. Inhibitory cross-talk between the AMPK and ERK pathways mediates endoplasmic reticulum stress-induced insulin resistance in skeletal muscle. Br J Pharmacol 2014; 169:69-81. [PMID: 23373714 DOI: 10.1111/bph.12124] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/12/2012] [Accepted: 12/26/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Endoplasmic reticulum (ER) stress has been implicated in the pathogeneses of insulin resistance and type 2 diabetes, and extracellular signal-regulated kinase (ERK) antagonist is an insulin sensitizer that can restore muscle insulin responsiveness in both tunicamycin-treated muscle cells and type 2 diabetic mice. The present study was undertaken to determine whether the chemical or genetic inhibition ER stress pathway targeting by ERK results in metabolic benefits in muscle cells. EXPERIMENTAL APPROACH ER stress was induced in L6 myotubes using tunicamycin (5 μg·mL(-1) ) or thapsigargin (300 nM) and cells were transfected with siRNA ERK or AMPKα2. Changes in ER stress and in the ERK and AMPK signalling pathways were explored by Western blotting. The phosphorylation levels of insulin receptor substrate 1 were analysed by immunoprecipitation and using glucose uptake assay. KEY RESULTS ER stress dampened insulin-stimulated signals and glucose uptake, whereas treatment with the specific ERK inhibitor U0126 (25 μM) rescued impaired insulin signalling via AMPK activation. In db/db mice, U0126 administration decreased markers of insulin resistance and increased the phosphorylations of Akt and AMPK in muscle tissues. CONCLUSIONS AND IMPLICATIONS Inhibition of ERK signalling pathways by a chemical inhibitor and knockdown of ERK improved AMPK and Akt signallings and reversed ER stress-induced insulin resistance in L6 myotubes. These findings suggest that ERK signalling plays an important role in the regulation of insulin signals in muscle cells under ER stress.
Collapse
Affiliation(s)
- Seung-Lark Hwang
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Caveolin-1 is required for kinase suppressor of Ras 1 (KSR1)-mediated extracellular signal-regulated kinase 1/2 activation, H-RasV12-induced senescence, and transformation. Mol Cell Biol 2014; 34:3461-72. [PMID: 25002533 DOI: 10.1128/mcb.01633-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The molecular scaffold kinase suppressor of Ras 1 (KSR1) regulates the activation of the Raf/MEK/extracellular signal-regulated kinase (ERK) signal transduction pathway. KSR1 disruption in mouse embryo fibroblasts (MEFs) abrogates growth factor-induced ERK activation, H-Ras(V12)-induced replicative senescence, and H-Ras(V12)-induced transformation. Caveolin-1 has been primarily described as a major component of the coating structure of caveolae, which can serve as a lipid binding adaptor protein and coordinates the assembly of Ras, Raf, MEK, and ERK. In this study, we show that KSR1 interacts with caveolin-1 and is responsible for MEK and ERK redistribution to caveolin-1-rich fractions. The interaction between KSR1 and caveolin-1 is essential for optimal activation of ERK as a KSR1 mutant unable to interact with caveolin-1 does not efficiently mediate growth factor-induced ERK activation at the early stages of pathway activation. Furthermore, abolishing the KSR1-caveolin-1 interaction increases growth factor demands to promote H-Ras(V12)-induced proliferation and has adverse effects on H-Ras(V12)-induced cellular senescence and transformation. These data show that caveolin-1 is necessary for optimal KSR1-dependent ERK activation by growth factors and oncogenic Ras.
Collapse
|
28
|
Takács-Vellai K. The metastasis suppressor Nm23 as a modulator of Ras/ERK signaling. J Mol Signal 2014; 9:4. [PMID: 24829611 PMCID: PMC4020307 DOI: 10.1186/1750-2187-9-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/30/2014] [Indexed: 01/06/2023] Open
Abstract
NM23-H1 (also known as NME1) was the first identified metastasis suppressor, which displays a nucleoside diphosphate kinase (NDPK) and histidine protein kinase activity. NDPKs are linked to many processes, such as cell migration, proliferation, differentiation, but the exact mechanism whereby NM23-H1 inhibits the metastatic potential of cancer cells remains elusive. However, some recent data suggest that NM23-H1 may exert its anti-metastatic effect by blocking Ras/ERK signaling. In mammalian cell lines NDPK-mediated attenuation of Ras/ERK signaling occurs through phosphorylation (thus inactivation) of KSR (kinase suppressor of Ras) scaffolds. In this review I summarize our knowledge about KSR's function and its regulation in mammals and in C. elegans. Genetic studies in the nematode contributed substantially to our understanding of the function and regulation of the Ras pathway (i.e. KSR's discovery is also linked to the nematode). Components of the RTK/Ras/ERK pathway seem to be highly conserved between mammals and worms. NDK-1, the worm homolog of NM23-H1 affects Ras/MAPK signaling at the level of KSRs, and a functional interaction between NDK-1/NDPK and KSRs was first demonstrated in the worm in vivo. However, NDK-1 is a factor, which is necessary for proper MAPK activation, thus it activates rather than suppresses Ras/MAPK signaling in the worm. The contradiction between results in mammalian cell lines and in the worm regarding NDPKs' effect exerted on the outcome of Ras signaling might be resolved, if we better understand the function, structure and regulation of KSR scaffolds.
Collapse
Affiliation(s)
- Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
29
|
Guo L, Volle DJ, Lewis RE. Identification of a truncated kinase suppressor of Ras 2 mRNA in sperm. FEBS Open Bio 2014; 4:420-5. [PMID: 24918056 PMCID: PMC4050188 DOI: 10.1016/j.fob.2014.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/31/2014] [Accepted: 04/16/2014] [Indexed: 01/19/2023] Open
Abstract
A truncated kinase suppressor of Ras 2 (T-KSR2) mRNA was identified. T-KSR2 is expressed exclusively in mouse testes and sperm. Analysis of T-KSR2 may enhance understanding of spermatogenesis and fertility.
The kinase suppressor of Ras 2 (KSR2) is a scaffold protein for the extracellular signal-regulated protein kinase (ERK) signaling pathway. KSR2 mediates germline mpk-1 (Caenorhabditis elegans ERK) phosphorylation in C. elegans and has been implicated the regulation of meiosis. KSR2−/− mice exhibit metabolic abnormalities and are reproductively impaired. The role of KSR2 in meiosis and fertility in mice has yet to be elucidated. Here, we describe a novel truncated KSR2 mRNA identified in mouse testes (T-KSR2). Further analysis demonstrates T-KSR2 is specific to mouse testes and mature sperm cells. The detection of T-KSR2 may enhance our understanding of mechanisms controlling spermatogenesis and fertility.
Collapse
Affiliation(s)
- Lili Guo
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Deanna J Volle
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert E Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
30
|
Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 2013; 4:1829. [PMID: 23652017 PMCID: PMC3674247 DOI: 10.1038/ncomms2852] [Citation(s) in RCA: 980] [Impact Index Per Article: 89.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota affects nutrient acquisition and energy regulation of the host, and can influence the development of obesity, insulin resistance, and diabetes. During feeding, gut microbes produce short-chain fatty acids, which are important energy sources for the host. Here we show that the short-chain fatty acid receptor GPR43 links the metabolic activity of the gut microbiota with host body energy homoeostasis. We demonstrate that GPR43-deficient mice are obese on a normal diet, whereas mice overexpressing GPR43 specifically in adipose tissue remain lean even when fed a high-fat diet. Raised under germ-free conditions or after treatment with antibiotics, both types of mice have a normal phenotype. We further show that short-chain fatty acid-mediated activation of GPR43 suppresses insulin signalling in adipocytes, which inhibits fat accumulation in adipose tissue and promotes the metabolism of unincorporated lipids and glucose in other tissues. These findings establish GPR43 as a sensor for excessive dietary energy, thereby controlling body energy utilization while maintaining metabolic homoeostasis. The gut microbiota produces metabolites such as short-chain fatty acids (SCFAs), which can influence the development of obesity. Here Kimura et al. show that SCFAs act via the receptor GPR43, which acts as a sensor for excessive dietary energy and controls body energy utilization as well as metabolic homoeostasis.
Collapse
Affiliation(s)
- Ikuo Kimura
- Department of Pharmacogenomics, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Emerging roles of peroxisome proliferator-activated receptor gamma in cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
32
|
miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat Commun 2013; 4:1769. [PMID: 23612310 PMCID: PMC3644088 DOI: 10.1038/ncomms2742] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 03/15/2013] [Indexed: 12/11/2022] Open
Abstract
Brown adipocytes are a primary site of energy expenditure and reside not only in classical brown adipose tissue but can also be found in white adipose tissue. Here we show that microRNA 155 is enriched in brown adipose tissue and is highly expressed in proliferating brown preadipocytes but declines after induction of differentiation. Interestingly, microRNA 155 and its target, the adipogenic transcription factor CCAAT/enhancer-binding protein β, form a bistable feedback loop integrating hormonal signals that regulate proliferation or differentiation. Inhibition of microRNA 155 enhances brown adipocyte differentiation and induces a brown adipocyte-like phenotype (‘browning’) in white adipocytes. Consequently, microRNA 155-deficient mice exhibit increased brown adipose tissue function and ‘browning’ of white fat tissue. In contrast, transgenic overexpression of microRNA 155 in mice causes a reduction of brown adipose tissue mass and impairment of brown adipose tissue function. These data demonstrate that the bistable loop involving microRNA 155 and CCAAT/enhancer-binding protein β regulates brown lineage commitment, thereby, controlling the development of brown and beige fat cells. Brown fat can dissipate energy as heat and has an important role in energy homoeostasis of rodents and possibly humans. Chen et al. show that microRNA 155 regulates the differentiation of brown adipocytes as well as the 'browning' of white fat cells in mice.
Collapse
|
33
|
Tarone G, Sbroggiò M, Brancaccio M. Key role of ERK1/2 molecular scaffolds in heart pathology. Cell Mol Life Sci 2013; 70:4047-54. [PMID: 23532408 PMCID: PMC11114054 DOI: 10.1007/s00018-013-1321-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/22/2013] [Accepted: 03/06/2013] [Indexed: 12/21/2022]
Abstract
The ability of cardiomyocytes to detect mechanical and humoral stimuli is critical for adaptation of the myocardium in response to new conditions and for sustaining the increased workload during stress. While certain stimuli mediate a beneficial adaptation to stress conditions, others result in maladaptive remodelling, ultimately leading to heart failure. Specific signalling pathways activating either adaptive or maladaptive cardiac remodelling have been identified. Paradoxically, however, in a number of cases, the transduction pathways involved in such opposing responses engage the same signalling proteins. A notable example is the Raf-MEK1/2-ERK1/2 signalling pathway that can control both adaptive and maladaptive remodelling. ERK1/2 signalling requires a signalosome complex where a scaffold protein drives the assembly of these three kinases into a linear pathway to facilitate their sequential phosphorylation, ultimately targeting specific effector molecules. Interestingly, a number of different Raf-MEK1/2-ERK1/2 scaffold proteins have been identified, and their role in determining the adaptive or maladaptive cardiac remodelling is a promising field of investigation for the development of therapeutic strategies capable of selectively potentiating the adaptive response.
Collapse
Affiliation(s)
- Guido Tarone
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, via Nizza, 52, 10126, Turin, Italy,
| | | | | |
Collapse
|
34
|
Zhang H, Koo CY, Stebbing J, Giamas G. The dual function of KSR1: a pseudokinase and beyond. Biochem Soc Trans 2013; 41:1078-82. [PMID: 23863182 DOI: 10.1042/bst20130042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein kinases play a pivotal role in regulating many aspects of biological processes, including development, differentiation and cell death. Within the kinome, 48 kinases (~10%) are classified as pseudokinases owing to the fact that they lack at least one conserved catalytic residue in their kinase domain. However, emerging evidence suggest that some pseudokinases, even without the ability to phosphorylate substrates, are regulators of multiple cellular signalling pathways. Among these is KSR1 (kinase suppressor of Ras 1), which was initially identified as a novel kinase in the Ras/Raf pathway. Subsequent studies showed that KSR1 mainly functions as a platform to assemble different cellular components thereby facilitating signal transduction. In the present article, we discuss recent findings regarding KSR1, indicating that it has dual activity as an active kinase as well as a pseudokinase/scaffolding protein. Moreover, the biological functions of KSR1 in human disorders, notably in malignancies, are also reviewed.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK.
| | | | | | | |
Collapse
|
35
|
Kinase suppressor of Ras 2 (KSR2) regulates tumor cell transformation via AMPK. Mol Cell Biol 2012; 32:3718-31. [PMID: 22801368 DOI: 10.1128/mcb.06754-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Kinase suppressor of Ras 1 (KSR1) and KSR2 are scaffolds that promote extracellular signal-regulated kinase (ERK) signaling but have dramatically different physiological functions. KSR2(-/-) mice show marked deficits in energy expenditure that cause obesity. In contrast, KSR1 disruption has inconsequential effects on development but dramatically suppresses tumor formation by activated Ras. We examined the role of KSR2 in the generation and maintenance of the transformed phenotype in KSR1(-/-) mouse embryo fibroblasts (MEFs) expressing activated Ras(V12) and in tumor cell lines MIN6 and NG108-15. KSR2 rescued ERK activation and accelerated proliferation in KSR1(-/-) MEFs. KSR2 expression alone induced anchorage-independent growth and synergized with the transforming effects of Ras(V12). Similarly, RNA interference (RNAi) of KSR2 in MIN6 and NG108-15 cells inhibited proliferation and colony formation, with concomitant defects in AMP-activated protein kinase (AMPK) signaling, nutrient metabolism, and metabolic capacity. While constitutive activation of AMPK was sufficient to complement the loss of KSR2 in metabolic signaling and anchorage-independent growth, KSR2 RNAi, MEK inhibition, and expression of a KSR2 mutant unable to interact with ERK demonstrated that mitogen-activated protein (MAP) kinase signaling is dispensable for the transformed phenotype of these cells. These data show that KSR2 is essential to tumor cell energy homeostasis and critical to the integration of mitogenic and metabolic signaling pathways.
Collapse
|
36
|
Challa TD, Beaton N, Arnold M, Rudofsky G, Langhans W, Wolfrum C. Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J Biol Chem 2011; 287:6421-30. [PMID: 22207759 DOI: 10.1074/jbc.m111.310342] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased nutrient intake leads to excessive adipose tissue accumulation, obesity, and the development of associated metabolic disorders. How the intestine signals to adipose tissue to adapt to increased nutrient intake, however, is still not completely understood. We show here, that the gut peptide GLP-1 or its long-lasting analog liraglutide, function as intestinally derived signals to induce adipocyte formation, both in vitro and in vivo. GLP-1 and liraglutide activate the GLP-1R, thereby promoting pre-adipocyte proliferation and inhibition of apoptosis. This is achieved at least partly through activation of ERK, PKC, and AKT signaling pathways. In contrast, loss of GLP-1R expression causes reduction in adipogenesis, through induction of apoptosis in pre-adipocytes, by inhibition of the above mentioned pathways. Because GLP-1 and liraglutide are used for the treatment of type 2 diabetes, these findings implicate GLP-1 as a regulator of adipogenesis, which could be an alternate pathway leading to improved lipid homeostasis and controlled downstream insulin signaling.
Collapse
Affiliation(s)
- Tenagne Delessa Challa
- Swiss Federal Institute of Technology, ETH Zürich, Institute of Food Nutrition and Health, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Protein scaffolds control the intensity and duration of signaling and dictate the specificity of signaling through MAP kinase pathways. KSR1 is a molecular scaffold of the Raf/MEK/ERK MAP kinase cascade that regulates the intensity and duration of ERK activation. Relative to wild-type mice, ksr1-/- mice are modestly glucose intolerant, but show a normal response to exogenous insulin. However, ksr1-/- mice also demonstrate a three-fold increase in serum insulin levels in response to a glucose challenge, suggesting a role for KSR1 in insulin secretion. The kinase MARK2 is closely related to C-TAK1, a known regulator of KSR1. Mice lacking MARK2 have an increased rate of glucose disposal in response to exogenous insulin, increased glucose tolerance, and are resistant to diet-induced obesity. mark2-/-ksr1-/- (DKO) mice were compared to wild type, mark2-/-, and ksr1-/- mice for their ability to regulate glucose homeostasis. Here we show that disruption of KSR1 in mark2-/- mice reverses the increased sensitivity to exogenous insulin resulting from MARK2 deletion. DKO mice respond to exogenous insulin similarly to wild type and ksr1-/- mice. These data suggest a model whereby MARK2 negatively regulates insulin sensitivity in peripheral tissue through inhibition of KSR1. Consistent with this model, we found that MARK2 binds and phosphorylates KSR1 on Ser392. Phosphorylation of Ser392 is a critical regulator of KSR1 stability, subcellular location, and ERK activation. These data reveal an unexpected role for the molecular scaffold KSR1 in insulin-regulated glucose metabolism.
Collapse
|
38
|
Simulating EGFR-ERK signaling control by scaffold proteins KSR and MP1 reveals differential ligand-sensitivity co-regulated by Cbl-CIN85 and endophilin. PLoS One 2011; 6:e22933. [PMID: 21829671 PMCID: PMC3148240 DOI: 10.1371/journal.pone.0022933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/09/2011] [Indexed: 01/30/2023] Open
Abstract
ERK activation is enhanced by the scaffolding proteins KSR and MP1, localized near the cell membrane and late endosomes respectively, but little is known about their dynamic interplay. We develop here a mathematical model with ordinary differential equations to describe the dynamic activation of EGFR-ERK signaling under a conventional pathway without scaffolds, a KSR-scaffolded pathway, and an MP1-scaffolded pathway, and their impacts were examined under the influence of the endosomal regulators, Cbl-CIN85 and Endophilin A1. This new integrated model, validated against experimental results and computational constraints, shows that changes of ERK activation and EGFR endocytosis in response to EGF concentrations (i.e ligand sensitivity) depend on these scaffold proteins and regulators. The KSR-scaffolded and the conventional pathways act synergistically and are sensitive to EGF stimulation. When the KSR level is high, the sensitivity of ERK activation from this combined pathway remains low when Cbl-CIN85 level is low. But, such sensitivity can be increased with increasing levels of Endophilin if Cbl-CIN85 level becomes high. However, reduced KSR levels already present high sensitivity independent of Endophilin levels. In contrast, ERK activation by MP1 is additive to that of KSR but it shows little ligand-sensitivity under high levels of EGF. This can be partly reversed by increasing level of Endophilin while keeping Cbl-CIN85 level low. Further analyses showed that high levels of KSR affect ligand-sensitivity of EGFR endocytosis whereas MP1 ensures the robustness of endosomal ERK activation. These simulations constitute a multi-dimensional exploration of how EGF-dependent EGFR endocytosis and ERK activation are dynamically affected by scaffolds KSR and MP1, co-regulated by Cbl-CIN85 and Endophilin A1. Together, these results provide a detailed and quantitative demonstration of how regulators and scaffolds can collaborate to fine-tune the ligand-dependent sensitivity of EGFR endocytosis and ERK activation which could underlie differences during normal physiology, disease states and drug responses.
Collapse
|
39
|
Fei Z, Bera TK, Liu X, Xiang L, Pastan I. Ankrd26 gene disruption enhances adipogenesis of mouse embryonic fibroblasts. J Biol Chem 2011; 286:27761-8. [PMID: 21669876 DOI: 10.1074/jbc.m111.248435] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that partial disruption of the Ankrd26 gene in mice leads to hyperphagia and leptin-resistant obesity. To determine whether the Ankrd26 mutation can affect the development of adipocytes, we studied mouse embryo fibroblasts (MEFs) from the mutant mice. We found that Ankrd26(-/-) MEFs have a higher rate of spontaneous adipogenesis than normal MEFs and that adipocyte formation is greatly increased when the cells are induced with troglitazone alone or with a mixture of troglitazone, insulin, dexamethasone, and methylisobutylxanthine. Increased adipogenesis was detected as an increase in lipid droplet formation and in the expression of several markers of adipogenesis. There was an increase in expression of early stage adipogenesis genes such as Krox20, KLF5, C/EBPβ, C/EBPδ, and late stage adipogenesis regulators KLF15, C/EBPα, PPARγ, and aP2. There was also an increase in adipocyte stem cell markers CD34 and Sca-1 and preadipocyte markers Gata2 and Pref-1, indicating an increase in both stem cells and progenitor cells in the mutant MEFs. Furthermore, ERK was found constitutively activated in Anrd26(-/-) MEFs, and the addition of MEK inhibitors to mutant cells blocked ERK activation, decreased adipogenesis induction, and significantly reduced expression of C/EBPδ, KLF15, PPARγ2, CD34, and Pref-1 genes. We conclude that Ankrd26 gene disruption promotes adipocyte differentiation at both the progenitor commitment and differentiation steps and that ERK activation plays a role in this process.
Collapse
Affiliation(s)
- Zhaoliang Fei
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA
| | | | | | | | | |
Collapse
|
40
|
Fisher KW, Das B, Kortum RL, Chaika OV, Lewis RE. Kinase suppressor of ras 1 (KSR1) regulates PGC1α and estrogen-related receptor α to promote oncogenic Ras-dependent anchorage-independent growth. Mol Cell Biol 2011; 31:2453-61. [PMID: 21518958 PMCID: PMC3133429 DOI: 10.1128/mcb.05255-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/08/2011] [Indexed: 12/20/2022] Open
Abstract
Kinase suppressor of ras 1 (KSR1) is a molecular scaffold of the Raf/MEK/extracellular signal-regulated kinase (ERK) cascade that enhances oncogenic Ras signaling. Here we show KSR1-dependent, but ERK-independent, regulation of metabolic capacity is mediated through the expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and estrogen-related receptor α (ERRα). This KSR1-regulated pathway is essential for the transformation of cells by oncogenic Ras. In mouse embryo fibroblasts (MEFs) expressing H-Ras(V12), ectopic PGC1α was sufficient to rescue ERRα expression, metabolic capacity, and anchorage-independent growth in the absence of KSR1. The ability of PGC1α to promote anchorage-independent growth required interaction with ERRα, and treatment with an inhibitor of ERRα impeded anchorage-independent growth. In contrast to PGC1α, the expression of constitutively active ERRα (CA-ERRα) was sufficient to enhance metabolic capacity but not anchorage-independent growth in the absence of KSR1. These data reveal KSR1-dependent control of PGC1α- and ERRα-dependent pathways that are necessary and sufficient for signaling by oncogenic H-Ras(V12) to regulate metabolism and anchorage-independent growth, providing novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kurt W. Fisher
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Binita Das
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | | | - Oleg V. Chaika
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Robert E. Lewis
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
41
|
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60. [PMID: 21779496 PMCID: PMC3128629 DOI: 10.1177/1947601911407323] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
First identified in the early 1980s as retroviral oncogenes, the Raf proteins have been the objects of intense research. The discoveries 10 years later that the Raf family members (Raf-1, B-Raf, and A-Raf) are bona fide Ras effectors and upstream activators of the ubiquitous ERK pathway increased the interest in these proteins primarily because of the central role that this cascade plays in cancer development. The important role of Raf in cancer was corroborated in 2002 with the discovery of B-Raf genetic mutations in a large number of tumors. This led to intensified drug development efforts to target Raf signaling in cancer. This work yielded not only recent clinical successes but also surprising insights into the regulation of Raf proteins by homodimerization and heterodimerization. Surprising insights also came from the hunt for new Raf targets. Although MEK remains the only widely accepted Raf substrate, new kinase-independent roles for Raf proteins have emerged. These include the regulation of apoptosis by suppressing the activity of the proapoptotic kinases, ASK1 and MST2, and the regulation of cell motility and differentiation by controlling the activity of Rok-α. In this review, we discuss the regulation of Raf proteins and their role in cancer, with special focus on the interacting proteins that modulate Raf signaling. We also describe the new pathways controlled by Raf proteins and summarize the successes and failures in the development of efficient anticancer therapies targeting Raf. Finally, we also argue for the necessity of more systemic approaches to obtain a better understanding of how the Ras-Raf signaling network generates biological specificity.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
42
|
Filbert EL, Nguyen A, Markiewicz MA, Fowlkes BJ, Huang YH, Shaw AS. Kinase suppressor of Ras 1 is required for full ERK activation in thymocytes but not for thymocyte selection. Eur J Immunol 2010; 40:3226-34. [PMID: 20865788 DOI: 10.1002/eji.201040349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 08/03/2010] [Accepted: 08/12/2010] [Indexed: 11/06/2022]
Abstract
The scaffold protein kinase suppressor of Ras 1 (KSR1) is critical for efficient activation of ERK in a number of cell types. Consistent with this, we observed a defect in ERK activation in thymocytes that lack KSR1. Interestingly, we found that the defect was much greater after PMA stimulation than by CD3 activation. Since ERK activation is believed to be important for thymocyte development, we analyzed thymocyte selection in KSR1-deficient (KSR1(-/-) ) mice. We found that positive selection in two different TCR transgenic models, HY and AND, was normal. On the other hand, negative selection in the HY model was slightly impaired in KSR1(-/-) mice. However, a defect in negative selection was not apparent in the AND TCR model system or in an endogenous superantigen-mediated model of negative selection. These results suggest that, despite a requirement for KSR1 for full ERK activation in thymocytes, full and efficient ERK activation is not essential for the majority of thymocyte selection events.
Collapse
Affiliation(s)
- Erin L Filbert
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
43
|
SiRNA against Fabp5 induces 3T3-L1 cells apoptosis during adipocytic induction. Mol Biol Rep 2010; 37:4003-11. [PMID: 20238174 DOI: 10.1007/s11033-010-0059-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/05/2010] [Indexed: 01/10/2023]
Abstract
Fatty acid-binding protein 5 (Fabp5), exhibits an important role in binding free fatty acids, as well as regulating lipid metabolism and transport. The purpose of this study was to evaluate the role of Fabp5 during adipogenesis. 3T3-L1 preadipocytes were selected as cell differentiation model and short interfering RNAs (siRNA) against Fabp5 (siFabp5) were prepared. Our results showed that two potent siFabp5 specifically inhibited endogenous expression of Fabp5 at both mRNA and protein level. SiFabp5 had little effect on undifferentiated 3T3-L1 fibroblasts. However, during adipocytic induction, 3T3-L1 preadipocytes transfected with siFabp5 significantly reduced cell viability, as well as increased both caspase-3 activity and procaspase-3 cleavage. Furthermore, we illustrated that knockdown Fabp5 inhibited the expression of PPARγ and C/EBPα during adipocytic induction. In conclusion, our data suggests that Fabp5 is crucial in maintaining the viability of preadipocytes during adipogenesis via the activation of Akt cascade, and decreased Fabp5 expression induce differentiating preadipocytes apoptosis via caspase-3 activation.
Collapse
|
44
|
A functional role for the p62-ERK1 axis in the control of energy homeostasis and adipogenesis. EMBO Rep 2010; 11:226-32. [PMID: 20154642 DOI: 10.1038/embor.2010.7] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 11/08/2022] Open
Abstract
In vivo genetic inactivation of the signalling adapter p62 leads to mature-onset obesity and insulin resistance, which correlate with reduced energy expenditure (EE) and increased adipogenesis, without alterations in feeding or locomotor functions. Enhanced extracellular signal-regulated kinase (ERK) activity in adipose tissue from p62-knockout (p62(-/-)) mice, and differentiating fibroblasts, suggested an important role for this kinase in the metabolic alterations of p62(-/-) mice. Here, we show that genetic inactivation of ERK1 in p62(-/-) mice reverses their increased adiposity and adipogenesis, lower EE and insulin resistance. These results establish genetically that p62 is a crucial regulator of ERK1 in metabolism.
Collapse
|
45
|
Crosstalk between C/EBPbeta phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code. EMBO J 2010; 29:1105-15. [PMID: 20111005 PMCID: PMC2845275 DOI: 10.1038/emboj.2010.3] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 01/07/2010] [Indexed: 11/08/2022] Open
Abstract
Cellular signalling cascades regulate the activity of transcription factors that convert extracellular information into gene regulation. C/EBPbeta is a ras/MAPkinase signal-sensitive transcription factor that regulates genes involved in metabolism, proliferation, differentiation, immunity, senescence, and tumourigenesis. The protein arginine methyltransferase 4 PRMT4/CARM1 interacts with C/EBPbeta and dimethylates a conserved arginine residue (R3) in the C/EBPbeta N-terminal transactivation domain, as identified by mass spectrometry of cell-derived C/EBPbeta. Phosphorylation of the C/EBPbeta regulatory domain by ras/MAPkinase signalling abrogates the interaction between C/EBPbeta and PRMT4/CARM1. Differential proteomic screening, protein interaction studies, and mutational analysis revealed that methylation of R3 constraines interaction with SWI/SNF and Mediator complexes. Mutation of the R3 methylation site alters endogenous myeloid gene expression and adipogenic differentiation. Thus, phosphorylation of the transcription factor C/EBPbeta couples ras signalling to arginine methylation and regulates the interaction of C/EBPbeta with epigenetic gene regulatory protein complexes during cell differentiation.
Collapse
|
46
|
KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab 2009; 10:366-78. [PMID: 19883615 PMCID: PMC2773684 DOI: 10.1016/j.cmet.2009.09.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 07/07/2009] [Accepted: 09/03/2009] [Indexed: 11/23/2022]
Abstract
Kinase suppressors of Ras 1 and 2 (KSR1 and KSR2) function as molecular scaffolds to potently regulate the MAP kinases ERK1/2 and affect multiple cell fates. Here we show that KSR2 interacts with and modulates the activity of AMPK. KSR2 regulates AMPK-dependent glucose uptake and fatty acid oxidation in mouse embryonic fibroblasts and glycolysis in a neuronal cell line. Disruption of KSR2 in vivo impairs AMPK-regulated processes affecting fatty acid oxidation and thermogenesis to cause obesity. Despite their increased adiposity, ksr2(-/-) mice are hypophagic and hyperactive but expend less energy than wild-type mice. In addition, hyperinsulinemic-euglycemic clamp studies reveal that ksr2(-/-) mice are profoundly insulin resistant. The expression of genes mediating oxidative phosphorylation is also downregulated in the adipose tissue of ksr2(-/-) mice. These data demonstrate that ksr2(-/-) mice are highly efficient in conserving energy, revealing a novel role for KSR2 in AMPK-mediated regulation of energy metabolism.
Collapse
|
47
|
Glondu-Lassis M, Dromard M, Chavey C, Puech C, Fajas L, Hendriks W, Freiss G. Downregulation of protein tyrosine phosphatase PTP-BL represses adipogenesis. Int J Biochem Cell Biol 2009; 41:2173-80. [DOI: 10.1016/j.biocel.2009.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/27/2009] [Accepted: 04/01/2009] [Indexed: 12/01/2022]
|
48
|
Tang YF, Zhang Y, Li XY, Li C, Tian W, Liu L. Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2009; 13:331-6. [PMID: 19422302 DOI: 10.1089/omi.2009.0017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs of 19-22 nucleotides (nt) and are important posttranscriptional regulation of genes. A link between miRNA function and cancer was researched by the miRNAs microarray technology recently. However, during adipogenic differentiation of ADSCs process, this technology was less used to study adipogenic differentiation mechanism of ADSCs. In this study, miRNA microarray technology was used to examine the expression of miRNA that were differences between induced group and noninduced group of ADSC adipogenic differentiation. Real-time quantitative PCR (real-time qPCR) was used to quantify the miRNA expression. The TargetScan 5.0 software was used to find their target genes. Our results showed that the expression of rno-miR-31, rno-miR-125b-5p, and rno-miR-326 were downregulation in the adipogenic differentiation process. By the statistic analysis, this study showed that the expression of rno-miR-31 and rno-miR-326 were significantly deregulation. In addition, the target genes of rno-miR-31 and rno-miR-326 were correlated with the adipogenic differentiation. Our study suggested that the expression of rno-miR-31 and rno-miR-326 were involved in the adipogenic differentiation process.
Collapse
Affiliation(s)
- Yan-Feng Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Scaffold proteins contribute to the spatiotemporal control of MAPK signaling and KSR1 is an ERK cascade scaffold that localizes to the plasma membrane in response to growth factor treatment. To better understand the molecular mechanisms of KSR1 function, we examined the interaction of KSR1 with each of the ERK cascade components, Raf, MEK, and ERK. Here, we identify a hydrophobic motif within the proline-rich sequence (PRS) of MEK1 and MEK2 that is required for constitutive binding to KSR1 and find that MEK binding and residues in the KSR1 CA1 region enable KSR1 to form a ternary complex with B-Raf and MEK following growth factor treatment that enhances MEK activation. We also find that docking of active ERK to the KSR1 scaffold allows ERK to phosphorylate KSR1 and B-Raf on feedback S/TP sites. Strikingly, feedback phosphorylation of KSR1 and B-Raf promote their dissociation and result in the release of KSR1 from the plasma membrane. Together, these findings provide unique insight into the signaling dynamics of the KSR1 scaffold and reveal that through regulated interactions with Raf and ERK, KSR1 acts to both potentiate and attenuate ERK cascade activation, thus regulating the intensity and duration of ERK cascade signaling emanating from the plasma membrane during growth factor signaling.
Collapse
|
50
|
Razidlo GL, Johnson HJ, Stoeger SM, Cowan KH, Bessho T, Lewis RE. KSR1 is required for cell cycle reinitiation following DNA damage. J Biol Chem 2009; 284:6705-15. [PMID: 19147494 DOI: 10.1074/jbc.m806457200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KSR1 (kinase suppressor of Ras 1) is a molecular scaffold and positive regulator of the Raf/MEK/ERK phosphorylation cascade. KSR1 is required for maximal ERK activation induced by growth factors and by some cytotoxic agents. We show here that KSR1 is also required for maximal ERK activation induced by UV light, ionizing radiation, or the DNA interstrand cross-linking agent mitomycin C (MMC). We further demonstrate a role for KSR1 in the reinitiation of the cell cycle and proliferation following cell cycle arrest induced by MMC. Cells lacking KSR1 underwent but did not recover from MMC-induced G(2)/M arrest. Expression of KSR1 allowed KSR1(-/-) cells to re-enter the cell cycle following MMC treatment. However, cells expressing a mutated form of KSR1 unable to bind ERK did not recover from MMC-induced cell cycle arrest, demonstrating the requirement for the KSR1-ERK interaction. In addition, constitutive activation of ERK was not sufficient to promote cell cycle reinitiation in MMC-treated KSR1(-/-) cells. Only cells expressing KSR1 recovered from MMC-induced cell cycle arrest. Importantly, MMC-induced DNA damage was repaired in KSR1(-/-) cells, as determined by resolution of gamma-H2AX-containing foci. These data indicate that cell cycle reinitiation is not actively signaled in the absence of KSR1, even when DNA damage has been resolved. These data reveal a specific role for the molecular scaffold KSR1 and KSR1-mediated ERK signaling in the cellular response to DNA interstrand cross-links.
Collapse
Affiliation(s)
- Gina L Razidlo
- Eppley Institute for the Research of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA
| | | | | | | | | | | |
Collapse
|