1
|
Naseem S, Sun L, Qiu J. Stress granules in atherosclerosis: Insights and therapeutic opportunities. Curr Probl Cardiol 2024; 49:102760. [PMID: 39059785 DOI: 10.1016/j.cpcardiol.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Atherosclerosis, a complex inflammatory and metabolic disorder, is the underlying cause of several life-threatening cardiovascular diseases. Stress granules (SG) are biomolecular condensates composed of proteins and mRNA that form in response to stress. Recent studies suggest a potential link between SG and atherosclerosis development. However, there remain gaps in understanding SG role in atherosclerosis development. Here we provide a thorough analysis of the role of SG in atherosclerosis, covering cellular stresses stimulation, core components, and regulatory genes in SG formation. Furthermore, we explore atherosclerosis induced factors such as inflammation, low or oscillatory shear stress (OSS), and oxidative stress (OS) may impact SG formation and then the development of atherosclerotic lesions. We have assessed how changes in SG dynamics impact pro-atherogenic processes like endothelial dysfunction, lipid metabolism, and immune cell recruitment in atherosclerosis. In summary, this review emphasizes the complex interplay between SG and atherosclerosis that could open innovative directions for targeted therapeutic strategies in preventing or treating atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lijuan Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
2
|
Ramos-Velasco B, Naranjo R, Izquierdo JM. Bibliometric Overview on T-Cell Intracellular Antigens and Their Pathological Implications. BIOLOGY 2024; 13:195. [PMID: 38534464 DOI: 10.3390/biology13030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
T-cell intracellular antigen 1 (TIA1) and TIA1-like/related protein (TIAL1/TIAR) are two members of the classical family of RNA binding proteins. Through their selective interactions with distinct RNAs and proteins, these multifunctional regulators are involved in chromatin remodeling, RNA splicing and processing and translation regulation, linking them to a wide range of diseases including neuronal disorders, cancer and other pathologies. From their discovery to the present day, many studies have focused on the behavior of these proteins in order to understand their impact on molecular and cellular processes and to understand their relationship to human pathologies. The volume of research on these proteins in various fields, including molecular biology, biochemistry, cell biology, immunology and cancer, has steadily increased, indicating a growing interest in these gene expression regulators among researchers. This information can be used to know the most productive institutions working in the field, understand the focus of research, identify key areas of involvement, delve deeper into their relationship and impact on different diseases, and to establish the level of study associated with them.
Collapse
Affiliation(s)
- Beatriz Ramos-Velasco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Rocío Naranjo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - José M Izquierdo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
3
|
Fuentes-Jiménez DA, Salinas LS, Morales-Oliva E, Ramírez-Ramírez VA, Arciniega M, Navarro RE. Two predicted α-helices within the prion-like domain of TIAR-1 play a crucial role in its association with stress granules in Caenorhabditis elegans. Front Cell Dev Biol 2023; 11:1265104. [PMID: 38161334 PMCID: PMC10757852 DOI: 10.3389/fcell.2023.1265104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Stress granules (SGs) are sites for mRNA storage, protection, and translation repression. TIA1 and TIAR1 are two RNA-binding proteins that are key players in SGs formation in mammals. TIA1/TIAR have a prion-like domain (PrD) in their C-terminal that promotes liquid-phase separation. Lack of any TIA1/TIAR has severe consequences in mice. However, it is not clear whether the failure to form proper SGs is the cause of any of these problems. We disrupted two predicted α-helices within the prion-like domain of the Caenohabditis elegans TIA1/TIAR homolog, TIAR-1, to test whether its association with SGs is important for the nematode. We found that tiar-1 PrD mutant animals continued to form TIAR-1 condensates under stress in the C. elegans gonad. Nonetheless, TIAR-1 condensates appeared fragile and disassembled quickly after stress. Apparently, the SGs continued to associate regularly as observed with CGH-1, an SG marker. Like tiar-1-knockout nematodes, tiar-1 PrD mutant animals exhibited fertility problems and a shorter lifespan. Notwithstanding this, tiar-1 PrD mutant nematodes were no sensitive to stress. Our data demonstrate that the predicted prion-like domain of TIAR-1 is important for its association with stress granules. Moreover, this domain may also play a significant role in various TIAR-1 functions unrelated to stress, such as fertility, embryogenesis and lifespan.
Collapse
Affiliation(s)
- D. A. Fuentes-Jiménez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - L. S. Salinas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - E. Morales-Oliva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - V. A. Ramírez-Ramírez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M. Arciniega
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - R. E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Sung HM, Schott J, Boss P, Lehmann JA, Hardt MR, Lindner D, Messens J, Bogeski I, Ohler U, Stoecklin G. Stress-induced nuclear speckle reorganization is linked to activation of immediate early gene splicing. J Cell Biol 2023; 222:e202111151. [PMID: 37956386 PMCID: PMC10641589 DOI: 10.1083/jcb.202111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/13/2023] [Accepted: 09/29/2023] [Indexed: 11/15/2023] Open
Abstract
Current models posit that nuclear speckles (NSs) serve as reservoirs of splicing factors and facilitate posttranscriptional mRNA processing. Here, we discovered that ribotoxic stress induces a profound reorganization of NSs with enhanced recruitment of factors required for splice-site recognition, including the RNA-binding protein TIAR, U1 snRNP proteins and U2-associated factor 65, as well as serine 2 phosphorylated RNA polymerase II. NS reorganization relies on the stress-activated p38 mitogen-activated protein kinase (MAPK) pathway and coincides with splicing activation of both pre-existing and newly synthesized pre-mRNAs. In particular, ribotoxic stress causes targeted excision of retained introns from pre-mRNAs of immediate early genes (IEGs), whose transcription is induced during the stress response. Importantly, enhanced splicing of the IEGs ZFP36 and FOS is accompanied by relocalization of the corresponding nuclear mRNA foci to NSs. Our study reveals NSs as a dynamic compartment that is remodeled under stress conditions, whereby NSs appear to become sites of IEG transcription and efficient cotranscriptional splicing.
Collapse
Affiliation(s)
- Hsu-Min Sung
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Johanna Schott
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Philipp Boss
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Biology, Humboldt University, Berlin, Germany
| | - Janina A. Lehmann
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Marius Roland Hardt
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Doris Lindner
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Joris Messens
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Biology, Humboldt University, Berlin, Germany
| | - Georg Stoecklin
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
5
|
Sołtys K, Tarczewska A, Bystranowska D. Modulation of biomolecular phase behavior by metal ions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119567. [PMID: 37582439 DOI: 10.1016/j.bbamcr.2023.119567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Liquid-liquid phase separation (LLPS) appears to be a newly appreciated aspect of the cellular organization of biomolecules that leads to the formation of membraneless organelles (MLOs). MLOs generate distinct microenvironments where particular biomolecules are highly concentrated compared to those in the surrounding environment. Their thermodynamically driven formation is reversible, and their liquid nature allows them to fuse with each other. Dysfunctional biomolecular condensation is associated with human diseases. Pathological states of MLOs may originate from the mutation of proteins or may be induced by other factors. In most aberrant MLOs, transient interactions are replaced by stronger and more rigid interactions, preventing their dissolution, and causing their uncontrolled growth and dysfunction. For these reasons, there is great interest in identifying factors that modulate LLPS. In this review, we discuss an enigmatic and mostly unexplored aspect of this process, namely, the regulatory effects of metal ions on the phase behavior of biomolecules.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
6
|
Wang S, Sun S. Translation dysregulation in neurodegenerative diseases: a focus on ALS. Mol Neurodegener 2023; 18:58. [PMID: 37626421 PMCID: PMC10464328 DOI: 10.1186/s13024-023-00642-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
RNA translation is tightly controlled in eukaryotic cells to regulate gene expression and maintain proteome homeostasis. RNA binding proteins, translation factors, and cell signaling pathways all modulate the translation process. Defective translation is involved in multiple neurological diseases including amyotrophic lateral sclerosis (ALS). ALS is a progressive neurodegenerative disorder and poses a major public health challenge worldwide. Over the past few years, tremendous advances have been made in the understanding of the genetics and pathogenesis of ALS. Dysfunction of RNA metabolisms, including RNA translation, has been closely associated with ALS. Here, we first introduce the general mechanisms of translational regulation under physiological and stress conditions and review well-known examples of translation defects in neurodegenerative diseases. We then focus on ALS-linked genes and discuss the recent progress on how translation is affected by various mutant genes and the repeat expansion-mediated non-canonical translation in ALS.
Collapse
Affiliation(s)
- Shaopeng Wang
- Department of Physiology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shuying Sun
- Department of Physiology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Vatandaslar H, Garzia A, Meyer C, Godbersen S, Brandt LTL, Griesbach E, Chao JA, Tuschl T, Stoffel M. In vivo PAR-CLIP (viP-CLIP) of liver TIAL1 unveils targets regulating cholesterol synthesis and secretion. Nat Commun 2023; 14:3386. [PMID: 37296170 PMCID: PMC10256721 DOI: 10.1038/s41467-023-39135-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
System-wide cross-linking and immunoprecipitation (CLIP) approaches have unveiled regulatory mechanisms of RNA-binding proteins (RBPs) mainly in cultured cells due to limitations in the cross-linking efficiency of tissues. Here, we describe viP-CLIP (in vivo PAR-CLIP), a method capable of identifying RBP targets in mammalian tissues, thereby facilitating the functional analysis of RBP-regulatory networks in vivo. We applied viP-CLIP to mouse livers and identified Insig2 and ApoB as prominent TIAL1 target transcripts, indicating an important role of TIAL1 in cholesterol synthesis and secretion. The functional relevance of these targets was confirmed by showing that TIAL1 influences their translation in hepatocytes. Mutant Tial1 mice exhibit altered cholesterol synthesis, APOB secretion and plasma cholesterol levels. Our results demonstrate that viP-CLIP can identify physiologically relevant RBP targets by finding a factor implicated in the negative feedback regulation of cholesterol biosynthesis.
Collapse
Affiliation(s)
- Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Laura T L Brandt
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland.
- Medical Faculty, University of Zürich, 8091, Zürich, Switzerland.
| |
Collapse
|
8
|
Wang L, Ji Y, Chen Y, Bai J, Gao P, Feng P. A splicing silencer in SMN2 intron 6 is critical in spinal muscular atrophy. Hum Mol Genet 2023; 32:971-983. [PMID: 36255739 DOI: 10.1093/hmg/ddac260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a fatal neuromuscular disease caused by homozygous deletions or mutations of the SMN1 gene. SMN2 is a paralogous gene of SMN1 and a modifying gene of SMA. A better understanding of how SMN2 exon 7 splicing is regulated helps discover new therapeutic targets for SMA therapy. Based on an antisense walk method to map exonic and intronic splicing silencers (ESSs and ISSs) in SMN2 exon 7 and the proximal regions of its flanking introns, we identified one ISS (ISS6-KH) at upstream of the branch point site in intron 6. By using mutagenesis-coupled RT-PCR with SMN1/2 minigenes, immunochromatography, overexpression and siRNA-knockdown, we found this ISS consists of a bipartite hnRNP A1 binding cis-element and a poly-U sequence located between the proximal hnRNP A1 binding site (UAGCUA) and the branch site. Both HuR and hnRNP C1 proteins promote exon 7 skipping through the poly-U stretch. Mutations or deletions of these motifs lead to efficient SMN2 exon 7 inclusion comparable to SMN1 gene. Furthermore, we identified an optimal antisense oligonucleotide that binds the intron six ISS and causes striking exon 7 inclusion in the SMN2 gene in patient fibroblasts and SMA mouse model. Our findings demonstrate that this novel ISS plays an important role in SMN2 exon 7 skipping and highlight a new therapeutic target for SMA therapy.
Collapse
Affiliation(s)
- Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yinfeng Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yuqing Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jialin Bai
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Pengchao Feng
- Nanjing Antisense Biopharmaceutical Co., Ltd, Nanjing 210046, China
| |
Collapse
|
9
|
Cheng HWA, Callis TB, Montgomery AP, Danon JJ, Jorgensen WT, Ke YD, Ittner LM, Werry EL, Kassiou M. Understanding In Vitro Pathways to Drug Discovery for TDP-43 Proteinopathies. Int J Mol Sci 2022; 23:ijms232314769. [PMID: 36499097 PMCID: PMC9738080 DOI: 10.3390/ijms232314769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The use of cellular models is a common means to investigate the potency of therapeutics in pre-clinical drug discovery. However, there is currently no consensus on which model most accurately replicates key aspects of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) pathology, such as accumulation of insoluble, cytoplasmic transactive response DNA-binding protein (TDP-43) and the formation of insoluble stress granules. Given this, we characterised two TDP-43 proteinopathy cellular models that were based on different aetiologies of disease. The first was a sodium arsenite-induced chronic oxidative stress model and the second expressed a disease-relevant TDP-43 mutation (TDP-43 M337V). The sodium arsenite model displayed most aspects of TDP-43, stress granule and ubiquitin pathology seen in human ALS/FTD donor tissue, whereas the mutant cell line only modelled some aspects. When these two cellular models were exposed to small molecule chemical probes, different effects were observed across the two models. For example, a previously disclosed sulfonamide compound decreased cytoplasmic TDP-43 and increased soluble levels of stress granule marker TIA-1 in the cellular stress model without impacting these levels in the mutant cell line. This study highlights the challenges of using cellular models in lead development during drug discovery for ALS and FTD and reinforces the need to perform assessments of novel therapeutics across a variety of cell lines and aetiological models.
Collapse
Affiliation(s)
- Hei W. A. Cheng
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Timothy B. Callis
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew P. Montgomery
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan J. Danon
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - William T. Jorgensen
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yazi D. Ke
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 2 Technology Place, Macquarie University, Sydney, NSW 2109, Australia
| | - Lars M. Ittner
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 2 Technology Place, Macquarie University, Sydney, NSW 2109, Australia
| | - Eryn L. Werry
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
10
|
Adenovirus infection controls processing bodies to stabilize AU-rich element-containing mRNA. Virology 2022; 573:124-130. [PMID: 35779334 DOI: 10.1016/j.virol.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
Abstract
In the adenovirus-infected cells, virus mRNAs are selectively exported to the cytoplasm by virus early gene products to facilitate virus replication. We previously showed AU-rich elements (AREs) containing mRNAs are exported to the cytoplasm and stabilized in infected cells. Here, we analyzed ribonucleoprotein (RNP) granules in the cytoplasm that are involved in mRNA degradation to elucidate the mechanism of ARE-mRNA stabilization in adenovirus infected cells. Our findings showed that processing bodies (PBs) aggregate, then almost all PBs are translocated to aggresomes formed by adenoviral gene products during the late phase of infection. Furthermore, E4orf3 was required for the PBs translocation, and the same domains of E4orf3-mutants required to change the form of promyelocytic leukemia bodies were also needed for PBs translocation. Luciferase activity showed that these domains were critical for miRNA- and ARE-mediated mRNA decay. These findings suggest that adenovirus changes the behavior of PBs to prevent ARE-mRNA downregulation.
Collapse
|
11
|
Fernández-Gómez A, Velasco BR, Izquierdo JM. Dynamics of T-Cell Intracellular Antigen 1-Dependent Stress Granules in Proteostasis and Welander Distal Myopathy under Oxidative Stress. Cells 2022; 11:cells11050884. [PMID: 35269506 PMCID: PMC8909843 DOI: 10.3390/cells11050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein that is primarily involved in the post-transcriptional regulation of cellular RNAs. Furthermore, it is a key component of stress granules (SGs), RNA, and protein aggregates that are formed in response to stressful stimuli to reduce cellular activity as a survival mechanism. TIA1 p.E384K mutation is the genetic cause of Welander distal myopathy (WDM), a late-onset muscular dystrophy whose pathogenesis has been related to modifying SG dynamics. In this study, we present the results obtained by analyzing two specific aspects: (i) SGs properties and dynamics depending on the amino acid at position 384 of TIA1; and (ii) the formation/disassembly time-course of TIA1WT/WDM-dependent SGs under oxidative stress. The generation of TIA1 variants—in which the amino acid mutated in WDM and the adjacent ones were replaced by lysines, glutamic acids, or alanines—allowed us to verify that the inclusion of a single lysine is necessary and sufficient to alter SGs dynamics. Moreover, time-lapse microscopy analysis allowed us to establish in vivo the dynamics of TIA1WT/WDM-dependent SG formation and disassembly, after the elimination of the oxidizing agent, for 1 and 3 h, respectively. Our observations show distinct dynamics between the formation and disassembly of TIA1WT/WDM-dependent SGs. Taken together, this study has allowed us to expand the existing knowledge on the role of TIA1 and the WDM mutation in SG formation.
Collapse
|
12
|
G3bp1 - microRNA-1 axis regulates cardiomyocyte hypertrophy. Cell Signal 2022; 91:110245. [PMID: 35017014 PMCID: PMC8802629 DOI: 10.1016/j.cellsig.2022.110245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Adaptation of gene expression is one of the most fundamental response of cardiomyocytes to hypertrophic stimuli. G3bp1, an RNA binding protein with site-specific endoribonuclease activity regulates the processing of pre-miR-1 stem-loop, and thus levels of cardiomyocyte -enriched mature miR-1. Here, we examine the role of G3bp1 in regulating gene expression in quiescent cardiomyocytes and those undergoing growth-factor induced hypertrophy. Further, we determine if these changes are facilitated through G3bp1-mediated regulation of miR-1 in these cardiomyocytes. Using isolated cardiomyocytes with knockdown of endogenous G3bp1, we performed high throughput RNA sequencing to determine the change in cardiac transcriptome. Then, using gain and loss of function approach for both, G3bp1 and miR-1, alone or in combination we examine the G3bp1-miR-1 signaling in regulating gene expression and Endothelin (ET-1) -induced cardiomyocyte hypertrophy. We show that knockdown of endogenous G3bp1 results in inhibition of genes involved in calcium handling, cardiac muscle contraction, action potential and sarcomeric structure. In addition, there is inhibition of genes that contribute to hypertrophic and dilated cardiomyopathy development. Conversely, an increase is seen in genes that negatively regulate the Hippo signaling, like Rassf1 and Arrdc3, along with inflammatory genes of TGF-β and TNF pathways. Knockdown of G3bp1 restricts ET-1 induced cardiomyocyte hypertrophy. Interestingly, concurrent silencing of G3bp1 and miR-1 rescues the change in gene expression and inhibition of hypertrophy seen with knockdown of G3bp1 alone. Similarly, expression of exogenous G3bp1 reverses the miR-1 induced inhibition of gene expression. Intriguingly, expression of Gfp tagged G3bp1 results in perinuclear accumulations of G3bp1-Gfp, resembling Stress Granules. Based on our results, we conclude that G3bp1 through its regulation of mature miR-1 levels plays a critical role in regulating the expression of essential cardiac-enriched genes and those involved in development of cardiomyocyte hypertrophy.
Collapse
|
13
|
Gourdomichali O, Zonke K, Kattan FG, Makridakis M, Kontostathi G, Vlahou A, Doxakis E. In Situ Peroxidase Labeling Followed by Mass-Spectrometry Reveals TIA1 Interactome. BIOLOGY 2022; 11:biology11020287. [PMID: 35205152 PMCID: PMC8869308 DOI: 10.3390/biology11020287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 01/15/2023]
Abstract
TIA1 is a broadly expressed DNA/RNA binding protein that regulates multiple aspects of RNA metabolism. It is best known for its role in stress granule assembly during the cellular stress response. Three RNA recognition motifs mediate TIA1 functions along with a prion-like domain that supports multivalent protein-protein interactions that are yet poorly characterized. Here, by fusing the enhanced ascorbate peroxidase 2 (APEX2) biotin-labeling enzyme to TIA1 combined with mass spectrometry, the proteins in the immediate vicinity of TIA1 were defined in situ. Eighty-six and 203 protein partners, mostly associated with ribonucleoprotein complexes, were identified in unstressed control and acute stress conditions, respectively. Remarkably, the repertoire of TIA1 protein partners was highly dissimilar between the two cellular states. Under unstressed control conditions, the biological processes associated with the TIA1 interactome were enriched for cytosolic ontologies related to mRNA metabolism, such as translation initiation, nucleocytoplasmic transport, and RNA catabolism, while the protein identities were primarily represented by RNA binding proteins, ribosomal subunits, and eicosanoid regulators. Under acute stress, TIA1-labeled partners displayed a broader subcellular distribution that included the chromosomes and mitochondria. The enriched biological processes included splicing, translation, and protein synthesis regulation, while the molecular function of the proteins was enriched for RNA binding activity, ribosomal subunits, DNA double-strand break repair, and amide metabolism. Altogether, these data highlight the TIA1 spatial environment with its different partners in diverse cellular states and pave the way to dissect TIA1 role in these processes.
Collapse
Affiliation(s)
- Olga Gourdomichali
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (O.G.); (K.Z.); (F.-G.K.); (M.M.); (G.K.); (A.V.)
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Katerina Zonke
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (O.G.); (K.Z.); (F.-G.K.); (M.M.); (G.K.); (A.V.)
| | - Fedon-Giasin Kattan
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (O.G.); (K.Z.); (F.-G.K.); (M.M.); (G.K.); (A.V.)
- Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Manousos Makridakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (O.G.); (K.Z.); (F.-G.K.); (M.M.); (G.K.); (A.V.)
| | - Georgia Kontostathi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (O.G.); (K.Z.); (F.-G.K.); (M.M.); (G.K.); (A.V.)
| | - Antonia Vlahou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (O.G.); (K.Z.); (F.-G.K.); (M.M.); (G.K.); (A.V.)
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (O.G.); (K.Z.); (F.-G.K.); (M.M.); (G.K.); (A.V.)
- Correspondence:
| |
Collapse
|
14
|
Sun M, Wu S, Zhang X, Liu Z, Zhang L, Kang S, Liao J, Liu M, Qin Q, Wei J. Grouper TIA-1 functions as a crucial antiviral molecule against nervous necrosis virus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 121:478-486. [PMID: 35085738 DOI: 10.1016/j.fsi.2022.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
T-cell intracellular antigen (TIA)-1 is a prion-related RNA-binding protein involved in splicing and translational repression, and regulates translation in response to stress conditions by isolating target mRNAs in stress granules (SGs). However, little is known about the potential roles of fish TIA-1 and how it works in viral infection. In this study, the TIA-1 (EcTIA-1) homolog from orange-spotted grouper (Epinephelus coioides) was cloned and characterized. The open reading frame (ORF) sequence of EcTIA-1 encoded a 388 amino acid protein with predicted molecular mass of 42.73 kDa. EcTIA-1 contains three conserved domains of RNA recognition motif (RRM) that may interact with RNA via its second and third RRMs. Overexpression of EcTIA-1 inhibited red-spotted grouper nervous necrosis virus (RGNNV) replication and positively regulated interferon immune response, which was increased by knockdown of EcTIA-1. RGNNV induced formation of SGs in cells with EcTIA-1 overexpression. These results provide a novel insight into understanding the roles of fish TIA-1 in response to RNA viruses.
Collapse
Affiliation(s)
- Mengshi Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Siting Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zetian Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Luhao Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shaozhu Kang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiaming Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Mengke Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qiwei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 528478, PR China.
| | - Jingguang Wei
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
15
|
The Multifunctional Faces of T-Cell Intracellular Antigen 1 in Health and Disease. Int J Mol Sci 2022; 23:ijms23031400. [PMID: 35163320 PMCID: PMC8836218 DOI: 10.3390/ijms23031400] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein that is expressed in many tissues and in the vast majority of species, although it was first discovered as a component of human cytotoxic T lymphocytes. TIA1 has a dual localization in the nucleus and cytoplasm, where it plays an important role as a regulator of gene-expression flux. As a multifunctional master modulator, TIA1 controls biological processes relevant to the physiological functioning of the organism and the development and/or progression of several human pathologies. This review summarizes our current knowledge of the molecular aspects and cellular processes involving TIA1, with relevance for human pathophysiology.
Collapse
|
16
|
Carrascoso I, Velasco BR, Izquierdo JM. Deficiency of T-Cell Intracellular Antigen 1 in Murine Embryonic Fibroblasts Is Associated with Changes in Mitochondrial Morphology and Respiration. Int J Mol Sci 2021; 22:ijms222312775. [PMID: 34884582 PMCID: PMC8657690 DOI: 10.3390/ijms222312775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
T-cell intracellular antigen 1 (TIA1) is a multifunctional RNA-binding protein involved in regulating gene expression and splicing during development and in response to environmental stress, to maintain cell homeostasis and promote survival. Herein, we used TIA1-deficient murine embryonic fibroblasts (MEFs) to study their role in mitochondria homeostasis. We found that the loss of TIA1 was associated with changes in mitochondrial morphology, promoting the appearance of elongated mitochondria with heterogeneous cristae density and size. The proteomic patterns of TIA1-deficient MEFs were consistent with expression changes in molecular components related to mitochondrial dynamics/organization and respiration. Bioenergetics analysis illustrated that TIA1 deficiency enhances mitochondrial respiration. Overall, our findings shed light on the role of TIA1 in mitochondrial dynamics and highlight a point of crosstalk between potential pro-survival and pro-senescence pathways.
Collapse
|
17
|
Hu H, Zhao X, Cui Y, Li S, Gong Y. SpTIA-1 suppresses WSSV infection by promoting apoptosis in mud crab (Scylla paramamosain). Mol Immunol 2021; 140:158-166. [PMID: 34715578 DOI: 10.1016/j.molimm.2021.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
TIA-1 (T cell restricted intracellular antigen-1) is a kind of RNA-binding protein which serves as the downstream of CED-9 (a BCL2 homolog) and induces apoptosis under stress conditions. So far, the function of apoptosis mediated by TIA-1 has been extensively studied in higher animals, and apoptosis happens to be related to biological immune defense. However, the involvement of TIA-1 in the study of immune function during viral infection has not been clearly studied, especially in marine invertebrates. In the study, SpTIA-1 in mud crab (Scylla paramamosain) was specifically identified. The Open Reading Frame (ORF) of SpTIA-1 was consisted of 1116 nucleotide bases and encoded 372 amino acids. Besides, the results showed that the expression of SpTIA-1 was obviously up-regulated during WSSV (White Spot Syndrome Virus) infection in hemocytes of mud crab. Furthermore, through RNAi approach, we found that SpTIA-1 could activate Caspase-3 signaling and increase ROS levels to reduce mitochondrial membrane potential, resulting in the increase of apoptosis rate in hemocytes, which eventually suppressed WSSV multiplication in mud crab. The current study therefore improves the knowledge of antiviral immunity in mud crab and provides new insights into the innate immunity of marine crustaceans.
Collapse
Affiliation(s)
- Hang Hu
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Xinshan Zhao
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
18
|
Byres LP, Mufteev M, Yuki KE, Wei W, Piekna A, Wilson MD, Rodrigues DC, Ellis J. Identification of TIA1 mRNA targets during human neuronal development. Mol Biol Rep 2021; 48:6349-6361. [PMID: 34410578 PMCID: PMC8437838 DOI: 10.1007/s11033-021-06634-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022]
Abstract
Background Neuronal development is a tightly controlled process involving multi-layered regulatory mechanisms. While transcriptional pathways regulating neurodevelopment are well characterized, post-transcriptional programs are still poorly understood. TIA1 is an RNA-binding protein that can regulate splicing, stability, or translation of target mRNAs, and has been shown to play critical roles in stress response and neurodevelopment. However, the identity of mRNAs regulated by TIA1 during neurodevelopment under unstressed conditions is still unknown. Methods and Results To identify the mRNAs targeted by TIA1 during the first stages of human neurodevelopment, we performed RNA immunoprecipitation-sequencing (RIP-seq) on human embryonic stem cells (hESCs) and derived neural progenitor cells (NPCs), and cortical neurons under unstressed conditions. While there was no change in TIA1 protein levels, the number of TIA1 targeted mRNAs decreased from pluripotent cells to neurons. We identified 2400, 845, and 330 TIA1 mRNA targets in hESCs, NPC, and neurons, respectively. The vast majority of mRNA targets in hESC were genes associated with neurodevelopment and included autism spectrum disorder-risk genes that were not bound in neurons. Additionally, we found that most TIA1 mRNA targets have reduced ribosomal engagement levels. Conclusion Our results reveal TIA1 mRNA targets in hESCs and during human neurodevelopment, indicate that translation repression is a key process targeted by TIA1 binding and implicate TIA1 function in neuronal differentiation. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-021-06634-0.
Collapse
Affiliation(s)
- Loryn P Byres
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marat Mufteev
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kyoko E Yuki
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Wei Wei
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Alina Piekna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Deivid C Rodrigues
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
19
|
Jeon P, Lee JA. Dr. Jekyll and Mr. Hyde? Physiology and Pathology of Neuronal Stress Granules. Front Cell Dev Biol 2021; 9:609698. [PMID: 33718353 PMCID: PMC7947226 DOI: 10.3389/fcell.2021.609698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022] Open
Abstract
Stress granules (SGs) are membraneless cytosolic granules containing dense aggregations of RNA-binding proteins and RNAs. They appear in the cytosol under stress conditions and inhibit the initiation of mRNA translation. SGs are dynamically assembled under stressful conditions and rapidly disassembled after stress removal. They are heterogeneous in their RNA and protein content and are cell type- and stress-specific. In post-mitotic neurons, which do not divide, the dynamics of neuronal SGs are tightly regulated, implying that their dysregulation leads to neurodegeneration. Mutations in RNA-binding proteins are associated with SGs. SG components accumulate in cytosolic inclusions in many neurodegenerative diseases, such as frontotemporal dementia and amyotrophic lateral sclerosis. Although SGs primarily mediate a pro-survival adaptive response to cellular stress, abnormal persistent SGs might develop into aggregates and link to the pathogenesis of diseases. In this review, we present recent advances in the study of neuronal SGs in physiology and pathology, and discuss potential therapeutic approaches to remove abnormal, persistent SGs associated with neurodegeneration.
Collapse
Affiliation(s)
- Pureum Jeon
- Department of Biotechnology and Biological Sciences, Hannam University, Daejeon, South Korea
| | - Jin A Lee
- Department of Biotechnology and Biological Sciences, Hannam University, Daejeon, South Korea
| |
Collapse
|
20
|
Fritzsching KJ, Yang Y, Pogue EM, Rayman JB, Kandel ER, McDermott AE. Micellar TIA1 with folded RNA binding domains as a model for reversible stress granule formation. Proc Natl Acad Sci U S A 2020; 117:31832-31837. [PMID: 33257579 PMCID: PMC7749305 DOI: 10.1073/pnas.2007423117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
TIA1, a protein critical for eukaryotic stress response and stress granule formation, is structurally characterized in full-length form. TIA1 contains three RNA recognition motifs (RRMs) and a C-terminal low-complexity domain, sometimes referred to as a "prion-related domain" or associated with amyloid formation. Under mild conditions, full-length (fl) mouse TIA1 spontaneously oligomerizes to form a metastable colloid-like suspension. RRM2 and RRM3, known to be critical for function, are folded similarly in excised domains and this oligomeric form of apo fl TIA1, based on NMR chemical shifts. By contrast, the termini were not detected by NMR and are unlikely to be amyloid-like. We were able to assign the NMR shifts with the aid of previously assigned solution-state shifts for the RRM2,3 isolated domains and homology modeling. We present a micellar model of fl TIA1 wherein RRM2 and RRM3 are colocalized, ordered, hydrated, and available for nucleotide binding. At the same time, the termini are disordered and phase separated, reminiscent of stress granule substructure or nanoscale liquid droplets.
Collapse
Affiliation(s)
| | - Yizhuo Yang
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Emily M Pogue
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Joseph B Rayman
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Eric R Kandel
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- HHMI, Columbia University, New York, NY 10032
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032
- Kavli Institute for Brain Science, Columbia University, New York, NY 10032
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY 10027;
| |
Collapse
|
21
|
Omer A, Patel D, Moran JL, Lian XJ, Di Marco S, Gallouzi IE. Autophagy and heat-shock response impair stress granule assembly during cellular senescence. Mech Ageing Dev 2020; 192:111382. [PMID: 33049246 DOI: 10.1016/j.mad.2020.111382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Stress granules (SGs) are membraneless organelles formed in response to insult. These granules are related to pathological granules found in age-related neurogenerative diseases such as Parkinson's and Alzheimer's. Previously, we demonstrated that senescent cells, which accumulate with age, exposed to chronic oxidative stress, are unable to form SGs. Here, we show that the senescent cells' inability to form SGs correlates with an upregulation in both the heat-shock response and autophagy pathways, both of which are well-established promoters of SG disassembly. Our data also reveals that the knockdown of HSP70 and ATG5, important components of the heat-shock response and autophagy pathways, respectively, restores the number of SGs formed in senescent cells exposed to chronic oxidative stress. Surprisingly, under these conditions, the depletion of HSP70 or ATG5 did not affect the clearance of these SGs during their recovery from chronic stress. These data reveal that senescent cells possess a unique heat-shock and autophagy-dependent ability to impair the formation of SGs in response to chronic stress, thereby expanding the existing understanding of SG dynamics in senescent cells and their potential contribution to age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Amr Omer
- McGill University, Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, Montreal, Quebec, Canada.
| | - Devang Patel
- McGill University, Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, Montreal, Quebec, Canada
| | - Julian Lucas Moran
- McGill University, Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, Montreal, Quebec, Canada
| | - Xian Jin Lian
- McGill University, Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, Montreal, Quebec, Canada
| | - Sergio Di Marco
- McGill University, Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, Montreal, Quebec, Canada
| | - Imed-Eddine Gallouzi
- McGill University, Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
TOP mRNPs: Molecular Mechanisms and Principles of Regulation. Biomolecules 2020; 10:biom10070969. [PMID: 32605040 PMCID: PMC7407576 DOI: 10.3390/biom10070969] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
The cellular response to changes in the surrounding environment and to stress requires the coregulation of gene networks aiming to conserve energy and resources. This is often achieved by downregulating protein synthesis. The 5’ Terminal OligoPyrimidine (5’ TOP) motif-containing mRNAs, which encode proteins that are essential for protein synthesis, are the primary targets of translational control under stress. The TOP motif is a cis-regulatory RNA element that begins directly after the m7G cap structure and contains the hallmark invariant 5’-cytidine followed by an uninterrupted tract of 4–15 pyrimidines. Regulation of translation via the TOP motif coordinates global protein synthesis with simultaneous co-expression of the protein components required for ribosome biogenesis. In this review, we discuss architecture of TOP mRNA-containing ribonucleoprotein complexes, the principles of their assembly, and the modes of regulation of TOP mRNA translation.
Collapse
|
23
|
Rayman JB, Hijazi J, Li X, Kedersha N, Anderson PJ, Kandel ER. Genetic Perturbation of TIA1 Reveals a Physiological Role in Fear Memory. Cell Rep 2020; 26:2970-2983.e4. [PMID: 30865887 DOI: 10.1016/j.celrep.2019.02.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/18/2018] [Accepted: 02/12/2019] [Indexed: 01/05/2023] Open
Abstract
TIA1 is a prion-related RNA-binding protein whose capacity to form various types of intracellular aggregates has been implicated in neurodegenerative disease. However, its role in normal brain function is poorly understood. Here, we show that TIA1 bidirectionally modulates stress-dependent synaptic plasticity in the hippocampus, a brain region involved in fear memory and olfactory discrimination learning. At the behavioral level, conditioned odor avoidance is potentiated by TIA1 deletion, whereas overexpression of TIA1 in the ventral hippocampus inhibits both contextual fear memory and avoidance. However, the latter genetic manipulations have little impact on other hippocampus-dependent tasks. Transcriptional profiling indicates that TIA1 presides over a large network of immune system genes with modulatory roles in synaptic plasticity and long-term memory. Our results uncover a physiological and partly sex-dependent function for TIA1 in fear memory and may provide molecular insight into stress-related psychiatric conditions, such as post-traumatic stress disorder (PTSD) and anxiety.
Collapse
Affiliation(s)
- Joseph B Rayman
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Joud Hijazi
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Xiang Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Nancy Kedersha
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J Anderson
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Eric R Kandel
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute at Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
24
|
LeBlang CJ, Medalla M, Nicoletti NW, Hays EC, Zhao J, Shattuck J, Cruz AL, Wolozin B, Luebke JI. Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Front Neurosci 2020; 14:285. [PMID: 32327969 PMCID: PMC7161592 DOI: 10.3389/fnins.2020.00285] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammatory processes play an integral role in the exacerbation and progression of pathology in tauopathies, a class of neurodegenerative disease characterized by aggregation of hyperphosphorylated tau protein. The RNA binding protein (RBP) T-cell Intracellular Antigen 1 (TIA1) is an important regulator of the innate immune response in the periphery, dampening cytotoxic inflammation and apoptosis during cellular stress, however, its role in neuroinflammation is unknown. We have recently shown that TIA1 regulates tau pathophysiology and toxicity in part through the binding of phospho-tau oligomers into pathological stress granules, and that haploinsufficiency of TIA1 in the P301S mouse model of tauopathy results in reduced accumulation of toxic tau oligomers, pathologic stress granules, and the development of downstream pathological features of tauopathy. The putative role of TIA1 as a regulator of the peripheral immune response led us to investigate the effects of TIA1 on neuroinflammation in the context of tauopathy, a chronic stressor in the neural environment. Here, we evaluated indicators of neuroinflammation including; reactive microgliosis and phagocytosis, pro-inflammatory cytokine release, and oxidative stress in hippocampal neurons and glia of wildtype and P301S transgenic mice expressing TIA1+/+, TIA1+/-, and TIA1-/- in both early (5 month) and advanced (9 month) disease states through biochemical, ultrastructural, and histological analyses. Our data show that both TIA1 haploinsufficiency and TIA1 knockout exacerbate neuroinflammatory processes in advanced stages of tauopathy, suggesting that TIA1 dampens the immune response in the central nervous system during chronic stress.
Collapse
Affiliation(s)
- Chelsey Jenna LeBlang
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Maria Medalla
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Nicholas William Nicoletti
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Emma Catherine Hays
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - James Zhao
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jenifer Shattuck
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Anna Lourdes Cruz
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin Wolozin
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- Department of Neuroscience, Boston University, Boston, MA, United States
| | - Jennifer Irene Luebke
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
25
|
Chava S, Reynolds CP, Pathania AS, Gorantla S, Poluektova LY, Coulter DW, Gupta SC, Pandey MK, Challagundla KB. miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Mol Oncol 2019; 14:180-196. [PMID: 31637848 PMCID: PMC6944109 DOI: 10.1002/1878-0261.12588] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 01/15/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid malignancy in children. Despite current aggressive treatment regimens, the prognosis for high-risk NB patients remains poor, with the survival of less than 40%. Amplification/stabilization of MYCN oncogene, in NB is associated with a high risk of recurrence. Thus, there is an urgent need for novel therapeutics. The deregulated expression of microRNA (miR) is reported in NB; nonetheless, its effect on MYCN regulation is poorly understood. First, we identified that miR-15a-5p, miR-15b-5p, and miR-16-5p (hereafter miR-15a, miR-15b or miR-16) were down-regulated in patient-derived xenografts (PDX) with high MYCN expression. MiR targeting sequences on MYCN mRNA were predicted using online databases such as TargetScan and miR database. The R2 database, containing 105 NB patients, showed an inverse correlation between MYCN mRNA and deleted in lymphocytic leukemia (DLEU) 2, a host gene of miR-15. Moreover, overexpression of miR-15a, miR-15b or miR-16 significantly reduced the levels of MYCN mRNA and N-Myc protein. Conversely, inhibiting miR dramatically enhanced MYCN mRNA and N-Myc protein levels, as well as increasing mRNA half-life in NB cells. By performing immunoprecipitation assays of argonaute-2 (Ago2), a core component of the RNA-induced silencing complex, we showed that miR-15a, miR-15b and miR-16 interact with MYCN mRNA. Luciferase reporter assays showed that miR-15a, miR-15b and miR-16 bind with 3'UTR of MYCN mRNA, resulting in MYCN suppression. Moreover, induced expression of miR-15a, miR-15b and miR-16 significantly reduced the proliferation, migration, and invasion of NB cells. Finally, transplanting miR-15a-, miR-15b- and miR-16-expressing NB cells into NSG mice repressed tumor formation and MYCN expression. These data suggest that miR-15a, miR-15b and miR-16 exert a tumor-suppressive function in NB by targeting MYCN. Therefore, these miRs could be considered as potential targets for NB treatment.
Collapse
Affiliation(s)
- Srinivas Chava
- Department of Biochemistry and Molecular Biology & the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - C Patrick Reynolds
- Childhood Cancer Repository, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Anup S Pathania
- Department of Biochemistry and Molecular Biology & the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Uttar Pradesh, India
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
26
|
Baradaran-Heravi Y, Van Broeckhoven C, van der Zee J. Stress granule mediated protein aggregation and underlying gene defects in the FTD-ALS spectrum. Neurobiol Dis 2019; 134:104639. [PMID: 31626953 DOI: 10.1016/j.nbd.2019.104639] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/12/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are dynamic membraneless compartments composed out of RNA-binding proteins (RBPs) and RNA molecules that assemble temporarily to allow the cell to cope with cellular stress by stalling mRNA translation and moving synthesis towards cytoprotective proteins. Aberrant SGs have become prime suspects in the nucleation of toxic protein aggregation in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Perturbed SG dynamics appears to be mediated by alterations in RNA binding proteins (RBP). Indeed, a growing number of FTD and/or ALS related RBPs coding genes (TDP43, FUS, EWSR1, TAF15, hnRNPA1, hnRNPA2B1, ATXN2, TIA1) have been identified to interfere with SG formation through mutation of their low-complexity domain (LCD), and thereby cause or influence disease. Interestingly, disease pathways associated to the C9orf72 repeat expansion, the leading genetic cause of the FTD-ALS spectrum, intersect with SG-mediated protein aggregate formation. In this review, we provide a comprehensive overview of known SG proteins and their genetic contribution to the FTD-ALS spectrum. Importantly, multiple LCD-baring RBPs have already been identified in FTD-ALS that have not yet been genetically linked to disease. These should be considered candidate genes and offer opportunities for gene prioritization when mining sequencing data of unresolved FTD and ALS. Further, we zoom into the current understanding of the molecular processes of perturbed RBP function leading to disturbed SG dynamics, RNA metabolism, and pathological inclusions. Finally, we indicate how these gained insights open new avenues for therapeutic strategies targeting phase separation and SG dynamics to reverse pathological protein aggregation and protect against toxicity.
Collapse
Affiliation(s)
- Yalda Baradaran-Heravi
- Neurodegenerative Brain Diseases group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| | - Julie van der Zee
- Neurodegenerative Brain Diseases group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
27
|
Lourou N, Gavriilidis M, Kontoyiannis DL. Lessons from studying the AU-rich elements in chronic inflammation and autoimmunity. J Autoimmun 2019; 104:102334. [PMID: 31604649 DOI: 10.1016/j.jaut.2019.102334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
AU-rich elements (AREs) comprise one of the most widely studied families of regulatory RNA structures met in RNAs engaged in complex immunological reactions. A multitude of genetic, molecular, holistic and functional studies have been utilized for the analyses of the AREs and their interactions to proteins that bind to them. Data stemming from these studies brought forth a world of RNA-related check-points against infection, chronic inflammation, tumor associated immunity, and autoimmunity; and the interest to capitalize the interactions of AREs for clinical management and therapy. They also provided lessons on the cellular capabilities of post-transcriptional control. Originally thought as transcript-restricted regulators of turnover and translation, ARE-binding proteins do in fact harbor great versatility and interactivity across nuclear and cytoplasmic compartments; and act as functional coordinators of immune-cellular programs. Harnessing these deterministic functions requires extensive knowledge of their synergies or antagonisms at a cell-specific level; but holds great promise since it can provide the efficacy of combinatorial therapies with single agents.
Collapse
Affiliation(s)
- Niki Lourou
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece
| | - Maxim Gavriilidis
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece; Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Greece
| | - Dimitris L Kontoyiannis
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece; Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Greece.
| |
Collapse
|
28
|
Meyer C, Garzia A, Mazzola M, Gerstberger S, Molina H, Tuschl T. The TIA1 RNA-Binding Protein Family Regulates EIF2AK2-Mediated Stress Response and Cell Cycle Progression. Mol Cell 2019; 69:622-635.e6. [PMID: 29429924 DOI: 10.1016/j.molcel.2018.01.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
TIA1 and TIAL1 encode a family of U-rich element mRNA-binding proteins ubiquitously expressed and conserved in metazoans. Using PAR-CLIP, we determined that both proteins bind target sites with identical specificity in 3' UTRs and introns proximal to 5' as well as 3' splice sites. Double knockout (DKO) of TIA1 and TIAL1 increased target mRNA abundance proportional to the number of binding sites and also caused accumulation of aberrantly spliced mRNAs, most of which are subject to nonsense-mediated decay. Loss of PRKRA by mis-splicing triggered the activation of the double-stranded RNA (dsRNA)-activated protein kinase EIF2AK2/PKR and stress granule formation. Ectopic expression of PRKRA cDNA or knockout of EIF2AK2 in DKO cells rescued this phenotype. Perturbation of maturation and/or stability of additional targets further compromised cell cycle progression. Our study reveals the essential contributions of the TIA1 protein family to the fidelity of mRNA maturation, translation, and RNA-stress-sensing pathways in human cells.
Collapse
Affiliation(s)
- Cindy Meyer
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Aitor Garzia
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Michael Mazzola
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Stefanie Gerstberger
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA.
| |
Collapse
|
29
|
Carrascoso I, Alcalde J, Tabas-Madrid D, Oliveros JC, Izquierdo JM. Transcriptome-wide analysis links the short-term expression of the b isoforms of TIA proteins to protective proteostasis-mediated cell quiescence response. PLoS One 2018; 13:e0208526. [PMID: 30533021 PMCID: PMC6289441 DOI: 10.1371/journal.pone.0208526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022] Open
Abstract
Control of gene expression depends on genetics and environmental factors. The T-cell intracellular antigens T-cell intracellular antigen 1 (TIA1), TIA1-like/related protein (TIAL1/TIAR) and human antigen R (HuR/ELAVL1) are RNA-binding proteins that play crucial roles in regulating gene expression in both situations. This study used massive sequencing analysis to uncover molecular and functional mechanisms resulting from the short-time expression of the b isoforms of TIA1 and TIAR, and of HuR in HEK293 cells. Our gene profiling analysis identified several hundred differentially expressed genes (DEGs) and tens of alternative splicing events associated with TIA1b, TIARb and HuR overexpression. Gene ontology analysis revealed that the controlled expression of these proteins strongly influences the patterns of DEGs and RNA variants preferentially associated with development, reproduction, cell cycle, metabolism, autophagy and apoptosis. Mechanistically, TIA1b and TIARb isoforms display both common and differential effects on the regulation of gene expression, involving systematic perturbations of cell biosynthetic machineries (splicing and translation). The transcriptome outputs were validated using functional assays of the targeted cellular processes as well as expression analysis for selected genes. Collectively, our observations suggest that early TIA1b and TIARb expression operates to connect the regulatory crossroads to protective proteostasis responses associated with a survival quiescence phenotype.
Collapse
Affiliation(s)
- Isabel Carrascoso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera, Madrid, Spain
| | - José Alcalde
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera, Madrid, Spain
| | - Daniel Tabas-Madrid
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, C/ Darwin, Madrid, Spain
| | - Juan Carlos Oliveros
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, C/ Darwin, Madrid, Spain
| | - José M. Izquierdo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera, Madrid, Spain
- * E-mail:
| |
Collapse
|
30
|
A Heterologous Cell Model for Studying the Role of T-Cell Intracellular Antigen 1 in Welander Distal Myopathy. Mol Cell Biol 2018; 39:MCB.00299-18. [PMID: 30348840 DOI: 10.1128/mcb.00299-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/09/2018] [Indexed: 11/20/2022] Open
Abstract
Welander distal myopathy (WDM) is a muscle dystrophy characterized by adult-onset distal muscle weakness, prevalently impacting the distal long extensors of the hands and feet. WDM is an autosomal dominant disorder caused by a missense mutation (c.1362G>A; p.E384K) in the TIA1 (T-cell intracellular antigen 1) gene, which encodes an RNA-binding protein basically required for the posttranscriptional regulation of RNAs. We have developed a heterologous cell model of WDM to study the molecular and cellular events associated with mutated TIA1 expression. Specifically, we analyzed how this mutation affects three regulatory functions mediated by TIA1: (i) control of alternative SMN2 (survival motor neuron 2) splicing; (ii) formation, assembly, and disassembly of stress granules; and (iii) mitochondrial dynamics and its consequences for mitophagy, autophagy, and apoptosis. Our results show that whereas WDM-associated TIA1 expression had only a mild effect on SMN2 splicing, it led to suboptimal adaptation to environmental stress, with exacerbated stress granule formation that was accompanied by mitochondrial dysfunction and autophagy. Overall, our observations indicate that some aspects of the cell phenotype seen in muscle of patients with WDM can be recapitulated by ectopic expression of WDM-TIA1 in embryonic kidney cells, highlighting the potential of this model to investigate the pathogenesis of this degenerative disease and possible therapeutics.
Collapse
|
31
|
Masuda K, Kuwano Y. Diverse roles of RNA-binding proteins in cancer traits and their implications in gastrointestinal cancers. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1520. [PMID: 30479000 DOI: 10.1002/wrna.1520] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
Gene expression patterns in cancer cells are strongly influenced by posttranscriptional mechanisms. RNA-binding proteins (RBPs) play key roles in posttranscriptional gene regulation; they can interact with target mRNAs in a sequence- and structure-dependent manner, and determine cellular behavior by manipulating the processing of these mRNAs. Numerous RBPs are aberrantly deregulated in many human cancers and hence, affect the functioning of mRNAs that encode proteins, implicated in carcinogenesis. Here, we summarize the key roles of RBPs in posttranscriptional gene regulation, describe RBPs disrupted in cancer, and lastly focus on RBPs that are responsible for implementing cancer traits in the digestive tract. These evidences may reveal a potential link between changes in expression/function of RBPs and malignant transformation, and a framework for new insights and potential therapeutic applications. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kiyoshi Masuda
- Kawasaki Medical School at Kurashiki-City, Okayama, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School at Tokushima-City, Tokushima, Japan
| |
Collapse
|
32
|
Ravanidis S, Kattan FG, Doxakis E. Unraveling the Pathways to Neuronal Homeostasis and Disease: Mechanistic Insights into the Role of RNA-Binding Proteins and Associated Factors. Int J Mol Sci 2018; 19:ijms19082280. [PMID: 30081499 PMCID: PMC6121432 DOI: 10.3390/ijms19082280] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
The timing, dosage and location of gene expression are fundamental determinants of brain architectural complexity. In neurons, this is, primarily, achieved by specific sets of trans-acting RNA-binding proteins (RBPs) and their associated factors that bind to specific cis elements throughout the RNA sequence to regulate splicing, polyadenylation, stability, transport and localized translation at both axons and dendrites. Not surprisingly, misregulation of RBP expression or disruption of its function due to mutations or sequestration into nuclear or cytoplasmic inclusions have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative disorders such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy, amyotrophic lateral sclerosis and frontotemporal dementia. This review discusses the roles of Pumilio, Staufen, IGF2BP, FMRP, Sam68, CPEB, NOVA, ELAVL, SMN, TDP43, FUS, TAF15, and TIA1/TIAR in RNA metabolism by analyzing their specific molecular and cellular function, the neurological symptoms associated with their perturbation, and their axodendritic transport/localization along with their target mRNAs as part of larger macromolecular complexes termed ribonucleoprotein (RNP) granules.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Fedon-Giasin Kattan
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Epaminondas Doxakis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
33
|
Alcalde J, Izquierdo JM. Proteomic profile changes associated with diminished expression of T-cell intracellular antigens reveal a hormesis response. Biochem Biophys Res Commun 2018; 503:2569-2575. [PMID: 30017198 DOI: 10.1016/j.bbrc.2018.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 01/09/2023]
Abstract
T-cell intracellular antigen (TIA) proteins function as regulators of cell homeostasis by controlling global gene expression in response to dynamic regulatory changes and environmental stress. Here, we used two-dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry (MALDI-TOF/TOF) to identify protein changes associated with the down-regulated expression of TIA proteins. We detected 30 differentially expressed proteins (DEPs), 24 of which were identified, and some of these DEPs were validated by western blotting. In silico analysis showed that DEPs were associated with metabolic processes, detoxification and proteostasis. We mapped the DEPs to the available biological pathways and networks, which included the metabolism of small molecules such as sugars, lipids, amino acids, and nucleotides. Our findings support previous studies and suggest that low expression of TIA proteins might act as a potential adaptive switch to link gene expression reprogramming to a proliferative phenotype mediated by a hormesis phenomenon.
Collapse
Affiliation(s)
- José Alcalde
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas. Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera 1., Cantoblanco, 28049, Madrid, Spain
| | - José M Izquierdo
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas. Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera 1., Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
34
|
Purice MD, Taylor JP. Linking hnRNP Function to ALS and FTD Pathology. Front Neurosci 2018; 12:326. [PMID: 29867335 PMCID: PMC5962818 DOI: 10.3389/fnins.2018.00326] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Following years of rapid progress identifying the genetic underpinnings of amyotrophic lateral sclerosis (ALS) and related diseases such as frontotemporal dementia (FTD), remarkable consistencies have emerged pointing to perturbed biology of heterogeneous nuclear ribonucleoproteins (hnRNPs) as a central driver of pathobiology. To varying extents these RNA-binding proteins are deposited in pathological inclusions in affected tissues in ALS and FTD. Moreover, mutations in hnRNPs account for a significant number of familial cases of ALS and FTD. Here we review the normal function and potential pathogenic contribution of TDP-43, FUS, hnRNP A1, hnRNP A2B1, MATR3, and TIA1 to disease. We highlight recent evidence linking the low complexity sequence domains (LCDs) of these hnRNPs to the formation of membraneless organelles and discuss how alterations in the dynamics of these organelles could contribute to disease. In particular, we discuss the various roles of disease-associated hnRNPs in stress granule assembly and disassembly, and examine the emerging hypothesis that disease-causing mutations in these proteins lead to accumulation of persistent stress granules.
Collapse
Affiliation(s)
- Maria D Purice
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States.,Howard Hughes Medical Institute, Chevy Chase, MD, United States
| |
Collapse
|
35
|
Battu S, Afroz S, Giddaluru J, Naz S, Huang W, Khumukcham SS, Khan RA, Bhat SY, Qureshi IA, Manavathi B, Khan AA, August A, Hasnain SE, Khan N. Amino acid starvation sensing dampens IL-1β production by activating riboclustering and autophagy. PLoS Biol 2018; 16:e2005317. [PMID: 29621237 PMCID: PMC5903674 DOI: 10.1371/journal.pbio.2005317] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/17/2018] [Accepted: 03/05/2018] [Indexed: 11/22/2022] Open
Abstract
Activation of the amino acid starvation response (AAR) increases lifespan and acute stress resistance as well as regulates inflammation. However, the underlying mechanisms remain unclear. Here, we show that activation of AAR pharmacologically by Halofuginone (HF) significantly inhibits production of the proinflammatory cytokine interleukin 1β (IL-1β) and provides protection from intestinal inflammation in mice. HF inhibits IL-1β through general control nonderepressible 2 kinase (GCN2)–dependent activation of the cytoprotective integrated stress response (ISR) pathway, resulting in rerouting of IL-1β mRNA from translationally active polysomes to inactive ribocluster complexes—such as stress granules (SGs)—via recruitment of RNA-binding proteins (RBPs) T cell–restricted intracellular antigen-1(TIA-1)/TIA-1–related (TIAR), which are further cleared through induction of autophagy. GCN2 ablation resulted in reduced autophagy and SG formation, which is inversely correlated with IL-1β production. Furthermore, HF diminishes inflammasome activation through suppression of reactive oxygen species (ROS) production. Our study unveils a novel mechanism by which IL-1β is regulated by AAR and further suggests that administration of HF might offer an effective therapeutic intervention against inflammatory diseases. Reduced intake of food (also known as dietary restriction) without malnutrition has been shown to benefit health in humans and animals, including an increase in life expectancy, metabolic fitness, and resistance to acute stress. Recent studies have attributed the benefits associated with dietary restriction to the reduced intake of amino acids. However, the underlying mechanisms through which amino acid restriction regulates various homeostatic processes are poorly defined. Here, we show that activation of amino acid starvation response (AAR) by the small molecule Halofuginone (HF) results in a significant inhibition of production of interleukin 1β (IL-1β), a proinflammatory mediator. We find that AAR provides protection from intestinal inflammation–associated pathology in a mouse model of colitis through a novel mechanism involving the formation of riboclusters (groups of RNA-binding proteins (RBPs) and stalled mRNA complexes) and autophagy. We further show that HF-mediated inhibition in IL-1β production is dependent on general control nonderepressible 2 kinase (GCN2), an amino acid deprivation sensor. This study provides the mechanisms regulating AAR-induced benefits in the context of inflammation and further suggests that the administration of HF might offer an effective therapeutic intervention against inflammatory diseases in mammals.
Collapse
Affiliation(s)
- Srikanth Battu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sumbul Afroz
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Jeevan Giddaluru
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Saima Naz
- Centre for Liver Research and Diagnostics, Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | | | - Rafiq Ahmad Khan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Saleem Yousuf Bhat
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Aleem Ahmed Khan
- Centre for Liver Research and Diagnostics, Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Seyed Ehtesham Hasnain
- JH-Institute of Molecular Medicine, Jamia Hamdard University, Hamdard Nagar, New Delhi, India
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
- Dr Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, Telangana, India
| | - Nooruddin Khan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
36
|
Yang X, Hu Z, Fan S, Zhang Q, Zhong Y, Guo D, Qin Y, Chen M. Picornavirus 2A protease regulates stress granule formation to facilitate viral translation. PLoS Pathog 2018; 14:e1006901. [PMID: 29415027 PMCID: PMC5819834 DOI: 10.1371/journal.ppat.1006901] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/20/2018] [Accepted: 01/23/2018] [Indexed: 12/30/2022] Open
Abstract
Stress granules (SGs) contain stalled messenger ribonucleoprotein complexes and are related to the regulation of mRNA translation. Picornavirus infection can interfere with the formation of SGs. However, the detailed molecular mechanisms and functions of picornavirus-mediated regulation of SG formation are not clear. Here, we found that the 2A protease of a picornavirus, EV71, induced atypical stress granule (aSG), but not typical stress granule (tSG), formation via cleavage of eIF4GI. Furthermore, 2A was required and sufficient to inhibit tSGs induced by EV71 infection, sodium arsenite, or heat shock. Infection of 2A protease activity-inactivated recombinant EV71 (EV71-2AC110S) failed to induce aSG formation and only induced tSG formation, which is PKR and eIF2α phosphorylation-dependent. By using a Renilla luciferase mRNA reporter system and RNA fluorescence in situ hybridization assay, we found that EV71-induced aSGs were beneficial to viral translation through sequestering only cellular mRNAs, but not viral mRNAs. In addition, we found that the 2A protease of other picornaviruses such as poliovirus and coxsackievirus also induced aSG formation and blocked tSG formation. Taken together, our results demonstrate that, on one hand, EV71 infection induces tSG formation via the PKR-eIF2α pathway, and on the other hand, 2A, but not 3C, blocks tSG formation. Instead, 2A induces aSG formation by cleaving eIF4GI to sequester cellular mRNA but release viral mRNA, thereby facilitating viral translation. When cellular translation initiation is stalled, translation initiation complexes aggregate in cytoplasm. We call these aggregations stress granules (SGs), and they can be marked by components such as TIA-1. SGs are always considered to be antiviral structures during viral infection, but viruses also regulate SG formation to facilitate their survival. Here, we show that the 2A protease of EV71 induced TIA-1 foci formation, and we analyzed these TIA-1 foci and found that they were different from typical stress granules (tSGs); thus, we named them atypical stress granules (aSGs). 2A alone could block tSG formation, and we found that protease activity of 2A was required for aSG induction and tSG blockage, but functioned in different ways. When the protease activity of 2A in EV71 was blocked (EV71-2AC110S), the tSGs but not aSGs appeared in infected cells. These tSGs contained cellular and viral mRNAs and translation initiation factors to inhibit viral translation, but aSGs contained only cellular mRNAs to promote viral translation. We propose a model revealing that EV71 escapes cellular antiviral response by manipulating SG formation: 2A transforms the overall translation shutdown system to a selective virally beneficial system by switching from tSGs to aSGs.
Collapse
Affiliation(s)
- Xiaodan Yang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, China
| | - Zhulong Hu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, China
| | - Shanshan Fan
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, China
| | - Qiang Zhang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, China
| | - Yi Zhong
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, China
| | - Dong Guo
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, China
- * E-mail:
| |
Collapse
|
37
|
Gong Y, Hewett JA. Maintenance of the Innate Seizure Threshold by Cyclooxygenase-2 is Not Influenced by the Translational Silencer, T-cell Intracellular Antigen-1. Neuroscience 2018; 373:37-51. [PMID: 29337236 DOI: 10.1016/j.neuroscience.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/23/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
Activity of neuronal cyclooxygenase-2 (COX-2), a primary source of PG synthesis in the normal brain, is enhanced by excitatory neurotransmission and this is thought to be involved in seizure suppression. Results herein showing that the incidence of pentylenetetrazole (PTZ)-induced convulsions is suppressed in transgenic mice overexpressing COX-2 in neurons support this notion. T-cell intracellular antigen-1 (TIA-1) is an mRNA binding protein that is known to bind to COX-2 mRNA and repress its translation in non-neuronal cell types. An examination of the expression profile of TIA-1 protein in the normal brain indicated that it is expressed broadly by neurons, including those that express COX-2. However, whether TIA-1 regulates COX-2 protein levels in neurons is not known. The purpose of this study was to test the possibility that deletion of TIA-1 increases basal COX-2 expression in neurons and consequently raises the seizure threshold. Results demonstrate that neither the basal nor seizure-induced expression profiles of COX-2 were altered in mice lacking a functional TIA-1 gene suggesting that TIA-1 does not contribute to regulation of COX-2 protein expression in neurons. The acute PTZ-induced seizure threshold was also unchanged in mice lacking TIA-1 protein, indicating that this RNA binding protein does not influence the innate seizure threshold. Nevertheless, the results raise the possibility that the level of neuronal COX-2 expression may be a determinant of the innate seizure threshold and suggest that a better understanding of the regulation of COX-2 expression in the brain could provide new insight into the molecular mechanisms that suppress seizure induction.
Collapse
Affiliation(s)
- Yifan Gong
- Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - James A Hewett
- Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
38
|
Hamada J, Shoda K, Masuda K, Fujita Y, Naruto T, Kohmoto T, Miyakami Y, Watanabe M, Kudo Y, Fujiwara H, Ichikawa D, Otsuji E, Imoto I. Tumor-promoting function and prognostic significance of the RNA-binding protein T-cell intracellular antigen-1 in esophageal squamous cell carcinoma. Oncotarget 2017; 7:17111-28. [PMID: 26958940 PMCID: PMC4941375 DOI: 10.18632/oncotarget.7937] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/05/2016] [Indexed: 02/06/2023] Open
Abstract
T-cell intracellular antigen-1 (TIA1) is an RNA-binding protein involved in many regulatory aspects of mRNA metabolism. Here, we report previously unknown tumor-promoting activity of TIA1, which seems to be associated with its isoform-specific molecular distribution and regulation of a set of cancer-related transcripts, in esophageal squamous cell carcinoma (ESCC). Immunohistochemical overexpression of TIA1 ectopically localized in the cytoplasm of tumor cells was an independent prognosticator for worse overall survival in a cohort of 143 ESCC patients. Knockdown of TIA1 inhibited proliferation of ESCC cells. By exogenously introducing each of two major isoforms, TIA1a and TIA1b, only TIA1a, which was localized to both the nucleus and cytoplasm, promoted anchorage-dependent and anchorage-independent ESCC cell proliferation. Ribonucleoprotein immunoprecipitation, followed by microarray analysis or massive-parallel sequencing, identified a set of TIA1-binding mRNAs, including SKP2 and CCNA2. TIA1 increased SKP2 and CCNA2 protein levels through the suppression of mRNA decay and translational induction, respectively. Our findings uncover a novel oncogenic function of TIA1 in esophageal tumorigenesis, and implicate its use as a marker for prognostic evaluation and as a therapeutic target in ESCC.
Collapse
Affiliation(s)
- Junichi Hamada
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.,Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Katsutoshi Shoda
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.,Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kiyoshi Masuda
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Yuji Fujita
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.,Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takuya Naruto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Tomohiro Kohmoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.,Student Lab, Tokushima University Faculty of Medicine, Tokushima, 770-8503, Japan
| | - Yuko Miyakami
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.,Student Lab, Tokushima University Faculty of Medicine, Tokushima, 770-8503, Japan
| | - Miki Watanabe
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.,Student Lab, Tokushima University Faculty of Medicine, Tokushima, 770-8503, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| |
Collapse
|
39
|
Rodrigues DC, Kim DS, Yang G, Zaslavsky K, Ha KCH, Mok RSF, Ross PJ, Zhao M, Piekna A, Wei W, Blencowe BJ, Morris Q, Ellis J. MECP2 Is Post-transcriptionally Regulated during Human Neurodevelopment by Combinatorial Action of RNA-Binding Proteins and miRNAs. Cell Rep 2017; 17:720-734. [PMID: 27732849 DOI: 10.1016/j.celrep.2016.09.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/05/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022] Open
Abstract
A progressive increase in MECP2 protein levels is a crucial and precisely regulated event during neurodevelopment, but the underlying mechanism is unclear. We report that MECP2 is regulated post-transcriptionally during in vitro differentiation of human embryonic stem cells (hESCs) into cortical neurons. Using reporters to identify functional RNA sequences in the MECP2 3' UTR and genetic manipulations to explore the role of interacting factors on endogenous MECP2, we discover combinatorial mechanisms that regulate RNA stability and translation. The RNA-binding protein PUM1 and pluripotent-specific microRNAs destabilize the long MECP2 3' UTR in hESCs. Hence, the 3' UTR appears to lengthen during differentiation as the long isoform becomes stable in neurons. Meanwhile, translation of MECP2 is repressed by TIA1 in hESCs until HuC predominates in neurons, resulting in a switch to translational enhancement. Ultimately, 3' UTR-directed translational fine-tuning differentially modulates MECP2 protein in the two cell types to levels appropriate for normal neurodevelopment.
Collapse
Affiliation(s)
- Deivid C Rodrigues
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Dae-Sung Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Guang Yang
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Kirill Zaslavsky
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Kevin C H Ha
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Rebecca S F Mok
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - P Joel Ross
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Melody Zhao
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Alina Piekna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Wei Wei
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Benjamin J Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada.
| |
Collapse
|
40
|
Waris S, García-Mauriño SM, Sivakumaran A, Beckham SA, Loughlin FE, Gorospe M, Díaz-Moreno I, Wilce MCJ, Wilce JA. TIA-1 RRM23 binding and recognition of target oligonucleotides. Nucleic Acids Res 2017; 45:4944-4957. [PMID: 28184449 PMCID: PMC5416816 DOI: 10.1093/nar/gkx102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/07/2017] [Indexed: 01/01/2023] Open
Abstract
TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Å resolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression.
Collapse
Affiliation(s)
- Saboora Waris
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Sofía M García-Mauriño
- Instituto de Investigaciones Químicas (IIQ)-Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Sevilla 41092, Spain
| | - Andrew Sivakumaran
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Simone A Beckham
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Fionna E Loughlin
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ)-Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Sevilla 41092, Spain
| | - Matthew C J Wilce
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Jacqueline A Wilce
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
41
|
Srivastava S, Syed SB, Kumar V, Islam A, Ahmad F, Hassan MI. Fas-activated serine/threonine kinase: Structure and function. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
T-Cell Intracellular Antigens and Hu Antigen R Antagonistically Modulate Mitochondrial Activity and Dynamics by Regulating Optic Atrophy 1 Gene Expression. Mol Cell Biol 2017. [PMID: 28630277 DOI: 10.1128/mcb.00174-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria undergo frequent morphological changes to control their function. We show here that T-cell intracellular antigens (TIA1b/TIARb) and Hu antigen R (HuR) have antagonistic roles in mitochondrial function by modulating the expression of mitochondrial shaping proteins. Expression of TIA1b/TIARb alters the mitochondrial dynamic network by enhancing fission and clustering, which is accompanied by a decrease in respiration. In contrast, HuR expression promotes fusion and cristae remodeling and increases respiratory activity. Mechanistically, TIA proteins downregulate the expression of optic atrophy 1 (OPA1) protein via switching of the splicing patterns of OPA1 to facilitate the production of OPA1 variant 5 (OPA1v5). Conversely, HuR enhances the expression of OPA1 mRNA isoforms through increasing steady-state levels and targeting translational efficiency at the 3' untranslated region. Knockdown of TIA1/TIAR or HuR partially reversed the expression profile of OPA1, whereas knockdown of OPA1 or overexpression of OPA1v5 provoked mitochondrial clustering. Middle-term expression of TIA1b/TIARb triggers reactive oxygen species production and mitochondrial DNA damage, which is accompanied by mitophagy, autophagy, and apoptosis. In contrast, HuR expression promotes mitochondrion-dependent cell proliferation. Collectively, these results provide molecular insights into the antagonistic functions of TIA1b/TIARb and HuR in mitochondrial activity dynamics and suggest that their balance might contribute to mitochondrial physiopathology.
Collapse
|
43
|
Nie J, DuBois DC, Xue B, Jusko WJ, Almon RR. Effects of High-Fat Feeding on Skeletal Muscle Gene Expression in Diabetic Goto-Kakizaki Rats. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017710009. [PMID: 28607540 PMCID: PMC5457139 DOI: 10.1177/1177625017710009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/17/2017] [Indexed: 12/16/2022]
Abstract
In the present report, we examined the responses of diabetic Goto-Kakizaki (GK) rats and control Wistar-Kyoto (WKY) rats fed either a standard chow or high-fat diet (HFD) from weaning to 20 weeks of age. This comparison included gene expression profiling of skeletal muscle using Affymetrix gene array chips. The expression profiling is interpreted within the context of a wide array of physiological measurements. Genes whose expressions are different between the 2 strains regardless of diet, as well as genes that differ between strains only with HFD, were identified. In addition, genes that were regulated by diet in 1 or both strains were identified. The results suggest that both strains respond to HFD by an increased capacity to oxidize lipid fuels in the musculature but that this adaptation occurs more rapidly in WKY rats. The results also demonstrated an impaired cytokine signalling and heightened inflammatory status in the GK rats.
Collapse
Affiliation(s)
- Jing Nie
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Debra C DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Bai Xue
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Richard R Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
44
|
Polishchuk M, Paz I, Kohen R, Mesika R, Yakhini Z, Mandel-Gutfreund Y. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data. Methods 2017; 118-119:73-81. [PMID: 28274760 DOI: 10.1016/j.ymeth.2017.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023] Open
Abstract
RNA binding proteins (RBPs) play an important role in regulating many processes in the cell. RBPs often recognize their RNA targets in a specific manner. In addition to the RNA primary sequence, the structure of the RNA has been shown to play a central role in RNA recognition by RBPs. In recent years, many experimental approaches, both in vitro and in vivo, were developed and employed to identify and characterize RBP targets and extract their binding specificities. In vivo binding techniques, such as CrossLinking and ImmunoPrecipitation (CLIP)-based methods, enable the characterization of protein binding sites on RNA targets. However, these methods do not provide information regarding the structural preferences of the protein. While methods to obtain the structure of RNA are available, inferring both the sequence and the structure preferences of RBPs remains a challenge. Here we present SMARTIV, a novel computational tool for discovering combined sequence and structure binding motifs from in vivo RNA binding data relying on the sequences of the target sites, the ranking of their binding scores and their predicted secondary structure. The combined motifs are provided in a unified representation that is informative and easy for visual perception. We tested the method on CLIP-seq data from different platforms for a variety of RBPs. Overall, we show that our results are highly consistent with known binding motifs of RBPs, offering additional information on their structural preferences.
Collapse
Affiliation(s)
- Maya Polishchuk
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; Vavilov Institute of General Genetics, Russian Academy of Science, Moscow 11933, Russia
| | - Inbal Paz
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Refael Kohen
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Rona Mesika
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Zohar Yakhini
- Faculty of Computer Science, Technion-Israel Institute of Technology, Haifa 32000, Israel; School of Computer Science, Herzliya Interdisciplinary Center, Herzliya 46150, Israel
| | - Yael Mandel-Gutfreund
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; Faculty of Computer Science, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
45
|
Ranganathan P, Ngankeu A, Zitzer NC, Leoncini P, Yu X, Casadei L, Challagundla K, Reichenbach DK, Garman S, Ruppert AS, Volinia S, Hofstetter J, Efebera YA, Devine SM, Blazar BR, Fabbri M, Garzon R. Serum miR-29a Is Upregulated in Acute Graft-versus-Host Disease and Activates Dendritic Cells through TLR Binding. THE JOURNAL OF IMMUNOLOGY 2017; 198:2500-2512. [PMID: 28159900 DOI: 10.4049/jimmunol.1601778] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Abstract
Acute graft-versus-host disease (aGVHD) continues to be a frequent and devastating complication of allogeneic hematopoietic stem cell transplantation (HSCT), posing as a significant barrier against the widespread use of HSCTs as a curative modality. Recent studies suggested serum/plasma microRNAs (miRs) may predict aGVHD onset. However, little is known about the functional role of circulating miRs in aGVHD. In this article, we show in two independent cohorts that miR-29a expression is significantly upregulated in the serum of allogeneic HSCT patients at aGVHD onset compared with non-aGVHD patients. Serum miR-29a is also elevated as early as 2 wk before time of diagnosis of aGVHD compared with time-matched control subjects. We demonstrate novel functional significance of serum miR-29a by showing that miR-29a binds and activates dendritic cells via TLR7 and TLR8, resulting in the activation of the NF-κB pathway and secretion of proinflammatory cytokines TNF-α and IL-6. Treatment with locked nucleic acid anti-miR-29a significantly improved survival in a mouse model of aGVHD while retaining graft-versus-leukemia effects, unveiling a novel therapeutic target in aGVHD treatment or prevention.
Collapse
Affiliation(s)
- Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Apollinaire Ngankeu
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Nina C Zitzer
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - PierPaolo Leoncini
- Department of Oncohematology, Bambino Gesù Children's Hospital, Rome 00165, Italy
| | - Xueyan Yu
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Lucia Casadei
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Kishore Challagundla
- Department of Pediatrics, University of Southern California-Keck School of Medicine, Norris Comprehensive Cancer Center, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027
| | - Dawn K Reichenbach
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and
| | - Sabrina Garman
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Amy S Ruppert
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Stefano Volinia
- Department of Anatomy, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Jessica Hofstetter
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Yvonne A Efebera
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Steven M Devine
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and
| | - Muller Fabbri
- Department of Pediatrics, University of Southern California-Keck School of Medicine, Norris Comprehensive Cancer Center, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210;
| |
Collapse
|
46
|
Tak H, Eun JW, Kim J, Park SJ, Kim C, Ji E, Lee H, Kang H, Cho DH, Lee K, Kim W, Nam SW, Lee EK. T-cell-restricted intracellular antigen 1 facilitates mitochondrial fragmentation by enhancing the expression of mitochondrial fission factor. Cell Death Differ 2016; 24:49-58. [PMID: 27612012 DOI: 10.1038/cdd.2016.90] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/06/2016] [Accepted: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial morphology is dynamically regulated by the formation of small fragmented units or interconnected mitochondrial networks, and this dynamic morphological change is a pivotal process in normal mitochondrial function. In the present study, we identified a novel regulator responsible for the regulation of mitochondrial dynamics. An assay using CHANG liver cells stably expressing mitochondrial-targeted yellow fluorescent protein (mtYFP) and a group of siRNAs revealed that T-cell intracellular antigen protein-1 (TIA-1) affects mitochondrial morphology by enhancing mitochondrial fission. The function of TIA-1 in mitochondrial dynamics was investigated through various biological approaches and expression analysis in human specimen. Downregulation of TIA-1-enhanced mitochondrial elongation, whereas ectopic expression of TIA-1 resulted in mitochondria fragmentation. In addition, TIA-1 increased mitochondrial activity, including the rate of ATP synthesis and oxygen consumption. Further, we identified mitochondrial fission factor (MFF) as a direct target of TIA-1, and showed that TIA-1 promotes mitochondrial fragmentation by enhancing MFF translation. TIA-1 null cells had a decreased level of MFF and less mitochondrial Drp1, a critical factor for mitochondrial fragmentation, thereby enhancing mitochondrial elongation. Taken together, our results indicate that TIA-1 is a novel factor that facilitates mitochondrial dynamics by enhancing MFF expression and contributes to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hyosun Tak
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Jung Woo Eun
- Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Jihye Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - So Jung Park
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, South Korea
| | - Chongtae Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Eunbyul Ji
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Heejin Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Hoin Kang
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Dong-Hyung Cho
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, South Korea
| | - Kyungbun Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Suk Woo Nam
- Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, South Korea.,Cancer Evolution Research Center, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, South Korea.,Cancer Evolution Research Center, The Catholic University of Korea College of Medicine, Seoul, South Korea.,Institute for Aging and Metabolic Disease, The Catholic University of Korea College of Medicine, Seoul, South Korea
| |
Collapse
|
47
|
Satoh R, Hagihara K, Kita A, Sugiura R. [The role of RNA granules as signaling hubs]. Nihon Yakurigaku Zasshi 2016; 147:340-345. [PMID: 27301307 DOI: 10.1254/fpj.147.340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
48
|
Abstract
T-cell intracellular antigen 1 (TIA1) and TIA1-related/like protein (TIAR/TIAL1) are 2 proteins discovered in 1991 as components of cytotoxic T lymphocyte granules. They act in the nucleus as regulators of transcription and pre-mRNA splicing. In the cytoplasm, TIA1 and TIAR regulate and/or modulate the location, stability and/or translation of mRNAs. As knowledge of the different genes regulated by these proteins and the cellular/biological programs in which they are involved increases, it is evident that these antigens are key players in human physiology and pathology. This review will discuss the latest developments in the field, with physiopathological relevance, that point to novel roles for these regulators in the molecular and cell biology of higher eukaryotes.
Collapse
Affiliation(s)
- Carmen Sánchez-Jiménez
- a Centro de Biología Molecular Severo Ochoa; Consejo Superior de Investigaciones Científicas; Universidad Autónoma de Madrid (CSIC/UAM); C/Nicolás Cabrera 1 ; Madrid , Spain
| | | |
Collapse
|
49
|
RNA binding protein Pub1p regulates glycerol production and stress tolerance by controlling Gpd1p activity during winemaking. Appl Microbiol Biotechnol 2016; 100:5017-27. [DOI: 10.1007/s00253-016-7340-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 12/18/2022]
|
50
|
Zurla C, Jung J, Santangelo PJ. Can we observe changes in mRNA "state"? Overview of methods to study mRNA interactions with regulatory proteins relevant in cancer related processes. Analyst 2016; 141:548-62. [PMID: 26605378 PMCID: PMC4701657 DOI: 10.1039/c5an01959a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA binding proteins (RBP) regulate the editing, localization, stabilization, translation, and degradation of ribonucleic acids (RNA) through their interactions with specific cis-acting elements within target RNAs. Post-transcriptional regulatory mechanisms are directly involved in the control of the immune response and stress response and their alterations play a crucial role in cancer related processes. In this review, we discuss mRNAs and RNA binding proteins relevant to tumorigenesis, current methodologies for detecting RNA interactions, and last, we describe a novel method to detect such interactions, which combines peptide modified, RNA imaging probes (FMTRIPs) with proximity ligation (PLA) and rolling circle amplification (RCA). This assay detects native RNA in a sequence specific and single RNA sensitive manner, and PLA allows for the quantification and localization of protein-mRNA interactions with single-interaction sensitivity in situ.
Collapse
Affiliation(s)
- C Zurla
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Blgd, Atlanta, GA 30332, USA.
| | - J Jung
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Blgd, Atlanta, GA 30332, USA.
| | - P J Santangelo
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Blgd, Atlanta, GA 30332, USA.
| |
Collapse
|