1
|
Dreier MR, Walia J, de la Serna IL. Targeting SWI/SNF Complexes in Cancer: Pharmacological Approaches and Implications. EPIGENOMES 2024; 8:7. [PMID: 38390898 PMCID: PMC10885108 DOI: 10.3390/epigenomes8010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
SWI/SNF enzymes are heterogeneous multi-subunit complexes that utilize the energy from ATP hydrolysis to remodel chromatin structure, facilitating transcription, DNA replication, and repair. In mammalian cells, distinct sub-complexes, including cBAF, ncBAF, and PBAF exhibit varying subunit compositions and have different genomic functions. Alterations in the SWI/SNF complex and sub-complex functions are a prominent feature in cancer, making them attractive targets for therapeutic intervention. Current strategies in cancer therapeutics involve the use of pharmacological agents designed to bind and disrupt the activity of SWI/SNF complexes or specific sub-complexes. Inhibitors targeting the catalytic subunits, SMARCA4/2, and small molecules binding SWI/SNF bromodomains are the primary approaches for suppressing SWI/SNF function. Proteolysis-targeting chimeras (PROTACs) were generated by the covalent linkage of the bromodomain or ATPase-binding ligand to an E3 ligase-binding moiety. This engineered connection promotes the degradation of specific SWI/SNF subunits, enhancing and extending the impact of this pharmacological intervention in some cases. Extensive preclinical studies have underscored the therapeutic potential of these drugs across diverse cancer types. Encouragingly, some of these agents have progressed from preclinical research to clinical trials, indicating a promising stride toward the development of effective cancer therapeutics targeting SWI/SNF complex and sub-complex functions.
Collapse
Affiliation(s)
- Megan R Dreier
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| | - Jasmine Walia
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| | - Ivana L de la Serna
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| |
Collapse
|
2
|
Manzar N, Ganguly P, Khan UK, Ateeq B. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Semin Cancer Biol 2023; 89:76-91. [PMID: 36702449 DOI: 10.1016/j.semcancer.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
3
|
Shen M, Demers LK, Bailey SD, Labbé DP. To bind or not to bind: Cistromic reprogramming in prostate cancer. Front Oncol 2022; 12:963007. [PMID: 36212399 PMCID: PMC9539323 DOI: 10.3389/fonc.2022.963007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
The term “cistrome” refers to the genome-wide location of regulatory elements associated with transcription factor binding-sites. The cistrome of key regulatory factors in prostate cancer etiology are substantially reprogrammed and altered during prostatic transformation and disease progression. For instance, the cistrome of the androgen receptor (AR), a ligand-inducible transcription factor central in normal prostate epithelium biology, is directly impacted and substantially reprogrammed during malignant transformation. Accumulating evidence demonstrates that additional transcription factors that are frequently mutated, or aberrantly expressed in prostate cancer, such as the pioneer transcription factors Forkhead Box A1 (FOXA1), the homeobox protein HOXB13, and the GATA binding protein 2 (GATA2), and the ETS-related gene (ERG), and the MYC proto-oncogene, contribute to the reprogramming of the AR cistrome. In addition, recent findings have highlighted key roles for the SWI/SNF complex and the chromatin-modifying helicase CHD1 in remodeling the epigenome and altering the AR cistrome during disease progression. In this review, we will cover the role of cistromic reprogramming in prostate cancer initiation and progression. Specifically, we will discuss the impact of key prostate cancer regulators, as well as the role of epigenetic and chromatin regulators in relation to the AR cistrome and the transformation of normal prostate epithelium. Given the importance of chromatin-transcription factor dynamics in normal cellular differentiation and cancer, an in-depth assessment of the factors involved in producing these altered cistromes is of great relevance and provides insight into new therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Michelle Shen
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Surgery, Department of Surgery, McGill University, Montréal, QC, Canada
| | - Léa-Kristine Demers
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Swneke D. Bailey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Surgery, Department of Surgery, McGill University, Montréal, QC, Canada
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montréal, QC, Canada
| | - David P. Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Surgery, Department of Surgery, McGill University, Montréal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
- *Correspondence: David P. Labbé,
| |
Collapse
|
4
|
Epigenetic Coregulation of Androgen Receptor Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:277-293. [DOI: 10.1007/978-3-031-11836-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Role of Peroxisome Proliferator-Activated Receptors (PPARs) in Energy Homeostasis of Dairy Animals: Exploiting Their Modulation through Nutrigenomic Interventions. Int J Mol Sci 2021; 22:ijms222212463. [PMID: 34830341 PMCID: PMC8619600 DOI: 10.3390/ijms222212463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are the nuclear receptors that could mediate the nutrient-dependent transcriptional activation and regulate metabolic networks through energy homeostasis. However, these receptors cannot work properly under metabolic stress. PPARs and their subtypes can be modulated by nutrigenomic interventions, particularly under stress conditions to restore cellular homeostasis. Many nutrients such as polyunsaturated fatty acids, vitamins, dietary amino acids and phytochemicals have shown their ability for potential activation or inhibition of PPARs. Thus, through different mechanisms, all these nutrients can modulate PPARs and are ultimately helpful to prevent various metabolic disorders, particularly in transition dairy cows. This review aims to provide insights into the crucial role of PPARs in energy metabolism and their potential modulation through nutrigenomic interventions to improve energy homeostasis in dairy animals.
Collapse
|
6
|
Kukkonen K, Taavitsainen S, Huhtala L, Uusi-Makela J, Granberg KJ, Nykter M, Urbanucci A. Chromatin and Epigenetic Dysregulation of Prostate Cancer Development, Progression, and Therapeutic Response. Cancers (Basel) 2021; 13:3325. [PMID: 34283056 PMCID: PMC8268970 DOI: 10.3390/cancers13133325] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The dysregulation of chromatin and epigenetics has been defined as the overarching cancer hallmark. By disrupting transcriptional regulation in normal cells and mediating tumor progression by promoting cancer cell plasticity, this process has the ability to mediate all defined hallmarks of cancer. In this review, we collect and assess evidence on the contribution of chromatin and epigenetic dysregulation in prostate cancer. We highlight important mechanisms leading to prostate carcinogenesis, the emergence of castration-resistance upon treatment with androgen deprivation therapy, and resistance to antiandrogens. We examine in particular the contribution of chromatin structure and epigenetics to cell lineage commitment, which is dysregulated during tumorigenesis, and cell plasticity, which is altered during tumor progression.
Collapse
Affiliation(s)
- Konsta Kukkonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Sinja Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Joonas Uusi-Makela
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Kirsi J. Granberg
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
7
|
Xiao ZM, Lv DJ, Yu YZ, Wang C, Xie T, Wang T, Song XL, Zhao SC. SMARCC1 Suppresses Tumor Progression by Inhibiting the PI3K/AKT Signaling Pathway in Prostate Cancer. Front Cell Dev Biol 2021; 9:678967. [PMID: 34249931 PMCID: PMC8267926 DOI: 10.3389/fcell.2021.678967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily C member 1 (SMARCC1) protein is a potential tumor suppressor in various cancers. However, its role in prostate cancer (PCa) remains controversial. The aim of this study was to determine the biological function of SMARCC1 in PCa and explore the underlying regulatory mechanisms. Methods The expression of SMARCC1 was validated in PCa tissues by immunohistochemistry. Meanwhile, function experiments were used to evaluate the regulatory role on cell proliferation and metastasis in PCa cells with SMARCC1 depletion both in vitro and in vivo. The expression levels of relevant proteins were detected by Western blotting. Results Our finding showed that SMARCC1 was significantly downregulated in prostate adenocarcinoma, with a higher Gleason score (GS) than that in low GS. The decreased expression of SMARCC1 was significantly correlated with a higher GS and poor prognosis. Additionally, we found that silencing of SMARCC1 dramatically accelerated cell proliferation by promoting cell cycle progression and enhancing cell migration by inducing epithelial mesenchymal transition (EMT). Furthermore, depletion of SMARCC1 facilitated PCa xenograft growth and lung metastasis in murine models. Mechanistically, the loss of SMARCC1 activated the PI3K/AKT pathway in PCa cells. Conclusion SMARCC1 suppresses PCa cell proliferation and metastasis via the PI3K/AKT signaling pathway and is a novel therapeutic target.
Collapse
Affiliation(s)
- Zhao-Ming Xiao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dao-Jun Lv
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu-Zhong Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xian-Lu Song
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Heo Y, Park JH, Kim J, Han J, Yun JH, Lee W. Crystal structure of the HMG domain of human BAF57 and its interaction with four-way junction DNA. Biochem Biophys Res Commun 2020; 533:919-924. [PMID: 33010889 DOI: 10.1016/j.bbrc.2020.09.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/28/2022]
Abstract
The SWI/SNF chromatin remodeling complex plays important roles in gene regulation and it is classified as the SWI/SNF complex in yeast and BAF complex in vertebrates. BAF57, one of the subunits that forms the chromatin remodeling complex core, is well conserved in the BAF complex of vertebrates, which is replaced by bap111 in the Drosophila BAP complex and does not have a counterpart in the yeast SWI/SNF complex. This suggests that BAF57 is a key component of the chromatin remodeling complex in higher eukaryotes. BAF57 contains a HMG domain, which is widely distributed among various proteins and functions as a DNA binding motif. Most proteins with HMG domain bind to four-way junction (4WJ) DNA. Here, we report the crystal structure of the HMG domain of BAF57 (BAF57HMG) at a resolution of 2.55 Å. The structure consists of three α-helices and adopts an L-shaped form. The overall structure is stabilized by a hydrophobic core, which is formed by hydrophobic residues. The binding affinity between BAF57HMG and 4WJ DNA is determined as a 295.83 ± 1.05 nM using a fluorescence quenching assay, and the structure revealed 4WJ DNA binding site of BAF57HMG. Our data will serve structural basis in understanding the roles of BAF57 during chromatin remodeling process.
Collapse
Affiliation(s)
- Yunseok Heo
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Sciences & Biotechnology, Yonsei University, Seoul, 120-749, South Korea
| | - Jae-Hyun Park
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Sciences & Biotechnology, Yonsei University, Seoul, 120-749, South Korea
| | - Jongmin Kim
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Sciences & Biotechnology, Yonsei University, Seoul, 120-749, South Korea
| | - Jeongmin Han
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Sciences & Biotechnology, Yonsei University, Seoul, 120-749, South Korea
| | - Ji-Hye Yun
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Sciences & Biotechnology, Yonsei University, Seoul, 120-749, South Korea.
| | - Weontae Lee
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Sciences & Biotechnology, Yonsei University, Seoul, 120-749, South Korea.
| |
Collapse
|
9
|
Song S, Nguyen V, Schrank T, Mulvaney K, Walter V, Wei D, Orvis T, Desai N, Zhang J, Hayes DN, Zheng Y, Major MB, Weissman BE. Loss of SWI/SNF Chromatin Remodeling Alters NRF2 Signaling in Non-Small Cell Lung Carcinoma. Mol Cancer Res 2020; 18:1777-1788. [PMID: 32855269 DOI: 10.1158/1541-7786.mcr-20-0082] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/30/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
The NF-E2-related factor 2 (referred to as NRF2) transcription factor binds antioxidant responsive elements within the promoters of cytoprotective genes to induce their expression. Next-generation sequencing studies in lung cancer have shown a significant number of activating mutations within the NRF2 signaling pathway. Mutations in components of the SWI/SNF chromatin-remodeling complex, a general regulator of transcription using either BRG1 or BRM as the catalytic subunit, also frequently occur in lung cancers. Importantly, low BRG1 expression levels in primary human NSCLC correlated with increased NRF2-target gene expression. Here, we show that loss of SWI/SNF complex function activated a subset of NRF2-mediated transcriptional targets. Using a series of isogenic NSCLC lines with reduced or depleted BRG1 and/or BRM expression, we observed significantly increased expression of the NRF2-target genes HMOX1 and GSTM4. In contrast, expression of the NRF2 target genes NQO1 and GCLM modestly increased following BRM reduction. Chromatin immunoprecipitation showed that BRG1 knockdown led to increased NRF2 binding at its respective ARE sites in the HMOX1 promoter but not in NQO1 and GCLM. Our data demonstrate that loss of BRG1 or BRM in lung cancer results in activation of the NRF2/KEAP1 pathway and HMOX1 expression. Therefore, we provide an additional molecular explanation for why patients harboring BRG1 or BRM mutations show poor prognoses. A better understanding of this mechanism may yield novel insights into the design of targeted treatment modalities. IMPLICATIONS: Our study identifies a novel mechanism for how mutations in the SMARCA4 gene may drive progression of human lung adenocarcinomas.
Collapse
Affiliation(s)
- Shujie Song
- Oncology Center, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong, P. R. China.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Vinh Nguyen
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Travis Schrank
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Kathleen Mulvaney
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Vonn Walter
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Darmood Wei
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Tess Orvis
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Nisarg Desai
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Jiren Zhang
- Oncology Center, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - D Neil Hayes
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yanfang Zheng
- Oncology Center, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong, P. R. China.
| | - Michael B Major
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina. .,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina. .,Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
10
|
Jancewicz I, Siedlecki JA, Sarnowski TJ, Sarnowska E. BRM: the core ATPase subunit of SWI/SNF chromatin-remodelling complex-a tumour suppressor or tumour-promoting factor? Epigenetics Chromatin 2019; 12:68. [PMID: 31722744 PMCID: PMC6852734 DOI: 10.1186/s13072-019-0315-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
BRM (BRAHMA) is a core, SWI2/SNF2-type ATPase subunit of SWI/SNF chromatin-remodelling complex (CRC) involved in various important regulatory processes including development. Mutations in SMARCA2, a BRM-encoding gene as well as overexpression or epigenetic silencing were found in various human diseases including cancer. Missense mutations in SMARCA2 gene were recently connected with occurrence of Nicolaides-Baraitser genetics syndrome. By contrast, SMARCA2 duplication rather than mutations is characteristic for Coffin-Siris syndrome. It is believed that BRM usually acts as a tumour suppressor or a tumour susceptibility gene. However, other studies provided evidence that BRM function may differ depending on the cancer type and the disease stage, where BRM may play a role in the disease progression. The existence of alternative splicing forms of SMARCA2 gene, leading to appearance of truncated functional, loss of function or gain-of-function forms of BRM protein suggest a far more complicated mode of BRM-containing SWI/SNF CRCs actions. Therefore, the summary of recent knowledge regarding BRM alteration in various types of cancer and highlighting of differences and commonalities between BRM and BRG1, another SWI2/SNF2 type ATPase, will lead to better understanding of SWI/SNF CRCs function in cancer development/progression. BRM has been recently proposed as an attractive target for various anticancer therapies including the use of small molecule inhibitors, synthetic lethality induction or proteolysis-targeting chimera (PROTAC). However, such attempts have some limitations and may lead to severe side effects given the homology of BRM ATPase domain to other ATPases, as well as due to the tissue-specific appearance of BRM- and BRG1-containing SWI/SNF CRC classes. Thus, a better insight into BRM-containing SWI/SNF CRCs function in human tissues and cancers is clearly required to provide a solid basis for establishment of new safe anticancer therapies.
Collapse
Affiliation(s)
- Iga Jancewicz
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland
| | - Janusz A Siedlecki
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| | - Elzbieta Sarnowska
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland.
| |
Collapse
|
11
|
Ho PJ, Lloyd SM, Bao X. Unwinding chromatin at the right places: how BAF is targeted to specific genomic locations during development. Development 2019; 146:146/19/dev178780. [PMID: 31570369 DOI: 10.1242/dev.178780] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The BAF (SWI/SNF) chromatin remodeling complex plays a crucial role in modulating spatiotemporal gene expression during mammalian development. Although its remodeling activity was characterized in vitro decades ago, the complex actions of BAF in vivo have only recently begun to be unraveled. In living cells, BAF only binds to and remodels a subset of genomic locations. This selectivity of BAF genomic targeting is crucial for cell-type specification and for mediating precise responses to environmental signals. Here, we provide an overview of the distinct molecular mechanisms modulating BAF chromatin binding, including its combinatory assemblies, DNA/histone modification-binding modules and post-translational modifications, as well as its interactions with proteins, RNA and lipids. This Review aims to serve as a primer for future studies to decode the actions of BAF in developmental processes.
Collapse
Affiliation(s)
- Patric J Ho
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sarah M Lloyd
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA .,Department of Dermatology, Northwestern University, Evanston, IL 60208, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
12
|
Effect of AR antagonist combined with PARP1 inhibitor on sporadic triple-negative breast cancer bearing AR expression and methylation-mediated BRCA1 dysfunction. Biomed Pharmacother 2018; 111:169-177. [PMID: 30580238 DOI: 10.1016/j.biopha.2018.11.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) patients usually present worse clinical outcomes due to their high heterogeneity. The purpose of our study is to investigate the prognostic role of AR and BRCA1 expression in sporadic TNBC patients, and effect of AR blockade and PARP1 inhibitor for TNBC patients who characterized by positive-AR expression and BRCA1 inactivation or dysfunction. In our present study, we found that AR is expressed in 43.6% and 34.0% of TNBC tissues, when 1% or 10% staining was used as the threshold for AR positivity, respectively. When 1% staining was used as the threshold, AR expression indicates a poor disease-free survival (DFS) of TNBC patients. TNBC patients with negative BRCA1 show a poor DFS, and BRCA1 suppression is associated with the methylation status of its promoter. Interestingly, BRCA1-/AR + TNBC patients have shorter DFS than other TNBC patients regardless of the threshold for AR positivity. AR antagonists MDV3100 enhances the PARP1 inhibitor Olaparib-mediated decrease of cell viability in AR-positive/BRCA1-inactivated cells in vitro and in vivo. Our results suggested that combination of AR blockade and PARP1 inhibitor may be a potential strategy for sporadic TNBC patients who characterized by positive-AR expression and BRCA1 inactivation or dysfunction.
Collapse
|
13
|
smarce1 mutants have a defective endocardium and an increased expression of cardiac transcription factors in zebrafish. Sci Rep 2018; 8:15369. [PMID: 30337622 PMCID: PMC6194089 DOI: 10.1038/s41598-018-33746-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022] Open
Abstract
SWI/SNF or BAF chromatin-remodeling complexes are polymorphic assemblies of homologous subunit families that remodel nucleosomes and facilitate tissue-specific gene regulation during development. BAF57/SMARCE1 is a BAF complex subunit encoded in animals by a single gene and is a component of all mammalian BAF complexes. In vivo, the loss of SMARCE1 would lead to the formation of deficient combinations of the complex which might present limited remodeling activities. To address the specific contribution of SMARCE1 to the function of the BAF complex, we generated CRISPR/Cas9 mutations of smarce1 in zebrafish. Smarce1 mutants showed visible defects at 72 hpf, including smaller eyes, abnormal body curvature and heart abnormalities. Gene expression analysis revealed that the mutant embryos displayed defects in endocardial development since early stages, which led to the formation of a misshapen heart tube. The severe morphological and functional cardiac problems observed at 4 dpf were correlated with the substantially increased expression of different cardiac transcription factors. Additionally, we showed that Smarce1 binds to cis-regulatory regions of the gata5 gene and is necessary for the recruitment of the BAF complex to these regions.
Collapse
|
14
|
Jin ML, Kim YW, Jeong KW. BAF53A regulates androgen receptor-mediated gene expression and proliferation in LNCaP cells. Biochem Biophys Res Commun 2018; 505:618-623. [PMID: 30278885 DOI: 10.1016/j.bbrc.2018.09.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/22/2018] [Indexed: 11/30/2022]
Abstract
The actin-like protein of the SWI/SNF complex, BAF53A, regulates gene expression by the gene-specific chromatin remodeling of target genes. However, the function of BAF53A in the androgen receptor pathway in prostate cancer cells remains unclear. Here, we demonstrated that BAF53A positively regulates the expression of endogenous AR target genes (e.g. PSA, TMPRSS2, FKBP5, and KLK2) in LNCaP cells. It functions as a coactivator in AR-mediated transcription by interacting with other nuclear receptor coactivators, such as p300 and FLII, and is associated with AR in the presence of dihydrotestosterone (DHT). The DHT-induced recruitment of BAF53A to the proximal and distal androgen response elements (AREs) of the PSA gene in the presence of BRG1 (but not BRM) was inhibited by an AR antagonist, suggesting the coactivator function of BAF53A in the SWI/SNF complex. Depletion of BAF53A in LNCaP cells resulted in a significant decrease in growth rate. Furthermore, the expression of BAF53A in prostate cancer tissue was significantly elevated, compared to that in normal prostate tissue, and correlated with the expression of AR, and BRG1, but not BRM. Therefore, our results suggested that BAF53A plays an important role in the expression of AR target genes in prostate cancer, and can be used clinically for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ming Li Jin
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Young Woong Kim
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
15
|
Abstract
Several oncogenic factors have been involved in prostate cancer progression. However, therapeutic approaches still focus on suppression of androgen receptor (AR) signaling. In fact, whereas the full-length AR incorporates a ligand-binding domain, which has become a drug target for competitive inhibitors, other transcription factors often do not have tractable binding pockets that aid drug development. Consequently drug development efforts have turned to transcription co-regulators, often chromatin-modifying enzymes or factors that bind to epigenetic modifications to chromatin. Bromodomain (BRD)-containing proteins fall into the latter category and significant progress has been made in developing small molecule inhibitors that target a particular subgroup of BRD-containing proteins known as the Bromodomain and extra-terminal (BET) family proteins. These inhibitors have proven particularly effective in inactivating c-Myc in lymphoma but more recently members of the BET family have also been identified as AR-interacting proteins raising the prospect of using these inhibitors as an alternative strategy for targeting AR-driven cancers. In this review we will provide an overview of BRD-containing proteins and the potential for exploiting them as biomarkers and drug targets in prostate cancer.
Collapse
Affiliation(s)
- Alfonso Urbanucci
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo, Forskningsparken, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Ian G Mills
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo, Forskningsparken, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell Biology, Queen's University of Belfast, BT9 7AE Belfast, UK
| |
Collapse
|
16
|
Kumari S, Senapati D, Heemers HV. Rationale for the development of alternative forms of androgen deprivation therapy. Endocr Relat Cancer 2017; 24:R275-R295. [PMID: 28566530 PMCID: PMC5886376 DOI: 10.1530/erc-17-0121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022]
Abstract
With few exceptions, the almost 30,000 prostate cancer deaths annually in the United States are due to failure of androgen deprivation therapy. Androgen deprivation therapy prevents ligand-activation of the androgen receptor. Despite initial remission after androgen deprivation therapy, prostate cancer almost invariably progresses while continuing to rely on androgen receptor action. Androgen receptor's transcriptional output, which ultimately controls prostate cancer behavior, is an alternative therapeutic target, but its molecular regulation is poorly understood. Recent insights in the molecular mechanisms by which the androgen receptor controls transcription of its target genes are uncovering gene specificity as well as context-dependency. Heterogeneity in the androgen receptor's transcriptional output is reflected both in its recruitment to diverse cognate DNA binding motifs and in its preferential interaction with associated pioneering factors, other secondary transcription factors and coregulators at those sites. This variability suggests that multiple, distinct modes of androgen receptor action that regulate diverse aspects of prostate cancer biology and contribute differentially to prostate cancer's clinical progression are active simultaneously in prostate cancer cells. Recent progress in the development of peptidomimetics and small molecules, and application of Chem-Seq approaches indicate the feasibility for selective disruption of critical protein-protein and protein-DNA interactions in transcriptional complexes. Here, we review the recent literature on the different molecular mechanisms by which the androgen receptor transcriptionally controls prostate cancer progression, and we explore the potential to translate these insights into novel, more selective forms of therapies that may bypass prostate cancer's resistance to conventional androgen deprivation therapy.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Cancer BiologyCleveland Clinic, Cleveland, Ohio, USA
| | | | - Hannelore V Heemers
- Department of Cancer BiologyCleveland Clinic, Cleveland, Ohio, USA
- Department of UrologyCleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology/Medical OncologyCleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Abstract
Advances in mammography have sparked an exponential increase in the detection of early-stage breast lesions, most commonly ductal carcinoma in situ (DCIS). More than 50% of DCIS lesions are benign and will remain indolent, never progressing to invasive cancers. However, the factors that promote DCIS invasion remain poorly understood. Here, we show that SMARCE1 is required for the invasive progression of DCIS and other early-stage tumors. We show that SMARCE1 drives invasion by regulating the expression of secreted proteases that degrade basement membrane, an ECM barrier surrounding all epithelial tissues. In functional studies, SMARCE1 promotes invasion of in situ cancers growing within primary human mammary tissues and is also required for metastasis in vivo. Mechanistically, SMARCE1 drives invasion by forming a SWI/SNF-independent complex with the transcription factor ILF3. In patients diagnosed with early-stage cancers, SMARCE1 expression is a strong predictor of eventual relapse and metastasis. Collectively, these findings establish SMARCE1 as a key driver of invasive progression in early-stage tumors.
Collapse
|
18
|
Sarnowska E, Gratkowska DM, Sacharowski SP, Cwiek P, Tohge T, Fernie AR, Siedlecki JA, Koncz C, Sarnowski TJ. The Role of SWI/SNF Chromatin Remodeling Complexes in Hormone Crosstalk. TRENDS IN PLANT SCIENCE 2016; 21:594-608. [PMID: 26920655 DOI: 10.1016/j.tplants.2016.01.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/14/2015] [Accepted: 01/21/2016] [Indexed: 05/20/2023]
Abstract
SWI/SNF-type ATP-dependent chromatin remodeling complexes (CRCs) are evolutionarily conserved multiprotein machineries controlling DNA accessibility by regulating chromatin structure. We summarize here recent advances highlighting the role of SWI/SNF in the regulation of hormone signaling pathways and their crosstalk in Arabidopsis thaliana. We discuss the functional interdependences of SWI/SNF complexes and key elements regulating developmental and hormone signaling pathways by indicating intriguing similarities and differences in plants and humans, and summarize proposed mechanisms of SWI/SNF action on target loci. We postulate that, given their viability, several plant SWI/SNF mutants may serve as an attractive model for searching for conserved functions of SWI/SNF CRCs in hormone signaling, cell cycle control, and other regulatory pathways.
Collapse
Affiliation(s)
| | | | | | - Pawel Cwiek
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Csaba Koncz
- Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany; Institute of Plant Biology, Biological Research Center of Hungarian Academy, Temesvári Körút 62, 6724 Szeged, Hungary
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
19
|
Clare SE, Gupta A, Choi M, Ranjan M, Lee O, Wang J, Ivancic DZ, Kim JJ, Khan SA. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes. BMC Cancer 2016; 16:326. [PMID: 27215412 PMCID: PMC4878043 DOI: 10.1186/s12885-016-2355-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/11/2016] [Indexed: 12/15/2022] Open
Abstract
Background The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. Methods We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then identified a set of genes that overlap with human breast luteal-phase expressed genes and signify progesterone activity in both normal breast cells and breast cancer cell lines. Results TPA administration to T47D cells results in a 30 % decrease in cell number at 24 h, which is maintained over 72 h only in the presence of estradiol. Blockade of progesterone signaling by TPA for 24 h results in fewer cells in G2/M, attributable to decreased expression of genes that facilitate the G2/M transition. Gene expression data suggest that TPA affects several mechanisms that progesterone utilizes to control gene expression, including specific post-translational modifications, and nucleosomal organization and higher order chromatin structure, which regulate access of PR to its DNA binding sites. Conclusions By comparing genes induced by the progestin R5020 in T47D cells with those increased in the luteal-phase normal breast, we have identified a set of genes that predict functional progesterone signaling in tissue. These data will facilitate an understanding of the ways in which drugs such as TPA may be utilized for the prevention, and possibly the therapy, of human breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2355-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susan E Clare
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - Akash Gupta
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - MiRan Choi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - Manish Ranjan
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - Oukseub Lee
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - Jun Wang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - David Z Ivancic
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA
| | - J Julie Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA.
| | - Seema A Khan
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 4-111, Chicago, IL, 60611, USA.
| |
Collapse
|
20
|
Lomelí H, Castillo-Robles J. The developmental and pathogenic roles of BAF57, a special subunit of the BAF chromatin-remodeling complex. FEBS Lett 2016; 590:1555-69. [PMID: 27149204 DOI: 10.1002/1873-3468.12201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Abstract
Mammalian SWI/SNF or BAF chromatin-remodeling complexes are polymorphic assemblies of homologous subunit families that remodel nucleosomes. BAF57 is a subunit of the BAF complexes; it is encoded only in higher eukaryotes and is present in all mammalian assemblies. Its main structural feature is a high-mobility group domain, the DNA-binding properties of which suggest that BAF57 may play topological roles as the BAF complex enters or exits the nucleosome. BAF57 displays specific interactions with a number of proteins outside the BAF complex. Through these interactions, it can accomplish specific functions. In the embryo, BAF57 is responsible for the silencing of the CD4 gene during T-cell differentiation, and during the repression of neuronal genes in non-neuronal cells, BAF57 interacts with the transcriptional corepressor, Co-REST, and facilitates repression. Extensive work has demonstrated a specific role of BAF57 in regulating the interactions between BAF and nuclear hormone receptors. Despite its involvement in oncogenic pathways, new generation sequencing studies do not support a prominent role for BAF57 in the initiation of cancer. On the other hand, evidence has emerged to support a role for BAF57 as a metastasis factor, a prognosis marker and a therapeutic target. In humans, BAF57 is associated with disease, as mutations in this gene predispose to important congenital disorders, including menigioma disease or the Coffin-Siris syndrome. In this article, we present an exhaustive analysis of the BAF57 molecular and biochemical properties, cellular functions, loss-of-function phenotypes in living organisms and pathological manifestations in cases of human mutations.
Collapse
Affiliation(s)
- Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jorge Castillo-Robles
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
21
|
Panamarova M, Cox A, Wicher KB, Butler R, Bulgakova N, Jeon S, Rosen B, Seong RH, Skarnes W, Crabtree G, Zernicka-Goetz M. The BAF chromatin remodelling complex is an epigenetic regulator of lineage specification in the early mouse embryo. Development 2016; 143:1271-83. [PMID: 26952987 PMCID: PMC4852518 DOI: 10.1242/dev.131961] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022]
Abstract
Dynamic control of gene expression is essential for the development of a totipotent zygote into an embryo with defined cell lineages. The accessibility of genes responsible for cell specification to transcriptional machinery is dependent on chromatin remodelling complexes such as the SWI\SNF (BAF) complex. However, the role of the BAF complex in early mouse development has remained unclear. Here, we demonstrate that BAF155, a major BAF complex subunit, regulates the assembly of the BAF complex in vivo and regulates lineage specification of the mouse blastocyst. We find that associations of BAF155 with other BAF complex subunits become enriched in extra-embryonic lineages just prior to implantation. This enrichment is attributed to decreased mobility of BAF155 in extra-embryonic compared with embryonic lineages. Downregulation of BAF155 leads to increased expression of the pluripotency marker Nanog and its ectopic expression in extra-embryonic lineages, whereas upregulation of BAF155 leads to the upregulation of differentiation markers. Finally, we show that the arginine methyltransferase CARM1 methylates BAF155, which differentially influences assembly of the BAF complex between the lineages and the expression of pluripotency markers. Together, our results indicate a novel role of BAF-dependent chromatin remodelling in mouse development via regulation of lineage specification. Summary: Associations of BAF155 with other BAF complex subunits are enriched in extra-embryonic lineages prior to implantation, while changes in BAF155 levels modulate the expression of early developmental markers.
Collapse
Affiliation(s)
- Maryna Panamarova
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Andy Cox
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Krzysztof B Wicher
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Richard Butler
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Natalia Bulgakova
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Shin Jeon
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-747, South Korea
| | - Barry Rosen
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Rho H Seong
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-747, South Korea
| | | | - Gerald Crabtree
- Department of Developmental Biology, Stanford University Medical School, Stanford, CA 94305, USA
| | - Magdalena Zernicka-Goetz
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
22
|
Miao L, Yao H, Li C, Pu M, Yao X, Yang H, Qi X, Ren J, Wang Y. A dual inhibition: microRNA-552 suppresses both transcription and translation of cytochrome P450 2E1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:650-62. [PMID: 26926595 DOI: 10.1016/j.bbagrm.2016.02.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/05/2016] [Accepted: 02/25/2016] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) can direct post-transcriptional or transcriptional gene silencing. Here, we report that miR-552 is in the nucleus and cytosol and inhibits human cytochrome P450 (CYP) 2E1 expression at both transcriptional and post-transcriptional levels. MiR-552 via its non-seed sequence forms hybrids with a loop hairpin of the cruciform structure in CYP2E1 promoter region to inhibit SMARCE1 and RNA polymerase II binding to the promoter and CYP2E1 transcription. Expressing SMARCE1 reverses the inhibitory effects of miR-552 on CYP2E1 mRNA expression. MiR-552 with mutations in non-seed region losses its transcriptional, but retains its post-transcriptional repression to CYP2E1. In contrast, mutation in miR-552 seed sequence suppresses its inhibitory effects on CYP2E1 expression at protein, but not at mRNA, levels. Our results suggest that miR-552 is a miRNA with a dual inhibitory ability at transcriptional and post-transcriptional levels leading to an effective inhibition.
Collapse
Affiliation(s)
- Lingling Miao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hailan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenggang Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mengfan Pu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
23
|
Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 2016; 35:4423-36. [PMID: 26804164 DOI: 10.1038/onc.2015.513] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.
Collapse
|
24
|
Glucocorticoid Receptor Transcriptional Activation via the BRG1-Dependent Recruitment of TOP2β and Ku70/86. Mol Cell Biol 2015; 35:2799-817. [PMID: 26055322 DOI: 10.1128/mcb.00230-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022] Open
Abstract
BRG1, the central ATPase of the human SWI/SNF complex, is critical for biological functions, including nuclear receptor (NR)-regulated transcription. Analysis of BRG1 mutants demonstrated that functional motifs outside the ATPase domain are important for transcriptional activity. In the course of experiments examining protein interactions mediated through these domains, Ku70 (XRCC6) was found to associate with a BRG1 fragment encompassing the conserved helicase-SANT-associated (HSA) and BRK domains of BRG1. Subsequent transcriptional activation assays and chromatin immunoprecipitation studies showed that Ku70/86 and components of the topoisomerase IIβ (TOP2β)/poly(ADP ribose) polymerase 1 (PARP1) complex are necessary for NR-mediated SWI/SNF-dependent transcriptional activation from endogenous promoters. In addition to establishing Ku-BRG1 binding and TOP2β/PARP1 recruitment by nuclear receptor transactivation, we demonstrate that the transient appearance of glucocorticoid receptor (GR)/BRG1-dependent, TOP2β-mediated double-strand DNA breaks is required for efficient GR-stimulated transcription. Taken together, these results suggest that a direct interaction between Ku70/86 and BRG1 brings together SWI/SNF remodeling capabilities and TOP2β activity to enhance the transcriptional response to hormone stimulation.
Collapse
|
25
|
Mayes K, Qiu Z, Alhazmi A, Landry JW. ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy. Adv Cancer Res 2015; 121:183-233. [PMID: 24889532 DOI: 10.1016/b978-0-12-800249-0.00005-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The progression to advanced stage cancer requires changes in many characteristics of a cell. These changes are usually initiated through spontaneous mutation. As a result of these mutations, gene expression is almost invariably altered allowing the cell to acquire tumor-promoting characteristics. These abnormal gene expression patterns are in part enabled by the posttranslational modification and remodeling of nucleosomes in chromatin. These chromatin modifications are established by a functionally diverse family of enzymes including histone and DNA-modifying complexes, histone deposition pathways, and chromatin remodeling complexes. Because the modifications these enzymes deposit are essential for maintaining tumor-promoting gene expression, they have recently attracted much interest as novel therapeutic targets. One class of enzyme that has not generated much interest is the chromatin remodeling complexes. In this review, we will present evidence from the literature that these enzymes have both causal and enabling roles in the transition to advanced stage cancers; as such, they should be seriously considered as high-value therapeutic targets. Previously published strategies for discovering small molecule regulators to these complexes are described. We close with thoughts on future research, the field should perform to further develop this potentially novel class of therapeutic target.
Collapse
Affiliation(s)
- Kimberly Mayes
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Zhijun Qiu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Aiman Alhazmi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Joseph W Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
26
|
Abstract
Prostate cancer (PCa) remains a leading cause of cancer-related death in the USA. While localized lesions are effectively treated through radical prostatectomy and/or radiation therapy, treatment for metastatic disease leverages the addiction of these tumors on the androgen receptor (AR) signaling axis for growth and disease progression. Though initially effective, tumors resistant to AR-directed therapeutics ultimately arise (a stage of the disease known as castration-resistant prostate cancer) and are responsible for PCa-specific mortality. Importantly, an abundance of clinical and preclinical evidence strongly implicates AR signaling cascades in the development of metastatic disease in both early and late stages, and thus a concerted effort has been made to delineate the AR-specific programs that facilitate progression to metastatic PCa. A multitude of downstream AR targets as well as critical AR cofactors have been identified which impinge upon both the AR pathway as well as associated metastatic phenotypes. This review will highlight the functional significance of these pathways to disseminated disease and define the molecular underpinnings behind these unique, AR-driven, metastatic signatures.
Collapse
|
27
|
Yamaguchi T, Kurita T, Nishio K, Tsukada J, Hachisuga T, Morimoto Y, Iwai Y, Izumi H. Expression of BAF57 in ovarian cancer cells and drug sensitivity. Cancer Sci 2015; 106:359-66. [PMID: 25611552 PMCID: PMC4409878 DOI: 10.1111/cas.12612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023] Open
Abstract
The SMARCE1 (SWI / SNF-related, matrix-associated, and actin-dependent regulator of chromatin, subfamily e, member 1) encodes BAF57 protein. Previously, we reported that BAF57 is a predictive marker of endometrial carcinoma. In this study, we investigated BAF57 expression in ovarian cancer cell lines and their sensitivities to cisplatin, doxorubicin, paclitaxel, and 5-fluorouracil. BAF57 expression was strongly correlated with sensitivities to cisplatin, doxorubicin, and 5-fluorouracil in 10 ovarian cancer cell lines. Paclitaxel sensitivity was also correlated with BAF57 expression, but without significance. In A2780 ovarian cancer cells, knockdown of BAF57 using specific siRNA increased cell cycle arrest at G1 phase and the sensitivities to these anticancer agents. cDNA microarray analysis of A2780 cells transfected with BAF57 siRNA showed that 134 genes were positively regulated by BAF57, including ATP-binding cassette, sub-family G (WHITE), member 2 (ABCG2) encoding breast cancer resistance protein (BCRP). We confirmed that knockdown of BAF57 decreased BCRP expression in ovarian cancer cells by Western blot analysis, and that ABCG2 gene expression might be regulated transcriptionally. These results suggested that BAF57 is involved in ovarian cancer cell growth and sensitivity to anticancer agents, and that BAF57 may be a target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Takahiro Yamaguchi
- Hematology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
29
|
Orvis T, Hepperla A, Walter V, Song S, Simon J, Parker J, Wilkerson MD, Desai N, Major MB, Hayes DN, Davis IJ, Weissman B. BRG1/SMARCA4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization. Cancer Res 2014; 74:6486-6498. [PMID: 25115300 DOI: 10.1158/0008-5472.can-14-0061] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SWI/SNF chromatin remodeling complexes regulate critical cellular processes, including cell-cycle control, programmed cell death, differentiation, genomic instability, and DNA repair. Inactivation of this class of chromatin remodeling complex has been associated with a variety of malignancies, including lung, ovarian, renal, liver, and pediatric cancers. In particular, approximately 10% of primary human lung non-small cell lung cancers (NSCLC) display attenuations in the BRG1 ATPase, a core factor in SWI/SNF complexes. To evaluate the role of BRG1 attenuation in NSCLC development, we examined the effect of BRG1 silencing in primary and established human NSCLC cells. BRG1 loss altered cellular morphology and increased tumorigenic potential. Gene expression analyses showed reduced expression of genes known to be associated with progression of human NSCLC. We demonstrated that BRG1 losses in NSCLC cells were associated with variations in chromatin structure, including differences in nucleosome positioning and occupancy surrounding transcriptional start sites of disease-relevant genes. Our results offer direct evidence that BRG1 attenuation contributes to NSCLC aggressiveness by altering nucleosome positioning at a wide range of genes, including key cancer-associated genes.
Collapse
Affiliation(s)
- Tess Orvis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA
| | - Austin Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Vonn Walter
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA
| | - Shujie Song
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Cancer Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jeremy Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joel Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA
| | - Matthew D Wilkerson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA
| | - Nisarg Desai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA
| | - Michael B Major
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599
| | - D Neil Hayes
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Department of Pediatrics and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA
| | - Bernard Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
30
|
Giannakakis A, Karapetsas A, Dangaj D, Lanitis E, Tanyi J, Coukos G, Sandaltzopoulos R. Overexpression of SMARCE1 is associated with CD8+ T-cell infiltration in early stage ovarian cancer. Int J Biochem Cell Biol 2014; 53:389-98. [PMID: 24880093 DOI: 10.1016/j.biocel.2014.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/08/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
T-lymphocyte infiltration in ovarian tumors has been linked to a favorable prognosis, hence, exploring the mechanism of T-cell recruitment in the tumor is warranted. We employed a differential expression analysis to identify genes over-expressed in early stage ovarian cancer samples that contained CD8 infiltrating T-lymphocytes. Among other genes, we discovered that TTF1, a regulator of ribosomal RNA gene expression, and SMARCE1, a factor associated with chromatin remodeling were overexpressed in first stage CD8+ ovarian tumors. TTF1 and SMARCE1 mRNA levels showed a strong correlation with the number of intra-tumoral CD8+ cells in ovarian tumors. Interestingly, forced overexpression of SMARCE1 in SKOV3 ovarian cancer cells resulted in secretion of IL8, MIP1b and RANTES chemokines in the supernatant and triggered chemotaxis of CD8+ lymphocytes in a cell culture assay. The potency of SMARCE1-mediated chemotaxis appeared comparable to that caused by the transfection of the CXCL9 gene, coding for a chemokine known to attract T-cells. Our analysis pinpoints TTF1 and SMARCE1 as genes potentially involved in cancer immunology. Since both TTF1 and SMARCE1 are involved in chromatin remodeling, our results imply an epigenetic regulatory mechanism for T-cell recruitment that invites deciphering.
Collapse
Affiliation(s)
- Antonis Giannakakis
- Laboratory of Gene Expression, Molecular Diagnosis and Modern Therapeutics, Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece; Division of Genome and Gene Expression Data Analysis, Bioinformatics Institute A*STAR (Agency for Science, Technology and Research), Singapore 138671, Singapore
| | - Athanasios Karapetsas
- Laboratory of Gene Expression, Molecular Diagnosis and Modern Therapeutics, Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Denarda Dangaj
- Laboratory of Gene Expression, Molecular Diagnosis and Modern Therapeutics, Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece; Department of Oncology, Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
| | - Evripidis Lanitis
- Laboratory of Gene Expression, Molecular Diagnosis and Modern Therapeutics, Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece; Department of Oncology, Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
| | - Janos Tanyi
- Division of Gynecologic Oncology, University of Pennsylvania, Philadelphia, USA
| | - George Coukos
- Department of Oncology, University Hospital of Lausanne (CHUV), Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
| | - Raphael Sandaltzopoulos
- Laboratory of Gene Expression, Molecular Diagnosis and Modern Therapeutics, Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
31
|
Nickerson ML, Im KM, Misner KJ, Tan W, Lou H, Gold B, Wells DW, Bravo HC, Fredrikson KM, Harkins TT, Milos P, Zbar B, Linehan WM, Yeager M, Andresson T, Dean M, Bova GS. Somatic alterations contributing to metastasis of a castration-resistant prostate cancer. Hum Mutat 2013; 34:1231-41. [PMID: 23636849 PMCID: PMC3745530 DOI: 10.1002/humu.22346] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/23/2013] [Accepted: 04/23/2013] [Indexed: 11/10/2022]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is a lethal disease, and molecular markers that differentiate indolent from aggressive subtypes are needed. We sequenced the exomes of five metastatic tumors and healthy kidney tissue from an index case with mCRPC to identify lesions associated with disease progression and metastasis. An Ashkenazi Jewish (AJ) germline founder mutation, del185AG in BRCA1, was observed and AJ ancestry was confirmed. Sixty-two somatic variants altered proteins in tumors, including cancer-associated genes, TMPRSS2-ERG, PBRM1, and TET2. The majority (n = 53) of somatic variants were present in all metastases and only a subset (n = 31) was observed in the primary tumor. Integrating tumor next-generation sequencing and DNA copy number showed somatic loss of BRCA1 and TMPRSS2-ERG. We sequenced 19 genes with deleterious mutations in the index case in additional mCRPC samples and detected a frameshift, two somatic missense alterations, tumor loss of heterozygosity, and combinations of germline missense SNPs in TET2. In summary, genetic analysis of metastases from an index case permitted us to infer a chronology for the clonal spread of disease based on sequential accrual of somatic lesions. The role of TET2 in mCRPC deserves additional analysis and may define a subset of metastatic disease.
Collapse
Affiliation(s)
- Michael L. Nickerson
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Kate M. Im
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Kevin J. Misner
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Wei Tan
- Basic Science Program, SAIC-Frederick, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Hong Lou
- Basic Science Program, SAIC-Frederick, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Bert Gold
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - David W. Wells
- Genetics Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Hector C. Bravo
- Center for Bioinformatics and Computational Biology, Department of Computer Science, University of Maryland, College Park, Maryland
| | | | | | | | - Berton Zbar
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - W. Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Thorkell Andresson
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Michael Dean
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - G. Steven Bova
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| |
Collapse
|
32
|
SWI/SNF enzymes promote SOX10- mediated activation of myelin gene expression. PLoS One 2013; 8:e69037. [PMID: 23874858 PMCID: PMC3712992 DOI: 10.1371/journal.pone.0069037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/04/2013] [Indexed: 12/21/2022] Open
Abstract
SOX10 is a Sry-related high mobility (HMG)-box transcriptional regulator that promotes differentiation of neural crest precursors into Schwann cells, oligodendrocytes, and melanocytes. Myelin, formed by Schwann cells in the peripheral nervous system, is essential for propagation of nerve impulses. SWI/SNF complexes are ATP dependent chromatin remodeling enzymes that are critical for cellular differentiation. It was recently demonstrated that the BRG1 subunit of SWI/SNF complexes activates SOX10 expression and also interacts with SOX10 to activate expression of OCT6 and KROX20, two transcriptional regulators of Schwann cell differentiation. To determine the requirement for SWI/SNF enzymes in the regulation of genes that encode components of myelin, which are downstream of these transcriptional regulators, we introduced SOX10 into fibroblasts that inducibly express dominant negative versions of the SWI/SNF ATPases, BRM or BRG1. Dominant negative BRM and BRG1 have mutations in the ATP binding site and inhibit gene activation events that require SWI/SNF function. Ectopic expression of SOX10 in cells derived from NIH 3T3 fibroblasts led to the activation of the endogenous Schwann cell specific gene, myelin protein zero (MPZ) and the gene that encodes myelin basic protein (MBP). Thus, SOX10 reprogrammed these cells into myelin gene expressing cells. Ectopic expression of KROX20 was not sufficient for activation of these myelin genes. However, KROX20 together with SOX10 synergistically activated MPZ and MBP expression. Dominant negative BRM and BRG1 abrogated SOX10 mediated activation of MPZ and MBP and synergistic activation of these genes by SOX10 and KROX20. SOX10 was required to recruit BRG1 to the MPZ locus. Similarly, in immortalized Schwann cells, BRG1 recruitment to SOX10 binding sites at the MPZ locus was dependent on SOX10 and expression of dominant negative BRG1 inhibited expression of MPZ and MBP in these cells. Thus, SWI/SNF enzymes cooperate with SOX10 to directly activate genes that encode components of peripheral myelin.
Collapse
|
33
|
Feng Y, Singleton D, Guo C, Gardner A, Pakala S, Kumar R, Jensen E, Zhang J, Khan S. DNA homologous recombination factor SFR1 physically and functionally interacts with estrogen receptor alpha. PLoS One 2013; 8:e68075. [PMID: 23874500 PMCID: PMC3706619 DOI: 10.1371/journal.pone.0068075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/25/2013] [Indexed: 11/29/2022] Open
Abstract
Estrogen receptor alpha (ERα), a ligand-dependent transcription factor, mediates the expression of its target genes by interacting with corepressors and coactivators. Since the first cloning of SRC1, more than 280 nuclear receptor cofactors have been identified, which orchestrate target gene transcription. Aberrant activity of ER or its accessory proteins results in a number of diseases including breast cancer. Here we identified SFR1, a protein involved in DNA homologous recombination, as a novel binding partner of ERα. Initially isolated in a yeast two-hybrid screen, the interaction of SFR1 and ERα was confirmed in vivo by immunoprecipitation and mammalian one-hybrid assays. SFR1 co-localized with ERα in the nucleus, potentiated ER’s ligand-dependent and ligand-independent transcriptional activity, and occupied the ER binding sites of its target gene promoters. Knockdown of SFR1 diminished ER’s transcriptional activity. Manipulating SFR1 expression by knockdown and overexpression revealed a role for SFR1 in ER-dependent and -independent cancer cell proliferation. SFR1 differs from SRC1 by the lack of an intrinsic activation function. Taken together, we propose that SFR1 is a novel transcriptional modulator for ERα and a potential target in breast cancer therapy.
Collapse
Affiliation(s)
- Yuxin Feng
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - David Singleton
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Chun Guo
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Amanda Gardner
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Suresh Pakala
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine, Washington, DC, United States of America
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine, Washington, DC, United States of America
| | - Elwood Jensen
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jinsong Zhang
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Sohaib Khan
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
34
|
Imberg-Kazdan K, Ha S, Greenfield A, Poultney CS, Bonneau R, Logan SK, Garabedian MJ. A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells. Genome Res 2013; 23:581-91. [PMID: 23403032 PMCID: PMC3613576 DOI: 10.1101/gr.144774.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 01/31/2013] [Indexed: 01/22/2023]
Abstract
The androgen receptor (AR) is a mediator of both androgen-dependent and castration-resistant prostate cancers. Identification of cellular factors affecting AR transcriptional activity could in principle yield new targets that reduce AR activity and combat prostate cancer, yet a comprehensive analysis of the genes required for AR-dependent transcriptional activity has not been determined. Using an unbiased genetic approach that takes advantage of the evolutionary conservation of AR signaling, we have conducted a genome-wide RNAi screen in Drosophila cells for genes required for AR transcriptional activity and applied the results to human prostate cancer cells. We identified 45 AR-regulators, which include known pathway components and genes with functions not previously linked to AR regulation, such as HIPK2 (a protein kinase) and MED19 (a subunit of the Mediator complex). Depletion of HIPK2 and MED19 in human prostate cancer cells decreased AR target gene expression and, importantly, reduced the proliferation of androgen-dependent and castration-resistant prostate cancer cells. We also systematically analyzed additional Mediator subunits and uncovered a small subset of Mediator subunits that interpret AR signaling and affect AR-dependent transcription and prostate cancer cell proliferation. Importantly, targeting of HIPK2 by an FDA-approved kinase inhibitor phenocopied the effect of depletion by RNAi and reduced the growth of AR-positive, but not AR-negative, treatment-resistant prostate cancer cells. Thus, our screen has yielded new AR regulators including drugable targets that reduce the proliferation of castration-resistant prostate cancer cells.
Collapse
Affiliation(s)
- Keren Imberg-Kazdan
- Department of Biochemistry and Department of Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Susan Ha
- Department of Biochemistry and Department of Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Department of Urology, New York University School of Medicine, New York, New York 10016, USA
| | - Alex Greenfield
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | | | - Richard Bonneau
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Susan K. Logan
- Department of Biochemistry and Department of Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Department of Urology, New York University School of Medicine, New York, New York 10016, USA
- NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Michael J. Garabedian
- Department of Urology, New York University School of Medicine, New York, New York 10016, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
- NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
35
|
Balasubramaniam S, Comstock CES, Ertel A, Jeong KW, Stallcup MR, Addya S, McCue PA, Ostrander WF, Augello MA, Knudsen KE. Aberrant BAF57 signaling facilitates prometastatic phenotypes. Clin Cancer Res 2013; 19:2657-67. [PMID: 23493350 DOI: 10.1158/1078-0432.ccr-12-3049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE BAF57, a component of the switching-defective and sucrose nonfermenting (SWI/SNF) chromatin-remodeling complex conglomerate, modulates androgen receptor activity to promote prostate cancer. However, the molecular consequences of tumor-associated BAF57 expression have remained undefined in advanced disease such as castration-resistant prostate cancer and/or metastasis. EXPERIMENTAL DESIGN Clinical human specimens of primary and metastatic prostate cancer were immunohistochemically examined for tumor-grade association of BAF57 expression. Global gene expression analyses were conducted in models mimicking tumor-associated BAF57 expression. Aberrant BAF57-dependent gene expression changes, bypass of androgen-mediated signaling, and chromatin-specific SWI/SNF complex alterations with respect to cytoskeletal remodelers such as integrins were validated. Cell migration assays were used to profile the biologic phenotypes conferred under conditions simulating tumor-derived BAF57 expression. RESULTS Immunohistochemical quantitation of primary human specimens revealed that BAF57 was significantly and aberrantly elevated as a function of tumor grade. Critically, gene expression analyses showed that BAF57 deregulation circumvented androgen-mediated signaling, elicited α2 integrin upregulation, and altered other SWI/SNF complex components at the α2 integrin locus. BAF57-dependent α2 integrin induction conferred a prometastatic migratory advantage, which was attenuated by anti-α2 integrin antibody blockade. Furthermore, BAF57 was found to be markedly upregulated in human prostate cancer metastases of the lung, lymph node, and dura. CONCLUSION The findings herein, identifying tumor-associated BAF57 perturbation as a means to bypass androgen-signaling events that facilitate novel prometastatic phenotypes, link BAF57 upregulation to tumor dissemination. These data thereby establish BAF57 as a putative marker of metastatic potential that could be leveraged for therapeutic intervention.
Collapse
|
36
|
McNamara KM, Yoda T, Takagi K, Miki Y, Suzuki T, Sasano H. Androgen receptor in triple negative breast cancer. J Steroid Biochem Mol Biol 2013; 133:66-76. [PMID: 22982153 DOI: 10.1016/j.jsbmb.2012.08.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/27/2012] [Accepted: 08/17/2012] [Indexed: 01/22/2023]
Abstract
The clinical management of triple negative breast cancer (TNBC) is challenging due to the relatively aggressive biological behaviour and paucity of specific targeted therapy. A subset of TNBC patients has been reported to express androgen receptor (AR) in carcinoma cells and the manipulation of androgen signalling or AR targeted therapies have been proposed. However, the biological significance of AR in TNBC has remained relatively unknown. Therefore, this review aims to summarise the reported studies assessing the rates of AR positivity in TNBC patients and androgenic effects in TNBC cell lines. The rates of AR positivity among TNBC cases varied depending on the study population (0-53% of all TNBC patients). This difference among the reported studies may be largely due to the methodological differences of analysing AR. While the majority of cell line studies suggest that androgen increase proliferation and preliminary clinical studies suggest that AR antagonists improve the prognosis of AR positive TNBC patients, cell line transfection experiments and survival analyses of histological samples suggest that the presence of AR in tumour is either benign or predicts better survival. Therefore further translational investigations regarding the mechanisms of androgen action in TNBC are required to explain this discrepancy between clinical and basic studies.
Collapse
Affiliation(s)
- K M McNamara
- Department of Anatomical Pathology, Tohoku University School of Graduate Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Biddie SC, John S. Minireview: Conversing with chromatin: the language of nuclear receptors. Mol Endocrinol 2013; 28:3-15. [PMID: 24196351 DOI: 10.1210/me.2013-1247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear receptors are transcription factors that are activated by physiological stimuli to bind DNA in the context of chromatin and regulate complex biological pathways. Major advances in nuclear receptor biology have been aided by genome scale examinations of receptor interactions with chromatin. In this review, we summarize the roles of the chromatin landscape in regulating nuclear receptor function. Chromatin acts as a central integrator in the nuclear receptor-signaling axis, operating in distinct temporal modalities. Chromatin effects nuclear receptor action by specifying its genomic localization and interactions with regulatory elements. On receptor binding, changes in chromatin operate as an effector of receptor signaling to modulate transcriptional events. Chromatin is therefore an integral component of the pathways that guide nuclear receptor action in cell-type-specific and cell state-dependent manners.
Collapse
Affiliation(s)
- Simon C Biddie
- Addenbrooke's Hospital (S.C.B.), Cambridge University Hospitals National Health Service Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom; and National Institutes of Health (S.J.), National Cancer Institute, Laboratory for Genome Integrity, Bethesda, Maryland 20892
| | | |
Collapse
|
38
|
Chaiyachati BH, Kaundal RK, Zhao J, Wu J, Flavell R, Chi T. LoxP-FRT Trap (LOFT): a simple and flexible system for conventional and reversible gene targeting. BMC Biol 2012. [PMID: 23198860 PMCID: PMC3529186 DOI: 10.1186/1741-7007-10-96] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Conditional gene knockout (cKO) mediated by the Cre/LoxP system is indispensable for exploring gene functions in mice. However, a major limitation of this method is that gene KO is not reversible. A number of methods have been developed to overcome this, but each method has its own limitations. Results We describe a simple method we have named LOFT [LoxP-flippase (FLP) recognition target (FRT) Trap], which is capable of reversible cKO and free of the limitations associated with existing techniques. This method involves two alleles of a target gene: a standard floxed allele, and a multi-functional allele bearing an FRT-flanked gene-trap cassette, which inactivates the target gene while reporting its expression with green fluorescent protein (GFP); the trapped allele is thus a null and GFP reporter by default, but is convertible into a wild-type allele. The floxed and trapped alleles can typically be generated using a single construct bearing a gene-trap cassette doubly flanked by LoxP and FRT sites, and can be used independently to achieve conditional and constitutive gene KO, respectively. More importantly, in mice bearing both alleles and also expressing the Cre and FLP recombinases, sequential function of the two enzymes should lead to deletion of the target gene, followed by restoration of its expression, thus achieving reversible cKO. LOFT should be generally applicable to mouse genes, including the growing numbers of genes already floxed; in the latter case, only the trapped alleles need to be generated to confer reversibility to the pre-existing cKO models. LOFT has other applications, including the creation and reversal of hypomorphic mutations. In this study we proved the principle of LOFT in the context of T-cell development, at a hypomorphic allele of Baf57/Smarce1 encoding a subunit of the chromatin-remodeling Brg/Brahma-associated factor (BAF) complex. Interestingly, the FLP used in the current work caused efficient reversal in peripheral T cells but not thymocytes, which is advantageous for studying developmental epigenetic programming of T-cell functions, a fundamental issue in immunology. Conclusions LOFT combines well-established basic genetic methods into a simple and reliable method for reversible gene targeting, with the flexibility of achieving traditional constitutive and conditional KO.
Collapse
Affiliation(s)
- Barbara H Chaiyachati
- Department of Immunobiology, Yale University Medical School, 300 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
39
|
van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G. Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol Cell Endocrinol 2012; 352:57-69. [PMID: 21871527 DOI: 10.1016/j.mce.2011.08.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 02/08/2023]
Abstract
Androgens are key regulators of male sexual differentiation and essential for development and maintenance of male reproductive tissues. The androgens testosterone and dihydrotestosterone mediate their effect by binding to, and activation of the androgen receptor (AR). Upon activation, the AR is able to recognize specific DNA sequences in gene promoters and enhancers from where it recruits coregulators to orchestrate chromatin remodeling and transcription regulation. The number of proteins that bind to the AR has surpassed 200 and many of them enhance (coactivator) or repress (corepressor) its transactivating capacity. For most of these coregulators, their AR binding interface and their exact mode of action still needs to be elucidated, but for some of the more classical coactivators and corepressors, we gained insight in their working mechanisms. Of particular interest are specific sequences (LxxLL and FxxLF-like motifs) in a subset of coactivators that interact with the AR via a coactivator binding groove in the ligand-binding domain. As compared to other steroid receptors, the conformation of the AR coactivator binding pocket is unique and preferentially binds FxxLF-like motifs. This predisposition is expected to contribute to the regulation of specific sets of target genes via recruitment of selected coregulators. This review provides an overview of these (inter)actions with a focus on the unique characteristics of the AR coactivator binding groove.
Collapse
|
40
|
He HH, Meyer CA, Chen MW, Jordan VC, Brown M, Liu XS. Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res 2012; 22:1015-25. [PMID: 22508765 PMCID: PMC3371710 DOI: 10.1101/gr.133280.111] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transcription factor cistromes are highly cell-type specific. Chromatin accessibility, histone modifications, and nucleosome occupancy have all been found to play a role in defining these binding locations. Here, we show that hormone-induced DNase I hypersensitivity changes (ΔDHS) are highly predictive of androgen receptor (AR) and estrogen receptor 1 (ESR1) binding in prostate cancer and breast cancer cells, respectively. While chromatin structure prior to receptor binding and nucleosome occupancy after binding are strikingly different for ESR1 and AR, ΔDHS is highly predictive for both. AR binding is associated with changes in both local nucleosome occupancy and DNase I hypersensitivity. In contrast, while global ESR1 binding is unrelated to changes in nucleosome occupancy, DNase I hypersensitivity dynamics are also predictive of the ESR1 cistrome. These findings suggest that AR and ESR1 have distinct modes of interaction with chromatin and that DNase I hypersensitivity dynamics provides a general approach for predicting cell-type specific cistromes.
Collapse
Affiliation(s)
- Housheng Hansen He
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
41
|
Jung I, Sohn DH, Choi J, Kim JM, Jeon S, Seol JH, Seong RH. SRG3/mBAF155 stabilizes the SWI/SNF-like BAF complex by blocking CHFR mediated ubiquitination and degradation of its major components. Biochem Biophys Res Commun 2012; 418:512-7. [DOI: 10.1016/j.bbrc.2012.01.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 01/11/2012] [Indexed: 01/20/2023]
|
42
|
Hill KK, Roemer SC, Churchill ME, Edwards DP. Structural and functional analysis of domains of the progesterone receptor. Mol Cell Endocrinol 2012; 348:418-29. [PMID: 21803119 PMCID: PMC4437577 DOI: 10.1016/j.mce.2011.07.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 11/18/2022]
Abstract
Steroid hormone receptors are multi-domain proteins composed of conserved well-structured regions, such as ligand (LBD) and DNA binding domains (DBD), plus other naturally unstructured regions including the amino-terminal domain (NTD) and the hinge region between the LBD and DBD. The hinge is more than just a flexible region between the DBD and LBD and is capable of binding co-regulatory proteins and the minor groove of DNA flanking hormone response elements. Because the hinge can directly participate in DNA binding it has also been termed the carboxyl terminal extension (CTE) of the DNA binding domain. The CTE and NTD are dynamic regions of the receptor that can adopt multiple conformations depending on the environment of interacting proteins and DNA. Both regions have important regulatory roles for multiple receptor functions that are related to the ability of the CTE and NTD to form multiple active conformations. This review focuses on studies of the CTE and NTD of progesterone receptor (PR), as well as related work with other steroid/nuclear receptors.
Collapse
Affiliation(s)
- Krista K. Hill
- Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | - Sarah C. Roemer
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Mair E.A. Churchill
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Dean P. Edwards
- Departments of Molecular & Cellular Biology and Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
43
|
Pawlak M, Lefebvre P, Staels B. General molecular biology and architecture of nuclear receptors. Curr Top Med Chem 2012; 12:486-504. [PMID: 22242852 PMCID: PMC3637177 DOI: 10.2174/156802612799436641] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/22/2011] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) regulate and coordinate multiple processes by integrating internal and external signals, thereby maintaining homeostasis in front of nutritional, behavioral and environmental challenges. NRs exhibit strong similarities in their structure and mode of action: by selective transcriptional activation or repression of cognate target genes, which can either be controlled through a direct, DNA binding-dependent mechanism or through crosstalk with other transcriptional regulators, NRs modulate the expression of gene clusters thus achieving coordinated tissue responses. Additionally, non genomic effects of NR ligands appear mediated by ill-defined mechanisms at the plasma membrane. These effects mediate potential therapeutic effects as small lipophilic molecule targets, and many efforts have been put in elucidating their precise mechanism of action and pathophysiological roles. Currently, numerous nuclear receptor ligand analogs are used in therapy or are tested in clinical trials against various diseases such as hypertriglyceridemia, atherosclerosis, diabetes, allergies and cancer and others.
Collapse
Affiliation(s)
- Michal Pawlak
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Philippe Lefebvre
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Bart Staels
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| |
Collapse
|
44
|
ZMIZ1 preferably enhances the transcriptional activity of androgen receptor with short polyglutamine tract. PLoS One 2011; 6:e25040. [PMID: 21949845 PMCID: PMC3176788 DOI: 10.1371/journal.pone.0025040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/23/2011] [Indexed: 11/20/2022] Open
Abstract
The androgen receptor (AR) is a ligand-induced transcription factor and contains the polyglutamine (polyQ) tracts within its N-terminal transactivation domain. The length of polyQ tracts has been suggested to alter AR transcriptional activity in prostate cancer along with other endocrine and neurologic disorders. Here, we assessed the role of ZMIZ1, an AR co-activator, in regulating the activity of the AR with different lengths of polyQ tracts as ARQ9, ARQ24, and ARQ35 in prostate cancer cells. ZMIZ1, but not ZMIZ2 or ARA70, preferably augments ARQ9 induced androgen-dependent transcription on three different androgen-inducible promoter/reporter vectors. A strong protein-protein interaction between ZMIZ1 and ARQ9 proteins was shown by immunoprecipitation assays. In the presence of ZMIZ1, the N and C-terminal interaction of the ARQ9 was more pronounced than ARQ24 and ARQ35. Both Brg1 and BAF57, the components of SWI/SNF complexes, were shown to be involved in the enhancement of ZMIZ1 on AR activity. Using the chromatin immunoprecipitation assays (ChIP), we further demonstrated a strong recruitment of ZMIZ1 by ARQ9 on the promoter of the prostate specific antigen (PSA) gene. These results demonstrate a novel regulatory role of ZMIZ1 in modulating the polyQ tract length of AR in prostate cancer cells.
Collapse
|
45
|
Abstract
Acetylation of lysine residues is a post-translational modification with broad relevance
to cellular signalling and disease biology. Enzymes that ‘write’
(histone acetyltransferases, HATs) and ‘erase’ (histone deacetylases,
HDACs) acetylation sites are an area of extensive research in current drug development,
but very few potent inhibitors that modulate the ‘reading process’
mediated by acetyl lysines have been described. The principal readers of
ɛ-N-acetyl lysine (Kac) marks are
bromodomains (BRDs), which are a diverse family of evolutionary conserved
protein-interaction modules. The conserved BRD fold contains a deep, largely hydrophobic
acetyl lysine binding site, which represents an attractive pocket for the development of
small, pharmaceutically active molecules. Proteins that contain BRDs have been implicated
in the development of a large variety of diseases. Recently, two highly potent and
selective inhibitors that target BRDs of the BET (bromodomains and extra-terminal) family
provided compelling data supporting targeting of these BRDs in inflammation and in an
aggressive type of squamous cell carcinoma. It is likely that BRDs will emerge alongside
HATs and HDACs as interesting targets for drug development for the large number of
diseases that are caused by aberrant acetylation of lysine residues.
Collapse
|
46
|
Bartlett C, Orvis TJ, Rosson GS, Weissman BE. BRG1 mutations found in human cancer cell lines inactivate Rb-mediated cell-cycle arrest. J Cell Physiol 2011; 226:1989-97. [PMID: 21520050 DOI: 10.1002/jcp.22533] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Eukaryotic organisms package DNA into chromatin for compact storage in the cell nucleus. However, this process promotes transcriptional repression of genes. To overcome the transcriptional repression, chromatin remodeling complexes have evolved that alter the configuration of chromatin packaging of DNA into nucleosomes by histones. The SWI/SNF chromatin remodeling complex uses energy from ATP hydrolysis to reposition nucleosomes and make DNA accessible to transcription factors. Recent studies showing mutations of BRG1, one of two mutually exclusive ATPase subunits, in human tumor cell lines and primary tissue samples have implicated a role for its loss in cancer development. While most of the mutations lead to complete loss of BRG1 protein expression, others result in single amino acid substitutions. To better understand the role of these BRG1 point mutations in cancer development, we characterized SWI/SNF function in human tumor cell lines with these mutations in the absence of BRM expression, the other ATPase component. We found that the mutant BRG1 proteins still interacted with the core complex members and appeared at the promoters of target genes. However, while these mutations did not affect CD44 and CDH1 expression, known targets of the SWI/SNF complex, they did abrogate Rb-mediated cell-cycle arrest. Therefore, our results implicate that these mutations disrupt the de novo chromatin remodeling activity of the complex without affecting the status of existing nucleosome positioning.
Collapse
Affiliation(s)
- Christopher Bartlett
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | |
Collapse
|
47
|
Lovastatin Causes Diminished PSA Secretion by Inhibiting AR Expression and Function in LNCaP Prostate Cancer Cells. Urology 2011; 77:1508.e1-7. [DOI: 10.1016/j.urology.2010.12.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/25/2010] [Accepted: 12/29/2010] [Indexed: 11/22/2022]
|
48
|
Identification and characterization of novel potentially oncogenic mutations in the human BAF57 gene in a breast cancer patient. Breast Cancer Res Treat 2011; 128:891-8. [DOI: 10.1007/s10549-011-1492-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/26/2011] [Indexed: 12/14/2022]
|
49
|
Bulynko YA, O'Malley BW. Nuclear receptor coactivators: structural and functional biochemistry. Biochemistry 2010; 50:313-28. [PMID: 21141906 DOI: 10.1021/bi101762x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transcription of eukaryotic cell is a multistep process tightly controlled by concerted action of macromolecules. Nuclear receptors are ligand-activated sequence-specific transcription factors that bind DNA and activate (or repress) transcription of specific sets of nuclear target genes. Successful activation of transcription by nuclear receptors and most other transcription factors requires "coregulators" of transcription. Coregulators make up a diverse family of proteins that physically interact with and modulate the activity of transcription factors and other components of the gene expression machinery via multiple biochemical mechanisms. The coregulators include coactivators that accomplish reactions required for activation of transcription and corepressors that suppress transcription. This review summarizes our current knowledge of nuclear receptor coactivators with an emphasis on their biochemical mechanisms of action and means of regulation.
Collapse
Affiliation(s)
- Yaroslava A Bulynko
- Molecular and Cellular Biology, BCM130 Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
50
|
Hansen RL, Heeboll S, Ottosen PD, Dyrskjøt L, Borre M. Smarcc1 expression: a significant predictor of disease-specific survival in patients with clinically localized prostate cancer treated with no intention to cure. ACTA ACUST UNITED AC 2010; 45:91-6. [PMID: 21087120 DOI: 10.3109/00365599.2010.530295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The clinical outcome of prostate cancer (PC) is extremely variable and therefore difficult to predict at the early stage of the disease. Since curative-intended therapies are bound up with the risk of severe adverse events, identification of new prognostic markers in PC is essential in individualized clinical treatment. The Smarcc1 protein, a part of the intranuclear SWI/SNF complex, is up-regulated in PC, and has been suggested to be implicated in tumour dedifferentiation, progression and biochemical recurrence. This makes Smarcc1 a possible candidate marker for PC survival. MATERIAL AND METHODS Immunohistochemistry was used to measure protein expression levels of Smarcc1in on a tissue microarray containing specimens from 100 patients suffering from clinically localized PC treated with no intention to cure and followed to death. RESULTS The median age at diagnosis was 75.5 years (55-95 years) and the median survival time was 5 years (0.01-15 years). In total, 41 patients (41%) died of PC. Statistically, there was no significant association between Smarcc1 immunostaining (negative/positive) and Gleason score (p = 0.7/0.8) or the clinical T stage (p = 0.9). Positive staining for Smarcc1 in patients with clinically localized PC correlated with a prolonged disease-free survival as opposed to negative staining (p = 0.025). CONCLUSION In patients with clinically localized PC treated without intention of cure, Smarcc1 expression was a statistically significant and independent predictor of disease-specific survival.
Collapse
|