1
|
Broeckel R, Browne A, Sucoloski S, Cantizani J, Simpson JK, Pesiridis S, Ramanjulu JM, Stokes N, Luthra P. STING Agonist Induced Innate Immune Responses Drive Anti-Respiratory Virus Activity In Vitro with Limited Antiviral Efficacy In Vivo. ACS Infect Dis 2024; 10:3392-3407. [PMID: 39207884 PMCID: PMC11406527 DOI: 10.1021/acsinfecdis.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The emergence of SARS-CoV-2 and seasonal outbreaks of other respiratory viruses highlight the urgent need for broad-spectrum antivirals to treat respiratory tract infections. Stimulator of interferon genes (STING) is a key component of innate immune signaling and plays a critical role in protection of the host against viral infections. Previously the STING agonist diABZI-4, a diamidobenzimidazole-based compound, demonstrated protection against SARS-CoV-2 both in vitro and in vivo. However, its broad-spectrum antiviral activity against other respiratory viruses in human airway epithelial cells, which are the primary targets of these infections, is not well established. In this study, we demonstrated that diABZI-4 stimulated robust innate immune responses protecting lung cells against a wide range of respiratory viruses, including influenza A virus (IAV), common cold coronaviruses, SARS-CoV-2, human rhinovirus (HRV), and human parainfluenza virus. diABZI-4 was highly active in physiologically relevant human airway epithelial tissues grown at the air-liquid interface, blocking replication of IAV, SARS-CoV-2, and HRV in these tissues. Furthermore, treatment of macrophages with diABZI-4 resulted in the secretion of cytokines that protected the primary airway epithelial cells from IAV infection. Despite the promising in vitro pan-antiviral activity, intranasal administration of diABZI-4 in mice provided early, but not sustained, inhibition of IAV replication in the lungs. These data highlight the complexities of the relationship between timing of STING agonist-driven inflammatory responses and viral replication dynamics, emphasizing the development challenge posed by STING agonists as potential therapeutics against respiratory viruses.
Collapse
Affiliation(s)
- Rebecca Broeckel
- Infectious
Diseases Research Unit, GSK R&D, Collegeville, Pennsylvania 19426, United States
| | - Amanda Browne
- Infectious
Diseases Research Unit, GSK R&D, Collegeville, Pennsylvania 19426, United States
| | - Scott Sucoloski
- Infectious
Diseases Research Unit, GSK R&D, Collegeville, Pennsylvania 19426, United States
| | - Juan Cantizani
- Global
Health Medicines R&D, GSK R&D, Tres Cantos, Madrid 28760, Spain
| | - Juliet. K. Simpson
- Target
Discovery Research Projects, GSK R&D, Stevenage SG1 2NY, United Kingdom
| | - Scott Pesiridis
- Immunology
Research Unit, GSK R&D, Collegeville, Pennsylvania 19426, United States
| | - Joshi M. Ramanjulu
- Immunology
Research Unit, GSK R&D, Collegeville, Pennsylvania 19426, United States
| | - Neil Stokes
- Infectious
Diseases Research Unit, GSK R&D, Stevenage SG1 2NY, United Kingdom
| | - Priya Luthra
- Infectious
Diseases Research Unit, GSK R&D, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
2
|
Baker J, Ombredane H, Daly L, Knowles I, Rapeport G, Ito K. Pan-antiviral effects of a PIKfyve inhibitor on respiratory virus infection in human nasal epithelium and mice. Antimicrob Agents Chemother 2024; 68:e0105023. [PMID: 38063402 PMCID: PMC10777833 DOI: 10.1128/aac.01050-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/06/2023] [Indexed: 01/11/2024] Open
Abstract
Endocytosis, or internalization through endosomes, is a major cell entry mechanism used by respiratory viruses. Phosphoinositide 5-kinase (PIKfyve) is a critical enzyme for the synthesis of phosphatidylinositol (3, 5)biphosphate (PtdIns (3, 5)P2) and has been implicated in virus trafficking via the endocytic pathway. In fact, antiviral effects of PIKfyve inhibitors against SARS-CoV-2 and Ebola have been reported, but there is little evidence regarding other respiratory viruses. In this study, we demonstrated the antiviral effects of PIKfyve inhibitors on influenza virus and respiratory syncytial virus in vitro and in vivo. PIKfyve inhibitors Apilimod mesylate (AM) and YM201636 concentration-dependently inhibited several influenza strains in an MDCK cell-cytopathic assay. AM also reduced the viral load and cytokine release, while improving the cell integrity of human nasal air-liquid interface cultured epithelium infected with influenza PR8. In PR8-infected mice, AM (2 mg/mL), when intranasally treated, exhibited a significant reduction of viral load and inflammation and inhibited weight loss caused by influenza infection, with effects being similar to oral oseltamivir (10 mg/kg). In addition, AM demonstrated antiviral effects in RSV A2-infected human nasal epithelium in vitro and mouse in vivo, with an equivalent effect to that of ribavirin. AM also showed antiviral effects against human rhinovirus and seasonal coronavirus in vitro. Thus, PIKfyve is found to be involved in influenza and RSV infection, and PIKfyve inhibitor is a promising molecule for a pan-viral approach against respiratory viruses.
Collapse
Affiliation(s)
- Jonathan Baker
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Hugo Ombredane
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Leah Daly
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Garth Rapeport
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
3
|
Skavicus S, Heaton NS. Approaches for timeline reductions in pathogenesis studies using genetically modified mice. Microbiol Spectr 2023; 11:e0252123. [PMID: 37695101 PMCID: PMC10580824 DOI: 10.1128/spectrum.02521-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/22/2023] [Indexed: 09/12/2023] Open
Abstract
Although genetically modified mouse models have long been a powerful tool for microbiology research, the manipulation of the mouse genome is expensive, time consuming, and has historically remained the domain of dedicated animal facilities. The recent use of in vivo clustered regularly interspaced short palindromic repeats (CRISPR)-based editing technology has been reported to reduce the expertise, cost, and time required to generate novel mouse lines; it has remained unclear, however, if this new technology could meaningfully alter experimental timelines. Here, we report the optimization of an in oviduct murine genetic manipulation technique for use by microbiologists. We use this approach to generate a series of knockout mice and detail a protocol using an influenza A virus infection model to test the preliminary importance of a host factor in as short as 11 weeks (with a fully backcrossed knockout line in ~22 weeks) from initiation of the study. Broader use of this approach by the microbiology community will allow for more efficient, and rapid, definition of novel pathogenic mechanisms in vivo. IMPORTANCE Clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies have already begun to revolutionize biomedical science. An emerging application of this technology is in the development of genetically modified model organisms to study the mechanisms underlying infectious disease. Here, we describe a protocol using an in vivo CRISPR-based approach that can be used to test the importance of a candidate host factor for microbial pathogenesis in less than 3 months and before complete establishment of a new mouse line. Adoption of this approach by the broader microbiology community will help to decrease the resources and time required to understand how pathogens cause disease which will ultimately speed up the development of new clinical interventions and therapies.
Collapse
Affiliation(s)
- Samantha Skavicus
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
4
|
Su CM, Du Y, Rowland RRR, Wang Q, Yoo D. Reprogramming viral immune evasion for a rational design of next-generation vaccines for RNA viruses. Front Immunol 2023; 14:1172000. [PMID: 37138878 PMCID: PMC10149994 DOI: 10.3389/fimmu.2023.1172000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Type I interferons (IFNs-α/β) are antiviral cytokines that constitute the innate immunity of hosts to fight against viral infections. Recent studies, however, have revealed the pleiotropic functions of IFNs, in addition to their antiviral activities, for the priming of activation and maturation of adaptive immunity. In turn, many viruses have developed various strategies to counteract the IFN response and to evade the host immune system for their benefits. The inefficient innate immunity and delayed adaptive response fail to clear of invading viruses and negatively affect the efficacy of vaccines. A better understanding of evasion strategies will provide opportunities to revert the viral IFN antagonism. Furthermore, IFN antagonism-deficient viruses can be generated by reverse genetics technology. Such viruses can potentially serve as next-generation vaccines that can induce effective and broad-spectrum responses for both innate and adaptive immunities for various pathogens. This review describes the recent advances in developing IFN antagonism-deficient viruses, their immune evasion and attenuated phenotypes in natural host animal species, and future potential as veterinary vaccines.
Collapse
Affiliation(s)
- Chia-Ming Su
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Raymond R. R. Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Dongwan Yoo,
| |
Collapse
|
5
|
Nam H, Kim B, Gautam A, Kim YY, Park ES, Lee JS, Kwon HJ, Seong JK, Suh JG. Elucidating the characteristics of Mx1 and resistance to influenza A virus subtype H1N1 in the newly developed KWM/Hym mice. Lab Anim Res 2022; 38:28. [PMID: 36076303 PMCID: PMC9454180 DOI: 10.1186/s42826-022-00138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Background Inbred mice have several advantages, including genetic similarity to humans, a well-established gene manipulation system, and strong tolerance to inbreeding. However, inbred mice derived from a limited genetic pool have a small genetic diversity. Thus, the development of new inbred strains from wild mice is needed to overcome this limitation. Hence, in this study, we used a new strain of inbred mice called KWM/Hym. We sequenced the Mx1 gene to elucidate the genetic diversities of KWM/Hym mice and observed the biological alterations of the Mx1 protein upon influenza A infection. Results The Mx1 gene in KWM/Hym mice had 2, 4, and 38 nucleotide substitutions compared to those in the Mx1 gene in A2G, CAST/EiJ, and Mus spretus mice, respectively. Moreover, the Mx1 protein in KWM/Hym mice had 2 and 25 amino acid substitutions compared to those in the Mx1 protein in CAST/EiJ and M. spretus mice, respectively. To elucidate the function of the Mx1 protein, we inoculated the influenza A virus (A/WSN/1933) in KWM/Hym mice. Nine days after infection, all infected KWM/Hym mice survived without any weight loss. Four days after infection, the lungs of the infected KWM/Hym mice showed mild alveolitis and loss of bronchiolar epithelium; however, the pulmonary viral titers of the infected KWM/Hym mice were significantly lower than that in the infected BALB/c mice (2.17 × plaque-forming units mL−1). Conclusions Our results demonstrate that the KWM/Hym mice are resistant to influenza A virus infection. Further, these mice can be used as a model organism to understand the mechanism of influenza A virus susceptibility.
Collapse
Affiliation(s)
- Hajin Nam
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Boyoung Kim
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Avishekh Gautam
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Yoo Yeon Kim
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Eun Sun Park
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Jong Sun Lee
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Korea.,Center for Medical Science, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, and Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, Korea
| | - Jun Gyo Suh
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, 24252, Korea. .,Center for Medical Science, College of Medicine, Hallym University, Chuncheon, 24252, Korea.
| |
Collapse
|
6
|
Wang Y, Abe JI, Chau KM, Wang Y, Vu HT, Reddy Velatooru L, Gulraiz F, Imanishi M, Samanthapudi VSK, Nguyen MTH, Ko KA, Lee LL, Thomas TN, Olmsted-Davis EA, Kotla S, Fujiwara K, Cooke JP, Zhao D, Evans SE, Le NT. MAGI1 inhibits interferon signaling to promote influenza A infection. Front Cardiovasc Med 2022; 9:791143. [PMID: 36082118 PMCID: PMC9445416 DOI: 10.3389/fcvm.2022.791143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
We have shown that membrane-associated guanylate kinase with inverted domain structure-1 (MAGI1), a scaffold protein with six PSD95/DiscLarge/ZO-1 (PDZ) domains, is involved in the regulation of endothelial cell (EC) activation and atherogenesis in mice. In addition to causing acute respiratory disease, influenza A virus (IAV) infection plays an important role in atherogenesis and triggers acute coronary syndromes and fatal myocardial infarction. Therefore, the aim of this study is to investigate the function and regulation of MAGI1 in IAV-induced EC activation. Whereas, EC infection by IAV increases MAGI1 expression, MAGI1 depletion suppresses IAV infection, suggesting that the induction of MAGI1 may promote IAV infection. Treatment of ECs with oxidized low-density lipoprotein (OxLDL) increases MAGI1 expression and IAV infection, suggesting that MAGI1 is part of the mechanistic link between serum lipid levels and patient prognosis following IAV infection. Our microarray studies suggest that MAGI1-depleted ECs increase protein expression and signaling networks involve in interferon (IFN) production. Specifically, infection of MAGI1-null ECs with IAV upregulates expression of signal transducer and activator of transcription 1 (STAT1), interferon b1 (IFNb1), myxovirus resistance protein 1 (MX1) and 2'-5'-oligoadenylate synthetase 2 (OAS2), and activate STAT5. By contrast, MAGI1 overexpression inhibits Ifnb1 mRNA and MX1 expression, again supporting the pro-viral response mediated by MAGI1. MAGI1 depletion induces the expression of MX1 and virus suppression. The data suggests that IAV suppression by MAGI1 depletion may, in part, be due to MX1 induction. Lastly, interferon regulatory factor 3 (IRF3) translocates to the nucleus in the absence of IRF3 phosphorylation, and IRF3 SUMOylation is abolished in MAGI1-depleted ECs. The data suggests that MAGI1 inhibits IRF3 activation by maintaining IRF3 SUMOylation. In summary, IAV infection occurs in ECs in a MAGI1 expression-dependent manner by inhibiting anti-viral responses including STATs and IRF3 activation and subsequent MX1 induction, and MAGI1 plays a role in EC activation, and in upregulating a pro-viral response. Therefore, the inhibition of MAGI1 is a potential therapeutic target for IAV-induced cardiovascular disease.
Collapse
Affiliation(s)
- Yin Wang
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,*Correspondence: Jun-ichi Abe
| | - Khanh M. Chau
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Yongxing Wang
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hang Thi Vu
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Loka Reddy Velatooru
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Fahad Gulraiz
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Masaki Imanishi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Minh T. H. Nguyen
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ling-Ling Lee
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tamlyn N. Thomas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Keigi Fujiwara
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John P. Cooke
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Di Zhao
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,Scott E. Evans
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States,Nhat-Tu Le
| |
Collapse
|
7
|
Expression of a Functional Mx1 Protein Is Essential for the Ability of RIG-I Agonist Prophylaxis to Provide Potent and Long-Lasting Protection in a Mouse Model of Influenza A Virus Infection. Viruses 2022; 14:v14071547. [PMID: 35891527 PMCID: PMC9319350 DOI: 10.3390/v14071547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
RIG-I is an innate sensor of RNA virus infection and its activation induces interferon-stimulated genes (ISGs). In vitro studies using human cells have demonstrated the ability of synthetic RIG-I agonists (3pRNA) to inhibit IAV replication. However, in mouse models of IAV the effectiveness of 3pRNA reported to date differs markedly between studies. Myxoma resistance (Mx)1 is an ISG protein which mediates potent anti-IAV activity, however most inbred mouse strains do not express a functional Mx1. Herein, we utilised C57BL/6 mice that do (B6.A2G-Mx1) and do not (B6-WT) express functional Mx1 to assess the ability of prophylactic 3pRNA treatment to induce ISGs and to protect against subsequent IAV infection. In vitro, 3pRNA treatment of primary lung cells from B6-WT and B6.A2G-Mx1 mice resulted in ISG induction however inhibition of IAV infection was more potent in cells from B6.A2G-Mx1 mice. In vivo, a single intravenous injection of 3pRNA resulted in ISG induction in lungs of both B6-WT and B6.A2G-Mx1 mice, however potent and long-lasting protection against subsequent IAV challenge was only observed in B6.A2G-Mx1 mice. Thus, despite broad ISG induction, expression of a functional Mx1 is critical for potent and long-lasting RIG-I agonist-mediated protection in the mouse model of IAV infection.
Collapse
|
8
|
Mouse Mx1 Inhibits Herpes Simplex Virus Type 1 Genomic Replication and Late Gene Expression In Vitro and Prevents Lesion Formation in the Mouse Zosteriform Model. J Virol 2022; 96:e0041922. [PMID: 35638820 DOI: 10.1128/jvi.00419-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Myxovirus resistance (Mx) proteins are dynamin-like GTPases that are inducible by interferons (IFNs) following virus infections. Most studies investigating Mx proteins have focused on their activity against influenza A viruses (IAV), although emerging evidence suggests that some Mx proteins may exhibit broader antiviral activity. Herein, we demonstrate that in addition to IAV, overexpression of mouse Mx1 (mMx1), but not mMx2, resulted in potent inhibition of growth of the human alphaherpesviruses herpes simplex virus 1 (HSV-1) and HSV-2, whereas neither inhibited the mouse betaherpesvirus murine cytomegalovirus (MCMV) in vitro. IFN induction of a functional endogenous mMx1 in primary mouse fibroblasts ex vivo was also associated with inhibition of HSV-1 growth. Using an in vitro overexpression approach, we demonstrate that mutations that result in redistribution of mMx1 from the nucleus to the cytoplasm or in loss of its combined GTP binding and GTPase activity also abrogated its ability to inhibit HSV-1 growth. Overexpressed mMx1 did not inhibit early HSV-1 gene expression but was shown to inhibit both replication of the HSV-1 genome as well as subsequent late gene expression. In a mouse model of cutaneous HSV-1 infection, mice expressing a functional endogenous mMx1 showed significant reductions in the severity of skin lesions as well as reduced HSV-1 titers in both the skin and dorsal root ganglia (DRG). Together, these data demonstrate that mMx1 mediates potent antiviral activity against human alphaherpesviruses by blocking replication of the viral genome and subsequent steps in virus replication. Moreover, endogenous mMx1 potently inhibited pathogenesis in the zosteriform mouse model of HSV-1 infection. IMPORTANCE While a number of studies have demonstrated that human Mx proteins can inhibit particular herpesviruses in vitro, we are the first to report the antiviral activity of mouse Mx1 (mMx1) against alphaherpesviruses both in vitro and in vivo. We demonstrate that both overexpressed mMx1 and endogenous mMx1 potently restrict HSV-1 growth in vitro. mMx1-mediated inhibition of HSV-1 was not associated with inhibition of virus entry and/or import of the viral genome into the nucleus, but rather with inhibition of HSV-1 genomic replication as well as subsequent late gene expression. Therefore, inhibition of human alphaherpesviruses by mMx1 occurs by a mechanism that is distinct from that reported for human Mx proteins against herpesviruses. Importantly, we also provide evidence that expression of a functional endogenous mMx1 can limit HSV-1 pathogenesis in a mouse model of infection.
Collapse
|
9
|
Rathnasinghe R, Salvatore M, Zheng H, Jangra S, Kehrer T, Mena I, Schotsaert M, Muster T, Palese P, García-Sastre A. Interferon mediated prophylactic protection against respiratory viruses conferred by a prototype live attenuated influenza virus vaccine lacking non-structural protein 1. Sci Rep 2021; 11:22164. [PMID: 34773048 PMCID: PMC8589955 DOI: 10.1038/s41598-021-01780-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022] Open
Abstract
The influenza A non-structural protein 1 (NS1) is known for its ability to hinder the synthesis of type I interferon (IFN) during viral infection. Influenza viruses lacking NS1 (ΔNS1) are under clinical development as live attenuated human influenza virus vaccines and induce potent influenza virus-specific humoral and cellular adaptive immune responses. Attenuation of ΔNS1 influenza viruses is due to their high IFN inducing properties, that limit their replication in vivo. This study demonstrates that pre-treatment with a ΔNS1 virus results in an antiviral state which prevents subsequent replication of homologous and heterologous viruses, preventing disease from virus respiratory pathogens, including SARS-CoV-2. Our studies suggest that ΔNS1 influenza viruses could be used for the prophylaxis of influenza, SARS-CoV-2 and other human respiratory viral infections, and that an influenza virus vaccine based on ΔNS1 live attenuated viruses would confer broad protection against influenza virus infection from the moment of administration, first by non-specific innate immune induction, followed by specific adaptive immunity.
Collapse
Affiliation(s)
- Raveen Rathnasinghe
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 100229 USA ,grid.59734.3c0000 0001 0670 2351Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Mirella Salvatore
- grid.5386.8000000041936877XDepartment of Medicine, Weill Cornell Medical College, New York, NY USA
| | - Hongyong Zheng
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 100229 USA
| | - Sonia Jangra
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 100229 USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Thomas Kehrer
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 100229 USA ,grid.59734.3c0000 0001 0670 2351Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ignacio Mena
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 100229 USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Michael Schotsaert
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 100229 USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Thomas Muster
- grid.22937.3d0000 0000 9259 8492Department of Dermatology, University of Vienna Medical School, 1090 Wien, Austria
| | - Peter Palese
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 100229 USA ,grid.59734.3c0000 0001 0670 2351Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY, 100229, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
10
|
Aschman T, Schaffer S, Biniaris Georgallis SI, Triantafyllopoulou A, Staeheli P, Voll RE. Interferon Lambda Regulates Cellular and Humoral Immunity in Pristane-Induced Lupus. Int J Mol Sci 2021; 22:ijms222111747. [PMID: 34769174 PMCID: PMC8584021 DOI: 10.3390/ijms222111747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
A pivotal role of type I interferons in systemic lupus erythematosus (SLE) is widely accepted. Type III interferons (IFN-λ) however, the most recently discovered cytokines grouped within the interferon family, have not been extensively studied in lupus disease models yet. Growing evidence suggests a role for IFN-λ in regulating both innate and adaptive immune responses, and increased serum concentrations have been described in multiple autoimmune diseases including SLE. Using the pristane-induced lupus model, we found that mice with defective IFN-λ receptors (Ifnlr1−/−) showed increased survival rates, decreased lipogranuloma formation and reduced anti-dsDNA autoantibody titers in the early phase of autoimmunity development compared to pristane-treated wild-type mice. Moreover, Ifnlr1−/− mice treated with pristane had reduced numbers of inflammatory mononuclear phagocytes and cNK cells in their kidneys, resembling untreated control mice. Systemically, circulating B cells and monocytes (CD115+Ly6C+) were reduced in pristane-treated Ifnlr1−/− mice. The present study supports a significant role for type III interferons in the pathogenesis of pristane-induced murine autoimmunity as well as in systemic and renal inflammation. Although the absence of type III interferon receptors does not completely prevent the development of autoantibodies, type III interferon signaling accelerates the development of autoimmunity and promotes a pro-inflammatory environment in autoimmune-prone hosts.
Collapse
Affiliation(s)
- Tom Aschman
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.S.); (S.I.B.G.); (A.T.)
- Department of Neuropathology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Innate Immunity in Rheumatic Diseases, Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
- Correspondence: (T.A.); (R.E.V.)
| | - Sandra Schaffer
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.S.); (S.I.B.G.); (A.T.)
| | - Stylianos Iason Biniaris Georgallis
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.S.); (S.I.B.G.); (A.T.)
- Innate Immunity in Rheumatic Diseases, Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Antigoni Triantafyllopoulou
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.S.); (S.I.B.G.); (A.T.)
- Innate Immunity in Rheumatic Diseases, Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg im Breisgau, Germany;
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany; (S.S.); (S.I.B.G.); (A.T.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Correspondence: (T.A.); (R.E.V.)
| |
Collapse
|
11
|
Harpur CM, Le Page MA, Tate MD. Too young to die? How aging affects cellular innate immune responses to influenza virus and disease severity. Virulence 2021; 12:1629-1646. [PMID: 34152253 PMCID: PMC8218692 DOI: 10.1080/21505594.2021.1939608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Influenza is a respiratory viral infection that causes significant morbidity and mortality worldwide. The innate immune cell response elicited during influenza A virus (IAV) infection forms the critical first line of defense, which typically is impaired as we age. As such, elderly individuals more commonly succumb to influenza-associated complications, which is reflected in most aged animal models of IAV infection. Here, we review the important roles of several major innate immune cell populations in influenza pathogenesis, some of which being deleterious to the host, and the current knowledge of how age-associated numerical, phenotypic and functional cell changes impact disease development. Further investigation into age-related modulation of innate immune cell responses, using appropriate animal models, will help reveal how immunity to IAV may be compromised by aging and inform the development of novel therapies, tailored for use in this vulnerable group.
Collapse
Affiliation(s)
- Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| |
Collapse
|
12
|
Hein MD, Arora P, Marichal-Gallardo P, Winkler M, Genzel Y, Pöhlmann S, Schughart K, Kupke SY, Reichl U. Cell culture-based production and in vivo characterization of purely clonal defective interfering influenza virus particles. BMC Biol 2021; 19:91. [PMID: 33941189 PMCID: PMC8091782 DOI: 10.1186/s12915-021-01020-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/01/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Infections with influenza A virus (IAV) cause high morbidity and mortality in humans. Additional to vaccination, antiviral drugs are a treatment option. Besides FDA-approved drugs such as oseltamivir or zanamivir, virus-derived defective interfering (DI) particles (DIPs) are considered promising new agents. IAV DIPs typically contain a large internal deletion in one of their eight genomic viral RNA (vRNA) segments. Consequently, DIPs miss the genetic information necessary for replication and can usually only propagate by co-infection with infectious standard virus (STV), compensating for their defect. In such a co-infection scenario, DIPs interfere with and suppress STV replication, which constitutes their antiviral potential. RESULTS In the present study, we generated a genetically engineered MDCK suspension cell line for production of a purely clonal DIP preparation that has a large deletion in its segment 1 (DI244) and is not contaminated with infectious STV as egg-derived material. First, the impact of the multiplicity of DIP (MODIP) per cell on DI244 yield was investigated in batch cultivations in shake flasks. Here, the highest interfering efficacy was observed for material produced at a MODIP of 1E-2 using an in vitro interference assay. Results of RT-PCR suggested that DI244 material produced was hardly contaminated with other defective particles. Next, the process was successfully transferred to a stirred tank bioreactor (500 mL working volume) with a yield of 6.0E+8 PFU/mL determined in genetically modified adherent MDCK cells. The produced material was purified and concentrated about 40-fold by membrane-based steric exclusion chromatography (SXC). The DI244 yield was 92.3% with a host cell DNA clearance of 97.1% (99.95% with nuclease digestion prior to SXC) and a total protein reduction of 97.2%. Finally, the DIP material was tested in animal experiments in D2(B6).A2G-Mx1r/r mice. Mice infected with a lethal dose of IAV and treated with DIP material showed a reduced body weight loss and all animals survived. CONCLUSION In summary, experiments not only demonstrated that purely clonal influenza virus DIP preparations can be obtained with high titers from animal cell cultures but confirmed the potential of cell culture-derived DIPs as an antiviral agent.
Collapse
Affiliation(s)
- Marc D Hein
- Otto-von-Guericke-University Magdeburg, Chair of Bioprocess Engineering, Magdeburg, Germany
| | - Prerna Arora
- German Primate Center-Leibniz Institute for Primate Research, Infection Biology Unit, Göttingen, Germany.,University Göttingen, Faculty of Biology and Psychology, Göttingen, Germany
| | - Pavel Marichal-Gallardo
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Michael Winkler
- German Primate Center-Leibniz Institute for Primate Research, Infection Biology Unit, Göttingen, Germany.,University Göttingen, Faculty of Biology and Psychology, Göttingen, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Stefan Pöhlmann
- German Primate Center-Leibniz Institute for Primate Research, Infection Biology Unit, Göttingen, Germany.,University Göttingen, Faculty of Biology and Psychology, Göttingen, Germany
| | - Klaus Schughart
- Helmholtz Centre for Infection Research, Department of Infection Genetics, Braunschweig, Germany.,University of Veterinary Medicine Hannover, Hannover, Germany.,University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, TN, USA
| | - Sascha Y Kupke
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany.
| | - Udo Reichl
- Otto-von-Guericke-University Magdeburg, Chair of Bioprocess Engineering, Magdeburg, Germany.,Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| |
Collapse
|
13
|
Masemann D, Ludwig S, Boergeling Y. Advances in Transgenic Mouse Models to Study Infections by Human Pathogenic Viruses. Int J Mol Sci 2020; 21:E9289. [PMID: 33291453 PMCID: PMC7730764 DOI: 10.3390/ijms21239289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Medical research is changing into direction of precision therapy, thus, sophisticated preclinical models are urgently needed. In human pathogenic virus research, the major technical hurdle is not only to translate discoveries from animals to treatments of humans, but also to overcome the problem of interspecies differences with regard to productive infections and comparable disease development. Transgenic mice provide a basis for research of disease pathogenesis after infection with human-specific viruses. Today, humanized mice can be found at the very heart of this forefront of medical research allowing for recapitulation of disease pathogenesis and drug mechanisms in humans. This review discusses progress in the development and use of transgenic mice for the study of virus-induced human diseases towards identification of new drug innovations to treat and control human pathogenic infectious diseases.
Collapse
Affiliation(s)
| | | | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (D.M.); (S.L.)
| |
Collapse
|
14
|
Fuchs J, Oschwald A, Graf L, Kochs G. Tick-transmitted thogotovirus gains high virulence by a single MxA escape mutation in the viral nucleoprotein. PLoS Pathog 2020; 16:e1009038. [PMID: 33196685 PMCID: PMC7704052 DOI: 10.1371/journal.ppat.1009038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
Infections with emerging and re-emerging arboviruses are of increasing concern for global health. Tick-transmitted RNA viruses of the genus Thogotovirus in the Orthomyxoviridae family have considerable zoonotic potential, as indicated by the recent emergence of Bourbon virus in the USA. To successfully infect humans, arboviruses have to escape the restrictive power of the interferon defense system. This is exemplified by the high sensitivity of thogotoviruses to the antiviral action of the interferon-induced myxovirus resistance protein A (MxA) that inhibits the polymerase activity of incoming viral ribonucleoprotein complexes. Acquiring resistance to human MxA would be expected to enhance the zoonotic potential of these pathogens. Therefore, we screened a panel of 10 different thogotovirus isolates obtained from various parts of the world for their sensitivity to MxA. A single isolate from Nigeria, Jos virus, showed resistance to the antiviral action of MxA in cell culture and in MxA-transgenic mice, whereas the prototypic Sicilian isolate SiAr126 was fully MxA-sensitive. Further analysis identified two amino acid substitutions (G327R and R328V) in the viral nucleoprotein as determinants for MxA resistance. Importantly, when introduced into SiAr126, the R328V mutation resulted in complete MxA escape of the recombinant virus, without causing any viral fitness loss. The escape mutation abolished viral nucleoprotein recognition by MxA and allowed unhindered viral growth in MxA-expressing cells and in MxA-transgenic mice. These findings demonstrate that thogotoviruses can overcome the species barrier by escaping MxA restriction and reveal that these tick-transmitted viruses may have a greater zoonotic potential than previously suspected. Thogotovirus infections are known to cause isolated human fatalities, yet the zoonotic potential of these tick-transmitted pathogens is still largely unexplored. In the present study, we examined if these viruses are able to escape the interferon-induced human MxA, thereby overcoming the human innate antiviral defense. Mx proteins constitute a class of interferon-induced antiviral effector molecules that efficiently block the intracellular replication of many viruses. Here, we studied the MxA sensitivity of various thogotovirus isolates and identified two amino acid residues in the viral nucleoprotein that caused resistance to MxA. One of these exchanges was sufficient to enable an otherwise MxA-sensitive thogotovirus to fully escape MxA restriction without causing any fitness loss. Our study explores the interplay of thogotoviruses with the innate antiviral host defense and sheds light on their zoonotic potential.
Collapse
Affiliation(s)
- Jonas Fuchs
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
| | - Alexander Oschwald
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
| | - Laura Graf
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Cartwright HN, Barbeau DJ, McElroy AK. Rift Valley Fever Virus Is Lethal in Different Inbred Mouse Strains Independent of Sex. Front Microbiol 2020; 11:1962. [PMID: 32973712 PMCID: PMC7472459 DOI: 10.3389/fmicb.2020.01962] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/24/2020] [Indexed: 01/22/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic arbovirus affecting humans and livestock in Africa and the Arabian Peninsula. The majority of human cases are mild and self-limiting; however, severe cases can result in hepatitis, encephalitis, or hemorrhagic fever. There is a lack of immunocompetent mouse models that faithfully recapitulate the varied clinical outcomes of RVF in humans. However, there are easily accessible and commonly used inbred mouse strains that have never been challenged with wild-type RVFV. Here, RVFV susceptibility and pathogenesis were evaluated across five commonly used inbred laboratory mouse strains: C57BL/6J, 129S1/SvlmJ, NOD/ShiLtJ, A/J, and NZO/HILtJ. Comparisons between different mouse strains, challenge doses, and sexes revealed exquisite susceptibility to wild-type RVFV in an almost uniform manner. Never before challenged NOD/ShiLtJ, A/J, and NZO/HILtJ mice showed similar phenotypes of Rift Valley fever disease as previously tested inbred mouse strains. The majority of infected mice died or were euthanized by day 5 post-infection due to overwhelming hepatic disease as evidenced by gross liver pathology and high viral RNA loads in the liver. Mice surviving past day 6 across all strains succumbed to late-onset encephalitis. Remarkably, sex was not found to impact survival or viral load and showed only modest effect on time to death and weight loss for any of the challenged mouse strains following RVFV infection. Regardless of sex, these inbred mouse strains displayed extreme susceptibility to wild-type RVFV down to one virus particle.
Collapse
Affiliation(s)
- Haley N Cartwright
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dominique J Barbeau
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anita K McElroy
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Impact of Pre-Existing Immunity on Live Attenuated Influenza Vaccine-Induced Cross-Protective Immunity. Vaccines (Basel) 2020; 8:vaccines8030459. [PMID: 32825218 PMCID: PMC7563680 DOI: 10.3390/vaccines8030459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
The efficacy of the intranasally (i.n.) delivered live attenuated influenza vaccine (LAIV) is variable and, in some seasons, suboptimal. In this study, we report that LAIV exhibits cross-protective efficacy in mice, potentially associated with cellular immunity as opposed to antigen-specific antibody responses. However, pre-exposure to the intramuscularly (i.m.) delivered inactivated influenza vaccine (IIV) severely impaired LAIV-induced cross-protection against heterologous challenge, potentially by inhibiting replication of LAIV. Our findings suggest that pre-existing immunity afforded by IIV suppresses cross-protective T cell immunogenicity of LAIV.
Collapse
|
17
|
Schneider DJ, Smith KA, Latuszek CE, Wilke CA, Lyons DM, Penke LR, Speth JM, Marthi M, Swanson JA, Moore BB, Lauring AS, Peters‐Golden M. Alveolar macrophage-derived extracellular vesicles inhibit endosomal fusion of influenza virus. EMBO J 2020; 39:e105057. [PMID: 32643835 PMCID: PMC7429743 DOI: 10.15252/embj.2020105057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 01/09/2023] Open
Abstract
Alveolar macrophages (AMs) and epithelial cells (ECs) are the lone resident lung cells positioned to respond to pathogens at early stages of infection. Extracellular vesicles (EVs) are important vectors of paracrine signaling implicated in a range of (patho)physiologic contexts. Here we demonstrate that AMs, but not ECs, constitutively secrete paracrine activity localized to EVs which inhibits influenza infection of ECs in vitro and in vivo. AMs exposed to cigarette smoke extract lost the inhibitory activity of their secreted EVs. Influenza strains varied in their susceptibility to inhibition by AM-EVs. Only those exhibiting early endosomal escape and high pH of fusion were inhibited via a reduction in endosomal pH. By contrast, strains exhibiting later endosomal escape and lower fusion pH proved resistant to inhibition. These results extend our understanding of how resident AMs participate in host defense and have broader implications in the defense and treatment of pathogens internalized within endosomes.
Collapse
Affiliation(s)
- Daniel J Schneider
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Katherine A Smith
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Catrina E Latuszek
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Carol A Wilke
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Danny M Lyons
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Division of Infectious DiseaseDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Loka R Penke
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Jennifer M Speth
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Matangi Marthi
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Joel A Swanson
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Bethany B Moore
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Graduate Program in ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Adam S Lauring
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Division of Infectious DiseaseDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Graduate Program in ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Marc Peters‐Golden
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Graduate Program in ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
18
|
Campbell LK, Magor KE. Pattern Recognition Receptor Signaling and Innate Responses to Influenza A Viruses in the Mallard Duck, Compared to Humans and Chickens. Front Cell Infect Microbiol 2020; 10:209. [PMID: 32477965 PMCID: PMC7236763 DOI: 10.3389/fcimb.2020.00209] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
Mallard ducks are a natural host and reservoir of avian Influenza A viruses. While most influenza strains can replicate in mallards, the virus typically does not cause substantial disease in this host. Mallards are often resistant to disease caused by highly pathogenic avian influenza viruses, while the same strains can cause severe infection in humans, chickens, and even other species of ducks, resulting in systemic spread of the virus and even death. The differences in influenza detection and antiviral effectors responsible for limiting damage in the mallards are largely unknown. Domestic mallards have an early and robust innate response to infection that seems to limit replication and clear highly pathogenic strains. The regulation and timing of the response to influenza also seems to circumvent damage done by a prolonged or dysregulated immune response. Rapid initiation of innate immune responses depends on viral recognition by pattern recognition receptors (PRRs) expressed in tissues where the virus replicates. RIG-like receptors (RLRs), Toll-like receptors (TLRs), and Nod-like receptors (NLRs) are all important influenza sensors in mammals during infection. Ducks utilize many of the same PRRs to detect influenza, namely RIG-I, TLR7, and TLR3 and their downstream adaptors. Ducks also express many of the same signal transduction proteins including TBK1, TRIF, and TRAF3. Some antiviral effectors expressed downstream of these signaling pathways inhibit influenza replication in ducks. In this review, we summarize the recent advances in our understanding of influenza recognition and response through duck PRRs and their adaptors. We compare basal tissue expression and regulation of these signaling components in birds, to better understand what contributes to influenza resistance in the duck.
Collapse
Affiliation(s)
- Lee K Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Hagiwara K, Nakaya T, Onuma M. Characterization of Myxovirus resistance protein in birds showing different susceptibilities to highly pathogenic influenza virus. J Vet Med Sci 2020; 82:619-625. [PMID: 32173692 PMCID: PMC7273593 DOI: 10.1292/jvms.19-0408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We compared the Mx expression and anti-viral function and the 3D structure of Mx protein in four species: chicken (Gallus gallus), whooper swan
(Cygnus cygnus), jungle crow (Corvus macrorhynchos), and rock dove (Columba livia). We observed different mortalities associated with
highly pathogenic avian influenza virus (HPAIV) infection to understand the relationship between Mx function as an immune response factor and HPAIV proliferation in bird
cells. Different levels of Mx were observed among the different bird species after virus infection. Strong Mx expression was confirmed in the rock dove and
whooper swan 6 hr after viral infection. The lowest virus copy numbers were observed in rock dove. The virus infectivity was significantly reduced in the BALB/3T3 cells expressing rock dove
and jungle crow Mx. These results suggested that high Mx expression and significant Mx-induced anti-viral effects might result in the rock
dove primary cells having the lowest virus copy number. Comparison of the expected 3D structure of Mx protein in all four bird species demonstrated that the structure of loop L4 varied among
the investigated species. It was reported that differences in amino acid sequence in loop L4 affect antiviral activity in human and mouse cells, and a significant anti-viral effect was
observed in the rock dove Mx. Thus, the amino acid sequence of loop L4 in rock dove might represent relatively high anti-viral activity.
Collapse
Affiliation(s)
- Katsuro Hagiwara
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Manabu Onuma
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan.,Ecological Risk Assessment and Control Section, Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
20
|
Hagan RS, Torres-Castillo J, Doerschuk CM. Myeloid TBK1 Signaling Contributes to the Immune Response to Influenza. Am J Respir Cell Mol Biol 2019; 60:335-345. [PMID: 30290124 DOI: 10.1165/rcmb.2018-0122oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages provide key elements of the host response to influenza A virus (IAV) infection, including expression of type I IFN and inflammatory cytokines and chemokines. TBK1 (TNF receptor-associated factor family member-associated NF-κB activator-binding kinase 1) contributes to IFN expression and antiviral responses in some cell types, but its role in the innate response to IAV in vivo is unknown. We hypothesized that macrophage TBK1 contributes to both IFN and non-IFN components of host defense and IAV pathology. We generated myeloid-conditional TBK1 knockout mice and assessed the in vitro and in vivo consequences of IAV infection. Myeloid-specific loss of TBK1 in vivo resulted in less severe host response to IAV, as assessed by decreased mortality, weight loss, and hypoxia and less inflammatory changes in BAL fluid relative to wild-type mice despite no differences in viral load. Mice lacking myeloid TBK1 showed less recruitment of CD64+SiglecF-Ly6Chi inflammatory macrophages, less expression of inflammatory cytokines in the BAL fluid, and less expression of both IFN regulatory factor and NF-κB target genes in the lung. Analysis of sorted alveolar macrophages, inflammatory macrophages, and lung interstitial macrophages revealed that each subpopulation requires TBK1 for distinct components of the response to IAV infection. Our findings define roles for myeloid TBK1 in IAV-induced lung inflammation apart from IFN type I expression and point to myeloid TBK1 as a central and cell type-specific regulator of virus-induced lung damage.
Collapse
Affiliation(s)
- Robert S Hagan
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,2 Marsico Lung Institute, and
| | - Jose Torres-Castillo
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,2 Marsico Lung Institute, and
| | - Claire M Doerschuk
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,2 Marsico Lung Institute, and.,3 Center for Airways Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
21
|
Haller O, Kochs G. Mx genes: host determinants controlling influenza virus infection and trans-species transmission. Hum Genet 2019; 139:695-705. [PMID: 31773252 PMCID: PMC7087808 DOI: 10.1007/s00439-019-02092-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
The human MxA protein, encoded by the interferon-inducible MX1 gene, is an intracellular influenza A virus (IAV) restriction factor. It can protect transgenic mice from severe IAV-induced disease, indicating a key role of human MxA for host survival and suggesting that natural variations in MX1 may account for inter-individual differences in disease severity among humans. MxA also provides a robust barrier against zoonotic transmissions of avian and swine IAV strains. Therefore, zoonotic IAV must acquire MxA escape mutations to achieve sustained human-to-human transmission. Here, we discuss recent progress in the field.
Collapse
Affiliation(s)
- Otto Haller
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Georg Kochs
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Goldberg EL, Molony RD, Kudo E, Sidorov S, Kong Y, Dixit VD, Iwasaki A. Ketogenic diet activates protective γδ T cell responses against influenza virus infection. Sci Immunol 2019; 4:eaav2026. [PMID: 31732517 PMCID: PMC7189564 DOI: 10.1126/sciimmunol.aav2026] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 08/26/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Abstract
Influenza A virus (IAV) infection-associated morbidity and mortality are a key global health care concern, necessitating the identification of new therapies capable of reducing the severity of IAV infections. In this study, we show that the consumption of a low-carbohydrate, high-fat ketogenic diet (KD) protects mice from lethal IAV infection and disease. KD feeding resulted in an expansion of γδ T cells in the lung that improved barrier functions, thereby enhancing antiviral resistance. Expansion of these protective γδ T cells required metabolic adaptation to a ketogenic diet because neither feeding mice a high-fat, high-carbohydrate diet nor providing chemical ketone body substrate that bypasses hepatic ketogenesis protected against infection. Therefore, KD-mediated immune-metabolic integration represents a viable avenue toward preventing or alleviating influenza disease.
Collapse
Affiliation(s)
- Emily L Goldberg
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Ryan D Molony
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
- Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Eriko Kudo
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Sviatoslav Sidorov
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vishwa Deep Dixit
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
- Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06519, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
23
|
Uccellini MB, García-Sastre A. ISRE-Reporter Mouse Reveals High Basal and Induced Type I IFN Responses in Inflammatory Monocytes. Cell Rep 2019; 25:2784-2796.e3. [PMID: 30517866 PMCID: PMC6317368 DOI: 10.1016/j.celrep.2018.11.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/18/2018] [Accepted: 11/05/2018] [Indexed: 01/12/2023] Open
Abstract
Type I and type III interferons (IFNs) are critical for controlling viral infections. However, the precise dynamics of the IFN response have been difficult to define in vivo. Signaling through type I IFN receptors leads to interferon-stimulated response element (ISRE)-dependent gene expression and an antiviral state. As an alternative to tracking IFN, we used an ISRE-dependent reporter mouse to define the cell types, localization, and kinetics of IFN responding cells during influenza virus infection. We find that measurable IFN responses are largely limited to hematopoietic cells, which show a high sensitivity to IFN. Inflammatory monocytes display high basal IFN responses, which are enhanced upon infection and correlate with infection of these cells. We find that inflammatory monocyte development is independent of IFN signaling; however, IFN is critical for chemokine production and recruitment following infection. The data reveal a role for inflammatory monocytes in both basal IFN responses and responses to infection. Uccellini and García-Sastre create an ISRE reporter mouse and track interferon (IFN) responses in vivo in response to pathogen-associated molecular pattern (PAMP) stimulation and influenza infection. They find that IFN responses are highest in hematopoietic cells during infection. Specifically, Ly6Chi inflammatory monocytes have high basal IFN responses that are further enhanced upon infection.
Collapse
Affiliation(s)
- Melissa B Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
24
|
Gounder AP, Boon ACM. Influenza Pathogenesis: The Effect of Host Factors on Severity of Disease. THE JOURNAL OF IMMUNOLOGY 2019; 202:341-350. [PMID: 30617115 DOI: 10.4049/jimmunol.1801010] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Influenza viruses continue to be a major global health threat. Severity and clinical outcome of influenza disease is determined by both viral and host factors. Viral factors have long been the subject of intense research and many molecular determinants have been identified. However, research into the host factors that protect or predispose to severe and fatal influenza A virus infections is lagging. The goal of this review is to highlight the recent insights into host determinants of influenza pathogenesis.
Collapse
Affiliation(s)
- Anshu P Gounder
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110.,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Adrianus C M Boon
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; .,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
25
|
Mx1 in Hematopoietic Cells Protects against Thogoto Virus Infection. J Virol 2019; 93:JVI.00193-19. [PMID: 31092574 DOI: 10.1128/jvi.00193-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Myxovirus resistance 1 (Mx1) is an interferon-induced gene that encodes a GTPase that plays an important role in the defense of mammalian cells against influenza A and other viruses. The Mx1 protein can restrict a number of viruses independently of the expression of other interferon-induced genes. Mx genes are therefore considered to be an important part of the innate antiviral immune response. However, the possible impact of Mx expression in the hematopoietic cellular compartment has not been investigated in detail in the course of a viral infection. To address this, we performed bone marrow chimera experiments using congenic B6.A2G Mx1 +/+ and B6.A2G Mx1-/- mice to study the effect of Mx1 expression in cells of hematopoietic versus nonhematopoietic origin. Mx1+/+ mice were protected and Mx1-/- mice were susceptible to influenza A virus challenge infection, regardless of the type of bone marrow cells (Mx1 +/+ or Mx1-/- ) the animals had received. Infection with Thogoto virus, however, revealed that Mx1-/- mice with a functional Mx1 gene in the bone marrow compartment showed reduced liver pathology compared with Mx1-/- mice that had been grafted with Mx1 -/- bone marrow. The reduced pathology in these mice was associated with a reduction in Thogoto virus titers in the spleen, lung, and serum. Moreover, Mx1 +/+ mice with Mx1 -/- bone marrow failed to control Thogoto virus replication in the spleen. Mx1 in the hematopoietic cellular compartment thus contributes to protection against Thogoto virus infection.IMPORTANCE Mx proteins are evolutionarily conserved in vertebrates and can restrict a wide range of viruses in a cell-autonomous way. The contribution to antiviral defense of Mx1 expression in hematopoietic cells remains largely unknown. We show that protection against influenza virus infection requires Mx1 expression in the nonhematopoietic cellular compartment. In contrast, Mx1 in bone marrow-derived cells is sufficient to control disease and virus replication following infection with a Thogoto virus. This indicates that, in addition to its well-established antiviral activity in nonhematopoietic cells, Mx1 in hematopoietic cells can also play an important antiviral function. In addition, cells of hematopoietic origin that lack a functional Mx1 gene contribute to Thogoto virus dissemination and associated disease.
Collapse
|
26
|
Low ambient humidity impairs barrier function and innate resistance against influenza infection. Proc Natl Acad Sci U S A 2019; 116:10905-10910. [PMID: 31085641 PMCID: PMC6561219 DOI: 10.1073/pnas.1902840116] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Influenza virus causes seasonal outbreaks in temperate regions, with an increase in disease and mortality in the winter months. Dry air combined with cold temperature is known to enable viral transmission. In this study, we asked whether humidity impacts the host response to influenza virus infections. Exposure of mice to low humidity conditions rendered them more susceptible to influenza disease. Mice housed in dry air had impaired mucociliary clearance, innate antiviral defense, and tissue repair function. Moreover, mice exposed to dry air were more susceptible to disease mediated by inflammasome caspases. Our study provides mechanistic insights for the seasonality of the influenza virus epidemics, whereby inhalation of dry air compromises the host’s ability to restrict influenza virus infection. In the temperate regions, seasonal influenza virus outbreaks correlate closely with decreases in humidity. While low ambient humidity is known to enhance viral transmission, its impact on host response to influenza virus infection and disease outcome remains unclear. Here, we showed that housing Mx1 congenic mice in low relative humidity makes mice more susceptible to severe disease following respiratory challenge with influenza A virus. We find that inhalation of dry air impairs mucociliary clearance, innate antiviral defense, and tissue repair. Moreover, disease exacerbated by low relative humidity was ameliorated in caspase-1/11–deficient Mx1 mice, independent of viral burden. Single-cell RNA sequencing revealed that induction of IFN-stimulated genes in response to viral infection was diminished in multiple cell types in the lung of mice housed in low humidity condition. These results indicate that exposure to dry air impairs host defense against influenza infection, reduces tissue repair, and inflicts caspase-dependent disease pathology.
Collapse
|
27
|
Biondo C, Lentini G, Beninati C, Teti G. The dual role of innate immunity during influenza. Biomed J 2019; 42:8-18. [PMID: 30987709 PMCID: PMC6468094 DOI: 10.1016/j.bj.2018.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
One of the distinguishing features of the 1918 pandemic is the occurrence of massive, potentially detrimental, activation of the innate immune system in critically ill patients. Whether this reflects an intrinsic capacity of the virus to induce an exaggerated inflammatory responses or its remarkable ability to reproduce in vivo is still open to debate. Tremendous progress has recently been made in our understanding of innate immune responses to influenza infection and it is now time to translate this knowledge into therapeutic strategies, particularly in view of the possible occurrence of future outbreaks caused by virulent strains.
Collapse
Affiliation(s)
- Carmelo Biondo
- Metchnikoff Laboratory, University of Messina, Messina, Italy
| | - Germana Lentini
- Metchnikoff Laboratory, University of Messina, Messina, Italy
| | | | - Giuseppe Teti
- Metchnikoff Laboratory, University of Messina, Messina, Italy.
| |
Collapse
|
28
|
Jung HE, Oh JE, Lee HK. Cell-Penetrating Mx1 Enhances Anti-Viral Resistance against Mucosal Influenza Viral Infection. Viruses 2019; 11:v11020109. [PMID: 30696001 PMCID: PMC6409533 DOI: 10.3390/v11020109] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/20/2019] [Accepted: 01/25/2019] [Indexed: 01/03/2023] Open
Abstract
Dynamin-like GTPase myxovirus resistance protein 1 (Mx1) is an intracellular anti-viral protein following the activation of type I and type III interferon signaling. Mx1 inhibits viral replication by blocking the transcription of viral RNA, and a deficiency in this protein enhances susceptibility to influenza infection. Thus, Mx1 could be another efficient target of anti-influenza therapy. To test our hypothesis, we fused poly-arginine cell-penetrating peptides to the C terminus of Mx1 (Mx1-9R) and examined the anti-viral activity of Mx1-9R in vitro and in vivo. Madin-Darby Canine Kidney epithelial cells internalized the Mx1-9R within 12 h. Pre-exposure Mx1-9R treatment inhibited viral replication and viral RNA expression in infected cells. Further, intranasal administration of Mx1-9R improved the survival of mice infected with the PR8 influenza viral strain. These data support the consideration of Mx1-9R as a novel therapeutic agent against mucosal influenza virus infection.
Collapse
Affiliation(s)
- Hi Eun Jung
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea.
| | - Heung Kyu Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea.
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
29
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
30
|
Human MxB Inhibits the Replication of Hepatitis C Virus. J Virol 2018; 93:JVI.01285-18. [PMID: 30333168 DOI: 10.1128/jvi.01285-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022] Open
Abstract
Type I interferon (IFN) inhibits viruses by inducing the expression of antiviral proteins. The IFN-induced myxovirus resistance B (MxB) protein has been reported to inhibit a limited number of viruses, including HIV-1 and herpesviruses, but its antiviral coverage remains to be explored further. Here we show that MxB interferes with RNA replication of hepatitis C virus (HCV) and significantly inhibits viral replication in a cyclophilin A (CypA)-dependent manner. Our data further show that MxB interacts with the HCV protein NS5A, thereby impairing NS5A interaction with CypA and NS5A localization to the endoplasmic reticulum, two events essential for HCV RNA replication. Interestingly, we found that MxB significantly inhibits two additional CypA-dependent viruses of the Flaviviridae family, namely, Japanese encephalitis virus and dengue virus, suggesting a potential link between virus dependence on CypA and virus susceptibility to MxB inhibition. Collectively, these data have identified MxB as a key factor behind IFN-mediated suppression of HCV infection, and they suggest that other CypA-dependent viruses may also be subjected to MxB restriction.IMPORTANCE Viruses of the Flaviviridae family cause major illness and death around the world and thus pose a great threat to human health. Here we show that IFN-inducible MxB restricts several members of the Flaviviridae, including HCV, Japanese encephalitis virus, and dengue virus. This finding not only suggests an active role of MxB in combating these major pathogenic human viruses but also significantly expands the antiviral spectrum of MxB. Our study further strengthens the link between virus dependence on CypA and susceptibility to MxB restriction and also suggests that MxB may employ a common mechanism to inhibit different viruses. Elucidating the antiviral functions of MxB advances our understanding of IFN-mediated host antiviral defense and may open new avenues to the development of novel antiviral therapeutics.
Collapse
|
31
|
Verhein KC, Vellers HL, Kleeberger SR. Inter-individual variation in health and disease associated with pulmonary infectious agents. Mamm Genome 2018; 29:38-47. [PMID: 29353387 PMCID: PMC5851710 DOI: 10.1007/s00335-018-9733-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Respiratory infectious diseases resulting from bacterial or viral pathogens such as Mycobacterium tuberculosis, Streptococcus pneumoniae, respiratory syncytial virus (RSV), or influenza, are major global public health concerns. Lower respiratory tract infections are leading causes of morbidity and mortality, only behind ischemic heart disease and stroke (GBD 2015 LRI Collaborators in Lancet Infect Dis 17(11):1133–1161, 2017). Developing countries are particularly impacted by these diseases. However, while many are infected with viruses such as RSV (> 90% of all individuals are infected by age 2), only sub-populations develop severe disease. Many factors may contribute to the inter-individual variation in response to respiratory infections, including gender, age, socioeconomic status, nutrition, and genetic background. Association studies with functional single nucleotide polymorphisms in biologically plausible gene candidates have been performed in human populations to provide insight to the molecular genetic contribution to pulmonary infections and disease severity. In vitro cell models and genome-wide association studies in animal models of genetic susceptibility to respiratory infections have also identified novel candidate susceptibility genes, some of which have also been found to contribute to disease susceptibility in human populations. Genetic background may also contribute to differential efficacy of vaccines against respiratory infections. Development of new genetic mouse models such as the collaborative cross and diversity outbred mice should provide additional insight to the mechanisms of genetic susceptibility to respiratory infections. Continued investigation of susceptibility factors should provide insight to novel strategies to prevent and treat disease that contributes to global morbidity and mortality attributed to respiratory infections.
Collapse
Affiliation(s)
- Kirsten C Verhein
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Building 101, Rm. D240, Research Triangle Park, NC, 27709, USA.
| | - Heather L Vellers
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Steven R Kleeberger
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
32
|
Hernandez N, Melki I, Jing H, Habib T, Huang SSY, Danielson J, Kula T, Drutman S, Belkaya S, Rattina V, Lorenzo-Diaz L, Boulai A, Rose Y, Kitabayashi N, Rodero MP, Dumaine C, Blanche S, Lebras MN, Leung MC, Mathew LS, Boisson B, Zhang SY, Boisson-Dupuis S, Giliani S, Chaussabel D, Notarangelo LD, Elledge SJ, Ciancanelli MJ, Abel L, Zhang Q, Marr N, Crow YJ, Su HC, Casanova JL. Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J Exp Med 2018; 215:2567-2585. [PMID: 30143481 PMCID: PMC6170168 DOI: 10.1084/jem.20180628] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/12/2018] [Accepted: 07/30/2018] [Indexed: 01/10/2023] Open
Abstract
Life-threatening pulmonary influenza can be caused by inborn errors of type I and III IFN immunity. We report a 5-yr-old child with severe pulmonary influenza at 2 yr. She is homozygous for a loss-of-function IRF9 allele. Her cells activate gamma-activated factor (GAF) STAT1 homodimers but not IFN-stimulated gene factor 3 (ISGF3) trimers (STAT1/STAT2/IRF9) in response to IFN-α2b. The transcriptome induced by IFN-α2b in the patient's cells is much narrower than that of control cells; however, induction of a subset of IFN-stimulated gene transcripts remains detectable. In vitro, the patient's cells do not control three respiratory viruses, influenza A virus (IAV), parainfluenza virus (PIV), and respiratory syncytial virus (RSV). These phenotypes are rescued by wild-type IRF9, whereas silencing IRF9 expression in control cells increases viral replication. However, the child has controlled various common viruses in vivo, including respiratory viruses other than IAV. Our findings show that human IRF9- and ISGF3-dependent type I and III IFN responsive pathways are essential for controlling IAV.
Collapse
Affiliation(s)
- Nicholas Hernandez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Isabelle Melki
- Pediatric Immunology-Hematology and Rheumatology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
- General Pediatrics, Infectious Disease and Internal Medicine Department, Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Paris, France
- Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
| | - Huie Jing
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tanwir Habib
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Susie S Y Huang
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Jeffrey Danielson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tomasz Kula
- Division of Genetics, Department of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Scott Drutman
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Serkan Belkaya
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Vimel Rattina
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Lazaro Lorenzo-Diaz
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Anais Boulai
- Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
| | - Yoann Rose
- Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
| | - Naoki Kitabayashi
- Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
| | - Mathieu P Rodero
- Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
| | - Cecile Dumaine
- Pediatric Immunology-Hematology and Rheumatology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
- General Pediatrics, Infectious Disease and Internal Medicine Department, Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Paris, France
| | - Stéphane Blanche
- Pediatric Immunology-Hematology and Rheumatology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Marie-Noëlle Lebras
- Pediatric Pulmonology, Infectious Disease and Internal Medicine Department, Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Paris, France
| | - Man Chun Leung
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | | | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Stephanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Silvia Giliani
- Angelo Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | | | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Stephen J Elledge
- Division of Genetics, Department of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Michael J Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Nico Marr
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Yanick J Crow
- Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Department of Genetics, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Pediatric Immunology-Hematology and Rheumatology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY
| |
Collapse
|
33
|
Berg J, Hiller T, Kissner MS, Qazi TH, Duda GN, Hocke AC, Hippenstiel S, Elomaa L, Weinhart M, Fahrenson C, Kurreck J. Optimization of cell-laden bioinks for 3D bioprinting and efficient infection with influenza A virus. Sci Rep 2018; 8:13877. [PMID: 30224659 PMCID: PMC6141611 DOI: 10.1038/s41598-018-31880-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/28/2018] [Indexed: 01/12/2023] Open
Abstract
Bioprinting is a new technology, which arranges cells with high spatial resolution, but its potential to create models for viral infection studies has not yet been fully realized. The present study describes the optimization of a bioink composition for extrusion printing. The bioinks were biophysically characterized by rheological and electron micrographic measurements. Hydrogels consisting of alginate, gelatin and Matrigel were used to provide a scaffold for a 3D arrangement of human alveolar A549 cells. A blend containing 20% Matrigel provided the optimal conditions for spatial distribution and viability of the printed cells. Infection of the 3D model with a seasonal influenza A strain resulted in widespread distribution of the virus and a clustered infection pattern that is also observed in the natural lung but not in two-dimensional (2D) cell culture, which demonstrates the advantage of 3D printed constructs over conventional culture conditions. The bioink supported viral replication and proinflammatory interferon release of the infected cells. We consider our strategy to be paradigmatic for the generation of humanized 3D tissue models by bioprinting to study infections and develop new antiviral strategies.
Collapse
Affiliation(s)
- Johanna Berg
- Institute of Biotechnology, Department of Applied Biochemistry, Technische Universität Berlin, 13355, Berlin, Germany
| | - Thomas Hiller
- Institute of Biotechnology, Department of Applied Biochemistry, Technische Universität Berlin, 13355, Berlin, Germany
| | - Maya S Kissner
- Institute of Biotechnology, Department of Applied Biochemistry, Technische Universität Berlin, 13355, Berlin, Germany
| | - Taimoor H Qazi
- Berlin-Brandenburg Center for Regenerative Therapies & Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Georg N Duda
- Berlin-Brandenburg Center for Regenerative Therapies & Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Andreas C Hocke
- Department of Internal Medicine/Infectious and Respiratory Diseases, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany, 10115, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious and Respiratory Diseases, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany, 10115, Berlin, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Department of Organic Chemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Department of Organic Chemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Christoph Fahrenson
- Center for electron microscopy (ZELMI), Technische Universität Berlin, 10623, Berlin, Germany
| | - Jens Kurreck
- Institute of Biotechnology, Department of Applied Biochemistry, Technische Universität Berlin, 13355, Berlin, Germany.
| |
Collapse
|
34
|
Denney L, Ho LP. The role of respiratory epithelium in host defence against influenza virus infection. Biomed J 2018; 41:218-233. [PMID: 30348265 PMCID: PMC6197993 DOI: 10.1016/j.bj.2018.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
The respiratory epithelium is the major interface between the environment and the host. Sophisticated barrier, sensing, anti-microbial and immune regulatory mechanisms have evolved to help maintain homeostasis and to defend the lung against foreign substances and pathogens. During influenza virus infection, these specialised structural cells and populations of resident immune cells come together to mount the first response to the virus, one which would play a significant role in the immediate and long term outcome of the infection. In this review, we focus on the immune defence machinery of the respiratory epithelium and briefly explore how it repairs and regenerates after infection.
Collapse
Affiliation(s)
- Laura Denney
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
35
|
Aluminum salts as an adjuvant for pre-pandemic influenza vaccines: a meta-analysis. Sci Rep 2018; 8:11460. [PMID: 30061656 PMCID: PMC6065440 DOI: 10.1038/s41598-018-29858-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/13/2018] [Indexed: 11/09/2022] Open
Abstract
Avian-origin H5/H7 influenza has the potential to cause the next influenza pandemic. Availability of effective vaccines is an essential part of pre-pandemic preparedness. However, avian influenza surface antigens are poorly immunogenic to humans, which necessitates the use of adjuvants to augment the immunogenicity of pre-pandemic influenza vaccines. Aluminum salts are approved, safe, and affordable adjuvants, but their adjuvanticity for influenza vaccines remains unverified. We conducted the first meta-analysis on this issue. A total of nine randomized controlled trials (2006-2013, 22 comparisons, 2,467 participants in total) compared aluminum-adjuvanted H5N1 vaccines versus non-adjuvanted counterparts. The weighted estimate for the ratio of the seroprotection rate after a single dose of H5N1 vaccine is 0.66 (95% CI: 0.53 to 0.83) by hemagglutination-inhibition assay or 0.56 (95% CI: 0.42 to 0.74) by neutralizing titer assay. The weighted estimate for the risk ratio of pain/tenderness at injection sites is 1.85 (95% CI: 1.56 to 2.19). The quality of evidence is low to very low for seroprotection (due to indirectness and potential reporting bias) and moderate for pain/tenderness (due to potential reporting bias), respectively. The significantly lower seroprotection rate after aluminum-adjuvanted H5N1 vaccines and the significantly higher risk of pain at injection sites indicate that aluminum salts decrease immunogenicity but increase local reactogenicity of pre-pandemic H5N1 vaccines in humans.
Collapse
|
36
|
Slaine PD, MacRae C, Kleer M, Lamoureux E, McAlpine S, Warhuus M, Comeau AM, McCormick C, Hatchette T, Khaperskyy DA. Adaptive Mutations in Influenza A/California/07/2009 Enhance Polymerase Activity and Infectious Virion Production. Viruses 2018; 10:E272. [PMID: 29783694 PMCID: PMC5977265 DOI: 10.3390/v10050272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022] Open
Abstract
Mice are not natural hosts for influenza A viruses (IAVs), but they are useful models for studying antiviral immune responses and pathogenesis. Serial passage of IAV in mice invariably causes the emergence of adaptive mutations and increased virulence. Here, we report the adaptation of IAV reference strain A/California/07/2009(H1N1) (also known as CA/07) in outbred Swiss Webster mice. Serial passage led to increased virulence and lung titers, and dissemination of the virus to brains. We adapted a deep-sequencing protocol to identify and enumerate adaptive mutations across all genome segments. Among mutations that emerged during mouse-adaptation, we focused on amino acid substitutions in polymerase subunits: polymerase basic-1 (PB1) T156A and F740L and polymerase acidic (PA) E349G. These mutations were evaluated singly and in combination in minigenome replicon assays, which revealed that PA E349G increased polymerase activity. By selectively engineering three PB1 and PA mutations into the parental CA/07 strain, we demonstrated that these mutations in polymerase subunits decreased the production of defective viral genome segments with internal deletions and dramatically increased the release of infectious virions from mouse cells. Together, these findings increase our understanding of the contribution of polymerase subunits to successful host adaptation.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Amino Acid Substitution
- Animals
- Animals, Outbred Strains
- Cells, Cultured
- Disease Models, Animal
- Dogs
- Female
- Genome, Viral
- Humans
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza, Human/virology
- Mice
- Mutation, Missense
- Protein Conformation
- RNA-Dependent RNA Polymerase/chemistry
- RNA-Dependent RNA Polymerase/genetics
- RNA-Dependent RNA Polymerase/metabolism
- Serial Passage
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virion/metabolism
- Virulence
- Virus Replication
Collapse
Affiliation(s)
- Patrick D Slaine
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Cara MacRae
- The Hospital for Sick Children, University Health Network, Toronto, ON M5G 2C4, Canada.
| | - Mariel Kleer
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Emily Lamoureux
- CGEB-Integrated Microbiome Resource (IMR) and Department of Pharmacology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Sarah McAlpine
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health Authority (NSHA), Halifax, NS B3H 1V8, Canada.
| | - Michelle Warhuus
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health Authority (NSHA), Halifax, NS B3H 1V8, Canada.
| | - André M Comeau
- CGEB-Integrated Microbiome Resource (IMR) and Department of Pharmacology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Todd Hatchette
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health Authority (NSHA), Halifax, NS B3H 1V8, Canada.
| | - Denys A Khaperskyy
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
37
|
Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner. Nat Microbiol 2018; 3:611-621. [PMID: 29632368 PMCID: PMC5918160 DOI: 10.1038/s41564-018-0138-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/27/2018] [Indexed: 12/27/2022]
Abstract
Antibiotics are widely used to treat infections in humans. However, the impact of antibiotic use on host cells is understudied. Here we identify an antiviral effect of commonly used aminoglycoside antibiotics. We show that topical mucosal application of aminoglycosides prophylactically increased host resistance to a broad range of viral infections including herpes simplex viruses, influenza A virus and Zika virus. Aminoglycoside treatment also reduced viral replication in primary human cells. This antiviral activity was independent of the microbiota as aminoglycoside treatment protected germ-free mice. Microarray analysis uncovered a marked upregulation of transcripts for interferon-stimulated genes (ISGs) following aminoglycoside application. ISG induction was mediated by TLR3, and required TIR-domain-containing adapter-inducing interferon-β (TRIF), signaling adaptor, and interferon regulatory factors 3 (IRF3) and IRF7, transcription factors that promote ISG expression. XCR1+ dendritic cells, which uniquely express TLR3, were recruited to the vaginal mucosa upon aminoglycoside treatment and were required for ISG induction. These results highlight an unexpected ability of aminoglycoside antibiotics to confer broad antiviral resistance in vivo.
Collapse
|
38
|
Abstract
Host-derived “danger-associated molecular patterns” (DAMPs) contribute to innate immune responses and serve as markers of disease progression and severity for inflammatory and infectious diseases. There is accumulating evidence that generation of DAMPs such as oxidized phospholipids and high-mobility-group box 1 (HMGB1) during influenza virus infection leads to acute lung injury (ALI). Treatment of influenza virus-infected mice and cotton rats with the Toll-like receptor 4 (TLR4) antagonist Eritoran blocked DAMP accumulation and ameliorated influenza virus-induced ALI. However, changes in systemic HMGB1 kinetics during the course of influenza virus infection in animal models and humans have yet to establish an association of HMGB1 release with influenza virus infection. To this end, we used the cotton rat model that is permissive to nonadapted strains of influenza A and B viruses, respiratory syncytial virus (RSV), and human rhinoviruses (HRVs). Serum HMGB1 levels were measured by an enzyme-linked immunosorbent assay (ELISA) prior to infection until day 14 or 18 post-infection. Infection with either influenza A or B virus resulted in a robust increase in serum HMGB1 levels that decreased by days 14 to 18. Inoculation with the live attenuated vaccine FluMist resulted in HMGB1 levels that were significantly lower than those with infection with live influenza viruses. RSV and HRVs showed profiles of serum HMGB1 induction that were consistent with their replication and degree of lung pathology in cotton rats. We further showed that therapeutic treatment with Eritoran of cotton rats infected with influenza B virus significantly blunted serum HMGB1 levels and improved lung pathology, without inhibiting virus replication. These findings support the use of drugs that block HMGB1 to combat influenza virus-induced ALI. Influenza virus is a common infectious agent causing serious seasonal epidemics, and there is urgent need to develop an alternative treatment modality for influenza virus infection. Recently, host-derived DAMPs, such as oxidized phospholipids and HMGB1, were shown to be generated during influenza virus infection and cause ALI. To establish a clear link between influenza virus infection and HMGB1 as a biomarker, we have systematically analyzed temporal patterns of serum HMGB1 release in cotton rats infected with nonadapted strains of influenza A and B viruses and compared these patterns with a live attenuated influenza vaccine and infection by other respiratory viruses. Towards development of a new therapeutic modality, we show herein that blocking serum HMGB1 levels by Eritoran improves lung pathology in influenza B virus-infected cotton rats. Our study is the first report of systemic HMGB1 as a potential biomarker of severity in respiratory virus infections and confirms that drugs that block virus-induced HMGB1 ameliorate ALI.
Collapse
|
39
|
Ascough S, Paterson S, Chiu C. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus. Front Immunol 2018; 9:323. [PMID: 29552008 PMCID: PMC5840263 DOI: 10.3389/fimmu.2018.00323] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and functionality. Here, we discuss the differences in clinical outcome and immune response following influenza and RSV. Specifically, we focus on differences in their recognition by innate immunity; the strategies used by each virus to evade these early immune responses; and effects across the innate-adaptive interface that may prevent long-lived memory generation. Thus, by comparing these globally important pathogens, we highlight mechanisms by which optimal antiviral immunity may be better induced and discuss the potential for these insights to inform novel vaccines.
Collapse
Affiliation(s)
- Stephanie Ascough
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Suzanna Paterson
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Christopher Chiu
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
Bayesian Diallel Analysis Reveals Mx1-Dependent and Mx1-Independent Effects on Response to Influenza A Virus in Mice. G3-GENES GENOMES GENETICS 2018; 8:427-445. [PMID: 29187420 PMCID: PMC5919740 DOI: 10.1534/g3.117.300438] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Influenza A virus (IAV) is a respiratory pathogen that causes substantial morbidity and mortality during both seasonal and pandemic outbreaks. Infection outcomes in unexposed populations are affected by host genetics, but the host genetic architecture is not well understood. Here, we obtain a broad view of how heritable factors affect a mouse model of response to IAV infection using an 8 × 8 diallel of the eight inbred founder strains of the Collaborative Cross (CC). Expanding on a prior statistical framework for modeling treatment response in diallels, we explore how a range of heritable effects modify acute host response to IAV through 4 d postinfection. Heritable effects in aggregate explained ∼57% of the variance in IAV-induced weight loss. Much of this was attributable to a pattern of additive effects that became more prominent through day 4 postinfection and was consistent with previous reports of antiinfluenza myxovirus resistance 1 (Mx1) polymorphisms segregating between these strains; these additive effects largely recapitulated haplotype effects observed at the Mx1 locus in a previous study of the incipient CC, and are also replicated here in a CC recombinant intercross population. Genetic dominance of protective Mx1 haplotypes was observed to differ by subspecies of origin: relative to the domesticus null Mx1 allele, musculus acts dominantly whereas castaneus acts additively. After controlling for Mx1, heritable effects, though less distinct, accounted for ∼34% of the phenotypic variance. Implications for future mapping studies are discussed.
Collapse
|
41
|
Mozzi A, Pontremoli C, Sironi M. Genetic susceptibility to infectious diseases: Current status and future perspectives from genome-wide approaches. INFECTION GENETICS AND EVOLUTION 2017; 66:286-307. [PMID: 28951201 PMCID: PMC7106304 DOI: 10.1016/j.meegid.2017.09.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies (GWASs) have been widely applied to identify genetic factors that affect complex diseases or traits. Presently, the GWAS Catalog includes > 2800 human studies. Of these, only a minority have investigated the susceptibility to infectious diseases or the response to therapies for the treatment or prevention of infections. Despite their limited application in the field, GWASs have provided valuable insights by pinpointing associations to both innate and adaptive immune response loci, as well as novel unexpected risk factors for infection susceptibility. Herein, we discuss some issues and caveats of GWASs for infectious diseases, we review the most recent findings ensuing from these studies, and we provide a brief summary of selected GWASs for infections in non-human mammals. We conclude that, although the general trend in the field of complex traits is to shift from GWAS to next-generation sequencing, important knowledge on infectious disease-related traits can be still gained by GWASs, especially for those conditions that have never been investigated using this approach. We suggest that future studies will benefit from the leveraging of information from the host's and pathogen's genomes, as well as from the exploration of models that incorporate heterogeneity across populations and phenotypes. Interactions within HLA genes or among HLA variants and polymorphisms located outside the major histocompatibility complex may also play an important role in shaping the susceptibility and response to invading pathogens. Relatively few GWASs for infectious diseases were performed. Phenotype heterogeneity and case/control misclassification can affect GWAS power. Adaptive and innate immunity loci were identified in several infectious disease GWASs. Unexpected loci (e.g., lncRNAs) were also associated with infection susceptibility. GWASs should integrate host and pathogen diversity and use complex association models.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy.
| |
Collapse
|
42
|
Lorenzo MM, Sanchez-Puig JM, Blasco R. Vaccinia virus and Cowpox virus are not susceptible to the interferon-induced antiviral protein MxA. PLoS One 2017; 12:e0181459. [PMID: 28727764 PMCID: PMC5519081 DOI: 10.1371/journal.pone.0181459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
MxA protein is expressed in response to type I and type III Interferon and constitute an important antiviral factor with broad antiviral activity to diverse RNA viruses. In addition, some studies expand the range of MxA antiviral activity to include particular DNA viruses like Monkeypox virus (MPXV) and African Swine Fever virus (ASFV). However, a broad profile of activity of MxA to large DNA viruses has not been established to date. Here, we investigated if some well characterized DNA viruses belonging to the Poxviridae family are sensitive to human MxA. A cell line inducibly expressing MxA to inhibitory levels showed no anti-Vaccinia virus (VACV) virus activity, indicating either lack of susceptibility of the virus, or the existence of viral factors capable of counteracting MxA inhibition. To determine if VACV resistance to MxA was due to a virus-encoded anti-MxA activity, we performed coinfections of VACV and the MxA-sensitive Vesicular Stomatitis virus (VSV), and show that VACV does not protect VSV from MxA inhibition in trans. Those results were extended to several VACV strains and two CPXV strains, thus confirming that those Orthopoxviruses do not block MxA action. Overall, these results point to a lack of susceptibility of the Poxviridae to MxA antiviral activity.
Collapse
Affiliation(s)
- María M. Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Madrid, Spain
| | - Juana M. Sanchez-Puig
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Madrid, Spain
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Madrid, Spain
- * E-mail:
| |
Collapse
|
43
|
Deeg CM, Hassan E, Mutz P, Rheinemann L, Götz V, Magar L, Schilling M, Kallfass C, Nürnberger C, Soubies S, Kochs G, Haller O, Schwemmle M, Staeheli P. In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein. J Exp Med 2017; 214:1239-1248. [PMID: 28396461 PMCID: PMC5413327 DOI: 10.1084/jem.20161033] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/07/2016] [Accepted: 02/15/2017] [Indexed: 11/08/2022] Open
Abstract
Deeg et al. show a novel line of transgenic mice expressing restriction factor MxA exhibits robust resistance to influenza viruses of avian but not human origin. In vivo evasion of MxA is mediated by distinct amino acids in the nucleoprotein of human influenza viruses. Zoonotic transmission of influenza A viruses can give rise to devastating pandemics, but currently it is impossible to predict the pandemic potential of circulating avian influenza viruses. Here, we describe a new mouse model suitable for such risk assessment, based on the observation that the innate restriction factor MxA represents an effective species barrier that must be overcome by zoonotic viruses. Our mouse lacks functional endogenous Mx genes but instead carries the human MX1 locus as a transgene. Such transgenic mice were largely resistant to highly pathogenic avian H5 and H7 influenza A viruses, but were almost as susceptible to infection with influenza viruses of human origin as nontransgenic littermates. Influenza A viruses that successfully established stable lineages in humans have acquired adaptive mutations which allow partial MxA escape. Accordingly, an engineered avian H7N7 influenza virus carrying a nucleoprotein with signature mutations typically found in human virus isolates was more virulent in transgenic mice than parental virus, demonstrating that a few amino acid changes in the viral target protein can mediate escape from MxA restriction in vivo. Similar mutations probably need to be acquired by emerging influenza A viruses before they can spread in the human population.
Collapse
Affiliation(s)
- Christoph M Deeg
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Ebrahim Hassan
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, 79085 Freiburg, Germany.,Microbiology Department, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| | - Pascal Mutz
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Lara Rheinemann
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Veronika Götz
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Linda Magar
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Mirjam Schilling
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Carsten Kallfass
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Cindy Nürnberger
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, 79085 Freiburg, Germany
| | - Sébastien Soubies
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Otto Haller
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
44
|
Rajao DS, Loving CL, Waide EH, Gauger PC, Dekkers JC, Tuggle CK, Vincent AL. Pigs with Severe Combined Immunodeficiency Are Impaired in Controlling Influenza A Virus Infection. J Innate Immun 2016; 9:193-202. [PMID: 27988511 PMCID: PMC5330784 DOI: 10.1159/000451007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/24/2016] [Accepted: 09/24/2016] [Indexed: 11/19/2022] Open
Abstract
Influenza A viruses (IAV) infect many host species, including humans and pigs. Severe combined immunodeficiency (SCID) is a condition characterized by a deficiency of T, B, and/or natural killer (NK) cells. Animal models of SCID have great value for biomedical research. Here, we evaluated the pathogenesis and the innate immune response to the 2009 H1N1 pandemic IAV (H1N1pdm09) using a recently identified line of naturally occurring SCID pigs deficient in T and B lymphocytes that still have functional NK cells. SCID pigs challenged with H1N1pdm09 showed milder lung pathology compared to the non-SCID heterozygous carrier pigs. Viral titers in the lungs and nasal swabs of challenged SCID pigs were significantly higher than in carrier pigs 7 days postinfection, despite higher levels of IL-1β and IFN-α in the lungs of SCID pigs. The lower levels of pulmonary pathology were associated with the T and B cell absence in response to infection. The higher viral titers, prolonged shedding, and delayed viral clearance indicated that innate immunity was insufficient for controlling IAV in pigs. This recently identified line of SCID pigs provides a valuable model to understand the immune mechanisms associated with influenza protection and recovery in a natural host.
Collapse
Affiliation(s)
- Daniela S. Rajao
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA, ARS, USA
| | - Crystal L. Loving
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA, ARS, USA
| | - Emily H. Waide
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Phillip C. Gauger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | | | | | - Amy L. Vincent
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA, ARS, USA
| |
Collapse
|
45
|
Bearoff F, Del Rio R, Case LK, Dragon JA, Nguyen-Vu T, Lin CY, Blankenhorn EP, Teuscher C, Krementsov DN. Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity. Genes Immun 2016; 17:386-395. [PMID: 27653816 PMCID: PMC5133152 DOI: 10.1038/gene.2016.37] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
Abstract
Regulation of gene expression in immune cells is known to be under genetic control, and likely contributes to susceptibility to autoimmune diseases such as multiple sclerosis (MS). How this occurs in concert across multiple immune cell types is poorly understood. Using a mouse model that harnesses the genetic diversity of wild-derived mice, more accurately reflecting genetically diverse human populations, we provide an extensive characterization of the genetic regulation of gene expression in five different naive immune cell types relevant to MS. The immune cell transcriptome is shown to be under profound genetic control, exhibiting diverse patterns: global, cell-specific and sex-specific. Bioinformatic analysis of the genetically controlled transcript networks reveals reduced cell type specificity and inflammatory activity in wild-derived PWD/PhJ mice, compared with the conventional laboratory strain C57BL/6J. Additionally, candidate MS-GWAS (genome-wide association study candidate genes for MS susceptibility) genes were significantly enriched among transcripts overrepresented in C57BL/6J cells compared with PWD. These expression level differences correlate with robust differences in susceptibility to experimental autoimmune encephalomyelitis, the principal model of MS, and skewing of the encephalitogenic T-cell responses. Taken together, our results provide functional insights into the genetic regulation of the immune transcriptome, and shed light on how this in turn contributes to susceptibility to autoimmune disease.
Collapse
Affiliation(s)
- F Bearoff
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - R Del Rio
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - L K Case
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - J A Dragon
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - T Nguyen-Vu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - C-Y Lin
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - E P Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - C Teuscher
- Department of Medicine, University of Vermont, Burlington, VT, USA
- Department of Pathology, University of Vermont, Burlington, VT, USA
| | - D N Krementsov
- Department of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
46
|
Influenza Virus Susceptibility of Wild-Derived CAST/EiJ Mice Results from Two Amino Acid Changes in the MX1 Restriction Factor. J Virol 2016; 90:10682-10692. [PMID: 27654285 DOI: 10.1128/jvi.01213-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/11/2016] [Indexed: 12/27/2022] Open
Abstract
The interferon-regulated Mx1 gene of the A2G mouse strain confers a high degree of resistance against influenza A and Thogoto viruses. Most other laboratory inbred mouse strains carry truncated nonfunctional Mx1 alleles and, consequently, exhibit high virus susceptibility. Interestingly, CAST/EiJ mice, derived from wild Mus musculus castaneus, possess a seemingly intact Mx1 gene but are highly susceptible to influenza A virus challenge. To determine whether the enhanced influenza virus susceptibility is due to intrinsically reduced antiviral activity of the CAST-derived Mx1 allele, we generated a congenic C57BL/6J mouse line that carries the Mx locus of CAST/EiJ mice. Adult animals of this line were almost as susceptible to influenza virus challenge as standard C57BL/6J mice lacking functional Mx1 alleles but exhibited far more pronounced resistance to Thogoto virus. Sequencing revealed that CAST-derived MX1 differs from A2G-derived MX1 by two amino acids (G83R and A222V) in the GTPase domain. Especially the A222V mutation reduced GTPase activity of purified MX1 and diminished the inhibitory effect of MX1 in influenza A virus polymerase activity assays. Further, MX1 protein was substantially less abundant in organs of interferon-treated mice carrying the CAST Mx1 allele than in those of mice carrying the A2G Mx1 allele. We found that the CAST-specific mutations reduced the metabolic stability of the MX1 protein although Mx1 mRNA levels were unchanged. Thus, the enhanced influenza virus susceptibility of CAST/EiJ mice can be explained by minor alterations in the MX1 restriction factor that negatively affect its enzymatic activity and reduce its half-life. IMPORTANCE Although the crystal structure of the prototypic human MXA protein is known, the importance of specific protein domains for antiviral activity is still incompletely understood. Novel insights might come from studying naturally occurring MX protein variants with altered antiviral activity. Here we identified two seemingly minor amino acid changes in the GTPase domain that negatively affect the enzymatic activity and metabolic stability of murine MX1 and thus dramatically reduce the influenza virus resistance of the respective mouse inbred strain. These observations highlight our current inability to predict the biological consequences of previously uncharacterized MX mutations in mice. Since this is probably also true for naturally occurring mutations in Mx genes of humans, careful experimental analysis of any natural MXA variants for altered activity is necessary in order to assess possible consequences of such mutations on innate antiviral immunity.
Collapse
|
47
|
Pilla-Moffett D, Barber MF, Taylor GA, Coers J. Interferon-Inducible GTPases in Host Resistance, Inflammation and Disease. J Mol Biol 2016; 428:3495-513. [PMID: 27181197 PMCID: PMC5010443 DOI: 10.1016/j.jmb.2016.04.032] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/23/2016] [Accepted: 04/30/2016] [Indexed: 01/18/2023]
Abstract
Cell-autonomous immunity is essential for host organisms to defend themselves against invasive microbes. In vertebrates, both the adaptive and the innate branches of the immune system operate cell-autonomous defenses as key effector mechanisms that are induced by pro-inflammatory interferons (IFNs). IFNs can activate cell-intrinsic host defenses in virtually any cell type ranging from professional phagocytes to mucosal epithelial cells. Much of this IFN-induced host resistance program is dependent on four families of IFN-inducible GTPases: the myxovirus resistance proteins, the immunity-related GTPases, the guanylate-binding proteins (GBPs), and the very large IFN-inducible GTPases. These GTPase families provide host resistance to a variety of viral, bacterial, and protozoan pathogens through the sequestration of microbial proteins, manipulation of vesicle trafficking, regulation of antimicrobial autophagy (xenophagy), execution of intracellular membranolytic pathways, and the activation of inflammasomes. This review discusses our current knowledge of the molecular function of IFN-inducible GTPases in providing host resistance, as well as their role in the pathogenesis of autoinflammatory Crohn's disease. While substantial advances were made in the recent past, few of the known functions of IFN-inducible GTPases have been explored in any depth, and new functions await discovery. This review will therefore highlight key areas of future exploration that promise to advance our understanding of the role of IFN-inducible GTPases in human diseases.
Collapse
Affiliation(s)
- Danielle Pilla-Moffett
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew F Barber
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Gregory A Taylor
- Department of Medicine, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, and Immunology, Duke University, Durham, NC 27708, USA; Center for the Study of Aging, Duke University, Durham, NC 27708, USA; Geriatric Research and Education and Clinical Center, Veteran Affairs Medical Center, Durham, NC 27710, USA.
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
48
|
Pillai PS, Molony RD, Martinod K, Dong H, Pang IK, Tal MC, Solis AG, Bielecki P, Mohanty S, Trentalange M, Homer RJ, Flavell RA, Wagner DD, Montgomery RR, Shaw AC, Staeheli P, Iwasaki A. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science 2016; 352:463-6. [PMID: 27102485 PMCID: PMC5465864 DOI: 10.1126/science.aaf3926] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
Influenza A virus (IAV) causes up to half a million deaths worldwide annually, 90% of which occur in older adults. We show that IAV-infected monocytes from older humans have impaired antiviral interferon production but retain intact inflammasome responses. To understand the in vivo consequence, we used mice expressing a functional Mx gene encoding a major interferon-induced effector against IAV in humans. In Mx1-intact mice with weakened resistance due to deficiencies in Mavs and Tlr7, we found an elevated respiratory bacterial burden. Notably, mortality in the absence of Mavs and Tlr7 was independent of viral load or MyD88-dependent signaling but dependent on bacterial burden, caspase-1/11, and neutrophil-dependent tissue damage. Therefore, in the context of weakened antiviral resistance, vulnerability to IAV disease is a function of caspase-dependent pathology.
Collapse
Affiliation(s)
- Padmini S Pillai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ryan D Molony
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kimberly Martinod
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huiping Dong
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Iris K Pang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Michal C Tal
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Angel G Solis
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Piotr Bielecki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mark Trentalange
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert J Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA. Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06520, USA
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruth R Montgomery
- Section of Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Peter Staeheli
- Institut für Medizinische Mikrobiologie und Hygiene, Institute of Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA. Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
49
|
Leist SR, Pilzner C, van den Brand JMA, Dengler L, Geffers R, Kuiken T, Balling R, Kollmus H, Schughart K. Influenza H3N2 infection of the collaborative cross founder strains reveals highly divergent host responses and identifies a unique phenotype in CAST/EiJ mice. BMC Genomics 2016; 17:143. [PMID: 26921172 PMCID: PMC4769537 DOI: 10.1186/s12864-016-2483-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Influenza A virus is a zoonotic pathogen that poses a major threat to human and animal health. The severe course of influenza infection is not only influenced by viral virulence factors but also by individual differences in the host response. To determine the extent to which the genetic background can modulate severity of an infection, we studied the host responses to influenza infections in the eight genetically highly diverse Collaborative Cross (CC) founder mouse strains. RESULTS We observed highly divergent host responses between the CC founder strains with respect to survival, body weight loss, hematological parameters in the blood, relative lung weight and viral load. Mouse strain was the main factor with highest effect size on body weight loss after infection, demonstrating that this phenotype was highly heritable. Sex represented another significant main effect, although it was less strong. Analysis of survival rates and mean time to death suggested three groups of susceptibility phenotypes: highly susceptible (A/J, CAST/EiJ, WSB/EiJ), intermediate susceptible (C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ) and highly resistant strains (NZO/HlLtJ, PWK/PhJ). These three susceptibility groups were significantly different with respect to death/survival counts. Viral load was significantly different between susceptible and resistant strains but not between intermediate and highly susceptible strains. CAST/EiJ mice showed a unique phenotype. Despite high viral loads in their lungs, CAST/EiJ mice exhibited low counts of infiltrating granulocytes and showed increased numbers of macrophages in the lung. Histological studies of infected lungs and transcriptome analyses of peripheral blood cells and lungs confirmed an abnormal response in the leukocyte recruitment in CAST/EiJ mice. CONCLUSIONS The eight CC founder strains exhibited a large diversity in their response to influenza infections. Therefore, the CC will represent an ideal mouse genetic reference population to study the influence of genetic variation on the susceptibility and resistance to influenza infections which will be important to understand individual variations of disease severity in humans. The unique phenotype combination in the CAST/EiJ strain resembles human leukocyte adhesion deficiency and may thus represent a new mouse model to understand this and related abnormal immune responses to infections in humans.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Carolin Pilzner
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | | | - Leonie Dengler
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany. .,University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
50
|
Ciancanelli MJ, Abel L, Zhang SY, Casanova JL. Host genetics of severe influenza: from mouse Mx1 to human IRF7. Curr Opin Immunol 2016; 38:109-20. [PMID: 26761402 PMCID: PMC4733643 DOI: 10.1016/j.coi.2015.12.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 12/22/2022]
Abstract
Influenza viruses cause mild to moderate respiratory illness in most people, and only rarely devastating or fatal infections. The virulence factors encoded by viral genes can explain seasonal or geographic differences at the population level but are unlikely to account for inter-individual clinical variability. Inherited or acquired immunodeficiencies may thus underlie severe cases of influenza. The crucial role of host genes was first demonstrated by forward genetics in inbred mice, with the identification of interferon (IFN)-α/β-inducible Mx1 as a canonical influenza susceptibility gene. Reverse genetics has subsequently characterized the in vivo role of other mouse genes involved in IFN-α/β and -λ immunity. A series of in vitro studies with mouse and human cells have also refined the cell-intrinsic mechanisms of protection against influenza viruses. Population-based human genetic studies have not yet uncovered variants with a significant impact. Interestingly, human primary immunodeficiencies affecting T and B cells were also not found to predispose to severe influenza. Recently however, human IRF7 was shown to be essential for IFN-α/β- and IFN-λ-dependent protective immunity against primary influenza in vivo, as inferred from a patient with life-threatening influenza revealed to be IRF7-deficient by whole exome sequencing. Next generation sequencing of human exomes and genomes will facilitate the analysis of the human genetic determinism of severe influenza.
Collapse
Affiliation(s)
- Michael J Ciancanelli
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Howard Hughes Medical Institute, New York, NY, USA; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|