1
|
Drilon A, Jenkins C, Iyer S, Schoenfeld A, Keddy C, Davare MA. ROS1-dependent cancers - biology, diagnostics and therapeutics. Nat Rev Clin Oncol 2021; 18:35-55. [PMID: 32760015 PMCID: PMC8830365 DOI: 10.1038/s41571-020-0408-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
The proto-oncogene ROS1 encodes a receptor tyrosine kinase with an unknown physiological role in humans. Somatic chromosomal fusions involving ROS1 produce chimeric oncoproteins that drive a diverse range of cancers in adult and paediatric patients. ROS1-directed tyrosine kinase inhibitors (TKIs) are therapeutically active against these cancers, although only early-generation multikinase inhibitors have been granted regulatory approval, specifically for the treatment of ROS1 fusion-positive non-small-cell lung cancers; histology-agnostic approvals have yet to be granted. Intrinsic or extrinsic mechanisms of resistance to ROS1 TKIs can emerge in patients. Potential factors that influence resistance acquisition include the subcellular localization of the particular ROS1 oncoprotein and the TKI properties such as the preferential kinase conformation engaged and the spectrum of targets beyond ROS1. Importantly, the polyclonal nature of resistance remains underexplored. Higher-affinity next-generation ROS1 TKIs developed to have improved intracranial activity and to mitigate ROS1-intrinsic resistance mechanisms have demonstrated clinical efficacy in these regards, thus highlighting the utility of sequential ROS1 TKI therapy. Selective ROS1 inhibitors have yet to be developed, and thus the specific adverse effects of ROS1 inhibition cannot be deconvoluted from the toxicity profiles of the available multikinase inhibitors. Herein, we discuss the non-malignant and malignant biology of ROS1, the diagnostic challenges that ROS1 fusions present and the strategies to target ROS1 fusion proteins in both treatment-naive and acquired-resistance settings.
Collapse
Affiliation(s)
- Alexander Drilon
- Early Drug Development and Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Chelsea Jenkins
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Sudarshan Iyer
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Adam Schoenfeld
- Early Drug Development and Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Clare Keddy
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Monika A Davare
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Zong CS, Wang LH. Modulatory effect of the transmembrane domain of the protein-tyrosine kinase encoded by oncogene ros: biological function and substrate interaction. Proc Natl Acad Sci U S A 1994; 91:10982-6. [PMID: 7526386 PMCID: PMC45150 DOI: 10.1073/pnas.91.23.10982] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
There is a 3-aa insertion in the transmembrane (TM) domain of the p68gag-ros protein-tyrosine kinase encoded by avian sarcoma virus UR2 v-ros as compared with that of the protooncogene c-ros. The effect of this insertion on biological function and biochemical properties of v-Ros protein was investigated by deleting these 3 aa to generate the mutant TM1. This mutant has greatly reduced transforming, mitogenic, and tumorigenic activities despite the fact that the protein-tyrosine kinase activity and cell-surface localization of TM1 protein are unaffected. However, unlike UR2 protein, mutant TM1 protein becomes glycosylated, is differentially phosphorylated, and fails to induce tyrosine phosphorylation of a 88-kDa protein and a major substrate of insulin receptor, insulin receptor substrate 1. The TM1 protein is unable to associate with phosphatidylinositol 3-kinase and fails to promote association of insulin receptor substrate 1 with phosphatidylinositol 3-kinase. By contrast, tyrosine phosphorylation of Shc protein and phospholipase C gamma as well as interaction of Grb2 protein with Shc and SOS protein signaling components are unaltered in the TM1 infected cells. Our results show that the TM-domain sequence of p68gag-ros profoundly affects its function and substrate interaction. The mutant defines a signaling pathway including phosphatidylinositol 3-kinase, insulin receptor substrate 1, and possibly an 88-kDa protein that does not overlap the Ras pathway and is important for full transforming and mitogenic potency of v-ros protein-tyrosine kinase.
Collapse
Affiliation(s)
- C S Zong
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029
| | | |
Collapse
|
3
|
Kameda T, Akahori A, Sonobe MH, Suzuki T, Endo T, Iba H. JunD mutants with spontaneously acquired transforming potential have enhanced transactivating activity in combination with Fra-2. Proc Natl Acad Sci U S A 1993; 90:9369-73. [PMID: 8415709 PMCID: PMC47569 DOI: 10.1073/pnas.90.20.9369] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Although a replication-competent retrovirus that carries junD has no transforming activity in chicken embryo fibroblasts, we have isolated mutant viruses that have spontaneously acquired transforming activity. The molecularly cloned junD genes of three such mutant viruses (T1, T2, and T3) were shown to be responsible for the cellular transformation. DNA sequence analysis indicated that a specific polynucleotide in the junD sequence was tandemly multiplied three times of five times in T1 and T2, respectively. The repeated polynucleotide encodes 16 amino acid residues that are located in a highly conserved region among Jun family proteins. The junD mutation in T3 involved an inversion, a translocation, and nucleotide substitutions that caused drastic amino acid exchanges in another well-conserved region among Jun family proteins. The transcriptional activity of these mutants was analyzed by means of transient expression experiments in F9 cells using a reporter gene containing a single AP-1 binding site. Compared with the wild-type JunD, none of them showed enhanced transactivating activity in the forms of homodimers or of heterodimers with c-Fos or Fra-1. However, they did exhibit much higher transactivating activity than the wild type when they formed heterodimers with Fra-2, indicating that the mutated regions function as transactivation domains in a partner-specific manner. Since we have previously reported that there is a basal level of Fra-2 expression in chicken embryo fibroblasts, the results may indicate that protein complexes between JunD mutants and Fra-2 play a crucial role in the cellular transforming activity.
Collapse
Affiliation(s)
- T Kameda
- Department of Tumor Virus Research, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Analysis of cDNAs of the proto-oncogene c-src: heterogeneity in 5' exons and possible mechanism for the genesis of the 3' end of v-src. Mol Cell Biol 1991. [PMID: 1712905 DOI: 10.1128/mcb.11.8.4165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To further characterize the gene structure of the proto-oncogene c-src and the mechanism for the genesis of the v-src sequence in Rous sarcoma virus, we have analyzed genomic and cDNA copies of the chicken c-src gene. From a cDNA library of chicken embryo fibroblasts, we isolated and sequenced several overlapping cDNA clones covering the full length of the 4-kb c-src mRNA. The cDNA sequence contains a 1.84-kb sequence downstream from the 1.6-kb pp60c-src coding region. An open reading frame of 217 amino acids, called sdr (src downstream region), was found 105 nucleotides from the termination codon for pp60c-src. Within the 3' noncoding region, a 39-bp sequence corresponding to the 3' end of the RSV v-src was detected 660 bases downstream of the pp60c-src termination codon. The presence of this sequence in the c-src mRNA exon supports a model involving an RNA intermediate during transduction of the c-src sequence. The 5' region of the c-src cDNA was determined by analyzing several cDNA clones generated by conventional cloning methods and by polymerase chain reaction. Sequences of these chicken embryo fibroblast clones plus two c-src cDNA clones isolated from a brain cDNA library show that there is considerable heterogeneity in sequences upstream from the c-src coding sequence. Within this region, which contains at least 300 nucleotides upstream of the translational initiation site in exon 2, there exist at least two exons in each cDNA which fall into five cDNA classes. Four unique 5' exon sequences, designated exons UE1, UE2, UEX, and UEY, were observed. All of them are spliced to the previously characterized c-src exons 1 and 2 with the exception of type 2 cDNA. In type 2, the exon 1 is spliced to a novel downstream exon, designated exon 1a, which maps in the region of the c-src DNA defined previously as intron 1. Exon UE1 is rich in G+C content and is mapped at 7.8 kb upstream from exon 1. This exon is also present in the two cDNA clones from the brain cDNA library. Exon UE2 is located at 8.5 kb upstream from exon 1. The precise locations of exons UEX and UEY have not been determined, but both are more than 12 kb upstream from exon 1. The existence and exon arrangements of these 5' cDNAs were further confirmed by RNase protection assays and polymerase chain reactions using specific primers. Our findings indicate that the heterogeneity in the 5' sequences of the c-src mRNAs results from differential splicing and perhaps use of distinct initiation sites. All of these RNAs have the potential of coding for pp60c-src, since their 5' exons are all eventually joined to exon 2.
Collapse
|
5
|
Dorai T, Levy JB, Kang L, Brugge JS, Wang LH. Analysis of cDNAs of the proto-oncogene c-src: heterogeneity in 5' exons and possible mechanism for the genesis of the 3' end of v-src. Mol Cell Biol 1991; 11:4165-76. [PMID: 1712905 PMCID: PMC361236 DOI: 10.1128/mcb.11.8.4165-4176.1991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To further characterize the gene structure of the proto-oncogene c-src and the mechanism for the genesis of the v-src sequence in Rous sarcoma virus, we have analyzed genomic and cDNA copies of the chicken c-src gene. From a cDNA library of chicken embryo fibroblasts, we isolated and sequenced several overlapping cDNA clones covering the full length of the 4-kb c-src mRNA. The cDNA sequence contains a 1.84-kb sequence downstream from the 1.6-kb pp60c-src coding region. An open reading frame of 217 amino acids, called sdr (src downstream region), was found 105 nucleotides from the termination codon for pp60c-src. Within the 3' noncoding region, a 39-bp sequence corresponding to the 3' end of the RSV v-src was detected 660 bases downstream of the pp60c-src termination codon. The presence of this sequence in the c-src mRNA exon supports a model involving an RNA intermediate during transduction of the c-src sequence. The 5' region of the c-src cDNA was determined by analyzing several cDNA clones generated by conventional cloning methods and by polymerase chain reaction. Sequences of these chicken embryo fibroblast clones plus two c-src cDNA clones isolated from a brain cDNA library show that there is considerable heterogeneity in sequences upstream from the c-src coding sequence. Within this region, which contains at least 300 nucleotides upstream of the translational initiation site in exon 2, there exist at least two exons in each cDNA which fall into five cDNA classes. Four unique 5' exon sequences, designated exons UE1, UE2, UEX, and UEY, were observed. All of them are spliced to the previously characterized c-src exons 1 and 2 with the exception of type 2 cDNA. In type 2, the exon 1 is spliced to a novel downstream exon, designated exon 1a, which maps in the region of the c-src DNA defined previously as intron 1. Exon UE1 is rich in G+C content and is mapped at 7.8 kb upstream from exon 1. This exon is also present in the two cDNA clones from the brain cDNA library. Exon UE2 is located at 8.5 kb upstream from exon 1. The precise locations of exons UEX and UEY have not been determined, but both are more than 12 kb upstream from exon 1. The existence and exon arrangements of these 5' cDNAs were further confirmed by RNase protection assays and polymerase chain reactions using specific primers. Our findings indicate that the heterogeneity in the 5' sequences of the c-src mRNAs results from differential splicing and perhaps use of distinct initiation sites. All of these RNAs have the potential of coding for pp60c-src, since their 5' exons are all eventually joined to exon 2.
Collapse
Affiliation(s)
- T Dorai
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029-6574
| | | | | | | | | |
Collapse
|
6
|
An alternative non-tyrosine protein kinase product of the c-src gene in chicken skeletal muscle. Mol Cell Biol 1990. [PMID: 2115117 DOI: 10.1128/mcb.10.8.4068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
While the c-src locus is expressed as a 4.0-kilobase (kb) mRNA coding for pp60c-src in various chicken tissues, including embryonic muscle, it is expressed as a novel 3.0-kb mRNA in adult skeletal muscle. We have analyzed the primary structure of this alternatively transcribed and spliced c-src mRNA. The sequence revealed three open reading frames, with the previously defined c-src exons 1 through 5 or 6 comprising the third, on the 3' untranslated region of this 3-kb mRNA. The exons coding for the tyrosine kinase domain of pp60c-src were excluded. On the 5' side, 2 kb of sequence upstream from the previously defined exon 1 of the c-src gene was included in this mRNA. The start site for the 3-kb mRNA probably lies downstream of that for the 4-kb mRNA. The first reading frame of the 3.0-kb mRNA, called sur (for src upstream region), encoded a 24-kilodalton (kDa) protein product rich in cysteine and proline residues. In vitro analysis indicated that the 24-kDa sur protein was membrane associated. Antibodies to sur protein detected in vivo a 24-kDa muscle-specific protein which was developmentally regulated and corresponded to the switch from the 4-kb to the 3-kb c-src mRNA. A striking kinetic pattern of appearance of sur protein and disappearance of pp60c-src suggests that the expression of these two proteins is inversely related.
Collapse
|
7
|
Dorai T, Wang LH. An alternative non-tyrosine protein kinase product of the c-src gene in chicken skeletal muscle. Mol Cell Biol 1990; 10:4068-79. [PMID: 2115117 PMCID: PMC360922 DOI: 10.1128/mcb.10.8.4068-4079.1990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
While the c-src locus is expressed as a 4.0-kilobase (kb) mRNA coding for pp60c-src in various chicken tissues, including embryonic muscle, it is expressed as a novel 3.0-kb mRNA in adult skeletal muscle. We have analyzed the primary structure of this alternatively transcribed and spliced c-src mRNA. The sequence revealed three open reading frames, with the previously defined c-src exons 1 through 5 or 6 comprising the third, on the 3' untranslated region of this 3-kb mRNA. The exons coding for the tyrosine kinase domain of pp60c-src were excluded. On the 5' side, 2 kb of sequence upstream from the previously defined exon 1 of the c-src gene was included in this mRNA. The start site for the 3-kb mRNA probably lies downstream of that for the 4-kb mRNA. The first reading frame of the 3.0-kb mRNA, called sur (for src upstream region), encoded a 24-kilodalton (kDa) protein product rich in cysteine and proline residues. In vitro analysis indicated that the 24-kDa sur protein was membrane associated. Antibodies to sur protein detected in vivo a 24-kDa muscle-specific protein which was developmentally regulated and corresponded to the switch from the 4-kb to the 3-kb c-src mRNA. A striking kinetic pattern of appearance of sur protein and disappearance of pp60c-src suggests that the expression of these two proteins is inversely related.
Collapse
Affiliation(s)
- T Dorai
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029-6574
| | | |
Collapse
|
8
|
Quirke P, Pickles A, Tuzi NL, Mohamdee O, Gullick WJ. Pattern of expression of c-erbB-2 oncoprotein in human fetuses. Br J Cancer 1989; 60:64-9. [PMID: 2572267 PMCID: PMC2247351 DOI: 10.1038/bjc.1989.221] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pattern of expression of the c-erbB-2 oncoprotein was investigated in whole mount preparations of 11 human fetuses by immunocytochemistry using two polyclonal antibodies, 20N and 21N. c-erbB-2 was widely expressed within all three germ layers. Expression remained relatively constant in epithelial, mesodermal and extraembryonic tissues, but varied over time during the development of the fetal skeleton. Western blotting failed to detect c-erbB-2 in normal fetal tissues but did confirm expression in a microvillous membrane preparation of placenta. c-erbB-2 expression is widespread in the human fetus and occurs at an earlier stage than epidermal growth factor receptor.
Collapse
Affiliation(s)
- P Quirke
- Department of Pathology, University of Leeds, UK
| | | | | | | | | |
Collapse
|
9
|
Tissue-specific expression and developmental regulation of the human fgr proto-oncogene. Mol Cell Biol 1989. [PMID: 2538725 DOI: 10.1128/mcb.9.1.92] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we show that c-fgr proto-oncogene expression is limited to normal peripheral blood granulocytes, monocytes, and alveolar macrophages, all of which contain 50 to 100 copies of c-fgr mRNA per cell. The c-fgr RNA molecules in these cells consisted of partially spliced transcripts containing intron 7 and completely spliced molecules capable of encoding the predicted p55 c-fgr protein. The splicing of intron 7 appeared to occur after the splicing of most of the other introns; partially spliced molecules containing intron 7 did not appear to be transported into the cytoplasm. Very low levels of fgr transcripts were also present in U937 promonocytic cells and increased in abundance with 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced differentiation. The level of fgr transcripts began to increase 2 to 4 h after TPA addition, peaked at 8 h, and subsequently declined. Since we found that the half-life of fgr mRNA was longer than 8 h, these changes are best explained by transient transcriptional activation of fgr during TPA-induced differentiation, although nuclear runoff experiments were not sensitive enough to detect this event. Cycloheximide also caused accumulation of c-fgr transcripts in U937 cells; no superinduction was observed when TPA and cycloheximide were added at the same time. Induction by either agent was blocked with actinomycin D. These results demonstrate that the c-fgr gene is expressed in a tissue- and development-specific fashion and suggest that constitutive expression of c-fgr in U937 cells is regulated by a labile transcriptional repressor.
Collapse
|
10
|
Yarden Y, Weinberg RA. Experimental approaches to hypothetical hormones: detection of a candidate ligand of the neu protooncogene. Proc Natl Acad Sci U S A 1989; 86:3179-83. [PMID: 2470093 PMCID: PMC287090 DOI: 10.1073/pnas.86.9.3179] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is a growing list of oncogenes encoding transmembrane tyrosine kinases that have structures reminiscent of growth factor receptors. In most cases, the ligands for these putative receptors are unknown. Using the neu oncogene as a model system, we have developed several experimental approaches for the detection of such hypothetical ligands. The following lines of evidence collectively imply that a candidate ligand of the neu-encoded oncoprotein is secreted by ras-transformed fibroblasts: Medium conditioned by ras transformants is able to induce down-modulation of the neu-encoded p185 and to activate its intrinsic tyrosine kinase activity in vitro. In addition, a rapid increase in the phosphorylation in vivo of tyrosine residues of the neu-encoded protein is induced by the conditioned medium. Finally, transfer of the neu gene into hematopoietic cells renders them mitogenically responsive to the conditioned medium. The possibility of indirect activation of the oncoprotein through other known receptors, especially the receptor for the epidermal growth factor, was experimentally excluded.
Collapse
Affiliation(s)
- Y Yarden
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | |
Collapse
|
11
|
Evolution, expression, and chromosomal location of a novel receptor tyrosine kinase gene, eph. Mol Cell Biol 1989. [PMID: 3221865 DOI: 10.1128/mcb.8.9.3770] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Partial sequence analysis of the genomic eph locus revealed that the splicing points of kinase domain-encoding exons were completely distinct from those of the other protein tyrosine kinase members reported, suggesting that this is the earliest evolutionary split within this family. In Northern (RNA) blot analysis, the eph gene was expressed in liver, lung, kidney, and testis of rat, and screening of 25 human cancers of various cell types showed preferential expression in cells of epithelial origin. Overexpression of eph mRNA was found in a hepatoma and a lung cancer without gene amplification. Comparison of cDNA sequences derived from a normal liver and a hepatoma that overproduces eph mRNA demonstrated that two of them were completely identical throughout the transmembrane to the carboxy-terminal portions. Southern blot analysis of DNAs from human-mouse hybrid clones with an eph probe showed that this gene was present on human chromosome 7.
Collapse
|
12
|
Ley TJ, Connolly NL, Katamine S, Cheah MS, Senior RM, Robbins KC. Tissue-specific expression and developmental regulation of the human fgr proto-oncogene. Mol Cell Biol 1989; 9:92-9. [PMID: 2538725 PMCID: PMC362149 DOI: 10.1128/mcb.9.1.92-99.1989] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we show that c-fgr proto-oncogene expression is limited to normal peripheral blood granulocytes, monocytes, and alveolar macrophages, all of which contain 50 to 100 copies of c-fgr mRNA per cell. The c-fgr RNA molecules in these cells consisted of partially spliced transcripts containing intron 7 and completely spliced molecules capable of encoding the predicted p55 c-fgr protein. The splicing of intron 7 appeared to occur after the splicing of most of the other introns; partially spliced molecules containing intron 7 did not appear to be transported into the cytoplasm. Very low levels of fgr transcripts were also present in U937 promonocytic cells and increased in abundance with 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced differentiation. The level of fgr transcripts began to increase 2 to 4 h after TPA addition, peaked at 8 h, and subsequently declined. Since we found that the half-life of fgr mRNA was longer than 8 h, these changes are best explained by transient transcriptional activation of fgr during TPA-induced differentiation, although nuclear runoff experiments were not sensitive enough to detect this event. Cycloheximide also caused accumulation of c-fgr transcripts in U937 cells; no superinduction was observed when TPA and cycloheximide were added at the same time. Induction by either agent was blocked with actinomycin D. These results demonstrate that the c-fgr gene is expressed in a tissue- and development-specific fashion and suggest that constitutive expression of c-fgr in U937 cells is regulated by a labile transcriptional repressor.
Collapse
Affiliation(s)
- T J Ley
- Department of Medicine, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110
| | | | | | | | | | | |
Collapse
|
13
|
Maru Y, Hirai H, Yoshida MC, Takaku F. Evolution, expression, and chromosomal location of a novel receptor tyrosine kinase gene, eph. Mol Cell Biol 1988; 8:3770-6. [PMID: 3221865 PMCID: PMC365435 DOI: 10.1128/mcb.8.9.3770-3776.1988] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Partial sequence analysis of the genomic eph locus revealed that the splicing points of kinase domain-encoding exons were completely distinct from those of the other protein tyrosine kinase members reported, suggesting that this is the earliest evolutionary split within this family. In Northern (RNA) blot analysis, the eph gene was expressed in liver, lung, kidney, and testis of rat, and screening of 25 human cancers of various cell types showed preferential expression in cells of epithelial origin. Overexpression of eph mRNA was found in a hepatoma and a lung cancer without gene amplification. Comparison of cDNA sequences derived from a normal liver and a hepatoma that overproduces eph mRNA demonstrated that two of them were completely identical throughout the transmembrane to the carboxy-terminal portions. Southern blot analysis of DNAs from human-mouse hybrid clones with an eph probe showed that this gene was present on human chromosome 7.
Collapse
Affiliation(s)
- Y Maru
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
14
|
Leprince D, Duterque-Coquillaud M, Li RP, Henry C, Flourens A, Debuire B, Stehelin D. Alternative splicing within the chicken c-ets-1 locus: implications for transduction within the E26 retrovirus of the c-ets proto-oncogene. J Virol 1988; 62:3233-41. [PMID: 2841475 PMCID: PMC253442 DOI: 10.1128/jvi.62.9.3233-3241.1988] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Two overlapping c-ets-1 cDNA clones were isolated which contained the alpha and beta genomic sequences homologous to the 5' end of v-ets not detected in the previously described c-ets RNA species or proteins. Nucleotide sequencing demonstrated that these cDNAs corresponded to the splicing of alpha and beta to a common set of 3' exons (a through F) already found in the p54c-ets-1 mRNA. They contained an open reading frame of 1,455 nucleotides which could encode a polypeptide of 485 amino acids with a predicted molecular mass of 53 kilodaltons. However, when expressed in COS-1 cells, the cDNAs directed the synthesis of a protein with an apparent molecular mass in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 68 kilodaltons, p68c-ets-1, comigrating with a protein expressed at low levels in normal chicken spleen cells. These two proteins were shown to be identical by partial digestion with protease V8. Northern (RNA) blot hybridization analysis with the p68c-ets-1 -specific sequence and RNase protection experiments showed that the corresponding mRNA was expressed in normal chicken spleen and not in normal chicken thymus or in various T lymphoid cell lines. Thus, two closely related proteins, having distinct amino-terminal parts, are generated within the same locus by alternative addition of different 5' exons, alpha and beta or I54, respectively, onto a common set of 3' exons (a to F). Finally, we demonstrate that an aberrant splicing event between a cryptic splice donor site in c-myb exon E6 and the normal splice acceptor site of c-ets-1 exon alpha involved in the genesis of the E26 myb-ets sequence.
Collapse
Affiliation(s)
- D Leprince
- Laboratoire d'Oncologie Moléculaire, Institut National de la Santé et de la Recherche Médicale, Lille, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erbB) in human brain tumors. Mol Cell Biol 1988. [PMID: 3380099 DOI: 10.1128/mcb.8.4.1816] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using Southern blot analysis, we found that in two cases of human glioblastoma multiforme, cells carried amplified c-erbB genes which bore short deletion mutations within the ligand-binding domain of the epidermal growth factor (EGF) receptor. The products of these mutated c-erbB genes were about 30 kilodalton (kDa) smaller than the normal 170-kDa EGF receptor, and the tumor cell membrane fractions containing the 140-kDa abnormal EGF receptor showed a significant elevation of tyrosine kinase activity without its ligand. In view of the similarity to the activated viral and cellular erbB genes in the avian system, these mutated and overexpressed EGF receptors might play a role in the onset or development of human glioblastoma cells.
Collapse
|
16
|
Bargmann CI, Weinberg RA. Oncogenic activation of the neu-encoded receptor protein by point mutation and deletion. EMBO J 1988; 7:2043-52. [PMID: 2901345 PMCID: PMC454481 DOI: 10.1002/j.1460-2075.1988.tb03044.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The rat neu gene, which encodes a receptor-like protein homologous to the epidermal growth factor receptor, is frequently activated by a point mutation altering a valine residue to a glutamic acid residue in its predicted transmembrane domain. Additional point mutations have been constructed in a normal neu cDNA at and around amino acid position 664, the site of the naturally arising mutation. A mutation which causes a substitution of a glutamine residue for the normal valine at residue 664 leads to full oncogenic activation of the neu gene, but five other substitutions do not. Substituted glutamic acid residues at amino acid positions 663 or 665 do not activate the neu gene. Thus only a few specific residues at amino acid residue 664 can activate the oncogenic potential of the neu gene. Deletion of sequences of the transforming neu gene demonstrates that no more than 420 amino acids of the 1260 encoded by the gene are required for full transforming function. Mutagenesis of the transforming clone demonstrates a correlation between transforming activity and tyrosine kinase activity. These data indicate that the activating point mutation induces transformation through (or together with) the activities of the tyrosine kinase.
Collapse
Affiliation(s)
- C I Bargmann
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge 01242
| | | |
Collapse
|
17
|
Yamazaki H, Fukui Y, Ueyama Y, Tamaoki N, Kawamoto T, Taniguchi S, Shibuya M. Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erbB) in human brain tumors. Mol Cell Biol 1988; 8:1816-20. [PMID: 3380099 PMCID: PMC363345 DOI: 10.1128/mcb.8.4.1816-1820.1988] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
By using Southern blot analysis, we found that in two cases of human glioblastoma multiforme, cells carried amplified c-erbB genes which bore short deletion mutations within the ligand-binding domain of the epidermal growth factor (EGF) receptor. The products of these mutated c-erbB genes were about 30 kilodalton (kDa) smaller than the normal 170-kDa EGF receptor, and the tumor cell membrane fractions containing the 140-kDa abnormal EGF receptor showed a significant elevation of tyrosine kinase activity without its ligand. In view of the similarity to the activated viral and cellular erbB genes in the avian system, these mutated and overexpressed EGF receptors might play a role in the onset or development of human glioblastoma cells.
Collapse
Affiliation(s)
- H Yamazaki
- Department of Genetics, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Qiu FH, Ray P, Brown K, Barker PE, Jhanwar S, Ruddle FH, Besmer P. Primary structure of c-kit: relationship with the CSF-1/PDGF receptor kinase family--oncogenic activation of v-kit involves deletion of extracellular domain and C terminus. EMBO J 1988; 7:1003-11. [PMID: 2456920 PMCID: PMC454427 DOI: 10.1002/j.1460-2075.1988.tb02907.x] [Citation(s) in RCA: 441] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The protein kinase domains of v-kit, the oncogene of the acute transforming feline retrovirus HZ4-FeSV (HZ4-feline sarcoma virus), CSF-1R (macrophage colony stimulating factor receptor) and PDGFR (platelet derived growth factor receptor) display extensive homology. Because of the close structural relationship of v-kit, CSF-1R and PDGFR we predicted that c-kit would encode a protein kinase transmembrane receptor (Besmer et al., 1986a; Yarden et al., 1986). We have now determined the primary structure of murine c-kit from a DNA clone isolated from a brain cDNA library. The nucleotide sequence of the c-kit cDNA predicts a 975 amino acid protein product with a calculated mol. wt of 109.001 kd. It contains an N-terminal signal peptide, a transmembrane domain (residues 519-543) and in the C-terminal half the v-kit homologous sequences (residues 558-925). c-kit therefore contains the features which are characteristic of a transmembrane receptor kinase. Comparison of c-kit, CSF-1R and PDGFR revealed a unique structural relationship of these receptor kinases suggesting a common evolutionary origin. The outer cellular domain of c-kit was shown to be related to the immunoglobulin superfamily. The sites of expression of c-kit in normal tissue predict a function in the brain and in hematopoietic cells. N-terminal sequences which include the extracellular domain and the transmembrane domain as well as 50 amino acids from the C-terminus of c-kit are deleted in v-kit. These structural alterations are likely determinants of the oncogenic activation of v-kit.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F H Qiu
- Laboratory of Molecular Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | | | | | | | | | | | | |
Collapse
|
19
|
The structurally distinct form of pp60c-src detected in neuronal cells is encoded by a unique c-src mRNA. Mol Cell Biol 1988. [PMID: 2448604 DOI: 10.1128/mcb.7.11.4142] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cellular src (c-src) cDNA clone was isolated from a chicken embryonic brain cDNA library and characterized by DNA sequence analysis. Comparison with the published sequence of a chicken genomic c-src clone indicated that the brain cDNA clone contained an 18-base-pair insertion located between exons 3 and 4 of the c-src gene. The six amino acids encoded by the insertion caused an alteration in the electrophoretic mobility of the c-src gene product similar to that of the structurally distinct form of the src protein detected in neuronal cultures.
Collapse
|
20
|
Kokai Y, Cohen JA, Drebin JA, Greene MI. Stage- and tissue-specific expression of the neu oncogene in rat development. Proc Natl Acad Sci U S A 1987; 84:8498-501. [PMID: 3317411 PMCID: PMC299571 DOI: 10.1073/pnas.84.23.8498] [Citation(s) in RCA: 109] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The neu oncogene (also referred to as c-erbB-2 and HER2) encodes a 185-kDa transmembrane glycoprotein with tyrosine kinase activity termed p185. The p185 glycoprotein is structurally related to the epidermal growth factor receptor. It is thought that p185 is the receptor for an as yet unidentified growth factor. In the present study, RNA blot analyses and immunohistochemical studies were performed on rat tissues obtained from a variety of prenatal and postnatal stages to examine the expression of the neu oncogene and its product, p185, during normal development. Expression of the neu gene was detected in mid-gestation embryos in a variety of tissues including nervous system, connective tissue, and secretory epithelium, but not in lymphoid tissue. In adult animals, secretory epithelial tissues and basal cells of the skin expressed neu. These studies demonstrate that the neu gene is expressed in a tissue- and developmental stage-specific manner. We suggest that the p185 molecule plays an important role in the growth and development of a variety of tissues, and, in particular, in epithelial tissue.
Collapse
Affiliation(s)
- Y Kokai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | | | |
Collapse
|
21
|
Birchmeier C, Sharma S, Wigler M. Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci U S A 1987; 84:9270-4. [PMID: 2827175 PMCID: PMC299735 DOI: 10.1073/pnas.84.24.9270] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The human ROS1 gene, which possibly encodes a growth factor receptor, was found to be expressed in human tumor cell lines. In a survey of 45 different human cell lines, we found ROS1 to be expressed in glioblastoma-derived cell lines at high levels and not to be expressed at all, or expressed at very low levels, in the remaining cell lines. The ROS1 gene was present in normal copy numbers in all cell lines that expressed the gene. However, in one particular glioblastoma line, we detected a potentially activating mutation at the ROS1 locus.
Collapse
|
22
|
Levy JB, Dorai T, Wang LH, Brugge JS. The structurally distinct form of pp60c-src detected in neuronal cells is encoded by a unique c-src mRNA. Mol Cell Biol 1987; 7:4142-5. [PMID: 2448604 PMCID: PMC368089 DOI: 10.1128/mcb.7.11.4142-4145.1987] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A cellular src (c-src) cDNA clone was isolated from a chicken embryonic brain cDNA library and characterized by DNA sequence analysis. Comparison with the published sequence of a chicken genomic c-src clone indicated that the brain cDNA clone contained an 18-base-pair insertion located between exons 3 and 4 of the c-src gene. The six amino acids encoded by the insertion caused an alteration in the electrophoretic mobility of the c-src gene product similar to that of the structurally distinct form of the src protein detected in neuronal cultures.
Collapse
Affiliation(s)
- J B Levy
- Department of Microbiology, State University of New York, Stony Brook 11794
| | | | | | | |
Collapse
|
23
|
Mitra G, Martin-Zanca D, Barbacid M. Identification and biochemical characterization of p70TRK, product of the human TRK oncogene. Proc Natl Acad Sci U S A 1987; 84:6707-11. [PMID: 3477801 PMCID: PMC299152 DOI: 10.1073/pnas.84.19.6707] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
TRK is a human transforming gene generated in a colon carcinoma by a somatic rearrangement that fused a nonmuscle tropomyosin gene to sequences that shared extensive homology with members of the tyrosine-protein kinase supergene family. These sequences are likely to be derived from a transmembrane receptor gene whose putative ligand binding domain has been replaced by tropomyosin. In the present studies, we have expressed the entire coding sequences of the TRK oncogene as well as its protein kinase-related carboxyl-terminal domain in Escherichia coli. Antisera raised against these bacteria-synthesized TRK polypeptides has allowed us to identify the gene product of the TRK oncogene as a 70-kDa protein. Immunoprecipitates containing p70TRK have an associated protein kinase activity specific for tyrosine residues. Moreover, p70TRK is phosphorylated in vivo in serine (75%), threonine (20%), and tyrosine (5%) residues. Finally, immunofluorescence and cellular fractionation studies indicate that p70TRK is preferentially located in the cytoplasmic fraction.
Collapse
Affiliation(s)
- G Mitra
- Developmental Oncology Section, Frederick Cancer Research Facility, MD 21701
| | | | | |
Collapse
|
24
|
Ellis L, Morgan DO, Jong SM, Wang LH, Roth RA, Rutter WJ. Heterologous transmembrane signaling by a human insulin receptor-v-ros hybrid in Chinese hamster ovary cells. Proc Natl Acad Sci U S A 1987; 84:5101-5. [PMID: 3299376 PMCID: PMC298801 DOI: 10.1073/pnas.84.15.5101] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A hybrid receptor molecule composed of the extracellular ligand-binding domain of the human insulin receptor and the transmembrane and cytoplasmic (protein-tyrosine kinase) domains of the chicken sarcoma virus UR2 transforming protein p68gag-ros has been constructed and expressed in Chinese hamster ovary (CHO) cells. The hybrid is processed normally into alpha and hybrid beta subunits, is expressed on the cell surface at high levels, and binds insulin with near-wild-type affinity. Furthermore, insulin stimulates the phosphorylation on tyrosine residues of the hybrid beta subunit in vivo and the phosphorylation of an exogenous substrate [poly(Glu,Tyr)] in vitro. Thus the hybrid is capable of heterologous transmembrane signaling. However, the hybrid mediates neither the insulin-activated uptake of 2-deoxyglucose nor the incorporation of [3H]thymidine into DNA, suggesting that the physiological response(s) mediated by ligand-activated protein-tyrosine kinases may utilize distinct intracellular mechanisms for postreceptor signaling.
Collapse
|
25
|
Wang LH, Lin B, Jong SM, Dixon D, Ellis L, Roth RA, Rutter WJ. Activation of transforming potential of the human insulin receptor gene. Proc Natl Acad Sci U S A 1987; 84:5725-9. [PMID: 3039503 PMCID: PMC298935 DOI: 10.1073/pnas.84.16.5725] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A retrovirus containing part of the human insulin receptor (hIR) gene was constructed by replacing ros sequences in the avian sarcoma virus UR2 with hIR cDNA sequences coding for 46 amino acids of the extracellular domain and the entire transmembrane and cytoplasmic domains of the beta subunit of hIR. The resulting virus, named UIR, contains the hIR sequence fused to the 5' portion of the UR2 gag gene coding for p19. UIR is capable of transforming chicken embryo fibroblasts and promoting formation of colonies in soft agar; however, it does not form tumors in vivo. A variant that arose from the parental UIR is capable of efficiently inducing sarcomas in vivo. UIR-transformed cells exhibit higher rates of glucose uptake and growth than normal cells. The 4-kilobase UIR genome codes for a membrane-associated, glycosylated gag-hIR fusion protein of 75 kDa designated P75gag-hir. P75gag-hir contains a protein tyrosine kinase activity that is capable of undergoing autophosphorylation and of phosphorylating foreign substrates in vitro; it is phosphorylated at both serine and tyrosine residues in vivo.
Collapse
|
26
|
Walker C, Nettesheim P, Barrett JC, Gilmer TM. Expression of a fms-related oncogene in carcinogen-induced neoplastic epithelial cells. Proc Natl Acad Sci U S A 1987; 84:1804-8. [PMID: 3470760 PMCID: PMC304529 DOI: 10.1073/pnas.84.7.1804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Following carcinogen exposure in vitro, normal rat tracheal epithelial cells are transformed in a multistage process in which the cultured cells become immortal and, ultimately, neoplastic. Five cell lines derived from tumors produced by neoplastically transformed rat tracheal epithelial cells were examined for the expression of 11 cellular oncogenes previously implicated in pulmonary or epithelial carcinogenesis. RNA homologous to fms was expressed at a level 5-19 times higher than normal tracheal epithelial cells in three of five of the tumor-derived lines. All three lines expressing high levels of fms-related RNA gave rise to invasive tumors of epithelial origin when injected into nude mice. Increased expression of the fms-related mRNA was not due to gene amplification, and no gene rearrangement was detected by Southern analyses. RNA blot analysis using a 3' v-fms probe detected a 9.5-kilobase message in the three tumor-derived lines, whereas both normal rat alveolar macrophages and the human choriocarcinoma line BeWo expressed a fms transcript of approximately 4 kilobases. We conclude from these data that the gene expressed as a 9.5-kilobase transcript in these neoplastic epithelial cells is a member of a fms-related gene family but may be distinct from the gene that encodes the macrophage colony-stimulating factor (CSF-1) receptor.
Collapse
|
27
|
Human c-ros-1 gene homologous to the v-ros sequence of UR2 sarcoma virus encodes for a transmembrane receptorlike molecule. Mol Cell Biol 1987. [PMID: 3023956 DOI: 10.1128/mcb.6.8.3000] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated a human gene (designated c-ros-1) homologous to the v-ros sequence of UR2 sarcoma virus. Ten exons, 1,414 base pairs spanning 26 kilobases, contained a tyrosine kinase domain, a transmembrane domain, and a part of an extracellular domain carrying an N glycosylation site which was not acquired by UR2 sarcoma virus. The predicted structure of c-ros-1 is unique among the src family and clearly distinct from the human insulin receptor.
Collapse
|
28
|
Abstract
A human oncogene, mcf3, previously detected by a combination of DNA-mediated gene transfer and a tumorigenicity assay, derives from a human homology of the avian v-ros oncogene. Both v-ros and mcf3 can encode a protein with homology to tyrosine-specific protein kinases, and both mcf3 and v-ros encode a potential transmembrane domain N terminal to the kinase domain. mcf3 probably arose during gene transfer from a normal human ros gene by the loss of a putative extracellular domain. There do not appear to be any other gross rearrangements in the structure of mcf3.
Collapse
|
29
|
Soong MM, Iijima S, Wang LH. Transduction of c-src coding and intron sequences by a transformation-defective deletion mutant of Rous sarcoma virus. J Virol 1986; 59:556-63. [PMID: 3016320 PMCID: PMC253207 DOI: 10.1128/jvi.59.3.556-563.1986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mechanism of cellular src (c-src) transduction by a transformation-defective deletion mutant, td109, of Rous sarcoma virus was studied by sequence analysis of the recombinational junctions in three td109-derived recovered sarcoma viruses (rASVs). Our results show that two rASVs have been generated by recombination between td109 and c-src at the region between exons 1 and 2 defined previously. Significant homology between td109 and c-src sequences was present at the sites of recombination. The viral and c-src sequence junction of the third rASV was formed by splicing a cryptic donor site at the 5' region of env of td109 to exon 1 of c-src. Various lengths of c-src internal intron 1 sequences were incorporated into all three rASV genomes, which resulted from activation of potential splice donor and acceptor sites. The incorporated intron 1 sequences were absent in the c-src mRNA, excluding its being the precursor for recombination with td109 and implying that initial recombinations most likely took place at the DNA level. A potential splice acceptor site within the incorporated intron 1 sequences in two rASVs was activated and was used for the src mRNA synthesis in infected cells. The normal env mRNA splice acceptor site was used for src mRNA synthesis for the third rASV.
Collapse
|
30
|
Birchmeier C, Birnbaum D, Waitches G, Fasano O, Wigler M. Characterization of an activated human ros gene. Mol Cell Biol 1986; 6:3109-16. [PMID: 3785223 PMCID: PMC367045 DOI: 10.1128/mcb.6.9.3109-3116.1986] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A human oncogene, mcf3, previously detected by a combination of DNA-mediated gene transfer and a tumorigenicity assay, derives from a human homology of the avian v-ros oncogene. Both v-ros and mcf3 can encode a protein with homology to tyrosine-specific protein kinases, and both mcf3 and v-ros encode a potential transmembrane domain N terminal to the kinase domain. mcf3 probably arose during gene transfer from a normal human ros gene by the loss of a putative extracellular domain. There do not appear to be any other gross rearrangements in the structure of mcf3.
Collapse
|
31
|
Matsushime H, Wang LH, Shibuya M. Human c-ros-1 gene homologous to the v-ros sequence of UR2 sarcoma virus encodes for a transmembrane receptorlike molecule. Mol Cell Biol 1986; 6:3000-4. [PMID: 3023956 PMCID: PMC367872 DOI: 10.1128/mcb.6.8.3000-3004.1986] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We isolated a human gene (designated c-ros-1) homologous to the v-ros sequence of UR2 sarcoma virus. Ten exons, 1,414 base pairs spanning 26 kilobases, contained a tyrosine kinase domain, a transmembrane domain, and a part of an extracellular domain carrying an N glycosylation site which was not acquired by UR2 sarcoma virus. The predicted structure of c-ros-1 is unique among the src family and clearly distinct from the human insulin receptor.
Collapse
|
32
|
Petruzzelli L, Herrera R, Arenas-Garcia R, Fernandez R, Birnbaum MJ, Rosen OM. Isolation of a Drosophila genomic sequence homologous to the kinase domain of the human insulin receptor and detection of the phosphorylated Drosophila receptor with an anti-peptide antibody. Proc Natl Acad Sci U S A 1986; 83:4710-4. [PMID: 3014506 PMCID: PMC323811 DOI: 10.1073/pnas.83.13.4710] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A Drosophila genomic fragment has been isolated with a deduced amino acid sequence that is strikingly homologous to that of the kinase domain of the human insulin receptor. The Drosophila DNA hybridizes with an 11-kilobase mRNA that is most prominent in 8- to 12-hr embryos. An anti-peptide antibody prepared to a sequence in the human insulin receptor kinase domain that is conserved in the Drosophila sequence immunoprecipitates a single 95-kDa Drosophila protein whose phosphorylation on tyrosine residues is dependent on insulin. We conclude that the DNA sequence is that of the kinase domain of the Drosophila insulin receptor and that the 95-kDa phosphoprotein is the autophosphorylated beta subunit of that receptor. The results are compatible with our previous reports demonstrating a specific insulin-binding Drosophila glycoprotein and an insulin-dependent tyrosine protein kinase whose activity is greatest during embryogenesis. The observations suggest a role for insulin-dependent protein tyrosine phosphorylation during embryogenesis.
Collapse
|