1
|
Luff DH, Wojdyla K, Oxley D, Chessa T, Hudson K, Hawkins PT, Stephens LR, Barry ST, Okkenhaug K. PI3Kδ Forms Distinct Multiprotein Complexes at the TCR Signalosome in Naïve and Differentiated CD4 + T Cells. Front Immunol 2021; 12:631271. [PMID: 33763075 PMCID: PMC7982423 DOI: 10.3389/fimmu.2021.631271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2021] [Indexed: 11/14/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) play a central role in adaptive immunity by transducing signals from the T cell antigen receptor (TCR) via production of PIP3. PI3Kδ is a heterodimer composed of a p110δ catalytic subunit associated with a p85α or p85β regulatory subunit and is preferentially engaged by the TCR upon T cell activation. The molecular mechanisms leading to PI3Kδ recruitment and activation at the TCR signalosome remain unclear. In this study, we have used quantitative mass spectrometry, biochemical approaches and CRISPR-Cas9 gene editing to uncover the p110δ interactome in primary CD4+ T cells. Moreover, we have determined how the PI3Kδ interactome changes upon the differentiation of small naïve T cells into T cell blasts expanded in the presence of IL-2. Our interactomic analyses identified multiple constitutive and inducible PI3Kδ-interacting proteins, some of which were common to naïve and previously-activated T cells. Our data reveals that PI3Kδ rapidly interacts with as many as seven adaptor proteins upon TCR engagement, including the Gab-family proteins, GAB2 and GAB3, a CD5-CBL signalosome and the transmembrane proteins ICOS and TRIM. Our results also suggest that PI3Kδ pre-forms complexes with the adaptors SH3KBP1 and CRKL in resting cells that could facilitate the localization and activation of p110δ at the plasma membrane by forming ternary complexes during early TCR signalling. Furthermore, we identify interactions that were not previously known to occur in CD4+ T cells, involving BCAP, GAB3, IQGAP3 and JAML. We used CRISPR-Cas9-mediated gene knockout in primary T cells to confirm that BCAP is a positive regulator of PI3K-AKT signalling in CD4+ T cell blasts. Overall, our results provide evidence for a large protein network that regulates the recruitment and activation of PI3Kδ in T cells. Finally, this work shows how the PI3Kδ interactome is remodeled as CD4+ T cells differentiate from naïve T cells to activated T cell blasts. These activated T cells upregulate additional PI3Kδ adaptor proteins, including BCAP, GAB2, IQGAP3 and ICOS. This rewiring of TCR-PI3K signalling that occurs upon T cell differentiation may serve to reduce the threshold of activation and diversify the inputs for the PI3K pathway in effector T cells.
Collapse
Affiliation(s)
- Daisy H Luff
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Katarzyna Wojdyla
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, United Kingdom.,Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, United Kingdom
| | - Tamara Chessa
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Kevin Hudson
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Phillip T Hawkins
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Len R Stephens
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Simon T Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Varón-González C, Pallares LF, Debat V, Navarro N. Mouse Skull Mean Shape and Shape Robustness Rely on Different Genetic Architectures and Different Loci. Front Genet 2019; 10:64. [PMID: 30809244 PMCID: PMC6379267 DOI: 10.3389/fgene.2019.00064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
The genetic architecture of skull shape has been extensively studied in mice and the results suggest a highly polygenic and additive basis. In contrast few studies have explored the genetic basis of the skull variability. Canalization and developmental stability are the two components of phenotypic robustness. They have been proposed to be emergent properties of the genetic networks underlying the development of the trait itself, but this hypothesis has been rarely tested empirically. Here we use outbred mice to investigate the genetic architecture of canalization of the skull shape by implementing a genome-wide marginal epistatic test on 3D geometric morphometric data. The same data set had been used previously to explore the genetic architecture of the skull mean shape and its developmental stability. Here, we address two questions: (1) Are changes in mean shape and changes in shape variance associated with the same genomic regions? and (2) Do canalization and developmental stability rely on the same loci and genetic architecture and do they involve the same patterns of shape variation? We found that unlike skull mean shape, among-individual shape variance and fluctuating asymmetry (FA) show a total lack of additive effects. They are both associated with complex networks of epistatic interactions involving many genes (protein-coding and regulatory elements). Remarkably, none of the genomic loci affecting mean shape contribute these networks despite their enrichment for genes involved in craniofacial variation and diseases. We also found that the patterns of shape FA and individual variation are largely similar and rely on similar multilocus epistatic genetic networks, suggesting that the processes channeling variation within and among individuals are largely common. However, the loci involved in these two networks are completely different. This in turn underlines the difference in the origin of the variation at these two levels, and points at buffering processes that may be specific to each level.
Collapse
Affiliation(s)
- Ceferino Varón-González
- Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, UA, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Luisa F. Pallares
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Vincent Debat
- Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, UA, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
- EPHE, PSL University, Dijon, France
| |
Collapse
|
3
|
Singh MD, Ni M, Sullivan JM, Hamerman JA, Campbell DJ. B cell adaptor for PI3-kinase (BCAP) modulates CD8 + effector and memory T cell differentiation. J Exp Med 2018; 215:2429-2443. [PMID: 30093532 PMCID: PMC6122975 DOI: 10.1084/jem.20171820] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/13/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Singh et al. show that expression of B cell adaptor for PI3-kinase (BCAP) is induced upon T cell activation and that this helps control effector and memory CD8+ T cell differentiation. CD8+ T cells respond to signals via the T cell receptor (TCR), costimulatory molecules, and immunoregulatory cytokines by developing into diverse populations of effector and memory cells. The relative strength of phosphoinositide 3-kinase (PI3K) signaling early in the T cell response can dramatically influence downstream effector and memory T cell differentiation. We show that initial PI3K signaling during T cell activation results in up-regulation of the signaling scaffold B cell adaptor for PI3K (BCAP), which further potentiates PI3K signaling and promotes the accumulation of CD8+ T cells with a terminally differentiated effector phenotype. Accordingly, BCAP-deficient CD8+ T cells have attenuated clonal expansion and altered effector and memory T cell development following infection with Listeria monocytogenes. Thus, induction of BCAP serves as a positive feedback circuit to enhance PI3K signaling in activated CD8+ T cells, thereby acting as a molecular checkpoint regulating effector and memory T cell development.
Collapse
Affiliation(s)
- Mark D Singh
- Immunology Program, Benaroya Research Institute, Seattle, WA
| | - Minjian Ni
- Immunology Program, Benaroya Research Institute, Seattle, WA
| | - Jenna M Sullivan
- Immunology Program, Benaroya Research Institute, Seattle, WA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Jessica A Hamerman
- Immunology Program, Benaroya Research Institute, Seattle, WA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Daniel J Campbell
- Immunology Program, Benaroya Research Institute, Seattle, WA .,Department of Immunology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
4
|
Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schlüter D, Reinhold D, Jordan BA, Gintschel P, Schraven B, Kreutz MR. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS One 2016; 11:e0162863. [PMID: 27657535 PMCID: PMC5033326 DOI: 10.1371/journal.pone.0162863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
Transmembrane adaptor proteins (TRAPs) are important organisers for the transduction of immunoreceptor-mediated signals. Prr7 is a TRAP that regulates T cell receptor (TCR) signalling and potently induces cell death when overexpressed in human Jurkat T cells. Whether endogenous Prr7 has a similar functional role is currently unknown. To address this issue, we analysed the development and function of the immune system in Prr7 knockout mice. We found that loss of Prr7 partially impairs development of single positive CD4+ T cells in the thymus but has no effect on the development of other T cell subpopulations, B cells, NK cells, or NKT cells. Moreover, Prr7 does not affect the TCR signalling pathway as T cells derived from Prr7 knockout and wild-type animals and stimulated in vitro express the same levels of the activation marker CD69, and retain their ability to proliferate and activate induced cell death programs. Importantly, Prr7 knockout mice retained the capacity to mount a protective immune response when challenged with Listeria monocytogenes infection in vivo. In addition, T cell effector functions (activation, migration, and reactivation) were normal following induction of experimental autoimmune encephalomyelitis (EAE) in Prr7 knockout mice. Collectively, our work shows that loss of Prr7 does not result in a major immune system phenotype and suggests that Prr7 has a dispensable function for TCR signalling.
Collapse
Affiliation(s)
- Matous Hrdinka
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail: (MH); (BS); (MRK)
| | - Kritika Sudan
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Sissy Just
- Institute of Medical Microbiology, Otto-von-Guericke University, Germany
| | - Ales Drobek
- Group of Adaptive Immunity, Institute of Molecular Genetics, CAS, Prague, Czech Republic
| | - Ondrej Stepanek
- Group of Adaptive Immunity, Institute of Molecular Genetics, CAS, Prague, Czech Republic
| | - Dirk Schlüter
- Institute of Medical Microbiology, Otto-von-Guericke University, Germany
- Organ-Specific Immune Regulation, Helmholtz-Center of Infection Research (HZI). Braunschweig, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Bryen A. Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Patricia Gintschel
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
- Department of Immune Control, Helmholtz-Center of Infection Research (HZI). Braunschweig, Germany
- * E-mail: (MH); (BS); (MRK)
| | - Michael R. Kreutz
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg, Germany
- Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, Hamburg, Germany
- * E-mail: (MH); (BS); (MRK)
| |
Collapse
|
5
|
Wang X, Hills LB, Huang YH. Lipid and Protein Co-Regulation of PI3K Effectors Akt and Itk in Lymphocytes. Front Immunol 2015; 6:117. [PMID: 25821452 PMCID: PMC4358224 DOI: 10.3389/fimmu.2015.00117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
The phosphoinositide 3-kinase (PI 3-kinase, PI3K) pathway transduces signals critical for lymphocyte function. PI3K generates the phospholipid PIP3 at the plasma membrane to recruit proteins that contain pleckstrin homology (PH) domains – a conserved domain found in hundreds of mammalian proteins. PH domain–PIP3 interactions allow for rapid signal propagation and confer a spatial component to these signals. The kinases Akt and Itk are key PI3K effectors that bind PIP3 via their PH domains and mediate vital processes – such as survival, activation, and differentiation – in lymphocytes. Here, we review the roles and regulation of PI3K signaling in lymphocytes with a specific emphasis on Akt and Itk. We also discuss these and other PH domain-containing proteins as they relate more broadly to immune cell function. Finally, we highlight the emerging view of PH domains as multifunctional protein domains that often bind both lipid and protein substrates to exert their effects.
Collapse
Affiliation(s)
- Xinxin Wang
- California Institute for Biomedical Research , La Jolla, CA , USA
| | - Leonard Benjamin Hills
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Yina Hsing Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA ; Department of Pathology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| |
Collapse
|
6
|
Schneider H, Rudd CE. Diverse mechanisms regulate the surface expression of immunotherapeutic target ctla-4. Front Immunol 2014; 5:619. [PMID: 25538704 PMCID: PMC4255484 DOI: 10.3389/fimmu.2014.00619] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
T-cell co-receptor cytotoxic T-cell antigen-4 (CTLA-4) is a critical inhibitory regulator of T-cell immunity and antibody blockade of the co-receptor has been shown to be effective in tumor immunotherapy. Paradoxically, the majority of CTLA-4 is located in intracellular compartments from where it is transported to the cell surface and rapidly internalized. The intracellular trafficking pathways that control transport of the co-receptor to the cell surface ensures the appropriate balance of negative and positive signaling for a productive immune response with minimal autoimmune disorders. It will also influence the degree of inhibition and the potency of antibody checkpoint blockade in cancer immunotherapy. Current evidence indicates that the mechanisms of CTLA-4 transport to the cell surface and its residency are multifactorial involving a combination of immune cell-specific adapters such as TRIM and LAX, the small GTPase Rab8 as well as generic components such as ARF-1, phospholipase D, and the heterotetrameric AP1/2 complex. This review covers the recent developments in our understanding of the processes that control the expression of this important co-inhibitory receptor for the modulation of T-cell immunity. Interference with the processes that regulate CTLA-4 surface expression could provide an alternate therapeutic approach in the treatment of cancer and autoimmunity.
Collapse
Affiliation(s)
- Helga Schneider
- Cell Signalling Section, Division of Immunology, Department of Pathology, University of Cambridge , Cambridge , UK
| | - Christopher E Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, University of Cambridge , Cambridge , UK
| |
Collapse
|
7
|
Rab8 binding to immune cell-specific adaptor LAX facilitates formation of trans-Golgi network-proximal CTLA-4 vesicles for surface expression. Mol Cell Biol 2014; 34:1486-99. [PMID: 24515439 PMCID: PMC3993577 DOI: 10.1128/mcb.01331-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite playing a central role in tolerance, little is known regarding the mechanism by which intracellular CTLA-4 is shuttled from the trans-Golgi network to the surfaces of T cells. In this context, Ras-related GTPase Rab8 plays an important role in the intracellular transport, while we have previously shown that CTLA-4 binds to the immune cell adaptor TRIM in T cells. In this study, we demonstrate that CTLA-4 forms a multimeric complex comprised of TRIM and related LAX that in turn binds to GTP bound Rab8 for post-Golgi transport to the cell surface. LAX bound via its N terminus to active GTP-Rab8, as well as the cytoplasmic tail of CTLA-4. TRIM required LAX for binding to Rab8 in a complex. Wild-type LAX or its N terminus (residues 1 to 77) increased CTLA-4 surface expression, whereas small interfering RNAs of Rab8 or LAX or disruption of LAX/Rab8 binding reduced numbers of CTLA-4-containing vesicles and its coreceptor surface expression. LAX also promoted the polarization of CTLA-4 and the reorientation of the microtubule-organizing center to the site of T-cell receptor engagement. Our results identify a novel CTLA-4/TRIM/LAX/Rab8 effector complex in the transport of CTLA-4 to the surfaces of T cells.
Collapse
|
8
|
The transmembrane adaptor protein SIT inhibits TCR-mediated signaling. PLoS One 2011; 6:e23761. [PMID: 21957439 PMCID: PMC3177817 DOI: 10.1371/journal.pone.0023761] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 07/25/2011] [Indexed: 12/15/2022] Open
Abstract
Transmembrane adaptor proteins (TRAPs) organize signaling complexes at the plasma membrane, and thus function as critical linkers and integrators of signaling cascades downstream of antigen receptors. We have previously shown that the transmembrane adaptor protein SIT regulates the threshold for thymocyte selection. Moreover, T cells from SIT-deficient mice are hyperresponsive to CD3 stimulation and undergo enhanced lymphopenia-induced homeostatic proliferation, thus indicating that SIT inhibits TCR-mediated signaling. Here, we have further addressed how SIT regulates signaling cascades in T cells. We demonstrate that the loss of SIT enhances TCR-mediated Akt activation and increased phosphorylation/inactivation of Foxo1, a transcription factor of the Forkhead family that inhibits cell cycle progression and regulates T-cell homeostasis. We have also shown that CD4+ T cells from SIT-deficient mice display increased CD69 and CD40L expression indicating an altered activation status. Additional biochemical analyses further revealed that suppression of SIT expression by RNAi in human T cells resulted in an enhanced proximal TCR signaling. In summary, the data identify SIT as an important modulator of TCR-mediated signaling that regulates T-cell activation, homeostasis and tolerance.
Collapse
|
9
|
Pre-clustered TCR complexes. FEBS Lett 2010; 584:4832-7. [DOI: 10.1016/j.febslet.2010.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 08/21/2010] [Accepted: 09/01/2010] [Indexed: 11/22/2022]
|
10
|
Swamy M, Siegers GM, Fiala GJ, Molnar E, Dopfer EP, Fisch P, Schraven B, Schamel WWA. Stoichiometry and intracellular fate of TRIM-containing TCR complexes. Cell Commun Signal 2010; 8:5. [PMID: 20298603 PMCID: PMC2848047 DOI: 10.1186/1478-811x-8-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 03/18/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Studying the stoichiometry and intracellular trafficking of the T cell antigen receptor (TCR) is pivotal in understanding its mechanisms of activation. The alphabetaTCR includes the antigen-binding TCRalphabeta heterodimer as well as the signal transducing CD3epsilongamma, CD3epsilondelta and zeta2 subunits. Although the TCR-interacting molecule (TRIM) is also part of the alphabetaTCR complex, it has not been included in most reports so far. RESULTS We used the native antibody-based mobility shift (NAMOS) assay in a first dimension (1D) blue native (BN)-PAGE and a 2D BN-/BN-PAGE to demonstrate that the stoichiometry of the digitonin-solublized TRIM-containing alphabetaTCR is TCRalphabetaCD3epsilon2gammadeltazeta2TRIM2. Smaller alphabetaTCR complexes possess a TCRalphabeta CD3epsilon2gammadeltazeta2 stoichiometry. Complexes of these sizes were detected in T cell lines as well as in primary human and mouse T cells. Stimulating the alphabetaTCR with anti-CD3 antibodies, we demonstrate by confocal laser scanning microscopy that CD3epsilon colocalizes with zeta and both are degraded upon prolonged stimulation, possibly within the lysosomal compartment. In contrast, a substantial fraction of TRIM does not colocalize with zeta. Furthermore, TRIM neither moves to lysosomes nor is degraded. Immunoprecipitation studies and BN-PAGE indicate that TRIM also associates with the gammadeltaTCR. CONCLUSIONS Small alphabetaTCR complexes have a TCRalphabeta CD3epsilon2gammadeltazeta2 stoichiometry; whereas those associated with one TRIM dimer are TCRalphabeta CD3epsilon2gammadeltazeta2TRIM2. TRIM is differentially processed compared to CD3 and zeta subunits after T cell activation and is not degraded. The gammadeltaTCR also associates with TRIM.
Collapse
Affiliation(s)
- Mahima Swamy
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| | - Gabrielle M Siegers
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
- Cell Therapy Program, Princess Margaret Hospital/Ontario Cancer Institute, 610 University Ave., Toronto, Ontario, M5G 2M9, Canada
| | - Gina J Fiala
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Albertstraße 19A, 79104 Freiburg, Germany
| | - Eszter Molnar
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| | - Elaine P Dopfer
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| | - Paul Fisch
- Department of Pathology, University of Freiburg Medical Center, 79110 Freiburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Wolfgang WA Schamel
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
11
|
Okkenhaug K, Fruman DA. PI3Ks in lymphocyte signaling and development. Curr Top Microbiol Immunol 2010; 346:57-85. [PMID: 20563708 DOI: 10.1007/82_2010_45] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lymphocyte development and function are regulated by tyrosine kinase and G-protein coupled receptors. Each of these classes of receptors activates phosphoinositide 3-kinase (PI3K). In this chapter, we summarize current understanding of how PI3K contributes to key aspects of the adaptive immune system.
Collapse
Affiliation(s)
- Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK.
| | | |
Collapse
|
12
|
Abstract
SUMMARY T-cell activation is mediated by antigen-specific signals from the TCRzeta/CD3 and CD4-CD8-p56lck complexes in combination with additional co-signals provided by coreceptors such as CD28, inducible costimulator (ICOS), cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death (PD-1), and others. CD28 and ICOS provide positive signals that promote and sustain T-cell responses, while CTLA-4 and PD-1 limit responses. The balance between stimulatory and inhibitory co-signals determines the ultimate nature of T-cell responses where response to foreign pathogen is achieved without excess inflammation and autoimmunity. In this review, we outline the current knowledge of the CD28 and CTLA-4 signaling mechanisms [involving phosphatidylinositol 3 kinase (PI3K), growth factor receptor-bound protein 2 (Grb2), Filamin A, protein kinase C theta (PKCtheta), and phosphatases] that control T-cell immunity. We also present recent findings on T-cell receptor-interacting molecule (TRIM) regulation of CTLA-4 surface expression, and a signaling pathway involving CTLA-4 activation of PI3K and protein kinase B (PKB)/AKT by which cell survival is ensured under conditions of anergy induction.
Collapse
Affiliation(s)
- Christopher E Rudd
- Department of Pathology, Cell Signalling Section, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
13
|
Koelsch U, Schraven B, Simeoni L. SIT and TRIM determine T cell fate in the thymus. THE JOURNAL OF IMMUNOLOGY 2009; 181:5930-9. [PMID: 18941181 DOI: 10.4049/jimmunol.181.9.5930] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymic selection is a tightly regulated developmental process essential for establishing central tolerance. The intensity of TCR-mediated signaling is a key factor for determining cell fate in the thymus. It is widely accepted that low-intensity signals result in positive selection, whereas high-intensity signals induce negative selection. Transmembrane adaptor proteins have been demonstrated to be important regulators of T cell activation. However, little is known about their role during T cell development. Herein, we show that SIT (SHP2 Src homology domain containing tyrosine phosphatase 2-interacting transmembrane adaptor protein) and TRIM (TCR-interacting molecule), two structurally related transmembrane adaptors, cooperatively regulate TCR signaling potential, thereby influencing the outcome of thymic selection. Indeed, loss of both SIT and TRIM resulted in the up-regulation of CD5, CD69, and TCRbeta, strong MAPK activation, and, consequently, enhanced positive selection. Moreover, by crossing SIT/TRIM double-deficient mice onto transgenic mice bearing TCRs with different avidity/affinity, we found profound alterations in T cell development. Indeed, in female HY TCR transgenic mice, positive selection was completely converted into negative selection resulting in small thymi devoided of double-positive thymocytes. More strikingly, in a nonselecting background, SIT/TRIM double-deficient single-positive T cells developed, were functional, and populated the periphery. In summary, we demonstrated that SIT and TRIM regulate cell fate of developing thymocytes, thus identifying them as essential regulators of central tolerance.
Collapse
Affiliation(s)
- Uwe Koelsch
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | |
Collapse
|
14
|
Valk E, Rudd CE, Schneider H. CTLA-4 trafficking and surface expression. Trends Immunol 2008; 29:272-9. [PMID: 18468488 PMCID: PMC4186961 DOI: 10.1016/j.it.2008.02.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 01/10/2023]
Abstract
The T-cell co-receptor cytotoxic T-cell antigen 4 (CTLA-4) has a strong inhibitory role as shown by the lymphoproliferative phenotype of CTLA-4-deficient mice. Despite its potent effects on T-cell function, CTLA-4 is primarily an intracellular antigen whose surface expression is tightly regulated by restricted trafficking to the cell surface and rapid internalisation. Recently, several signalling molecules such as Trim, PLD, ARF-1 and TIRC7 have been described to be involved in the transport of CTLA-4 to the cell surface. Minor changes in surface expression levels have major effects on the outcome of T-cell activation. Optimal regulation of CTLA-4 surface expression is crucial for the balance of stimulatory and inhibitory signals to maximize protective immune responses while maintaining immunological tolerance and preventing autoimmunity.
Collapse
Affiliation(s)
- Elke Valk
- Cell Signalling Section, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
15
|
PIP3 pathway in regulatory T cells and autoimmunity. Immunol Res 2008; 39:194-224. [PMID: 17917066 DOI: 10.1007/s12026-007-0075-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Tregs) play an important role in preventing both autoimmune and inflammatory diseases. Many recent studies have focused on defining the signal transduction pathways essential for the development and the function of Tregs. Increasing evidence suggest that T-cell receptor (TCR), interleukin-2 (IL-2) receptor (IL-2R), and co-stimulatory receptor signaling are important in the early development, peripheral homeostasis, and function of Tregs. The phosphoinositide-3 kinase (PI3K)-regulated pathway (PIP3 pathway) is one of the major signaling pathways activated upon TCR, IL-2R, and CD28 stimulation, leading to T-cell activation, proliferation, and cell survival. Activation of the PIP3 pathway is also negatively regulated by two phosphatidylinositol phosphatases SHIP and PTEN. Several mouse models deficient for the molecules involved in PIP3 pathway suggest that impairment of PIP3 signaling leads to dysregulation of immune responses and, in some cases, autoimmunity. This review will summarize the current understanding of the importance of the PIP3 pathway in T-cell signaling and the possible roles this pathway performs in the development and the function of Tregs.
Collapse
|
16
|
Okkenhaug K, Ali K, Vanhaesebroeck B. Antigen receptor signalling: a distinctive role for the p110delta isoform of PI3K. Trends Immunol 2007; 28:80-7. [PMID: 17208518 PMCID: PMC2358943 DOI: 10.1016/j.it.2006.12.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 11/24/2006] [Accepted: 12/18/2006] [Indexed: 11/24/2022]
Abstract
The activation of antigen receptors triggers two important signalling pathways originating from phosphatidylinositol(4,5)-bisphosphate [PtdIns(4,5)P2]. The first is phospholipase Cγ (PLCγ)-mediated hydrolysis of PtdIns(4,5)P2, resulting in the activation of Ras, protein kinase C and Ca2+ flux. This culminates in profound alterations in gene expression and effector-cell responses, including secretory granule exocytosis and cytokine production. By contrast, phosphoinositide 3-kinases (PI3Ks) phosphorylate PtdIns(4,5)P2 to yield phosphatidylinositol(3,4,5)-trisphosphate, activating signalling pathways that overlap with PLCγ or are PI3K-specific. Pathways that are PI3K-specific include Akt-mediated inactivation of Foxo transcription factors and transcription-independent regulation of glucose uptake and metabolism. The p110δ isoform of PI3K is the main source of PI3K activity following antigen recognition by B cells, T cells and mast cells. Here, we review the roles of p110δ in regulating antigen-dependent responses in these cell types.
Collapse
Affiliation(s)
- Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK, CB2 4AT
| | - Khaled Ali
- Ludwig Institute for Cancer Research, London, UK, W1W 7BS
- Department of Biochemistry and Molecular Biology, University College London, London, UK, WC1E 6BT
| | - Bart Vanhaesebroeck
- Ludwig Institute for Cancer Research, London, UK, W1W 7BS
- Department of Biochemistry and Molecular Biology, University College London, London, UK, WC1E 6BT
| |
Collapse
|
17
|
Valk E, Leung R, Kang H, Kaneko K, Rudd CE, Schneider H. T Cell Receptor-Interacting Molecule Acts as a Chaperone to Modulate Surface Expression of the CTLA-4 Coreceptor. Immunity 2006; 25:807-21. [PMID: 17070077 DOI: 10.1016/j.immuni.2006.08.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 07/19/2006] [Accepted: 08/31/2006] [Indexed: 11/18/2022]
Abstract
The costimulatory molecule CTLA-4 is a potent downregulator of T cell responses. Although localized mostly in intracellular compartments, little is understood regarding the mechanism that regulates its transport to the cell surface. In this study, we demonstrated that the adaptor TRIM (T cell receptor-interacting molecule) bound to CTLA-4 in the trans Golgi network (TGN) and promoted transport of CTLA-4 to the surface of T cells. Increased TRIM expression augmented surface CTLA-4 expression, and pulse-chase analysis showed a more rapid transport of CTLA-4 to the cell surface. A reduction of TRIM expression by small hairpin RNAs reduced the expression of surface CTLA-4. This resulted in a more localized pattern of CTLA-4 in the TGN. Altered CTLA-4 expression by TRIM was accompanied by corresponding changes in coreceptor-mediated effects on cytokine production and proliferation. Our findings identify a role for TRIM as a chaperone in regulating CTLA-4 expression and function by enhancing CTLA-4 transport to the surface of T cells.
Collapse
Affiliation(s)
- Elke Valk
- Cell Signalling Section, Division of Immunology, Department of Pathology, Cambridge University, Cambridge, UK
| | | | | | | | | | | |
Collapse
|