1
|
Shi T, Chen Z, Li J, Wang H, Wang Q. AIF translocation into nucleus caused by Aifm1 R450Q mutation: generation and characterization of a mouse model for AUNX1. Hum Mol Genet 2024; 33:905-918. [PMID: 38449065 PMCID: PMC11070138 DOI: 10.1093/hmg/ddae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 01/05/2024] [Indexed: 03/08/2024] Open
Abstract
Mutations in AIFM1, encoding for apoptosis-inducing factor (AIF), cause AUNX1, an X-linked neurologic disorder with late-onset auditory neuropathy (AN) and peripheral neuropathy. Despite significant research on AIF, there are limited animal models with the disrupted AIFM1 representing the corresponding phenotype of human AUNX1, characterized by late-onset hearing loss and impaired auditory pathways. Here, we generated an Aifm1 p.R450Q knock-in mouse model (KI) based on the human AIFM1 p.R451Q mutation. Hemizygote KI male mice exhibited progressive hearing loss from P30 onward, with greater severity at P60 and stabilization until P210. Additionally, muscle atrophy was observed at P210. These phenotypic changes were accompanied by a gradual reduction in the number of spiral ganglion neuron cells (SGNs) at P30 and ribbons at P60, which coincided with the translocation of AIF into the nucleus starting from P21 and P30, respectively. The SGNs of KI mice at P210 displayed loss of cytomembrane integrity, abnormal nuclear morphology, and dendritic and axonal demyelination. Furthermore, the inner hair cells and myelin sheath displayed abnormal mitochondrial morphology, while fibroblasts from KI mice showed impaired mitochondrial function. In conclusion, we successfully generated a mouse model recapitulating AUNX1. Our findings indicate that disruption of Aifm1 induced the nuclear translocation of AIF, resulting in the impairment in the auditory pathway.
Collapse
Affiliation(s)
- Tao Shi
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| | - Ziyi Chen
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| | - Jin Li
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| | - Hongyang Wang
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| | - Qiuju Wang
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| |
Collapse
|
2
|
Zhang J, Hu X, Geng Y, Xiang L, Wu Y, Li Y, Yang L, Zhou K. Exploring the role of parthanatos in CNS injury: Molecular insights and therapeutic approaches. J Adv Res 2024:S2090-1232(24)00174-7. [PMID: 38704090 DOI: 10.1016/j.jare.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Central nervous system (CNS) injury causes severe organ damage due to both damage resulting from the injury and subsequent cell death. However, there are currently no effective treatments for countering the irreversible loss of cell function. Parthanatos is a poly (ADP-ribose) polymerase 1 (PARP-1)-dependent form of programmed cell death that is partly responsible for neural cell death. Consequently, the mechanism by which parthanatos promotes CNS injury has attracted significant scientific interest. AIM OF REVIEW Our review aims to summarize the potential role of parthanatos in CNS injury and its molecular and pathophysiological mechanisms. Understanding the role of parthanatos and related molecules in CNS injury is crucial for developing effective treatment strategies and identifying important directions for future in-depth research. KEY SCIENTIFIC CONCEPTS OF REVIEW Parthanatos (from Thanatos, the personification of death according to Greek mythology) is a type of programmed cell death that is initiated by the overactivation of PARP-1. This process triggers a cascade of reactions, including the accumulation of poly(ADP-ribose) (PAR), the nuclear translocation of apoptosis-inducing factor (AIF) after its release from mitochondria, and subsequent massive DNA fragmentation caused by migration inhibitory factor (MIF) forming a complex with AIF. Secondary molecular mechanisms, such as excitotoxicity and oxidative stress-induced overactivation of PARP-1, significantly exacerbate neuronal damage following initial mechanical injury to the CNS. Furthermore, parthanatos is not only associated with neuronal damage but also interacts with various other types of cell death. This review focuses on the latest research concerning the parthanatos cell death pathway, particularly considering its regulatory mechanisms and functions in CNS damage. We highlight the associations between parthanatos and different cell types involved in CNS damage and discuss potential therapeutic agents targeting the parthanatos pathway.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325027, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| |
Collapse
|
3
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
4
|
Main EN, Cruz TM, Bowlin GL. Mitochondria as a therapeutic: a potential new frontier in driving the shift from tissue repair to regeneration. Regen Biomater 2023; 10:rbad070. [PMID: 37663015 PMCID: PMC10468651 DOI: 10.1093/rb/rbad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Fibrosis, or scar tissue development, is associated with numerous pathologies and is often considered a worst-case scenario in terms of wound healing or the implantation of a biomaterial. All that remains is a disorganized, densely packed and poorly vascularized bundle of connective tissue, which was once functional tissue. This creates a significant obstacle to the restoration of tissue function or integration with any biomaterial. Therefore, it is of paramount importance in tissue engineering and regenerative medicine to emphasize regeneration, the successful recovery of native tissue function, as opposed to repair, the replacement of the native tissue (often with scar tissue). A technique dubbed 'mitochondrial transplantation' is a burgeoning field of research that shows promise in in vitro, in vivo and various clinical applications in preventing cell death, reducing inflammation, restoring cell metabolism and proper oxidative balance, among other reported benefits. However, there is currently a lack of research regarding the potential for mitochondrial therapies within tissue engineering and regenerative biomaterials. Thus, this review explores these promising findings and outlines the potential for mitochondrial transplantation-based therapies as a new frontier of scientific research with respect to driving regeneration in wound healing and host-biomaterial interactions, the current successes of mitochondrial transplantation that warrant this potential and the critical questions and remaining obstacles that remain in the field.
Collapse
Affiliation(s)
- Evan N Main
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| | - Thaiz M Cruz
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| |
Collapse
|
5
|
Kang JS, Kim D, Rhee J, Seo JY, Park I, Kim JH, Lee D, Lee W, Kim YL, Yoo K, Bae S, Chung J, Seong RH, Kong YY. Baf155 regulates skeletal muscle metabolism via HIF-1a signaling. PLoS Biol 2023; 21:e3002192. [PMID: 37478146 PMCID: PMC10396025 DOI: 10.1371/journal.pbio.3002192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/12/2023] [Indexed: 07/23/2023] Open
Abstract
During exercise, skeletal muscle is exposed to a low oxygen condition, hypoxia. Under hypoxia, the transcription factor hypoxia-inducible factor-1α (HIF-1α) is stabilized and induces expressions of its target genes regulating glycolytic metabolism. Here, using a skeletal muscle-specific gene ablation mouse model, we show that Brg1/Brm-associated factor 155 (Baf155), a core subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, is essential for HIF-1α signaling in skeletal muscle. Muscle-specific ablation of Baf155 increases oxidative metabolism by reducing HIF-1α function, which accompanies the decreased lactate production during exercise. Furthermore, the augmented oxidation leads to high intramuscular adenosine triphosphate (ATP) level and results in the enhancement of endurance exercise capacity. Mechanistically, our chromatin immunoprecipitation (ChIP) analysis reveals that Baf155 modulates DNA-binding activity of HIF-1α to the promoters of its target genes. In addition, for this regulatory function, Baf155 requires a phospho-signal transducer and activator of transcription 3 (pSTAT3), which forms a coactivator complex with HIF-1α, to activate HIF-1α signaling. Our findings reveal the crucial role of Baf155 in energy metabolism of skeletal muscle and the interaction between Baf155 and hypoxia signaling.
Collapse
Affiliation(s)
- Jong-Seol Kang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joonwoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Yun Seo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Daewon Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - WonUk Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Lynne Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sunghwan Bae
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Rho Hyun Seong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Iwai S, Kaji K, Nishimura N, Kubo T, Tomooka F, Shibamoto A, Suzuki J, Tsuji Y, Fujinaga Y, Kitagawa K, Namisaki T, Akahane T, Yoshiji H. Glucagon-like peptide-1 receptor agonist, semaglutide attenuates chronic liver disease-induced skeletal muscle atrophy in diabetic mice. Biochim Biophys Acta Mol Basis Dis 2023:166770. [PMID: 37276988 DOI: 10.1016/j.bbadis.2023.166770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
A glucagon-like peptide-1 receptor agonist (GLP-1RA) has recently been established as a pharmacological option for the treatment of type 2 diabetes. Recent studies have demonstrated the molecular role of GLP-1R in skeletal muscle homeostasis; however, the therapeutic efficacy of semaglutide, a GLP-1RA, on skeletal muscle atrophy in chronic liver disease (CLD) under diabetic conditions remains unclear. In the present study, semaglutide effectively inhibited psoas muscle atrophy and suppressed declines in grip strength in a diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-fed diabetic KK-Ay mouse model. Moreover, semaglutide inhibited ubiquitin-proteosome-mediated skeletal muscle proteolysis and promoted myogenesis in palmitic acid (PA)-stimulated C2C12 murine myocytes. Mechanistically, this effect of semaglutide on skeletal muscle atrophy was mediated by multiple functional pathways. First, semaglutide protected against hepatic injury in mice accompanied by increased production of insulin-like growth factor 1 and reduced accumulation of reactive oxygen species (ROS). These effects were associated with decreased proinflammatory cytokines and ROS accumulation, leading to the suppression of ubiquitin-proteosome muscle degradation. Moreover, semaglutide inhibited the amino acid starvation-related stress signaling that was activated under chronic liver injury, resulting in the recovery of the mammalian target of rapamycin activity in the skeletal muscle of DDC-diet fed KK-Ay mice. Second, semaglutide improved skeletal muscle atrophy by directly stimulating GLP-1R in myocytes. Semaglutide induced cAMP-mediated activation of PKA and AKT, enhanced mitochondrial biogenesis, and reduced ROS accumulation, thereby resulting in inhibition of NF-κB/myostatin-mediated ubiquitin-proteosome degradation and the augmentation of heat-shock factor-1-mediated myogenesis. Collectively, semaglutide may have potential as a new therapeutic strategy for CLD-related skeletal muscle wasting.
Collapse
Affiliation(s)
- Satoshi Iwai
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takahiro Kubo
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Fumimasa Tomooka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Akihiko Shibamoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Junya Suzuki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
7
|
Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis 2023; 28:730-753. [PMID: 37014578 PMCID: PMC10071271 DOI: 10.1007/s10495-023-01835-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Apoptosis is a process of programmed cell death in which a cell commits suicide while maintaining the integrity and architecture of the tissue as a whole. Apoptosis involves activation of one of two major pathways: the extrinsic pathway, where extracellular pro-apoptotic signals, transduced through plasma membrane death receptors, activate a caspase cascade leading to apoptosis. The second, the intrinsic apoptotic pathway, where damaged DNA, oxidative stress, or chemicals, induce the release of pro-apoptotic proteins from the mitochondria, leading to the activation of caspase-dependent and independent apoptosis. However, it has recently become apparent that proteins involved in apoptosis also exhibit non-cell death-related physiological functions that are related to the cell cycle, differentiation, metabolism, inflammation or immunity. Such non-conventional activities were predominantly reported in non-cancer cells although, recently, such a dual function for pro-apoptotic proteins has also been reported in cancers where they are overexpressed. Interestingly, some apoptotic proteins translocate to the nucleus in order to perform a non-apoptotic function. In this review, we summarize the unconventional roles of the apoptotic proteins from a functional perspective, while focusing on two mitochondrial proteins: VDAC1 and SMAC/Diablo. Despite having pro-apoptotic functions, these proteins are overexpressed in cancers and this apparent paradox and the associated pathophysiological implications will be discussed. We will also present possible mechanisms underlying the switch from apoptotic to non-apoptotic activities although a deeper investigation into the process awaits further study.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Beer Sheva, Israel.
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
8
|
Wischhof L, Scifo E, Ehninger D, Bano D. AIFM1 beyond cell death: An overview of this OXPHOS-inducing factor in mitochondrial diseases. EBioMedicine 2022; 83:104231. [PMID: 35994922 PMCID: PMC9420475 DOI: 10.1016/j.ebiom.2022.104231] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial intermembrane space flavoprotein with diverse functions in cellular physiology. In this regard, a large number of studies have elucidated AIF's participation to chromatin condensation during cell death in development, cancer, cardiovascular and brain disorders. However, the discovery of rare AIFM1 mutations in patients has shifted the interest of biomedical researchers towards AIF's contribution to pathogenic mechanisms underlying inherited AIFM1-linked metabolic diseases. The functional characterization of AIF binding partners has rapidly advanced our understanding of AIF biology within the mitochondria and beyond its widely reported role in cell death. At the present time, it is reasonable to assume that AIF contributes to cell survival by promoting biogenesis and maintenance of the mitochondrial oxidative phosphorylation (OXPHOS) system. With this review, we aim to outline the current knowledge around the vital role of AIF by primarily focusing on currently reported human diseases that have been linked to AIFM1 deficiency.
Collapse
Affiliation(s)
- Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Enzo Scifo
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
9
|
Li T, Sun Y, Zhang S, Xu Y, Li K, Xie C, Wang Y, Wang Y, Cao J, Wang X, Penninger JM, Kroemer G, Blomgren K, Zhu C. AIF Overexpression Aggravates Oxidative Stress in Neonatal Male Mice After Hypoxia-Ischemia Injury. Mol Neurobiol 2022; 59:6613-6631. [PMID: 35974295 PMCID: PMC9525408 DOI: 10.1007/s12035-022-02987-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
There are sex differences in the severity, mechanisms, and outcomes of neonatal hypoxia-ischemia (HI) brain injury, and apoptosis-inducing factor (AIF) may play a critical role in this discrepancy. Based on previous findings that AIF overexpression aggravates neonatal HI brain injury, we further investigated potential sex differences in the severity and molecular mechanisms underlying the injury using mice that overexpress AIF from homozygous transgenes. We found that the male sex significantly aggravated AIF-driven brain damage, as indicated by the injury volume in the gray matter (2.25 times greater in males) and by the lost volume of subcortical white matter (1.71 greater in males) after HI. As compared to females, male mice exhibited more severe brain injury, correlating with reduced antioxidant capacities, more pronounced protein carbonylation and nitration, and increased neuronal cell death. Under physiological conditions (without HI), the doublecortin-positive area in the dentate gyrus of females was 1.15 times larger than in males, indicating that AIF upregulation effectively promoted neurogenesis in females in the long term. We also found that AIF stimulated carbohydrate metabolism in young males. Altogether, these findings corroborate earlier studies and further demonstrate that AIF is involved in oxidative stress, which contributes to the sex-specific differences observed in neonatal HI brain injury.
Collapse
Affiliation(s)
- Tao Li
- Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.,Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Yanyan Sun
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Department of Human Anatomy, School of Basic Medicine and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Kenan Li
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Cuicui Xie
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Yong Wang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Yafeng Wang
- Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.,Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medicine and Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Centre of Perinatal Medicine and Health, Institute of Clinical Science, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Josef M Penninger
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Guido Kroemer
- Centre de Recherche Des Cordeliers, Equipe Labellisée Par La Ligue Contre Le Cancer, Inserm U1138, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Klas Blomgren
- Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China. .,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden. .,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Salscheider SL, Gerlich S, Cabrera-Orefice A, Peker E, Rothemann RA, Murschall LM, Finger Y, Szczepanowska K, Ahmadi ZA, Guerrero-Castillo S, Erdogan A, Becker M, Ali M, Habich M, Petrungaro C, Burdina N, Schwarz G, Klußmann M, Neundorf I, Stroud DA, Ryan MT, Trifunovic A, Brandt U, Riemer J. AIFM1 is a component of the mitochondrial disulfide relay that drives complex I assembly through efficient import of NDUFS5. EMBO J 2022; 41:e110784. [PMID: 35859387 PMCID: PMC9434101 DOI: 10.15252/embj.2022110784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial intermembrane space protein AIFM1 has been reported to mediate the import of MIA40/CHCHD4, which forms the import receptor in the mitochondrial disulfide relay. Here, we demonstrate that AIFM1 and MIA40/CHCHD4 cooperate beyond this MIA40/CHCHD4 import. We show that AIFM1 and MIA40/CHCHD4 form a stable long‐lived complex in vitro, in different cell lines, and in tissues. In HEK293 cells lacking AIFM1, levels of MIA40 are unchanged, but the protein is present in the monomeric form. Monomeric MIA40 neither efficiently interacts with nor mediates the import of specific substrates. The import defect is especially severe for NDUFS5, a subunit of complex I of the respiratory chain. As a consequence, NDUFS5 accumulates in the cytosol and undergoes rapid proteasomal degradation. Lack of mitochondrial NDUFS5 in turn results in stalling of complex I assembly. Collectively, we demonstrate that AIFM1 serves two overlapping functions: importing MIA40/CHCHD4 and constituting an integral part of the disulfide relay that ensures efficient interaction of MIA40/CHCHD4 with specific substrates.
Collapse
Affiliation(s)
| | - Sarah Gerlich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esra Peker
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | | | | | - Yannik Finger
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Karolina Szczepanowska
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Zeinab Alsadat Ahmadi
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sergio Guerrero-Castillo
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alican Erdogan
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Mark Becker
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Muna Ali
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Markus Habich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | | | - Nele Burdina
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Guenter Schwarz
- Institute for Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Merlin Klußmann
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Ines Neundorf
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Aleksandra Trifunovic
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Lee MH, Lee JH, Kim WJ, Kim SH, Kim SY, Kim HS, Kim TJ. Linoleic Acid Attenuates Denervation-Induced Skeletal Muscle Atrophy in Mice through Regulation of Reactive Oxygen Species-Dependent Signaling. Int J Mol Sci 2022; 23:4778. [PMID: 35563168 PMCID: PMC9105847 DOI: 10.3390/ijms23094778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Muscle atrophy is a major muscle disease, the symptoms of which include decreased muscle volume leading to insufficient muscular support during exercise. One cause of muscle atrophy is the induction of oxidative stress by reactive oxygen species (ROS). This study aimed to identify the antioxidant mechanism of linoleic acid (LA) in muscle atrophy caused by oxidative stress. H2O2 has been used to induce oxidative stress in myoblasts in vitro. C2C12 myoblasts treated with H2O2 exhibited decreased viability and increased ROS synthesis. However, with LA treatment, the cells tended to recover from oxidative effects similar to those of the control groups. At the molecular level, the expression of superoxide dismutase 1 (SOD1), Bax, heat shock protein 70 (HSP70), and phosphorylated forkhead box protein O1 was increased by oxidative stress, causing apoptosis. LA treatment suppressed these changes. In addition, the expression of MuRF1 and Atrogin-1/MAFbx mRNA increased under oxidative stress but not in the LA-treated group. Sciatic denervation of C57BL/6 mice manifested as atrophy of the skeletal muscle in micro-computed tomography (micro-CT). The protein expression levels of SOD1, HSP70, and MuRF1 did not differ between the atrophied muscle tissues and C2C12 myoblasts under oxidative stress. With LA treatment, muscle atrophy recovered and protein expression was restored to levels similar to those in the control. Therefore, this study suggests that LA may be a candidate substance for preventing muscle atrophy.
Collapse
Affiliation(s)
- Myung-Hun Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Jin-Ho Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Wan-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Seo Ho Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Sun-Young Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea;
| | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
- Research & Development Center, Doctor TJ Co., Ltd., Wonju 26493, Korea
| |
Collapse
|
12
|
Liu L, Li J, Ke Y, Zeng X, Gao J, Ba X, Wang R. The key players of parthanatos: opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cell Mol Life Sci 2022; 79:60. [PMID: 35000037 PMCID: PMC11073082 DOI: 10.1007/s00018-021-04109-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Parthanatos is a form of regulated cell death involved in the pathogenesis of many diseases, particularly neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Parthanatos is a multistep cell death pathway cascade that involves poly (ADP-ribose) polymerase 1 (PARP-1) overactivation, PAR accumulation, PAR binding to apoptosis-inducing factor (AIF), AIF release from the mitochondria, nuclear translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and MIF-mediated large-scale DNA fragmentation. All the key players in the parthanatos pathway are pleiotropic proteins with diverse functions. An in-depth understanding of the structure-based activity of the key factors, and the biochemical mechanisms of parthanatos, is crucial for the development of drugs and therapeutic strategies. In this review, we delve into the key players of the parthanatos pathway and reveal the multiple levels of therapeutic opportunities for treating parthanatos-based pathogenesis.
Collapse
Affiliation(s)
- Libo Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Jiaxiang Li
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yueshuang Ke
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
13
|
Di Virgilio F, Falzoni S, Sarti AC, Chiozzi P, Vultaggio-Poma V, Giuliani AL. Modulation of Cell Energy Metabolism by the P2X7 Receptor. Methods Mol Biol 2022; 2510:53-63. [PMID: 35776319 DOI: 10.1007/978-1-0716-2384-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For many years the P2X7 receptor (P2X7R) was considered the prototypic cytolytic receptor due to its ability to cause dramatic changes in plasma membrane permeability, eventually leading to cell death. However, later studies revealed that controlled P2X7R activation has beneficial effects on cell metabolism and nowadays our perception of the physiological role of this receptor has radically changed. Some of the biochemical pathways underlying the trophic effect of the P2X7R are being unveiled, thus disclosing an unanticipated role of P2X7Rs in mitochondrial and glycolytic metabolism. We provide here an update of the effects of the P2X7R on cell energy metabolism.
Collapse
Affiliation(s)
| | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alba Clara Sarti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paola Chiozzi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | |
Collapse
|
14
|
Zhao F, Zou MH. Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Front Cardiovasc Med 2021; 8:749756. [PMID: 34651031 PMCID: PMC8505727 DOI: 10.3389/fcvm.2021.749756] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles for cellular energy production, metabolic homeostasis, calcium homeostasis, cell proliferation, and apoptosis. About 99% of mammalian mitochondrial proteins are encoded by the nuclear genome, synthesized as precursors in the cytosol, and imported into mitochondria by mitochondrial protein import machinery. Mitochondrial protein import systems function not only as independent units for protein translocation, but also are deeply integrated into a functional network of mitochondrial bioenergetics, protein quality control, mitochondrial dynamics and morphology, and interaction with other organelles. Mitochondrial protein import deficiency is linked to various diseases, including cardiovascular disease. In this review, we describe an emerging class of protein or genetic variations of components of the mitochondrial import machinery involved in heart disease. The major protein import pathways, including the presequence pathway (TIM23 pathway), the carrier pathway (TIM22 pathway), and the mitochondrial intermembrane space import and assembly machinery, related translocases, proteinases, and chaperones, are discussed here. This review highlights the importance of mitochondrial import machinery in heart disease, which deserves considerable attention, and further studies are urgently needed. Ultimately, this knowledge may be critical for the development of therapeutic strategies in heart disease.
Collapse
Affiliation(s)
- Fujie Zhao
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
15
|
Hevler JF, Zenezeni Chiozzi R, Cabrera-Orefice A, Brandt U, Arnold S, Heck AJR. Molecular characterization of a complex of apoptosis-inducing factor 1 with cytochrome c oxidase of the mitochondrial respiratory chain. Proc Natl Acad Sci U S A 2021; 118:e2106950118. [PMID: 34548399 PMCID: PMC8488679 DOI: 10.1073/pnas.2106950118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
Combining mass spectrometry-based chemical cross-linking and complexome profiling, we analyzed the interactome of heart mitochondria. We focused on complexes of oxidative phosphorylation and found that dimeric apoptosis-inducing factor 1 (AIFM1) forms a defined complex with ∼10% of monomeric cytochrome c oxidase (COX) but hardly interacts with respiratory chain supercomplexes. Multiple AIFM1 intercross-links engaging six different COX subunits provided structural restraints to build a detailed atomic model of the COX-AIFM12 complex (PDBDEV_00000092). An application of two complementary proteomic approaches thus provided unexpected insight into the macromolecular organization of the mitochondrial complexome. Our structural model excludes direct electron transfer between AIFM1 and COX. Notably, however, the binding site of cytochrome c remains accessible, allowing formation of a ternary complex. The discovery of the previously overlooked COX-AIFM12 complex and clues provided by the structural model hint at potential roles of AIFM1 in oxidative phosphorylation biogenesis and in programmed cell death.
Collapse
Affiliation(s)
- Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Riccardo Zenezeni Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands;
- Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
16
|
Chelko SP, Keceli G, Carpi A, Doti N, Agrimi J, Asimaki A, Beti CB, Miyamoto M, Amat-Codina N, Bedja D, Wei AC, Murray B, Tichnell C, Kwon C, Calkins H, James CA, O'Rourke B, Halushka MK, Melloni E, Saffitz JE, Judge DP, Ruvo M, Kitsis RN, Andersen P, Di Lisa F, Paolocci N. Exercise triggers CAPN1-mediated AIF truncation, inducing myocyte cell death in arrhythmogenic cardiomyopathy. Sci Transl Med 2021; 13:13/581/eabf0891. [PMID: 33597260 DOI: 10.1126/scitranslmed.abf0891] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Myocyte death occurs in many inherited and acquired cardiomyopathies, including arrhythmogenic cardiomyopathy (ACM), a genetic heart disease plagued by the prevalence of sudden cardiac death. Individuals with ACM and harboring pathogenic desmosomal variants, such as desmoglein-2 (DSG2), often show myocyte necrosis with progression to exercise-associated heart failure. Here, we showed that homozygous Dsg2 mutant mice (Dsg2 mut/mut), a model of ACM, die prematurely during swimming and display myocardial dysfunction and necrosis. We detected calcium (Ca2+) overload in Dsg2 mut/mut hearts, which induced calpain-1 (CAPN1) activation, association of CAPN1 with mitochondria, and CAPN1-induced cleavage of mitochondrial-bound apoptosis-inducing factor (AIF). Cleaved AIF translocated to the myocyte nucleus triggering large-scale DNA fragmentation and cell death, an effect potentiated by mitochondrial-driven AIF oxidation. Posttranslational oxidation of AIF cysteine residues was due, in part, to a depleted mitochondrial thioredoxin-2 redox system. Hearts from exercised Dsg2 mut/mut mice were depleted of calpastatin (CAST), an endogenous CAPN1 inhibitor, and overexpressing CAST in myocytes protected against Ca2+ overload-induced necrosis. When cardiomyocytes differentiated from Dsg2 mut/mut embryonic stem cells (ES-CMs) were challenged with β-adrenergic stimulation, CAPN1 inhibition attenuated CAPN1-induced AIF truncation. In addition, pretreatment of Dsg2 mut/mut ES-CMs with an AIF-mimetic peptide, mirroring the cyclophilin-A (PPIA) binding site of AIF, blocked PPIA-mediated AIF-nuclear translocation, and reduced both apoptosis and necrosis. Thus, preventing CAPN1-induced AIF-truncation or barring binding of AIF to the nuclear chaperone, PPIA, may avert myocyte death and, ultimately, disease progression to heart failure in ACM and likely other forms of cardiomyopathies.
Collapse
Affiliation(s)
- Stephen P Chelko
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA. .,Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrea Carpi
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Angeliki Asimaki
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Carlos Bueno Beti
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nuria Amat-Codina
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - An-Chi Wei
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Edon Melloni
- Department of Medicine, University of Genova, Genova 16126, Italy
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 20115, USA
| | - Daniel P Judge
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Medical University of South Carolina, Charleston, SC 29425, USA
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. .,Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| |
Collapse
|
17
|
Molecular Insights into Mitochondrial Protein Translocation and Human Disease. Genes (Basel) 2021; 12:genes12071031. [PMID: 34356047 PMCID: PMC8305315 DOI: 10.3390/genes12071031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
In human mitochondria, mtDNA encodes for only 13 proteins, all components of the OXPHOS system. The rest of the mitochondrial components, which make up approximately 99% of its proteome, are encoded in the nuclear genome, synthesized in cytosolic ribosomes and imported into mitochondria. Different import machineries translocate mitochondrial precursors, depending on their nature and the final destination inside the organelle. The proper and coordinated function of these molecular pathways is critical for mitochondrial homeostasis. Here, we will review molecular details about these pathways, which components have been linked to human disease and future perspectives on the field to expand the genetic landscape of mitochondrial diseases.
Collapse
|
18
|
Chiang DY, Lahiri S, Wang G, Karch J, Wang MC, Jung SY, Heck AJR, Scholten A, Wehrens XHT. Phosphorylation-Dependent Interactome of Ryanodine Receptor Type 2 in the Heart. Proteomes 2021; 9:proteomes9020027. [PMID: 34200203 PMCID: PMC8293434 DOI: 10.3390/proteomes9020027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Hyperphosphorylation of the calcium release channel/ryanodine receptor type 2 (RyR2) at serine 2814 (S2814) is associated with multiple cardiac diseases including atrial fibrillation and heart failure. Despite recent advances, the molecular mechanisms driving pathological changes associated with RyR2 S2814 phosphorylation are still not well understood. Methods: Using affinity-purification coupled to mass spectrometry (AP-MS), we investigated the RyR2 interactome in ventricles from wild-type (WT) mice and two S2814 knock-in mutants: the unphosphorylated alanine mutant (S2814A) and hyperphosphorylated mimic aspartic acid mutant (S2814D). Western blots were used for validation. Results: In WT mouse ventricular lysates, we identified 22 proteins which were enriched with RyR2 pull-down relative to both IgG control and no antibody (beads-only) pull-downs. Parallel AP-MS using WT, S2814A, and S2814D mouse ventricles identified 72 proteins, with 20 being high confidence RyR2 interactors. Of these, 14 had an increase in their binding to RyR2 S2814A but a decrease in their binding to RyR2 S2814D. We independently validated three protein hits, Idh3b, Aifm1, and Cpt1b, as RyR2 interactors by western blots and showed that Aifm1 and Idh3b had significantly decreased binding to RyR2 S2814D compared to WT and S2814A, consistent with MS findings. Conclusion: By applying state-of-the-art proteomic approaches, we discovered a number of novel RyR2 interactors in the mouse heart. In addition, we found and defined specific alterations in the RyR2 interactome that were dependent on the phosphorylation status of RyR2 at S2814. These findings yield mechanistic insights into RyR2 regulation which may guide future drug designs.
Collapse
Affiliation(s)
- David Y. Chiang
- Cardiovascular Division, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Satadru Lahiri
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guoliang Wang
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
| | - Jason Karch
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C. Wang
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Y. Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands; (A.J.R.H.); (A.S.)
- Netherlands Proteomics Centre, 3584 Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands; (A.J.R.H.); (A.S.)
- Netherlands Proteomics Centre, 3584 Utrecht, The Netherlands
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-798-4261
| |
Collapse
|
19
|
Liu S, Zhou M, Ruan Z, Wang Y, Chang C, Sasaki M, Rajaram V, Lemoff A, Nambiar K, Wang JE, Hatanpaa KJ, Luo W, Dawson TM, Dawson VL, Wang Y. AIF3 splicing switch triggers neurodegeneration. Mol Neurodegener 2021; 16:25. [PMID: 33853653 PMCID: PMC8048367 DOI: 10.1186/s13024-021-00442-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/12/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Apoptosis-inducing factor (AIF), as a mitochondrial flavoprotein, plays a fundamental role in mitochondrial bioenergetics that is critical for cell survival and also mediates caspase-independent cell death once it is released from mitochondria and translocated to the nucleus under ischemic stroke or neurodegenerative diseases. Although alternative splicing regulation of AIF has been implicated, it remains unknown which AIF splicing isoform will be induced under pathological conditions and how it impacts mitochondrial functions and neurodegeneration in adult brain. METHODS AIF splicing induction in brain was determined by multiple approaches including 5' RACE, Sanger sequencing, splicing-specific PCR assay and bottom-up proteomic analysis. The role of AIF splicing in mitochondria and neurodegeneration was determined by its biochemical properties, cell death analysis, morphological and functional alterations and animal behavior. Three animal models, including loss-of-function harlequin model, gain-of-function AIF3 knockin model and conditional inducible AIF splicing model established using either Cre-loxp recombination or CRISPR/Cas9 techniques, were applied to explore underlying mechanisms of AIF splicing-induced neurodegeneration. RESULTS We identified a nature splicing AIF isoform lacking exons 2 and 3 named as AIF3. AIF3 was undetectable under physiological conditions but its expression was increased in mouse and human postmortem brain after stroke. AIF3 splicing in mouse brain caused enlarged ventricles and severe neurodegeneration in the forebrain regions. These AIF3 splicing mice died 2-4 months after birth. AIF3 splicing-triggered neurodegeneration involves both mitochondrial dysfunction and AIF3 nuclear translocation. We showed that AIF3 inhibited NADH oxidase activity, ATP production, oxygen consumption, and mitochondrial biogenesis. In addition, expression of AIF3 significantly increased chromatin condensation and nuclear shrinkage leading to neuronal cell death. However, loss-of-AIF alone in harlequin or gain-of-AIF3 alone in AIF3 knockin mice did not cause robust neurodegeneration as that observed in AIF3 splicing mice. CONCLUSIONS We identified AIF3 as a disease-inducible isoform and established AIF3 splicing mouse model. The molecular mechanism underlying AIF3 splicing-induced neurodegeneration involves mitochondrial dysfunction and AIF3 nuclear translocation resulting from the synergistic effect of loss-of-AIF and gain-of-AIF3. Our study provides a valuable tool to understand the role of AIF3 splicing in brain and a potential therapeutic target to prevent/delay the progress of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuiqiao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Mi Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Zhi Ruan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Yanan Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Calvin Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Masayuki Sasaki
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Veena Rajaram
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Kalyani Nambiar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jennifer E. Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Kimmo J. Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Weibo Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Yingfei Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
20
|
Luo Q, Wu X, Zhao P, Nan Y, Chang W, Zhu X, Su D, Liu Z. OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002874. [PMID: 33898171 PMCID: PMC8061361 DOI: 10.1002/advs.202002874] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/29/2020] [Indexed: 05/25/2023]
Abstract
Apoptosis-inducing factor (AIF) plays a dual role in regulating cell survival and apoptosis, acting as a prosurvival factor in mitochondria via its NADH oxidoreductase activity and activating the caspase-independent apoptotic pathway (i.e., parthanatos) after nuclear translocation. However, whether one factor conjunctively controls the separated functions of AIF is not clear. Here, it is shown that OTU deubiquitinase 1 (OTUD1) acts as a link between the two functions of AIF via deubiquitination events. Deubiquitination of AIF at K244 disrupts the normal mitochondrial structure and compromises oxidative phosphorylation, and deubiquitination of AIF at K255 enhances its DNA-binding ability to promote parthanatos. Moreover, OTUD1 stabilizes DDB1 and CUL4 associated factor 10 (DCAF10) and recruits the cullin 4A (CUL4A)-damage specific DNA binding protein 1 (DDB1) complex to promote myeloid cell leukemia sequence 1 (MCL1) degradation, thereby activating caspase-dependent apoptotic signaling. Collectively, these results reveal the central role of OTUD1 in activating both caspase-independent and caspase-dependent apoptotic signaling and propose decreased OTUD1 expression as a key event promoting chemoresistance in esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Qingyu Luo
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Xiaowei Wu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Pengfei Zhao
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Yabing Nan
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Wan Chang
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Xiaolin Zhu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Dan Su
- Department of PathologyZhejiang Cancer HospitalZhejiang310022China
| | - Zhihua Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| |
Collapse
|
21
|
Hintze M, Griesing S, Michels M, Blanck B, Wischhof L, Hartmann D, Bano D, Franz T. Alopecia in Harlequin mutant mice is associated with reduced AIF protein levels and expression of retroviral elements. Mamm Genome 2021; 32:12-29. [PMID: 33367954 PMCID: PMC7878237 DOI: 10.1007/s00335-020-09854-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022]
Abstract
We investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.
Collapse
Affiliation(s)
- Maik Hintze
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany.
- Medical Department, MSH Medical School Hamburg, Hamburg, Germany.
| | - Sebastian Griesing
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
- Dept. of Oncology, National Taiwan University Hospital, Taipei City, 100, Taiwan, ROC
| | - Marion Michels
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Birgit Blanck
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dieter Hartmann
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Franz
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| |
Collapse
|
22
|
He ZH, Chen Y, Chen P, Xie LH, Liang GB, Zhang HL, Peng HH. Cigarette smoke extract affects methylation status and attenuates Sca-1 expression of mouse endothelial progenitor cell in vitro. Tob Induc Dis 2021; 19:08. [PMID: 33542680 PMCID: PMC7842580 DOI: 10.18332/tid/131625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/22/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Endothelial dysfunction appears in many smoking-related diseases, it is also an important pathophysiological feature. Endothelial progenitor cells (EPCs) are precursors of endothelial cells and have a crucial effect on the repair and maintenance of endothelial integrity. Sca-1 is not only common in bone marrow-derived hematopoietic stem cells (HSCs), but it is also expressed in nonhematopoietic organs by tissue-resident stem and progenitor cells. The aim of this study is to investigate the impact of cigarette smoke extract (CSE) on the function of bone marrow-derived EPCs and the expression level of Sca-1 in EPCs, and also whether the methylation of Sca-1 is involved in EPC dysfunction. METHODS We measured EPC capacities including adhesion, secretion and proliferation, the concentration of endothelial nitric oxide synthase (eNOS) and apoptosis-inducing factor (AIF) in cell culture supernatant, and also Sca-1 expression and promoter methylation in EPCs induced by CSE. Decitabine (Dec) was applied to test whether it could alter the impact caused by CSE. RESULTS The adhesion, proliferation and secretion ability of EPCs can be induced to be decreased by CSE in vitro, accompanied by decreased concentrations of AIF and eNOS in cell culture supernatant and decreased Sca-1 expression in EPCs. In addition, Dec could partly attenuate the impact described above. There were no significant differences in the quantitative analysis of Sca-1 promoter methylation among different groups. CONCLUSIONS The decreased Sca-1 expression was related to EPC dysfunction induced by CSE. EPC dysfunction resulting from CSE may be related to methylation mechanism, but not the methylation of Sca-1 promoter.
Collapse
Affiliation(s)
- Zhi-Hui He
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Hua Xie
- Department of Respiratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gui-Bin Liang
- Department of Intensive Care Unit, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Liang Zhang
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huai-Huai Peng
- Department of Intensive Care Unit, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Kroemer G, Verkhratsky A. Mitochondrial Localization and Function of the Purinergic Receptor P2X 7. FUNCTION 2021; 2:zqab006. [PMID: 35330813 PMCID: PMC8788815 DOI: 10.1093/function/zqab006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/06/2023] Open
Affiliation(s)
- Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
24
|
Rodriguez J, Li T, Xu Y, Sun Y, Zhu C. Role of apoptosis-inducing factor in perinatal hypoxic-ischemic brain injury. Neural Regen Res 2021; 16:205-213. [PMID: 32859765 PMCID: PMC7896227 DOI: 10.4103/1673-5374.290875] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Perinatal complications, such as asphyxia, can cause brain injuries that are often associated with subsequent neurological deficits, such as cerebral palsy or mental retardation. The mechanisms of perinatal brain injury are not fully understood, but mitochondria play a prominent role not only due to their central function in metabolism but also because many proteins with apoptosis-related functions are located in the mitochondrion. Among these proteins, apoptosis-inducing factor has already been shown to be an important factor involved in neuronal cell death upon hypoxia-ischemia, but a better understanding of the mechanisms behind these processes is required for the development of more effective treatments during the early stages of perinatal brain injury. In this review, we focus on the molecular mechanisms of hypoxic-ischemic encephalopathy, specifically on the importance of apoptosis-inducing factor. The relevance of apoptosis-inducing factor is based not only because it participates in the caspase-independent apoptotic pathway but also because it plays a crucial role in mitochondrial energetic functionality, especially with regard to the maintenance of electron transport during oxidative phosphorylation and in oxidative stress, acting as a free radical scavenger. We also discuss all the different apoptosis-inducing factor isoforms discovered, focusing especially on apoptosis-inducing factor 2, which is only expressed in the brain and the functions of which are starting now to be clarified. Finally, we summarized the interaction of apoptosis-inducing factor with several proteins that are crucial for both apoptosis-inducing factor functions (pro-survival and pro-apoptotic) and that are highly important in order to develop promising therapeutic targets for improving outcomes after perinatal brain injury.
Collapse
Affiliation(s)
- Juan Rodriguez
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tao Li
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yiran Xu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanyan Sun
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Anatomy, School of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Changlian Zhu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Sharma S, Bhattarai S, Ara H, Sun G, St Clair DK, Bhuiyan MS, Kevil C, Watts MN, Dominic P, Shimizu T, McCarthy KJ, Sun H, Panchatcharam M, Miriyala S. SOD2 deficiency in cardiomyocytes defines defective mitochondrial bioenergetics as a cause of lethal dilated cardiomyopathy. Redox Biol 2020; 37:101740. [PMID: 33049519 PMCID: PMC7559509 DOI: 10.1016/j.redox.2020.101740] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Electrophilic aldehyde (4-hydroxynonenal; 4-HNE), formed after lipid peroxidation, is a mediator of mitochondrial dysfunction and implicated in both the pathogenesis and the progression of cardiovascular disease. Manganese superoxide dismutase (MnSOD), a nuclear-encoded antioxidant enzyme, catalyzes the dismutation of superoxide radicals (O2•-) in mitochondria. To study the role of MnSOD in the myocardium, we generated a cardiomyocyte-specific SOD2 (SOD2Δ) deficient mouse strain. Unlike global SOD2 knockout mice, SOD2Δ mice reached adolescence; however, they die at ~4 months of age due to heart failure. Ultrastructural analysis of SOD2Δ hearts revealed altered mitochondrial architecture, with prominent disruption of the cristae and vacuole formation. Noninvasive echocardiographic measurements in SOD2Δ mice showed dilated cardiomyopathic features such as decreased ejection fraction and fractional shortening along with increased left ventricular internal diameter. An increased incidence of ventricular tachycardia was observed during electrophysiological studies of the heart in SOD2Δ mice. Oxidative phosphorylation (OXPHOS) measurement using a Seahorse XF analyzer in SOD2Δ neonatal cardiomyocytes and adult cardiac mitochondria displayed reduced O2 consumption, particularly during basal conditions and after the addition of FCCP (H+ ionophore/uncoupler), compared to that in SOD2fl hearts. Measurement of extracellular acidification (ECAR) to examine glycolysis in these cells showed a pattern precisely opposite that of the oxygen consumption rate (OCR) among SOD2Δ mice compared to their SOD2fl littermates. Analysis of the activity of the electron transport chain complex identified a reduction in Complex I and Complex V activity in SOD2Δ compared to SOD2fl mice. We demonstrated that a deficiency of SOD2 increases reactive oxygen species (ROS), leading to subsequent overproduction of 4-HNE inside mitochondria. Mechanistically, proteins in the mitochondrial respiratory chain complex and TCA cycle (NDUFS2, SDHA, ATP5B, and DLD) were the target of 4-HNE adduction in SOD2Δ hearts. Our findings suggest that the SOD2 mediated 4-HNE signaling nexus may play an important role in cardiomyopathy.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Susmita Bhattarai
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Hosne Ara
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Grace Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Daret K St Clair
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Christopher Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Megan N Watts
- Division of Cardiology, Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Paari Dominic
- Division of Cardiology, Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Takahiko Shimizu
- National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu Aichi, Japan
| | - Kevin J McCarthy
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Hong Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
26
|
Delavallée L, Mathiah N, Cabon L, Mazeraud A, Brunelle-Navas MN, Lerner LK, Tannoury M, Prola A, Moreno-Loshuertos R, Baritaud M, Vela L, Garbin K, Garnier D, Lemaire C, Langa-Vives F, Cohen-Salmon M, Fernández-Silva P, Chrétien F, Migeotte I, Susin SA. Mitochondrial AIF loss causes metabolic reprogramming, caspase-independent cell death blockade, embryonic lethality, and perinatal hydrocephalus. Mol Metab 2020; 40:101027. [PMID: 32480041 PMCID: PMC7334469 DOI: 10.1016/j.molmet.2020.101027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Apoptosis-Inducing Factor (AIF) is a protein involved in mitochondrial electron transport chain assembly/stability and programmed cell death. The relevant role of this protein is underlined because mutations altering mitochondrial AIF properties result in acute pediatric mitochondriopathies and tumor metastasis. By generating an original AIF-deficient mouse strain, this study attempted to analyze, in a single paradigm, the cellular and developmental metabolic consequences of AIF loss and the subsequent oxidative phosphorylation (OXPHOS) dysfunction. METHODS We developed a novel AIF-deficient mouse strain and assessed, using molecular and cell biology approaches, the cellular, embryonic, and adult mice phenotypic alterations. Additionally, we conducted ex vivo assays with primary and immortalized AIF knockout mouse embryonic fibroblasts (MEFs) to establish the cell death characteristics and the metabolic adaptive responses provoked by the mitochondrial electron transport chain (ETC) breakdown. RESULTS AIF deficiency destabilized mitochondrial ETC and provoked supercomplex disorganization, mitochondrial transmembrane potential loss, and high generation of mitochondrial reactive oxygen species (ROS). AIF-/Y MEFs counterbalanced these OXPHOS alterations by mitochondrial network reorganization and a metabolic reprogramming toward anaerobic glycolysis illustrated by the AMPK phosphorylation at Thr172, the overexpression of the glucose transporter GLUT-4, the subsequent enhancement of glucose uptake, and the anaerobic lactate generation. A late phenotype was characterized by the activation of P53/P21-mediated senescence. Notably, approximately 2% of AIF-/Y MEFs diminished both mitochondrial mass and ROS levels and spontaneously proliferated. These cycling AIF-/Y MEFs were resistant to caspase-independent cell death inducers. The AIF-deficient mouse strain was embryonic lethal between E11.5 and E13.5 with energy loss, proliferation arrest, and increased apoptotic levels. Contrary to AIF-/Y MEFs, the AIF KO embryos were unable to reprogram their metabolism toward anaerobic glycolysis. Heterozygous AIF+/- females displayed progressive bone marrow, thymus, and spleen cellular loss. In addition, approximately 10% of AIF+/- females developed perinatal hydrocephaly characterized by brain development impairment, meningeal fibrosis, and medullar hemorrhages; those mice died 5 weeks after birth. AIF+/- with hydrocephaly exhibited loss of ciliated epithelium in the ependymal layer. This phenotype was triggered by the ROS excess. Accordingly, it was possible to diminish the occurrence of hydrocephalus AIF+/- females by supplying dams and newborns with an antioxidant in drinking water. CONCLUSIONS In a single knockout model and at 3 different levels (cell, embryo, and adult mice) we demonstrated that by controlling the mitochondrial OXPHOS/metabolism, AIF is a key factor regulating cell differentiation and fate. Additionally, by providing new insights into the pathological consequences of mitochondrial OXPHOS dysfunction, our new findings pave the way for novel pharmacological strategies.
Collapse
Affiliation(s)
- Laure Delavallée
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Cell Death and Drug Resistance in Hematological Disorders Team, F-75006, Paris, France
| | - Navrita Mathiah
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Lauriane Cabon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Cell Death and Drug Resistance in Hematological Disorders Team, F-75006, Paris, France
| | - Aurélien Mazeraud
- Experimental Neuropathology Unit, Institut Pasteur, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Neuropathology Service, Sainte-Anne Hospital Center, Paris, France
| | - Marie-Noelle Brunelle-Navas
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Cell Death and Drug Resistance in Hematological Disorders Team, F-75006, Paris, France
| | - Leticia K Lerner
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Cell Death and Drug Resistance in Hematological Disorders Team, F-75006, Paris, France
| | - Mariana Tannoury
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Cell Death and Drug Resistance in Hematological Disorders Team, F-75006, Paris, France
| | - Alexandre Prola
- INSERM UMRS 1180, LabEx LERMIT, Châtenay-Malabry, France; Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France; Université de Versailles Saint Quentin en Yvelines, Versailles, France; U955-IMRB Team 10 BNMS, INSERM, UPEC, Université Paris-Est, Ecole Nationale Vétérinaire de Maisons-Alfort, France
| | - Raquel Moreno-Loshuertos
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación en Biocomputación y Física de Sistemas Complejos (BiFi), Universidad de Zaragoza, Zaragoza, Spain
| | - Mathieu Baritaud
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Cell Death and Drug Resistance in Hematological Disorders Team, F-75006, Paris, France
| | - Laura Vela
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Cell Death and Drug Resistance in Hematological Disorders Team, F-75006, Paris, France
| | - Kevin Garbin
- Centre de Recherche des Cordeliers, Genotyping and Biochemical facility, INSERM UMRS_1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Cell Death and Drug Resistance in Hematological Disorders Team, F-75006, Paris, France
| | - Christophe Lemaire
- INSERM UMRS 1180, LabEx LERMIT, Châtenay-Malabry, France; Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France; Université de Versailles Saint Quentin en Yvelines, Versailles, France
| | | | - Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit, Collège de France-Center for Interdisciplinary Research in Biology (CIRB)/CNRS UMR 7241/INSERM U1050/Sorbonne Université, Paris, France
| | - Patricio Fernández-Silva
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación en Biocomputación y Física de Sistemas Complejos (BiFi), Universidad de Zaragoza, Zaragoza, Spain
| | - Fabrice Chrétien
- Experimental Neuropathology Unit, Institut Pasteur, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Neuropathology Service, Sainte-Anne Hospital Center, Paris, France
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Santos A Susin
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Cell Death and Drug Resistance in Hematological Disorders Team, F-75006, Paris, France.
| |
Collapse
|
27
|
The human papillomavirus E6 protein targets apoptosis-inducing factor (AIF) for degradation. Sci Rep 2020; 10:14195. [PMID: 32848167 PMCID: PMC7450093 DOI: 10.1038/s41598-020-71134-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Oncoprotein E6 of high-risk human papillomavirus (HPV) plays a critical role in inducing cell immortalization and malignancy. E6 downregulates caspase-dependent pathway through the degradation of p53. However, the effect of HPV E6 on other pathways is still under investigation. In the present study, we found that HPV E6 directly binds to all three forms (precursor, mature, and apoptotic) of apoptosis-inducing factor (AIF) and co-localizes with apoptotic AIF. This binding induced MG132-sensitive reduction of AIF expression in the presence of E6 derived from HPV16 (16E6), a cancer-causing type of HPV. Conversely, E6 derived from a non-cancer-causing type of HPV, HPV6 (6E6), did not reduce the levels of AIF despite its interaction with AIF. Flow cytometric analysis revealed that 16E6, but not 6E6, suppressed apoptotic AIF-induced chromatin degradation (an indicator of caspase-independent apoptosis) and staurosporine (STS, a protein kinase inhibitor)-induced apoptosis. AIF knockdown reduced STS-induced apoptosis in both of 16E6-expressing and 6E6-expressing cells; however, the reduction in 16E6-expressing cells was lower than that in 6E6-expressing cells. These findings indicate that 16E6, but not 6E6, blocks AIF-mediated apoptosis, and that AIF may represent a novel therapeutic target for HPV-induced cervical cancer.
Collapse
|
28
|
Hyatt HW, Powers SK. The Role of Calpains in Skeletal Muscle Remodeling with Exercise and Inactivity-induced Atrophy. Int J Sports Med 2020; 41:994-1008. [PMID: 32679598 DOI: 10.1055/a-1199-7662] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calpains are cysteine proteases expressed in skeletal muscle fibers and other cells. Although calpain was first reported to act as a kinase activating factor in skeletal muscle, the consensus is now that calpains play a canonical role in protein turnover. However, recent evidence reveals new and exciting roles for calpains in skeletal muscle. This review will discuss the functions of calpains in skeletal muscle remodeling in response to both exercise and inactivity-induced muscle atrophy. Calpains participate in protein turnover and muscle remodeling by selectively cleaving target proteins and creating fragmented proteins that can be further degraded by other proteolytic systems. Nonetheless, an often overlooked function of calpains is that calpain-mediated cleavage of proteins can result in fragmented proteins that are biologically active and have the potential to actively influence cell signaling. In this manner, calpains function beyond their roles in protein turnover and influence downstream signaling effects. This review will highlight both the canonical and noncanonical roles that calpains play in skeletal muscle remodeling including sarcomere transformation, membrane repair, triad junction formation, regulation of excitation-contraction coupling, protein turnover, cell signaling, and mitochondrial function. We conclude with a discussion of key unanswered questions regarding the roles that calpains play in skeletal muscle.
Collapse
Affiliation(s)
- Hayden W Hyatt
- Applied Physiology and Kinesiology, University of Florida, Gainesville, United States
| | - Scott K Powers
- Applied Physiology, University of Florida, Gainesville, United States
| |
Collapse
|
29
|
AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165746. [PMID: 32105825 DOI: 10.1016/j.bbadis.2020.165746] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40. The redox-regulated CHCHD4/Mia40-dependent import machinery operates in the intermembrane space of the mitochondrion and controls the import of a set of nuclear-encoded cysteine-motif carrying protein substrates. In addition to their participation in the biogenesis of specific respiratory chain protein subunits, CHCHD4/Mia40 substrates are also implicated in the control of redox regulation, antioxidant response, translation, lipid homeostasis and mitochondrial ultrastructure and dynamics. Here, we discuss recent insights on the AIF/CHCHD4-dependent protein import pathway and review current data concerning the CHCHD4/Mia40 protein substrates in metazoan. Recent findings and the identification of disease-associated mutations in AIF or in specific CHCHD4/Mia40 substrates have highlighted these proteins as potential therapeutic targets in a variety of human disorders.
Collapse
|
30
|
Zong L, Zhao J, Wu W, Wang J, Huang D, Liu M. AIF knockdown induce apoptosis and mitochondrial dysfunction in cochlear spiral ganglion neurons in vitro. Mol Med Rep 2020; 21:1910-1920. [PMID: 32319616 PMCID: PMC7057812 DOI: 10.3892/mmr.2020.10970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
The underlying mechanism involved in auditory neuropathy spectrum disorder (ANSD) remains largely unclear. It has been previously reported that mutations in the apoptosis-inducing factor (AIF) gene are associated with auditory neuropathy and delayed peripheral neuropathy, which can eventually cause ANSD. In the present study, the regulatory effects of AIF knockdown on the cellular functions of spiral ganglion neurons (SNGs) and the molecular mechanism(s) of AIF knockdown in inducing cell apoptosis in SGNs were further investigated. The results showed that the AIF knockdown via siRNA transfection resulted in high levels of oxidative stress, and impaired mitochondrial respiration activity and membrane potential in SGNs. Western blotting further proved that the knockdown of AIF can decrease the content of anti-apoptotic and anti-oxidative proteins, as well as mitochondrial respiratory chain Complex I proteins. The present experimental data suggested that the abnormal expression of AIF may affect SGNs cellular function, and may contribute to the progress of ANSD.
Collapse
Affiliation(s)
- Liang Zong
- Department of Otolaryngology‑Head and Neck Surgery, Institute of Otolaryngology, PLA General Hospital, Beijing 100853, P.R. China
| | - Jiandong Zhao
- Department of Otolaryngology‑Head and Neck Surgery, Institute of Otolaryngology, PLA General Hospital, Beijing 100853, P.R. China
| | - Wenming Wu
- Department of Otolaryngology‑Head and Neck Surgery, Institute of Otolaryngology, PLA General Hospital, Beijing 100853, P.R. China
| | - Jialing Wang
- Department of Otolaryngology‑Head and Neck Surgery, Institute of Otolaryngology, PLA General Hospital, Beijing 100853, P.R. China
| | - Deliang Huang
- Department of Otolaryngology‑Head and Neck Surgery, Institute of Otolaryngology, PLA General Hospital, Beijing 100853, P.R. China
| | - Mingbo Liu
- Department of Otolaryngology‑Head and Neck Surgery, Institute of Otolaryngology, PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
31
|
Li T, Li K, Zhang S, Wang Y, Xu Y, Cronin SJF, Sun Y, Zhang Y, Xie C, Rodriguez J, Zhou K, Hagberg H, Mallard C, Wang X, Penninger JM, Kroemer G, Blomgren K, Zhu C. Overexpression of apoptosis inducing factor aggravates hypoxic-ischemic brain injury in neonatal mice. Cell Death Dis 2020; 11:77. [PMID: 32001673 PMCID: PMC6992638 DOI: 10.1038/s41419-020-2280-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Apoptosis inducing factor (AIF) has been shown to be a major contributor to neuron loss in the immature brain after hypoxia-ischemia (HI). Indeed, mice bearing a hypomorphic mutation causing reduced AIF expression are protected against neonatal HI. To further investigate the possible molecular mechanisms of this neuroprotection, we generated an AIF knock-in mouse by introduction of a latent transgene coding for flagged AIF protein into the Rosa26 locus, followed by its conditional activation by a ubiquitously expressed Cre recombinase. Such AIF transgenic mice overexpress the pro-apoptotic splice variant of AIF (AIF1) at both the mRNA (5.9 times higher) and protein level (2.4 times higher), but not the brain-specific AIF splice-isoform (AIF2). Excessive AIF did not have any apparent effects on the phenotype or physiological functions of the mice. However, brain injury (both gray and white matter) after neonatal HI was exacerbated in mice overexpressing AIF, coupled to enhanced translocation of mitochondrial AIF to the nucleus as well as enhanced caspase-3 activation in some brain regions, as indicated by immunohistochemistry. Altogether, these findings corroborate earlier studies demonstrating that AIF plays a causal role in neonatal HI brain injury.
Collapse
Affiliation(s)
- Tao Li
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.,Department of Pediatrics, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450018, China
| | - Kenan Li
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Yafeng Wang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.,Department of Pediatrics, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450018, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Shane J F Cronin
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Yanyan Sun
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Yaodong Zhang
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.,Department of Pediatrics, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450018, China
| | - Cuicui Xie
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Juan Rodriguez
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Kai Zhou
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.,Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.,Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.,Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Josef M Penninger
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China. .,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden. .,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden. .,Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.
| |
Collapse
|
32
|
Park H, Kam TI, Dawson TM, Dawson VL. Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:1-29. [PMID: 32381174 DOI: 10.1016/bs.ircmb.2019.12.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Disruption of cellular functions with aging-induced accumulation of neuronal stressors causes cell death which is a common feature of neurodegenerative diseases. Studies in a variety of neurodegenerative disease models demonstrate that poly (ADP-ribose) (PAR)-dependent cell death, also named parthanatos, is responsible for neuronal loss in neurological diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Parthanatos has distinct features that differ from caspase-dependent apoptosis, necrosis or autophagic cell death. Parthanatos can be triggered by the accumulation of PAR due to overactivation of PAR polymerase-1 (PARP-1). Excess PAR, induces the mitochondrial release apoptosis-inducing factor (AIF), which binds to macrophage migration inhibitory factor (MIF) carrying MIF into the nucleus where it cleaves genomic DNA into large fragments. In this review, we will discuss the molecular mechanisms of parthanatos and their role in neurodegenerative diseases. Furthermore, we will discuss promising therapeutic interventions within the pathological PAR signaling cascade that could be designed to halt the progression of neurodegeneration.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
33
|
Kadam A, Mehta D, Jubin T, Mansuri MS, Begum R. Apoptosis inducing factor: Cellular protective function in Dictyostelium discoideum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148158. [PMID: 31991113 DOI: 10.1016/j.bbabio.2020.148158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 01/31/2023]
Abstract
Apoptosis Inducing Factor (AIF), a nuclear encoded mitochondrial inter-membrane space flavoprotein with intrinsic NADH oxidase activity, plays an important role in inducing cell death mechanisms. In response to cell death signals, it undergoes mitochondrio-nuclear translocation leading to DNA fragmentation. In addition to its role in cell death, AIF has a pro-survival role, wherein it contributes to the maintenance of mitochondrial structure and function in a coordinated manner. However, its exact mechanism of controlling mitochondrial homeostasis is unclear. The current study aims to explore the protective functions of AIF by its downregulation and overexpression in Dictyostelium discoideum. Constitutive AIF downregulated (dR) cells exhibited compromised oxidative phosphorylation along with elevated levels of cellular ROS. Interestingly, constitutive AIF dR cells showed amelioration in the activity of the ETC complexes upon antioxidant treatment, strengthening AIF's role as an ROS regulator, by virtue of its oxidoreductase property. Also, constitutive AIF dR cells showed lower transcript levels of the various subunits of ETC. Moreover, loss of AIF affected mtDNA content and mitochondrial fusion-fission mechanism, which subsequently caused morphometric mitochondrial alterations. Constitutive AIF overexpressed (OE) cells also showed higher cellular ROS and mitochondrial fission genes transcript levels along with reduced mitochondrial fusion genes transcript levels and mtDNA content. Thus, the results of the current study provide a paradigm where AIF is implicated in cell survival by maintaining mitochondrial bioenergetics, morphology and fusion-fission mechanism in D. discoideum, an evolutionarily significant model organism for mitochondrial diseases.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Darshan Mehta
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Mohmmad Shoab Mansuri
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
34
|
Pereira CV, Peralta S, Arguello T, Bacman SR, Diaz F, Moraes CT. Myopathy reversion in mice after restauration of mitochondrial complex I. EMBO Mol Med 2020; 12:e10674. [PMID: 31916679 PMCID: PMC7005622 DOI: 10.15252/emmm.201910674] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/03/2023] Open
Abstract
Myopathies are common manifestations of mitochondrial diseases. To investigate whether gene replacement can be used as an effective strategy to treat or cure mitochondrial myopathies, we have generated a complex I conditional knockout mouse model lacking NDUFS3 subunit in skeletal muscle. NDUFS3 protein levels were undetectable in muscle of 15‐day‐old smKO mice, and myopathy symptoms could be detected by 2 months of age, worsening over time. rAAV9‐Ndufs3 delivered systemically into 15‐ to 18‐day‐old mice effectively restored NDUFS3 levels in skeletal muscle, precluding the development of the myopathy. To test the ability of rAAV9‐mediated gene replacement to revert muscle function after disease onset, we also treated post‐symptomatic, 2‐month‐old mice. The injected mice showed a remarkable improvement of the mitochondrial myopathy and biochemical parameters, which remained for the duration of the study. Our results showed that muscle pathology could be reversed after restoring complex I, which was absent for more than 2 months. These findings have far‐reaching implications for the ability of muscle to tolerate a mitochondrial defect and for the treatment of mitochondrial myopathies.
Collapse
Affiliation(s)
- Claudia V Pereira
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susana Peralta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tania Arguello
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sandra R Bacman
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
35
|
Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P, Galluzzi L. Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat Rev Cardiol 2019; 16:33-55. [PMID: 30177752 DOI: 10.1038/s41569-018-0074-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that mitochondrial dysfunction has a major role in the pathogenesis of multiple cardiovascular disorders. Over the past 2 decades, extraordinary efforts have been focused on the development of agents that specifically target mitochondria for the treatment of cardiovascular disease. Despite such an intensive wave of investigation, no drugs specifically conceived to modulate mitochondrial functions are currently available for the clinical management of cardiovascular disease. In this Review, we discuss the therapeutic potential of targeting mitochondria in patients with cardiovascular disease, examine the obstacles that have restrained the development of mitochondria-targeting agents thus far, and identify strategies that might empower the full clinical potential of this approach.
Collapse
Affiliation(s)
- Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell, Regenerative Medicine Research, Department of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.,Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Pinton
- Department of Morphology, Surgery, and Experimental Medicine, Section of Pathology, Oncology, and Experimental Biology, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy. .,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France. .,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
36
|
Khalsa JK, Chawla AS, Prabhu SB, Vats M, Dhar A, Dev G, Das N, Mukherjee S, Tanwar S, Banerjee H, Durdik JM, Bal V, George A, Rath S, Arimbasseri GA. Functionally significant metabolic differences between B and T lymphocyte lineages. Immunology 2019; 158:104-120. [PMID: 31318442 DOI: 10.1111/imm.13098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/13/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Activation of B and T lymphocytes leads to major remodelling of the metabolic landscape of the cells enabling their post-activation functions. However, naive B and T lymphocytes also show metabolic differences, and the genesis, nature and functional significance of these differences are not yet well understood. Here we show that resting B-cells appeared to have lower energy demands than resting T-cells as they consumed lower levels of glucose and fatty acids and produced less ATP. Resting B-cells are more dependent on OXPHOS, while T-cells show more dependence on aerobic glycolysis. However, despite an apparently higher energy demand, T lineage cells showed lower rates of protein synthesis than equivalent B lineage stages. These metabolic differences between the two lineages were established early during lineage differentiation, and were functionally significant. Higher levels of protein synthesis in B-cells were associated with increased synthesis of MHC class II molecules and other proteins associated with antigen internalization, transport and presentation. The combination of higher energy demand and lower protein synthesis in T-cells was consistent with their higher ATP-dependent motility. Our data provide an integrated perspective of the metabolic differences and their functional implications between the B and T lymphocyte lineages.
Collapse
Affiliation(s)
| | | | - Savit B Prabhu
- Wellcome Laboratory, Christian Medical College, Vellore, India
| | - Mukti Vats
- National Institute of Immunology, New Delhi, India
| | - Atika Dhar
- National Institute of Immunology, New Delhi, India
| | - Gagan Dev
- National Institute of Immunology, New Delhi, India
| | - Nabanita Das
- Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | - Anna George
- National Institute of Immunology, New Delhi, India
| | | | | |
Collapse
|
37
|
Fiuza-Luces C, Valenzuela PL, Laine-Menéndez S, Fernández-de la Torre M, Bermejo-Gómez V, Rufián-Vázquez L, Arenas J, Martín MA, Lucia A, Morán M. Physical Exercise and Mitochondrial Disease: Insights From a Mouse Model. Front Neurol 2019; 10:790. [PMID: 31402893 PMCID: PMC6673140 DOI: 10.3389/fneur.2019.00790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023] Open
Abstract
Purpose: Mitochondrial diseases (MD) are among the most prevalent neuromuscular disorders. Unfortunately, no curative treatment is yet available. This study analyzed the effects of exercise training in an animal model of respiratory chain complex I deficiency, the Harlequin (Hq) mouse, which replicates the clinical features of this condition. Methods: Male heterozygous Harlequin (Hq/Y) mice were assigned to an “exercise” (n = 10) or a “sedentary” control group (n = 11), with the former being submitted to an 8 week combined exercise training intervention (aerobic + resistance training performed five times/week). Aerobic fitness, grip strength, and balance were assessed at the beginning and at the end of the intervention period in all the Hq mice. Muscle biochemical analyses (with results expressed as percentage of reference data from age/sex-matched sedentary wild-type mice [n = 12]) were performed at the end of the aforementioned period for the assessment of major molecular signaling pathways involved in muscle anabolism (mTOR activation) and mitochondrial biogenesis (proliferator activated receptor gamma co-activator 1α [PGC-1α] levels), and enzyme activity and levels of respiratory chain complexes, and antioxidant enzyme levels. Results: Exercise training resulted in significant improvements in aerobic fitness (−33 ± 13 m and 83 ± 43 m for the difference post- vs. pre-intervention in total distance covered in the treadmill tests in control and exercise group, respectively, p = 0.014) and muscle strength (2 ± 4 g vs. 17 ± 6 g for the difference post vs. pre-intervention, p = 0.037) compared to the control group. Higher levels of ribosomal protein S6 kinase beta-1 phosphorylated at threonine 389 (156 ± 30% vs. 249 ± 30%, p = 0.028) and PGC-1α (82 ± 7% vs. 126 ± 19% p = 0.032) were observed in the exercise-trained mice compared with the control group. A higher activity of respiratory chain complexes I (75 ± 4% vs. 95 ± 6%, p = 0.019), III (79 ± 5% vs. 97 ± 4%, p = 0.031), and V (77 ± 9% vs. 105 ± 9%, p = 0.024) was also found with exercise training. Exercised mice presented with lower catalase levels (204 ± 22% vs. 141 ± 23%, p = 0.036). Conclusion: In a mouse model of MD, a training intervention combining aerobic and resistance exercise increased aerobic fitness and muscle strength, and mild improvements were found for activated signaling pathways involved in muscle mitochondrial biogenesis and anabolism, OXPHOS complex activity, and redox status in muscle tissue.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Pedro L Valenzuela
- Physiology Unit, Systems Biology Department, University of Alcalá, Madrid, Spain
| | - Sara Laine-Menéndez
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Miguel Fernández-de la Torre
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Verónica Bermejo-Gómez
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Laura Rufián-Vázquez
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| | - Miguel A Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sports Sciences, European University of Madrid, Madrid, Spain.,Spanish Network for Biomedical Research in Fragility and Healthy Aging (CIBERFES), Madrid, Spain
| | - María Morán
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
38
|
Rao S, Mondragón L, Pranjic B, Hanada T, Stoll G, Köcher T, Zhang P, Jais A, Lercher A, Bergthaler A, Schramek D, Haigh K, Sica V, Leduc M, Modjtahedi N, Pai TP, Onji M, Uribesalgo I, Hanada R, Kozieradzki I, Koglgruber R, Cronin SJ, She Z, Quehenberger F, Popper H, Kenner L, Haigh JJ, Kepp O, Rak M, Cai K, Kroemer G, Penninger JM. AIF-regulated oxidative phosphorylation supports lung cancer development. Cell Res 2019; 29:579-591. [PMID: 31133695 PMCID: PMC6796841 DOI: 10.1038/s41422-019-0181-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/05/2019] [Indexed: 12/30/2022] Open
Abstract
Cancer is a major and still increasing cause of death in humans. Most cancer cells have a fundamentally different metabolic profile from that of normal tissue. This shift away from mitochondrial ATP synthesis via oxidative phosphorylation towards a high rate of glycolysis, termed Warburg effect, has long been recognized as a paradigmatic hallmark of cancer, supporting the increased biosynthetic demands of tumor cells. Here we show that deletion of apoptosis-inducing factor (AIF) in a KrasG12D-driven mouse lung cancer model resulted in a marked survival advantage, with delayed tumor onset and decreased malignant progression. Mechanistically, Aif deletion leads to oxidative phosphorylation (OXPHOS) deficiency and a switch in cellular metabolism towards glycolysis in non-transformed pneumocytes and at early stages of tumor development. Paradoxically, although Aif-deficient cells exhibited a metabolic Warburg profile, this bioenergetic change resulted in a growth disadvantage of KrasG12D-driven as well as Kras wild-type lung cancer cells. Cell-autonomous re-expression of both wild-type and mutant AIF (displaying an intact mitochondrial, but abrogated apoptotic function) in Aif-knockout KrasG12D mice restored OXPHOS and reduced animal survival to the same level as AIF wild-type mice. In patients with non-small cell lung cancer, high AIF expression was associated with poor prognosis. These data show that AIF-regulated mitochondrial respiration and OXPHOS drive the progression of lung cancer.
Collapse
Affiliation(s)
- Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Laura Mondragón
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France
- INSERM, U1138, 75006, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805, Villejuif, France
| | - Blanka Pranjic
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Toshikatsu Hanada
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Gautier Stoll
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France
- INSERM, U1138, 75006, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805, Villejuif, France
- Université Sorbonne, 75006, Paris, France
| | - Thomas Köcher
- Vienna Biocenter Core Facilities, 1030, Vienna, Austria
| | - Peng Zhang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Alexander Jais
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Alexander Lercher
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andreas Bergthaler
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniel Schramek
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Canada
| | - Katharina Haigh
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Valentina Sica
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France
- INSERM, U1138, 75006, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805, Villejuif, France
| | - Marion Leduc
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France
- INSERM, U1138, 75006, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805, Villejuif, France
| | - Nazanine Modjtahedi
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France
- INSERM, U1030, Villejuif, France
| | - Tsung-Pin Pai
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Masahiro Onji
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Iris Uribesalgo
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Reiko Hanada
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Ivona Kozieradzki
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Rubina Koglgruber
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Shane J Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Franz Quehenberger
- Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Helmut Popper
- Center for Diagnostics and Research in Molecular Biomedicine, Pathology Institute for Diagnostics and Research, Medical University Graz, Graz, Austria
| | - Lukas Kenner
- Department of Experimental Pathology and Pathology of Laboratory Animals, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
| | - Jody J Haigh
- Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Oliver Kepp
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France
- INSERM, U1138, 75006, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805, Villejuif, France
| | - Malgorzata Rak
- INSERM, UMR1141, Hopital Robert Debre 48 Boulevard Serurier, 75019, Paris, France
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.
- INSERM, U1138, 75006, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
- Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
39
|
Caspases interplay with kinases and phosphatases to determine cell fate. Eur J Pharmacol 2019; 855:20-29. [DOI: 10.1016/j.ejphar.2019.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
|
40
|
Timper K, Paeger L, Sánchez-Lasheras C, Varela L, Jais A, Nolte H, Vogt MC, Hausen AC, Heilinger C, Evers N, Pospisilik JA, Penninger JM, Taylor EB, Horvath TL, Kloppenburg P, Brüning JC. Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity. Cell Rep 2018; 25:383-397.e10. [PMID: 30304679 PMCID: PMC6349418 DOI: 10.1016/j.celrep.2018.09.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/06/2018] [Accepted: 09/11/2018] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) and substrate utilization critically regulate the function of hypothalamic proopiomelanocortin (POMC)-expressing neurons. Here, we demonstrate that inactivation of apoptosis-inducing factor (AIF) in POMC neurons mildly impairs mitochondrial respiration and decreases firing of POMC neurons in lean mice. In contrast, under diet-induced obese conditions, POMC-Cre-specific inactivation of AIF prevents obesity-induced silencing of POMC neurons, translating into improved glucose metabolism, improved leptin, and insulin sensitivity, as well as increased energy expenditure in AIFΔPOMC mice. On a cellular level, AIF deficiency improves mitochondrial morphology, facilitates the utilization of fatty acids for mitochondrial respiration, and increases reactive oxygen species (ROS) formation in POMC neurons from obese mice, ultimately leading to restored POMC firing upon HFD feeding. Collectively, partial impairment of mitochondrial function shifts substrate utilization of POMC neurons from glucose to fatty acid metabolism and restores their firing properties, resulting in improved systemic glucose and energy metabolism in obesity.
Collapse
Affiliation(s)
- Katharina Timper
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lars Paeger
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Biocenter, University of Cologne, Cologne, Germany
| | - Carmen Sánchez-Lasheras
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Luis Varela
- Department of Biochemistry and Fraternal Order of Eagles Diabetes Research Center, Caver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alexander Jais
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hendrik Nolte
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Merly C Vogt
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - A Christine Hausen
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christian Heilinger
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Nadine Evers
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - J Andrew Pospisilik
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Eric B Taylor
- Department of Biochemistry and Fraternal Order of Eagles Diabetes Research Center, Caver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tamas L Horvath
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Peter Kloppenburg
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Biocenter, University of Cologne, Cologne, Germany
| | - Jens Claus Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
41
|
Scott AJ, Walker SA, Krank JJ, Wilkinson AS, Johnson KM, Lewis EM, Wilkinson JC. AIF promotes a JNK1-mediated cadherin switch independently of respiratory chain stabilization. J Biol Chem 2018; 293:14707-14722. [PMID: 30093403 DOI: 10.1074/jbc.ra118.004022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/26/2018] [Indexed: 12/18/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein occasionally involved in cell death that primarily regulates mitochondrial energy metabolism under normal cellular conditions. AIF catalyzes the oxidation of NADH in vitro, yet the significance of this redox activity in cells remains unclear. Here, we show that through its enzymatic activity AIF is a critical factor for oxidative stress-induced activation of the mitogen-activated protein kinases JNK1 (c-Jun N-terminal kinase), p38, and ERK (extracellular signal-regulated kinase). AIF-dependent JNK1 signaling culminates in the cadherin switch, and genetic reversal of this switch leads to apoptosis when AIF is suppressed. Notably, this widespread ability of AIF to promote JNK signaling can be uncoupled from its more limited role in respiratory chain stabilization. Thus, AIF is a transmitter of extra-mitochondrial signaling cues with important implications for human development and disease.
Collapse
Affiliation(s)
- Andrew J Scott
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Sierra A Walker
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Joshua J Krank
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Amanda S Wilkinson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Kaitlyn M Johnson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Eric M Lewis
- the Department of Chemistry, Mathematics and Physics, Clarion University of Pennsylvania, Clarion, Pennsylvania 16214
| | - John C Wilkinson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| |
Collapse
|
42
|
Wischhof L, Gioran A, Sonntag-Bensch D, Piazzesi A, Stork M, Nicotera P, Bano D. A disease-associated Aifm1 variant induces severe myopathy in knockin mice. Mol Metab 2018; 13:10-23. [PMID: 29780003 PMCID: PMC6026322 DOI: 10.1016/j.molmet.2018.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Mutations in the AIFM1 gene have been identified in recessive X-linked mitochondrial diseases. Functional and molecular consequences of these pathogenic AIFM1 mutations have been poorly studied in vivo. METHODS/RESULTS Here we provide evidence that the disease-associated apoptosis-inducing factor (AIF) deletion arginine 201 (R200 in rodents) causes pathology in knockin mice. Within a few months, posttranslational loss of the mutant AIF protein induces severe myopathy associated with a lower number of cytochrome c oxidase-positive muscle fibers. At a later stage, Aifm1 (R200 del) knockin mice manifest peripheral neuropathy, but they do not show neurodegenerative processes in the cerebellum, as observed in age-matched hypomorphic Harlequin (Hq) mutant mice. Quantitative proteomic and biochemical data highlight common molecular signatures of mitochondrial diseases, including aberrant folate-driven one-carbon metabolism and sustained Akt/mTOR signaling. CONCLUSION Our findings indicate metabolic defects and distinct tissue-specific vulnerability due to a disease-causing AIFM1 mutation, with many pathological hallmarks that resemble those seen in patients.
Collapse
Affiliation(s)
- Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anna Gioran
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Miriam Stork
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
43
|
Bano D, Prehn JHM. Apoptosis-Inducing Factor (AIF) in Physiology and Disease: The Tale of a Repented Natural Born Killer. EBioMedicine 2018; 30:29-37. [PMID: 29605508 PMCID: PMC5952348 DOI: 10.1016/j.ebiom.2018.03.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial oxidoreductase that contributes to cell death programmes and participates in the assembly of the respiratory chain. Importantly, AIF deficiency leads to severe mitochondrial dysfunction, causing muscle atrophy and neurodegeneration in model organisms as well as in humans. The purpose of this review is to describe functions of AIF and AIF-interacting proteins as regulators of cell death and mitochondrial bioenergetics. We describe how AIF deficiency induces pathogenic processes that alter metabolism and ultimately compromise cellular homeostasis. We report the currently known AIFM1 mutations identified in humans and discuss the variability of AIFM1-related disorders in terms of onset, organ involvement and symptoms. Finally, we summarize how the study of AIFM1-linked pathologies may help to further expand our understanding of rare inherited forms of mitochondrial diseases. AIF is a mitochondrial NADH-dependent oxidoreductase. Nuclear translocation of AIF occurs during cell death and has been associated with human disorders. Under physiological settings, AIF participates to the biogenesis of the respiratory complexes. AIFM1 mutations have been identified in patients with impaired mitochondrial bioenergetics. Inherited AIFM1 mutations lead to a variety of clinical manifestations, including severe childhood-onset mitochondrial diseases.
Collapse
Affiliation(s)
- Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
44
|
Madungwe NB, Feng Y, Lie M, Tombo N, Liu L, Kaya F, Bopassa JC. Mitochondrial inner membrane protein (mitofilin) knockdown induces cell death by apoptosis via an AIF-PARP-dependent mechanism and cell cycle arrest. Am J Physiol Cell Physiol 2018; 315:C28-C43. [PMID: 29489384 DOI: 10.1152/ajpcell.00230.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitofilin is an inner membrane protein that has been defined as a mitochondria-shaping protein in controlling and maintaining mitochondrial cristae structure and remodeling. We determined the role of mitofilin in cell survival by investigating the mechanism underlying mitofilin knockdown-induced cell death by apoptosis. Cultured H9c2 myoblasts and HEK 293 cells were treated with mitofilin siRNA or scrambled siRNA for 24 h. Cell death (apoptosis), caspase 3 activity and cell cycle phases were assessed by flow cytometry, while cytochrome c release and intracellular ATP production were measured by ELISA. Mitofilin, apoptosis-inducing factor (AIF) and poly(ADP-ribose) polymerase (PARP) expression were measured by Western blot analysis and calpain activity was assessed using a calpain activity kit. Mitochondrial images were taken using electron microscopy. We found that mitofilin knockdown increases apoptosis mainly via activation of the AIF-PARP pathway leading to nuclear fragmentation that is correlated with S phase arrest of the cell cycle. Knockdown of mitofilin also led to mitochondrial swelling and damage of cristae that is associated with the increase in reactive oxygen species production and mitochondrial calpain activity, as well as a marked decrease in intracellular ATP production and mitochondrial membrane potential. Together, these results indicate that mitofilin knockdown by siRNA increases calpain activity that presumably leads to mitochondrial structural degradation resulting in a critical reduction of mitochondrial function that is responsible for the increase in cell death by apoptosis via an AIF-PARP mechanism and associated with nuclear fragmentation, and S phase arrest of the cell cycle.
Collapse
Affiliation(s)
- Ngonidzashe B Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas
| | - Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Mihaela Lie
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Nathalie Tombo
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Li Liu
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Ferdinand Kaya
- Department of Ophthalmology, University of California , Davis, California
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
45
|
Morton SU, Prabhu SP, Lidov HGW, Shi J, Anselm I, Brownstein CA, Bainbridge MN, Beggs AH, Vargas SO, Agrawal PB. AIFM1 mutation presenting with fatal encephalomyopathy and mitochondrial disease in an infant. Cold Spring Harb Mol Case Stud 2017; 3:a001560. [PMID: 28299359 PMCID: PMC5334471 DOI: 10.1101/mcs.a001560] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis-inducing factor mitochondrion-associated 1 (AIFM1), encoded by the gene AIFM1, has roles in electron transport, apoptosis, ferredoxin metabolism, reactive oxygen species generation, and immune system regulation. Here we describe a patient with a novel AIFM1 variant presenting unusually early in life with mitochondrial disease, rapid deterioration, and death. Autopsy, at the age of 4 mo, revealed features of mitochondrial encephalopathy, myopathy, and involvement of peripheral nerves with axonal degeneration. In addition, there was microvesicular steatosis in the liver, thymic noninvolution, follicular bronchiolitis, and pulmonary arterial medial hypertrophy. This report adds to the clinical and pathological spectrum of disease related to AIFM1 mutations and provides insights into the role of AIFM1 in cellular function.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sanjay P Prabhu
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR
| | - Irina Anselm
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matthew N Bainbridge
- Rady Children's Institute for Genomic Medicine, San Diego, California 92123, USA
- Codified Genomics LLC, Houston, Texas 77004, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
46
|
Abstract
As the heart is an energy-demanding organ, impaired cardiac energy metabolism and mitochondrial function have been inexorably linked to cardiac dysfunction. There is a growing recognition that mitochondrial dysfunction contributes to impaired myocardial energetics and increased oxidative stress in cardiomyopathies, cardiac ischemic damage and heart failure (HF), and mitochondrial permeability transition pore opening has been reported a critical trigger of myocyte death and myocardial remodeling. It is well established that mitochondria play pivotal roles in intracellular signaling in both cell death as well as in cardioprotective pathways. Moreover, recent studies have shown that defects in mitochondrial dynamics affecting biogenesis and turnover are linked to cardiac senescence and HF. Accordingly, there has been an increasing interest in targeting mitochondria for HF therapy. This article reviews the background and recent evidence of mitochondrial involvement in several types of cell death (apoptosis, necrosis and autophagy) occurring in HF. In addition, potential strategies for targeting mitochondria are examined, and their utility in HF therapy considered.
Collapse
|
47
|
Wang F, Wei ZL, Sun XR, Zhang Q, Zhang CX, Jiang WX, Yan X, Liu JN, Yuan X. Apoptosis Inducing Factor Is Involved in Stretch-Induced Apoptosis of Myoblast via a Caspase-9 Independent Pathway. J Cell Biochem 2016; 118:829-838. [PMID: 27735993 DOI: 10.1002/jcb.25759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Fang Wang
- Department of Orthodontics; The Affiliated Qingdao Municipal Hospital, Qingdao University; Qingdao Shandong Province 266011 People's Republic of China
| | - Zhu-Liang Wei
- Department of Orthodontics; Jinan Stomatological Hospital; Jinan Shandong Province 250001 People's Republic of China
| | - Xian-Rui Sun
- Department of Orthodontics; Weihai Stomatological Hospital; Weihai Shandong Province 264200 People's Republic of China
| | - Qiang Zhang
- Department of Orthodontics; The Affiliated Qingdao Municipal Hospital, Qingdao University; Qingdao Shandong Province 266011 People's Republic of China
| | - Cai-Xia Zhang
- Department of Orthodontics; The Affiliated Qingdao Municipal Hospital, Qingdao University; Qingdao Shandong Province 266011 People's Republic of China
| | - Wen-Xin Jiang
- Department of Orthodontics; The Affiliated Qingdao Municipal Hospital, Qingdao University; Qingdao Shandong Province 266011 People's Republic of China
| | - Xiao Yan
- Department of Orthodontics; The Affiliated Qingdao Municipal Hospital, Qingdao University; Qingdao Shandong Province 266011 People's Republic of China
| | - Jia-Ning Liu
- Department of Orthodontics; The Affiliated Qingdao Municipal Hospital, Qingdao University; Qingdao Shandong Province 266011 People's Republic of China
| | - Xiao Yuan
- Department of Orthodontics; The Affiliated Qingdao Municipal Hospital, Qingdao University; Qingdao Shandong Province 266011 People's Republic of China
| |
Collapse
|
48
|
Kadam AA, Jubin T, Mir HA, Begum R. Potential role of Apoptosis Inducing Factor in evolutionarily significant eukaryote, Dictyostelium discoideum survival. Biochim Biophys Acta Gen Subj 2016; 1861:2942-2955. [PMID: 27663234 DOI: 10.1016/j.bbagen.2016.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/27/2016] [Accepted: 09/16/2016] [Indexed: 11/25/2022]
Abstract
Apoptosis Inducing Factor (AIF), a phylogenetically conserved mitochondrial inter-membrane space flavoprotein has an important role in caspase independent cell death. Nevertheless, AIF is also essential for cell survival. It is required for mitochondrial organization and energy metabolism. Upon apoptotic stimulation, AIF induces DNA fragmentation after its mitochondrio-nuclear translocation. Although it executes critical cellular functions in a coordinated manner, the exact mechanism still remains obscure. The present study aims to understand AIF's role in cell survival, growth and development by its down-regulation in an interesting unicellular eukaryote, D. discoideum which exhibits multicellularity upon starvation. Constitutive AIF down-regulated (dR) cells exhibited slower growth and delayed developmental morphogenesis. Also, constitutive AIF dR cells manifested high intracellular ROS, oxidative DNA damage and calcium levels with lower ATP content. Interestingly, constitutive AIF dR cells showed amelioration in cell growth upon antioxidant treatment, strengthening its role as ROS regulator. Under oxidative stress, AIF dR cells showed early mitochondrial membrane depolarization followed by AIF translocation from mitochondria to nucleus and exhibited necrotic cell death as compared to paraptoptic cell death of control cells. Thus, the results of this study provide an exemplar where AIF is involved in growth and development by regulating ROS levels and maintaining mitochondrial function in D. discoideum, an evolutionarily significant model organism exhibiting caspase independent apoptosis.
Collapse
Affiliation(s)
- Ashlesha A Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Hina A Mir
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India.
| |
Collapse
|
49
|
Ramsay RR, Majekova M, Medina M, Valoti M. Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration. Front Neurosci 2016; 10:375. [PMID: 27597816 PMCID: PMC4992697 DOI: 10.3389/fnins.2016.00375] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
HIGHLIGHTS Compounds that interact with multiple targets but minimally with the cytochrome P450 system (CYP) address the many factors leading to neurodegeneration.Acetyl- and Butyryl-cholineEsterases (AChE, BChE) and Monoamine Oxidases A/B (MAO A, MAO B) are targets for Multi-Target Designed Ligands (MTDL).ASS234 is an irreversible inhibitor of MAO A >MAO B and has micromolar potency against the cholinesterases.ASS234 is a poor CYP substrate in human liver, yielding the depropargylated metabolite.SMe1EC2, a stobadine derivative, showed high radical scavenging property, in vitro and in vivo giving protection in head trauma and diabetic damage of endothelium.Control of mitochondrial function and morphology by manipulating fission and fusion is emerging as a target area for therapeutic strategies to decrease the pathological outcome of neurodegenerative diseases. Growing evidence supports the view that neurodegenerative diseases have multiple and common mechanisms in their aetiologies. These multifactorial aspects have changed the broadly common assumption that selective drugs are superior to "dirty drugs" for use in therapy. This drives the research in studies of novel compounds that might have multiple action mechanisms. In neurodegeneration, loss of neuronal signaling is a major cause of the symptoms, so preservation of neurotransmitters by inhibiting the breakdown enzymes is a first approach. Acetylcholinesterase (AChE) inhibitors are the drugs preferentially used in AD and that one of these, rivastigmine, is licensed also for PD. Several studies have shown that monoamine oxidase (MAO) B, located mainly in glial cells, increases with age and is elevated in Alzheimer (AD) and Parkinson's Disease's (PD). Deprenyl, a MAO B inhibitor, significantly delays the initiation of levodopa treatment in PD patients. These indications underline that AChE and MAO are considered a necessary part of multi-target designed ligands (MTDL). However, both of these targets are simply symptomatic treatment so if new drugs are to prevent degeneration rather than compensate for loss of neurotransmitters, then oxidative stress and mitochondrial events must also be targeted. MAO inhibitors can protect neurons from apoptosis by mechanisms unrelated to enzyme inhibition. Understanding the involvement of MAO and other proteins in the induction and regulation of the apoptosis in mitochondria will aid progress toward strategies to prevent the loss of neurons. In general, the oxidative stress observed both in PD and AD indicate that antioxidant properties are a desirable part of MTDL molecules. After two or more properties are incorporated into one molecule, the passage from a lead compound to a therapeutic tool is strictly linked to its pharmacokinetic and toxicity. In this context the interaction of any new molecules with cytochrome P450 and other xenobiotic metabolic processes is a crucial point. The present review covers the biochemistry of enzymes targeted in the design of drugs against neurodegeneration and the cytochrome P450-dependent metabolism of MTDLs.
Collapse
Affiliation(s)
- Rona R. Ramsay
- Biomedical Sciences Research Complex, University of St. AndrewsSt. Andrews, UK
| | - Magdalena Majekova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of SciencesBratislava, Slovakia
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and BIFI, Universidad de ZaragozaZaragoza, Spain
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università degli Studi di SienaSiena, Italy
| |
Collapse
|
50
|
The hidden side of SERPINB1/Leukocyte Elastase Inhibitor. Semin Cell Dev Biol 2016; 62:178-186. [PMID: 27422329 DOI: 10.1016/j.semcdb.2016.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/13/2016] [Accepted: 07/08/2016] [Indexed: 12/20/2022]
Abstract
SERPINB1, also called Leukocyte Elastase Inhibitor (LEI) is a member of the clade B of SERPINS. It is an intracellular protein and acts primarily to protect the cell from proteases released into the cytoplasm during stress. Its role in inflammation is clear due to its involvement in the resolution of chronic inflammatory lung and bowel diseases. LEI/SERPINB1 intrinsically possesses two enzymatic activities: an antiprotease activity dependent on its reactive site loop, which is analogous to the other proteins of the family and an endonuclease activity which is unveiled by the cleavage of the reactive site loop. The conformational change induced by this cleavage also unveils a bipartite nuclear localization signal allowing the protein to translocate to the nucleus. Recent data indicate that it has also a role in cell migration suggesting that it could be involved in diverse processes like wound healing and malignant metastases.
Collapse
|