1
|
Fakira AK, Lueptow LM, Trimbake NA, Devi LA. PEN Receptor GPR83 in Anxiety-Like Behaviors: Differential Regulation in Global vs Amygdalar Knockdown. Front Neurosci 2021; 15:675769. [PMID: 34512237 PMCID: PMC8427670 DOI: 10.3389/fnins.2021.675769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorders are prevalent across the United States and result in a large personal and societal burden. Currently, numerous therapeutic and pharmaceutical treatment options exist. However, drugs to classical receptor targets have shown limited efficacy and often come with unpleasant side effects, highlighting the need to identify novel targets involved in the etiology and treatment of anxiety disorders. GPR83, a recently deorphanized receptor activated by the abundant neuropeptide PEN, has also been identified as a glucocorticoid regulated receptor (and named GIR) suggesting that this receptor may be involved in stress-responses that underlie anxiety. Consistent with this, GPR83 null mice have been found to be resistant to stress-induced anxiety. However, studies examining the role of GPR83 within specific brain regions or potential sex differences have been lacking. In this study, we investigate anxiety-related behaviors in male and female mice with global knockout and following local GPR83 knockdown in female mice. We find that a global knockdown of GPR83 has minimal impact on anxiety-like behaviors in female mice and a decrease in anxiety-related behaviors in male mice. In contrast, a local GPR83 knockdown in the basolateral amygdala leads to more anxiety-related behaviors in female mice. Local GPR83 knockdown in the central amygdala or nucleus accumbens (NAc) showed no significant effect on anxiety-related behaviors. Finally, dexamethasone administration leads to a significant decrease in receptor expression in the amygdala and NAc of female mice. Together, our studies uncover a significant, but divergent role for GPR83 in different brain regions in the regulation of anxiety-related behaviors, which is furthermore dependent on sex.
Collapse
Affiliation(s)
| | | | | | - Lakshmi A. Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Post-translational modifications and stress adaptation: the paradigm of FKBP51. Biochem Soc Trans 2020; 48:441-449. [PMID: 32318709 PMCID: PMC7200631 DOI: 10.1042/bst20190332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023]
Abstract
Adaptation to stress is a fundamental requirement to cope with changing environmental conditions that pose a threat to the homeostasis of cells and organisms. Post-translational modifications (PTMs) of proteins represent a possibility to quickly produce proteins with new features demanding relatively little cellular resources. FK506 binding protein (FKBP) 51 is a pivotal stress protein that is involved in the regulation of several executers of PTMs. This mini-review discusses the role of FKBP51 in the function of proteins responsible for setting the phosphorylation, ubiquitination and lipidation of other proteins. Examples include the kinases Akt1, CDK5 and GSK3β, the phosphatases calcineurin, PP2A and PHLPP, and the ubiquitin E3-ligase SKP2. The impact of FKBP51 on PTMs of signal transduction proteins significantly extends the functional versatility of this protein. As a stress-induced protein, FKBP51 uses re-setting of PTMs to relay the effect of stress on various signaling pathways.
Collapse
|
3
|
Fakira AK, Peck EG, Liu Y, Lueptow LM, Trimbake NA, Han MH, Calipari ES, Devi LA. The role of the neuropeptide PEN receptor, GPR83, in the reward pathway: Relationship to sex-differences. Neuropharmacology 2019; 157:107666. [PMID: 31199956 DOI: 10.1016/j.neuropharm.2019.107666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/22/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
Abstract
GPR83, the receptor for the neuropeptide PEN, exhibits high expression in the nucleus accumbens of the human and rodent brain, suggesting that it plays a role in modulating the mesolimbic reward pathway. However, the cell-type specific expression of GPR83, its functional impact in the reward pathway, and in drug reward-learning has not been fully explored. Using GPR83/eGFP mice, we show high GPR83 expression on cholinergic interneurons in the nucleus accumbens and moderate expression on ventral tegmental area dopamine neurons. In GPR83 knockout mice, baseline dopamine release in the nucleus accumbens is enhanced which disrupts the ratio of tonic vs phasic release. Additionally, GPR83 knockout leads to changes in the expression of dopamine-related genes. Using the morphine conditioned place preference model, we identify sex differences in morphine reward-learning, show that GPR83 is upregulated in the nucleus accumbens following morphine conditioned place preference, and show that shRNA-mediated knockdown of GPR83 in the nucleus accumbens leads to attenuation morphine reward. Together, these findings detect GPR83 expression in the reward-pathway, and show its involvement in dopamine release and morphine reward-learning.
Collapse
Affiliation(s)
- Amanda K Fakira
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Emily G Peck
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yutong Liu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Lindsay M Lueptow
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Nikita A Trimbake
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA.
| |
Collapse
|
4
|
Mack SM, Gomes I, Devi LA. Neuropeptide PEN and Its Receptor GPR83: Distribution, Signaling, and Regulation. ACS Chem Neurosci 2019; 10:1884-1891. [PMID: 30726666 DOI: 10.1021/acschemneuro.8b00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides are chemical messengers that act to regulate a number of physiological processes, including feeding, reward, pain, and memory, among others. PEN is one of the most abundant hypothalamic neuropeptides; however, until recently, its target receptor remained unknown. In this Review, we summarize recent developments in research focusing on PEN and its receptor GPR83. We describe the studies leading to the deorphanization of GPR83 as the receptor for PEN. We also describe the signaling mediated by the PEN-GPR83 system, as well as the physiological roles in which PEN-GPR83 has been implicated. As studies have suggested a role for the PEN-GPR83 system in food intake and body weight regulation, as well as in drug addiction and reward disorders, a thorough understanding of this novel neuropeptide-receptor system will help identify novel therapeutic targets to treat pathophysiological conditions involving PEN-GPR83.
Collapse
Affiliation(s)
- Seshat M. Mack
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Lakshmi A. Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
5
|
Lueptow LM, Devi LA, Fakira AK. Targeting the Recently Deorphanized Receptor GPR83 for the Treatment of Immunological, Neuroendocrine and Neuropsychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:1-25. [PMID: 30340784 DOI: 10.1016/bs.pmbts.2018.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
G-protein coupled receptors (GPCRs) are a superfamily of receptors responsible for initiation of a myriad of intracellular signaling cascades. Currently, GPCRs represent approximately 34% of marketed pharmaceuticals, a large portion of which have no known endogenous ligand. These orphan GPCRs represent a large pool of novel targets for drug development. Very recently, the neuropeptide PEN, derived from the proteolytic processing of the precursor proSAAS, has been identified as a selective, high-affinity endogenous ligand for the orphan receptor, GPR83. GPR83 is highly expressed in the brain, spleen and thymus, indicating that this receptor may be a target to treat neurological and immune disorders. In the brain GPR83 is expressed in regions involved in the reward pathway, stress/anxiety responses, learning and memory and metabolism. However, the cell type specific expression of GPR83 in these regions has only recently begun to be characterized. In the immune system, GPR83 expression is regulated by Foxp3 in T-regulatory cells that are involved in autoimmune responses. Moreover, in the brain this receptor is regulated by interactions with other GPCRs, such as the recently deorphanized receptor, GPR171, and other hypothalamic receptors such as MC4R and GHSR. The following review will summarize the properties of GPR83 and highlight its known and potential significance in health and disease, as well as its promise as a novel target for drug development.
Collapse
Affiliation(s)
- Lindsay M Lueptow
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Amanda K Fakira
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Khan MZ, He L. Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors. Psychopharmacology (Berl) 2017; 234:1181-1207. [PMID: 28289782 DOI: 10.1007/s00213-017-4586-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND In the central nervous system (CNS), G protein-coupled receptors (GPCRs) are the most fruitful targets for neuropsychopharmacological drug development. Rhodopsin (class A) is the most studied class of GPCR and includes orphan receptors for which the endogenous ligand is not known or is unclear. Characterization of orphan GPCRs has proven to be challenging, and the production pace of GPCR-based drugs has been incredibly slow. OBJECTIVE Determination of the functions of these receptors may provide unexpected insight into physiological and neuropathological processes. Advances in various methods and techniques to investigate orphan receptors including in situ hybridization and knockdown/knockout (KD/KO) showed extensive expression of these receptors in the mammalian brain and unmasked their physiological and neuropathological roles. Due to these rapid progress and development, orphan GPCRs are rising as a new and promising class of drug targets for neurodegenerative diseases and psychiatric disorders. CONCLUSION This review presents a neuropsychopharmacological perspective of 26 orphan receptors of rhodopsin (class A) family, namely GPR3, GPR6, GPR12, GPR17, GPR26, GPR35, GPR39, GPR48, GPR49, GPR50, GPR52, GPR55, GPR61, GPR62, GPR63, GPR68, GPR75, GPR78, GPR83, GPR84, GPR85, GPR88, GPR153, GPR162, GPR171, and TAAR6. We discussed the expression of these receptors in mammalian brain and their physiological roles. Furthermore, we have briefly highlighted their roles in neurodegenerative diseases and psychiatric disorders including Alzheimer's disease, Parkinson's disease, neuroinflammation, inflammatory pain, bipolar and schizophrenic disorders, epilepsy, anxiety, and depression.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China.
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China
| |
Collapse
|
7
|
The extracellular N-terminal domain of G-protein coupled receptor 83 regulates signaling properties and is an intramolecular inverse agonist. BMC Res Notes 2014; 7:913. [PMID: 25516095 PMCID: PMC4300838 DOI: 10.1186/1756-0500-7-913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/11/2014] [Indexed: 11/27/2022] Open
Abstract
Background Recently, the orphan G-protein coupled receptor 83 (GPR83) was identified as a new participant in body weight regulation. This receptor is highly expressed in the hypothalamic arcuate nucleus and is regulated in response to nutrient availability. Gpr83 knock-out mice are protected from diet-induced obesity. Moreover, in a previous study, we designed and characterized several artificial constitutively activating mutations (CAMs) in GPR83. A particular CAM was located in the extracellular N-terminal domain (eNDo) that is highly conserved among GPR83 orthologs. This suggests the contribution of this receptor part into regulation of signaling, which needed a more detailed investigation. Findings In this present study, therefore, we further explored the role of the eNDo in regulating GPR83-signaling and demonstrate a proof-of-principle approach in that deletion mutants are characterized by a strong increase in basal Gq/11-mediated signaling, whilst none of the additionally characterized signaling pathways (Gs, Gi, G12/13) were activated by the N-terminal deletion variants. Of note, we detected basal GPR83 MAPK-activity of the wild type receptor, which was not increased in the deletion variants. Conclusions Finally, the extracellular portion of GPR83 has a strong regulatory function on this receptor. A suppressive - inverse agonistic - effect of the eNDo on GPR83 signaling activity is demonstrated here, which also suggests a putative link between extracellular receptor activation and proteolytic cleavage. These new insights highlight important aspects of GPR83-regulation and might open options in the development of tools to modulate GPR83-signaling.
Collapse
|
8
|
The orphan receptor Gpr83 regulates systemic energy metabolism via ghrelin-dependent and ghrelin-independent mechanisms. Nat Commun 2013; 4:1968. [PMID: 23744028 PMCID: PMC3709495 DOI: 10.1038/ncomms2968] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 05/02/2013] [Indexed: 12/25/2022] Open
Abstract
The G protein-coupled receptor 83 (Gpr83) is widely expressed in brain regions regulating energy metabolism. Here we report that hypothalamic expression of Gpr83 is regulated in response to nutrient availability and is decreased in obese mice compared with lean mice. In the arcuate nucleus, Gpr83 colocalizes with the ghrelin receptor (Ghsr1a) and the agouti-related protein. In vitro analyses show heterodimerization of Gpr83 with Ghsr1a diminishes activation of Ghsr1a by acyl-ghrelin. The orexigenic and adipogenic effect of ghrelin is accordingly potentiated in Gpr83-deficient mice. Interestingly, Gpr83 knock-out mice have normal body weight and glucose tolerance when fed a regular chow diet, but are protected from obesity and glucose intolerance when challenged with a high-fat diet, despite hyperphagia and increased hypothalamic expression of agouti-related protein, Npy, Hcrt and Ghsr1a. Together, our data suggest that Gpr83 modulates ghrelin action but also indicate that Gpr83 regulates systemic metabolism through other ghrelin-independent pathways.
Collapse
|
9
|
Müller A, Kleinau G, Piechowski CL, Müller TD, Finan B, Pratzka J, Grüters A, Krude H, Tschöp M, Biebermann H. G-protein coupled receptor 83 (GPR83) signaling determined by constitutive and zinc(II)-induced activity. PLoS One 2013; 8:e53347. [PMID: 23335960 PMCID: PMC3546042 DOI: 10.1371/journal.pone.0053347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/27/2012] [Indexed: 12/31/2022] Open
Abstract
The G-protein coupled receptor 83 (GPR83) is an orphan G-protein coupled receptor for which the natural ligand(s) and signaling pathway(s) remain to be identified. Previous studies suggest a role of GPR83 in the regulation of thermogenesis and the control of circulating adiponectin. The aim of this study was to gain insights into the molecular underpinnings underlying GPR83 signaling. In particular, we aimed to assess the underlying G-protein activated signaling pathway of GPR83 and how this pathway is affected by mutational activation and zinc(II) challenge. Finally, we assessed the capacity of GPR83 for homodimerization. Our results show for the first time that mouse (m) GPR83 has high basal Gq/11 activity without affecting Gi or Gs signaling. Furthermore, we found that, under physiological conditions, zinc(II) (but not calcium(II) and magnesium(II)) potently activates mGPR83, thus identifying zinc(II) as an endogenous molecule with agonistic capability to activate mGPR83. In line with the observation that zinc(II)-ions activate mGPR83, we identified a cluster of ion-binding sensitive amino acids (e.g. His145, His204, Cys207, Glu217) in an activation sensitive receptor region of mGPR83. The occurrence of a constitutive activating mutant and a zinc(II)-binding residue at the N-terminal part corroborate the importance of this region in mGPR83 signal regulation. Finally, our results indicate that mGPR83 forms homodimers, which extend the current knowledge and molecular facets of GPR83 signaling.
Collapse
Affiliation(s)
- Anne Müller
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carolin L. Piechowski
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Timo D. Müller
- Institute of Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Brian Finan
- Institute of Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juliane Pratzka
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Grüters
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Tschöp
- Institute of Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
- Department of Metabolic Diseases, Technical University, Munich, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
10
|
E Vollmer L, Ghosal S, A Rush J, R Sallee F, P Herman J, Weinert M, Sah R. Attenuated stress-evoked anxiety, increased sucrose preference and delayed spatial learning in glucocorticoid-induced receptor-deficient mice. GENES BRAIN AND BEHAVIOR 2012; 12:241-9. [PMID: 23088626 DOI: 10.1111/j.1601-183x.2012.00867.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/03/2012] [Accepted: 10/09/2012] [Indexed: 12/27/2022]
Abstract
The glucocorticoid-induced receptor (GIR) is a stress-responsive gene that is abundantly expressed in forebrain limbic regions. Glucocorticoid-induced receptor has been classified as a Neuropeptide Y-like receptor, however, physiological attributes have not been investigated. In this study, mice lacking GIR (-/-) were screened in various paradigms related to stress, anxiety, activity, memory, fear and reward. GIR -/- mice elicited behavioral insensitivity to the anxiogenic effects of restraint stress. However, hypothalamic pituitary adrenal axis response to stress was not impacted by GIR deficiency. Increased preference for sucrose was observed in GIR -/- mice suggestive of modulation of reward-associated behaviors by the receptor. A delayed acquisition of spatial learning was also observed in GIR -/- mice. There were no effects of genotype on the modulation of anxiety-like behavior, activity, fear-conditioning and extinction. Our data extend previous studies on GIR regulation by glucocorticoids and provide novel evidence for a role of GIR in reward, learning and the behavioral outcomes of stress.
Collapse
Affiliation(s)
- L E Vollmer
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Bartfai T, Conti B. Molecules affecting hypothalamic control of core body temperature in response to calorie intake. Front Genet 2012; 3:184. [PMID: 23097647 PMCID: PMC3466567 DOI: 10.3389/fgene.2012.00184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/31/2012] [Indexed: 01/07/2023] Open
Abstract
Core body temperature (CBT) and calorie intake are main components of energy homeostasis and two important regulators of health, longevity, and aging. In homeotherms, CBT can be influenced by calorie intake as food deprivation or calorie restriction (CR) lowers CBT whereas feeding has hyperthermic effects. The finding that in mice CBT prolonged lifespan independently of CR, suggested that the mechanisms modulating CBT may represent important regulators of aging. Here we summarize the current knowledge on the signaling molecules and their receptors that participate in the regulation of CBT responses to calorie intake. These include hypothalamic neuropeptides regulating feeding but also energy expenditure via modulation of thermogenesis. We also report studies indicating that nutrient signals can contribute to regulation of CBT by direct action on hypothalamic preoptic warm-sensitive neurons that in turn regulate adaptive thermogenesis and hence CBT. Finally, we show the role played by two orphans G protein-coupled receptor: GPR50 and GPR83, that were recently demonstrated to regulate temperature-dependent energy expenditure.
Collapse
Affiliation(s)
- Tamas Bartfai
- Department of Chemical Physiology, The Scripps Research Institute La Jolla, CA, USA
| | | |
Collapse
|
12
|
Dubins JS, Sanchez-Alavez M, Zhukov V, Sanchez-Gonzalez A, Moroncini G, Carvajal-Gonzalez S, Hadcock JR, Bartfai T, Conti B. Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin. Metabolism 2012; 61:1486-93. [PMID: 22560055 PMCID: PMC3415578 DOI: 10.1016/j.metabol.2012.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/07/2012] [Accepted: 03/24/2012] [Indexed: 01/26/2023]
Abstract
The G protein-coupled receptor 83 (GPR83) was recently demonstrated in warm sensitive neurons (WSN) of the hypothalamic preoptic area (POA) that participate in temperature homeostasis. Thus, we investigated whether GPR83 may have a role in regulating core body temperature (CBT) by reducing its expression in the POA. Dissipation of energy in the form of heat is the primary mode of energy expenditure in mammals and can ultimately affect energy homeostasis. Thus, we also measured the level of important regulators of metabolism. Downregulation of GPR83 was obtained by lentiviral short-hairpin RNAs (shGPR83) vectors designed and selected for their ability to reduce GPR83 levels in vitro. Mice received POA injection of shGPR83 or non-silencing vectors and were monitored for CBT, motor activity, food intake body weight and circulating levels of IGF-1, insulin, leptin and adiponectin. Down-regulation of GPR83 in the POA resulted in a small (0.15°C) but significant reduction of CBT during the dark/active cycle of the day. Temperature reduction was followed by increased body weight gain independent of caloric intake. shGPR83 mice also had increased level of circulating adiponectin (31916±952 pg/mL vs. 23474±1507 pg/mL, P<.01) while no change was observed for insulin, IGF-1 or leptin. GPR83 may participate in central thermoregulation and the central control of circulating adiponectin. Further work is required to determine how GPR83 can affect POA WSN and what are the long term metabolic consequences of its down-regulation.
Collapse
Affiliation(s)
- Jeffrey S Dubins
- Cardiovascular, Metabolic and Endocrine Diseases, Pfizer Global Research and Development, Groton, CT 06340, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Regulation of proto-oncogene transcription, cell proliferation, and tumorigenesis in mice by PSF protein and a VL30 noncoding RNA. Proc Natl Acad Sci U S A 2009; 106:16794-8. [PMID: 19805375 DOI: 10.1073/pnas.0909022106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe the role of PSF protein and VL30-1 RNA, a mouse retroelement noncoding RNA, in the reversible regulation of proto-oncogene transcription, cell proliferation, and tumorigenesis in mice. The experiments involved increasing expression of PSF or VL30-1 RNA in NIH/3T3 fibroblast cells and B16F10 melanoma cells by transfecting the respective coding genes under control of a strong promoter or decreasing expression by transfecting a shRNA construct that causes degradation of PSF mRNA or VL30-1 RNA. The results are as follows: (i) PSF binds to the proto-oncogene Rab23, repressing transcription, and VL30-1 RNA binds and releases PSF from Rab23, activating transcription; (ii) increasing expression of PSF or decreasing expression of VL30-1 RNA suppresses cell proliferation in culture and tumorigenesis in mice; and (iii) decreasing expression of PSF or increasing expression of VL30-1 RNA promotes cell proliferation in culture and tumorigenesis in mice. These results indicate that PSF is a major tumor-suppressor protein and VL30-1 RNA is a major tumor-promoter RNA in mice. Although VL30-1 RNA can integrate into the cell genome, tumor promotion by VL30-1 RNA involves a trans effect rather than a cis effect on gene transcription. Expression of VL30-1 RNA is 5- to 8-fold higher in mouse tumor lines than in mouse fibroblast or myoblast lines, whereas expression of PSF mRNA does not decrease in the tumor lines, suggesting that tumorigenesis is driven by an increase of VL30-1 RNA rather than a decrease of PSF. A similar regulatory mechanism functions in human cells, except that human PSF-binding RNAs replace VL30-1 RNA, which is not encoded in the human genome. We propose that PSF protein and PSF-binding RNAs have a central role in the reversible regulation of mammalian cell proliferation and tumorigenesis and that increasing PSF expression or decreasing PSF-binding RNA expression in tumor cells is a potential therapeutic strategy for cancer.
Collapse
|
14
|
Toms C, Jessup H, Thompson C, Baban D, Davies K, Powrie F. Gpr83 expression is not required for the maintenance of intestinal immune homeostasis and regulation of T-cell-dependent colitis. Immunology 2008; 125:302-12. [PMID: 18479351 PMCID: PMC2669134 DOI: 10.1111/j.1365-2567.2008.02857.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Regulatory T (TR) cells are integral to the maintenance of intestinal homeostasis, where an intricate balance between tolerance and immunity must be maintained. Recently, studies have focused on the identification of molecules involved in the function and/or development of TR cells. One such molecule, the G-protein coupled receptor Gpr83, has been identified through gene expression analysis as being overexpressed within thymic and peripheral naturally arising regulatory T (nTR) cell populations. The aim of this study was to further define the characteristics of Gpr83 expression and to investigate the role of Gpr83 in TR-cell development and function through the generation and analysis of Gpr83-deficient mice. Following activation, naïve CD4+ T cells induce Gpr83 expression in a transforming growth factor (TGF)-β dependent manner. Rather than being a general marker of activation, Gpr83 expression could only be detected in cells also expressing forkhead/winged helix transcription factor (Foxp3), further supporting the association of Gpr83 with the regulatory cell phenotype. Mice deficient in Gpr83 expression developed normally and did not display signs of inflammatory disease. Thymic nTR-cell development was unaffected by a lack of Gpr83 expression and peripheral nTR-cell homeostasis was normal when compared with that of wild-type mice. Gpr83 expression was dispensable for the regulatory activity of nTR cells as Gpr83-deficient nTR cells could suppress the development of disease in a T-cell transfer model of colitis. These results suggest a redundant role for Gpr83 in the function of TR cells in this model of disease. Further studies are required to determine the role of Gpr83 in TR-cell biology.
Collapse
Affiliation(s)
- Christy Toms
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
15
|
Lu LF, Gavin MA, Rasmussen JP, Rudensky AY. G protein-coupled receptor 83 is dispensable for the development and function of regulatory T cells. Mol Cell Biol 2007; 27:8065-72. [PMID: 17893329 PMCID: PMC2169173 DOI: 10.1128/mcb.01075-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Global analyses of gene expression in regulatory T (Treg) cells, whose development is critically dependent upon the transcription factor Foxp3, have provided many clues as to the molecular mechanisms these cells employ to control immune responses and establish immune tolerance. Through these studies, G protein-coupled receptor 83 (GPR83) was found to be expressed at high levels in Treg-cell populations. However, its function remained unclear. Recently, it has been suggested that GPR83 is involved in the induction of Foxp3 expression in the peripheral nonregulatory Foxp3- CD4 T cells. To examine a role for GPR83 in Treg-cell biology, we generated and characterized GPR83-deficient mice. We have shown that GPR83 abolition does not result in measurable pathology or changes in the numbers or function of Foxp3+ Treg cells. Furthermore, while in vitro analysis suggested a potential involvement of GPR83 in transforming growth factor beta-dependent Foxp3 induction, there was no difference in the ability of nonregulatory GPR83-deficient and nondeficient Foxp3- T cells to acquire Foxp3 expression in vivo. Collectively, our results demonstrate that GPR83 is dispensable for Treg-cell development and function.
Collapse
Affiliation(s)
- Li-Fan Lu
- Department of Immunology, University of Washington, Seattle, WA 98195-7650, USA
| | | | | | | |
Collapse
|
16
|
Sah R, Parker SL, Sheriff S, Eaton K, Balasubramaniam A, Sallee FR. Interaction of NPY compounds with the rat glucocorticoid-induced receptor (GIR) reveals similarity to the NPY-Y2 receptor. Peptides 2007; 28:302-9. [PMID: 17240481 PMCID: PMC1876793 DOI: 10.1016/j.peptides.2006.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/09/2006] [Indexed: 10/23/2022]
Abstract
The rat glucocorticoid-induced receptor (rGIR) is an orphan G protein-coupled receptor awaiting pharmacological characterization. Among known receptors, rGIR exhibits highest sequence similarity to the neuropeptide Y (NPY)-Y(2) receptor (38-40%). The pharmacological profile of rGIR was investigated using (125)I-PYY(3-36), a Y(2)-preferring radioligand and several NPY analogs. rGIR displayed a similar displacement profile as reported for the Y(2) receptor, in that the Y(2)-selective C terminus fragments of NPY and PYY (NPY(3-36) and PYY(3-36)) showed high affinity binding and activation of rGIR (low nanomolar range). The rank order potency for displacement was NPY(3-36)>PYY(3-36)=NPY>NPY(13-36)>Ac, Leu NPY(24-36)>[D-Trp(32)]-NPY>Leu(31), Pro(34)-NPY=hPP. NPY and Y(2)-selective agonists NPY(3-36) and PYY(3-36) led to significant activation of (35)S-GTPgammaS binding to rGIR transfected cells. BIIE0246, a specific Y(2) antagonist, displaced (125)I-PYY(3-36) binding to rGIR with high affinity (95nM). Activation of (35)S-GTPgammaS binding by Y(2)-selective agonist in rGIR transfected cells was also completely abolished by BIIE0246. Our data report, for the first time, an interaction of NPY ligands with rGIR expressed in vitro, and indicate similarities between GIR and the NPY-Y(2) receptor.
Collapse
Affiliation(s)
- Renu Sah
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- * Corresponding Author, Renu Sah, Department of Psychiatry, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, Ohio 45229-0559, Tel: +1 513-558-5129, Fax: +1 513-558-2288,
| | - Steven L. Parker
- Department of Pharmacology, University of Tennessee, Memphis, TN 38163, USA
| | - Sulaiman Sheriff
- Department of Surgery, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Katherine Eaton
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | | | - Floyd R. Sallee
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
17
|
Radu CG, Cheng D, Nijagal A, Riedinger M, McLaughlin J, Yang LV, Johnson J, Witte ON. Normal immune development and glucocorticoid-induced thymocyte apoptosis in mice deficient for the T-cell death-associated gene 8 receptor. Mol Cell Biol 2006; 26:668-77. [PMID: 16382156 PMCID: PMC1346912 DOI: 10.1128/mcb.26.2.668-677.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
T-cell death-associated gene 8 (TDAG8) is a G-protein-coupled receptor transcriptionally upregulated by glucocorticoids (GCs) and implicated by overexpression studies in psychosine-mediated inhibition of cytokinesis and in GC-induced apoptosis. To examine the physiological function of TDAG8, we generated knockout (KO) mice by homologous recombination. An enhanced green fluorescent protein reporter was knocked into the disrupted tdag8 locus to allow the analysis of TDAG8 expression in living cells. Interestingly, we found that during thymocyte development, TDAG8 expression resembled the dynamic regulation described for known modulators of GC-induced apoptosis, including Bcl-2, Notch1, and GC receptor. TDAG8 was expressed in double-negative cells, was downregulated at the double-positive transition, and was upregulated in single-positive thymocytes. However, despite this striking expression pattern, maturation and selection of thymocytes, as well as major immune functions, were not affected in TDAG8 KO mice. In contrast to previous overexpression results, TDAG8 was dispensable for psychosine-induced formation of multinucleated cells. Furthermore, TDAG8 KO thymocytes showed normal apoptosis following in vivo and in vitro GC treatment. These results, while establishing a useful reporter strain to study T-lymphocyte maturation, argue against a critical role for TDAG8 in immune development, psychosine-mediated inhibition of cytokinesis, and GC-induced cell death.
Collapse
Affiliation(s)
- Caius G Radu
- Department of Microbiology, Immunology and Molecular Genetics, University of California--Los Angeles, Los Angeles, California 90095-1662, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sah R, Pritchard LM, Richtand NM, Ahlbrand R, Eaton K, Sallee FR, Herman JP. Expression of the glucocorticoid-induced receptor mRNA in rat brain. Neuroscience 2005; 133:281-92. [PMID: 15893650 PMCID: PMC1815382 DOI: 10.1016/j.neuroscience.2005.01.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 01/03/2005] [Accepted: 01/10/2005] [Indexed: 01/07/2023]
Abstract
The glucocorticoid-induced receptor (GIR) is an orphan G-protein-coupled receptor awaiting pharmacological characterization. GIR was originally identified in murine thymoma cells, and shows a widespread, yet not completely complementary distribution in mouse and human brain. Expression of the mouse GIR gene is modulated by dexamethasone in the brain and periphery, suggesting that GIR function is directly responsive to glucocorticoid signals. The rat GIR was cloned from rat prefrontal cortex by our group and was shown to be up-regulated following chronic amphetamine. The physiological role of GIR in the rat is not known at present. In order to gain a clearer understanding of the potential functions of GIR in the rat, we performed a detailed mapping of GIR mRNA expression in the rat brain. GIR mRNA showed widespread distribution in forebrain limbic and thalamic structures, and a more restricted distribution in hindbrain areas such as the spinal trigeminal nucleus and the median raphe nucleus. Areas with moderate to high levels of GIR include olfactory regions such as the nucleus of olfactory tract, hippocampus, various thalamic nuclei, cortical layers, and some hypothalamic nuclei. In comparison with previous studies, significant regional differences exist in GIR distribution in mouse and rat brain, particularly in the thalamus, striatum and in hippocampus at a cellular level. Overall, the expression of GIR in rat brain more closely approaches that seen previously in human than mouse, suggesting that rat models may be more informative for understanding the role of GIR in glucocorticoid physiology and glucocorticoid-related disease states. GIR mRNA distribution in the rat indicates a potential role of this receptor in the control of feeding and ingestive behavior, regulation of stress and emotional behavior, learning and memory, and, drug reinforcement and reward.
Collapse
Affiliation(s)
- R Sah
- Department of Psychiatry, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45229-0559, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kawasawa Y, McKenzie LM, Hill DP, Bono H, Yanagisawa M. G protein-coupled receptor genes in the FANTOM2 database. Genome Res 2003; 13:1466-77. [PMID: 12819145 PMCID: PMC403690 DOI: 10.1101/gr.1087603] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of receptor proteins in mammals and play important roles in many physiological and pathological processes. Gene expression of GPCRs is temporally and spatially regulated, and many splicing variants are also described. In many instances, different expression profiles of GPCR gene are accountable for the changes of its biological function. Therefore, it is intriguing to assess the complexity of the transcriptome of GPCRs in various mammalian organs. In this study, we took advantage of the FANTOM2 (Functional Annotation Meeting of Mouse cDNA 2) project, which aimed to collect full-length cDNAs inclusively from mouse tissues, and found 410 candidate GPCR cDNAs. Clustering of these clones into transcriptional units (TUs) reduced this number to 213. Out of these, 165 genes were represented within the known 308 GPCRs in the Mouse Genome Informatics (MGI) resource. The remaining 48 genes were new to mouse, and 14 of them had no clear mammalian ortholog. To dissect the detailed characteristics of each transcript, tissue distribution pattern and alternative splicing were also ascertained. We found many splicing variants of GPCRs that may have a relevance to disease occurrence. In addition, the difficulty in cloning tissue-specific and infrequently transcribed GPCRs is discussed further.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Animals
- DNA, Complementary/genetics
- Databases, Genetic/statistics & numerical data
- GTP-Binding Proteins/classification
- GTP-Binding Proteins/genetics
- Humans
- Membrane Proteins/classification
- Membrane Proteins/genetics
- Mice
- Nerve Tissue Proteins
- Organ Specificity/genetics
- Proteome/genetics
- Receptor, Anaphylatoxin C5a
- Receptors, Cell Surface/classification
- Receptors, Cell Surface/genetics
- Receptors, Chemokine/classification
- Receptors, Chemokine/genetics
- Receptors, Cytokine/classification
- Receptors, Cytokine/genetics
- Receptors, G-Protein-Coupled
- Receptors, Galanin
- Receptors, Lysophospholipid
- Receptors, Neuropeptide/classification
- Receptors, Neuropeptide/genetics
- Receptors, Odorant/classification
- Receptors, Odorant/genetics
- Receptors, Purinergic/classification
- Receptors, Purinergic/genetics
- Receptors, Purinergic P2/genetics
- Signal Transduction/genetics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Yuka Kawasawa
- Howard Hughes Medical Institute, Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9050, USA.
| | | | | | | | | |
Collapse
|
20
|
Medh RD, Webb MS, Miller AL, Johnson BH, Fofanov Y, Li T, Wood TG, Luxon BA, Thompson EB. Gene expression profile of human lymphoid CEM cells sensitive and resistant to glucocorticoid-evoked apoptosis. Genomics 2003; 81:543-55. [PMID: 12782123 PMCID: PMC2777808 DOI: 10.1016/s0888-7543(03)00045-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three closely related clones of leukemic lymphoid CEM cells were compared for their gene expression responses to the glucocorticoid dexamethasone (Dex). All three contained receptors for Dex, but only two responded by undergoing apoptosis. After a time of exposure to Dex that ended late in the interval preceding onset of apoptosis, gene microarray analyses were carried out. The results indicate that the expression of a limited, distinctive set of genes was altered in the two apoptosis-prone clones, not in the resistant clone. That clone showed altered expression of different sets of genes, suggesting that a molecular switch converted patterns of gene expression between the two phenotypes: apoptosis-prone and apoptosis-resistant. The results are consistent with the hypothesis that altered expression of a distinctive network of genes after glucocorticoid administration ultimately triggers apoptosis of leukemic lymphoid cells. The altered genes identified provide new foci for study of their role in cell death.
Collapse
Affiliation(s)
- Rheem D. Medh
- Department of Biology, California State University, Northridge, CA 91330-8303, USA
| | - M. Scott Webb
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, TX 77555-0645, USA
| | - Aaron L. Miller
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, TX 77555-0645, USA
| | - Betty H. Johnson
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, TX 77555-0645, USA
| | - Yuriy Fofanov
- Department of Computer Science, The University of Houston, Houston, TX 77204-3010, USA
| | - Tongbin Li
- Department of Computer Science, The University of Houston, Houston, TX 77204-3010, USA
| | - Thomas G. Wood
- Sealy Center for Molecular Science, The University of Texas Medical Branch, Galveston, TX 77555-0645, USA
| | - Bruce A. Luxon
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, TX 77555-0645, USA
| | - E. Brad Thompson
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, TX 77555-0645, USA
- Corresponding author. Fax: +1-409-772-5159. (E.B. Thompson)
| |
Collapse
|
21
|
Abstract
Recent advances in gene microarray technology have facilitated global analyses of gene expression profiles in normal and malignant immune cells. Great strides have been made in our understanding of molecular differences among various types of immune cells, the process of T and B cell activation, and the genomic changes that convert normal cells to malignant ones. Genomic analysis has become a crucial aspect of cancer classification, diagnosis, therapy, and prognosis. This technology has the potential to reveal the comprehensive transcriptional alterations that dictate fundamental biological processes such as signal transduction in response to specific stimuli, cell growth, differentiation, and apoptosis. While reaping the benefits of genomic analyses, it is important to realize its limitations with respect to accuracy of interpretation, reproducibility, and signal detection. It is crucial to optimize signals for individual probe-target pairs and to develop a uniform set of criteria for data analyses. The development of a public-access database of results from individual laboratories will pave the way for identifying discrepancies and advancing scientific breakthroughs.
Collapse
Affiliation(s)
- Rheem D Medh
- Department of Biology, California State University at Northridge, Northridge, California 91330, USA. rheem.medh.csun.edu
| |
Collapse
|
22
|
Cloning, expression, and regulation of a glucocorticoid-induced receptor in rat brain: effect of repetitive amphetamine. J Neurosci 2001. [PMID: 11698613 DOI: 10.1523/jneurosci.21-22-09027.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Behavioral sensitization to psychostimulants involves neuroadaptation of stress-responsive systems. We have identified and sequenced a glucocorticoid-induced receptor (GIR) cDNA from rat prefrontal cortex. The full-length GIR cDNA encodes a 422 amino acid protein belonging to G-protein-coupled receptor superfamily. Although the ligand for GIR is still unknown, the dendrogram construction indicates that GIR may belong to peptide receptor subfamily (e.g., substance P receptor), with more distant relationship to subfamilies of glycoprotein hormone receptors (e.g., thyrotropin receptor) and biogenic amine receptors (e.g., dopamine receptor). GIR shares 31-34% amino acid identity to the tachykinin receptors (substance P receptor, neurokinin A receptor, and neurokinin B receptor). GIR mRNA is expressed preferentially in brain, and its neuronal expression is relegated to limbic brain regions, particularly in forebrain. GIR transcript levels are increased significantly and persistently in prefrontal cortex for 7 d after discontinuation of chronic amphetamine exposure. The induction of GIR expression by amphetamine is associated with augmented behavioral activation. These findings suggest that modulation of GIR expression may be involved in behavioral sensitization, and GIR may play a role at the interface between stress and neuroadaptation to psychostimulants.
Collapse
|
23
|
Högger P, Dreier J, Droste A, Buck F, Sorg C. Identification of the Integral Membrane Protein RM3/1 on Human Monocytes as a Glucocorticoid-Inducible Member of the Scavenger Receptor Cysteine-Rich Family (CD163). THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.4.1883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The RM3/1 Ag is a membrane glycoprotein restricted to human monocytes and macrophages that evolve in the late phase of inflammation. Peptide sequence analysis of the RM3/1 protein revealed similarity to CD163, a member of the scavenger receptor cysteine-rich family. Using specific Abs (RM3/1, Ki-M8), we demonstrate an identical cellular regulation for the RM3/1 and the CD163 protein. Most notably, we show for the first time that CD163 is significantly up-regulated by glucocorticoids. In contrast, the protein is down-regulated by the immunosuppressant cyclosporin A and by phorbol esters, while the inflammatory mediator LPS has no significant influence on the expression. We describe the first isolation of a full-length cDNA of CD163 and expression of the corresponding protein. Several splice variants of CD163 exist, and we elucidated the kinetics of induction of three major mRNA splice variants by fluticasone propionate; another splice variant was proved to be unresponsive to this glucocorticoid. Taken together with a previous result showing an involvement of RM3/1 in adhesion of monocytes to the activated endothelium, we discuss that CD163 might play an important role in inflammatory processes.
Collapse
Affiliation(s)
- Petra Högger
- *Experimental Dermatology and
- Institutes of
- †Pharmaceutical Chemistry, Westfälische Wilhelms-University Münster, Germany; and
- Institutes of
| | | | | | - Friedrich Buck
- ‡Institute of Cell Biochemistry and Clinical Neurobiology, University of Hamburg, Hamburg, Germany
- Institutes of
| | | |
Collapse
|
24
|
Baughman G, Wiederrecht GJ, Campbell NF, Martin MM, Bourgeois S. FKBP51, a novel T-cell-specific immunophilin capable of calcineurin inhibition. Mol Cell Biol 1995; 15:4395-402. [PMID: 7542743 PMCID: PMC230679 DOI: 10.1128/mcb.15.8.4395] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The immunosuppressive drugs FK506 and cyclosporin A block T-lymphocyte proliferation by inhibiting calcineurin, a critical signaling molecule for activation. Multiple intracellular receptors (immunophilins) for these drugs that specifically bind either FK506 and rapamycin (FK506-binding proteins [FKBPs]) or cyclosporin A (cyclophilins) have been identified. We report the cloning and characterization of a new 51-kDa member of the FKBP family from murine T cells. The novel immunophilin, FKBP51, is distinct from the previously isolated and sequenced 52-kDa murine FKBP, demonstrating 53% identity overall. Importantly, Western blot (immunoblot) analysis showed that unlike all other FKBPs characterized to date, FKBP51 expression was largely restricted to T cells. Drug binding to recombinant FKBP51 was demonstrated by inhibition of peptidyl prolyl isomerase activity. As judged from peptidyl prolyl isomerase activity, FKBP51 had a slightly higher affinity for rapamycin than for FK520, an FK506 analog. FKBP51, when complexed with FK520, was capable of inhibiting calcineurin phosphatase activity in an in vitro assay system. Inhibition of calcineurin phosphatase activity has been implicated both in the mechanism of immunosuppression and in the observed toxic side effects of FK506 in nonlymphoid cells. Identification of a new FKBP that can mediate calcineurin inhibition and is restricted in its expression to T cells suggests that new immunosuppressive drugs may be identified that, by virtue of their specific interaction with FKBP51, would be targeted in their site of action.
Collapse
Affiliation(s)
- G Baughman
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, San Diego, California 92186-5800, USA
| | | | | | | | | |
Collapse
|
25
|
Flomerfelt FA, Miesfeld RL. Recessive mutations in a common pathway block thymocyte apoptosis induced by multiple signals. J Cell Biol 1994; 127:1729-42. [PMID: 7798323 PMCID: PMC2120285 DOI: 10.1083/jcb.127.6.1729] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The glucocorticoid receptor (GR) is a ligand-regulated transcription factor that controls genes necessary to initiate glucocorticoid-induced thymocyte apoptosis. We have performed a genetic analysis of thymocyte cell death by isolating and characterizing a panel of GR+ dexamethasone-resistant mutants of the murine WEHI7.2 thymocyte cell line. These apoptosis-defective (Apt-) mutants were used to identify previously unknown early steps in the apoptotic pathway. The Apt- mutants contain nonglucocorticoid receptor, recessive mutations in genes that represent multiple complementation groups. These mutations block apoptosis induced by dexamethasone, gamma irradiation, and c-AMP treatment before the point where Bcl-2 exerts its protective effect. We propose that different signals share a common apoptotic pathway, and that the induction of apoptosis involves multiple precommitment steps that can be blocked by recessive mutations.
Collapse
Affiliation(s)
- F A Flomerfelt
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85724
| | | |
Collapse
|
26
|
Abstract
The genetic components required for glucocorticoid induction of apoptosis were studied by using somatic cell hybridization. Intertypic whole-cell hybrids were generated by crossing the glucocorticoid-resistant rat liver cell line Fado-2 with the glucocorticoid-sensitive mouse thymoma cell line BW5147.3. Morphological and biochemical criteria were used to assess sensitivity or resistance to glucocorticoid-induced cell death. Both phenotypes were observed, and all of the hybrids retained a functional glucocorticoid receptor as judged by their abilities to induce the metallothionein gene in response to dexamethasone (Dex). Sensitivity to apoptosis did not correlate with morphological phenotype in that not all suspension cells were sensitive. The effect of glucocorticoids on the expression of apoptosis-linked genes was analyzed in a subset of Dex-sensitive and Dex-resistant hybrids. p53 and c-myc mRNAs were present in parental cells as well as sensitive and resistant hybrid cells, and their levels were not affected by glucocorticoid treatment. bcl-2 expression was restricted to the thymoma cell line and was also not affected by glucocorticoids. We did not detect any bcl-2 mRNA in the hepatoma cell line and the hybrids, suggesting that, as with most tissue-specific genes, bcl-2 is regulated in trans. Furthermore, while the majority of hybrids analyzed retained a full complement of mouse chromosomes, sensitive hybrids were missing some rat chromosomes (preferentially chromosomes 16 and 19), indicating that apoptosis is subject to trans repression. Resistant cells thus appear to repress the activity or synthesis of a nuclear factor that interacts with a glucocorticoid-dependent gene(s) to activate the cell death pathway.
Collapse
|
27
|
Gourdeau H, Walker PR. Evidence for trans regulation of apoptosis in intertypic somatic cell hybrids. Mol Cell Biol 1994; 14:6125-34. [PMID: 8065345 PMCID: PMC359139 DOI: 10.1128/mcb.14.9.6125-6134.1994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The genetic components required for glucocorticoid induction of apoptosis were studied by using somatic cell hybridization. Intertypic whole-cell hybrids were generated by crossing the glucocorticoid-resistant rat liver cell line Fado-2 with the glucocorticoid-sensitive mouse thymoma cell line BW5147.3. Morphological and biochemical criteria were used to assess sensitivity or resistance to glucocorticoid-induced cell death. Both phenotypes were observed, and all of the hybrids retained a functional glucocorticoid receptor as judged by their abilities to induce the metallothionein gene in response to dexamethasone (Dex). Sensitivity to apoptosis did not correlate with morphological phenotype in that not all suspension cells were sensitive. The effect of glucocorticoids on the expression of apoptosis-linked genes was analyzed in a subset of Dex-sensitive and Dex-resistant hybrids. p53 and c-myc mRNAs were present in parental cells as well as sensitive and resistant hybrid cells, and their levels were not affected by glucocorticoid treatment. bcl-2 expression was restricted to the thymoma cell line and was also not affected by glucocorticoids. We did not detect any bcl-2 mRNA in the hepatoma cell line and the hybrids, suggesting that, as with most tissue-specific genes, bcl-2 is regulated in trans. Furthermore, while the majority of hybrids analyzed retained a full complement of mouse chromosomes, sensitive hybrids were missing some rat chromosomes (preferentially chromosomes 16 and 19), indicating that apoptosis is subject to trans repression. Resistant cells thus appear to repress the activity or synthesis of a nuclear factor that interacts with a glucocorticoid-dependent gene(s) to activate the cell death pathway.
Collapse
Affiliation(s)
- H Gourdeau
- Institute for Biological Sciences, National Research Council of Canada, Ottawa
| | | |
Collapse
|
28
|
Fernandez PA, Rotello RJ, Rangini Z, Doupe A, Drexler HC, Yuan J. Expression of a specific marker of avian programmed cell death in both apoptosis and necrosis. Proc Natl Acad Sci U S A 1994; 91:8641-5. [PMID: 8078937 PMCID: PMC44662 DOI: 10.1073/pnas.91.18.8641] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Apoptosis and necrosis are two types of cell death with different morphologic features. We report here the isolation of a monoclonal antibody, BV2, that specifically recognizes cells undergoing developmental programmed cell death in different tissues of the chicken and zebra-finch embryos. The antigen recognized by BV2 monoclonal antibody is detected in vitro in primary chicken embryonic fibroblasts induced to die by actinomycin D, as well as fibroblasts induced to die by chemical anoxia. The expression of this specific antigen during necrosis appears to require active protein synthesis. These findings provide evidence that cells from different embryonic tissues undergoing programmed cell death during vertebrate development express similar antigens and indicate that apoptosis and necrosis may share similar biochemical features.
Collapse
Affiliation(s)
- P A Fernandez
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown 02129
| | | | | | | | | | | |
Collapse
|
29
|
Nilsson M, Bohm S. Inducible and cell type-specific expression of VL30 U3 subgroups correlate with their enhancer design. J Virol 1994; 68:276-88. [PMID: 8254739 PMCID: PMC236287 DOI: 10.1128/jvi.68.1.276-288.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The murine VL30 elements constitute one family of retrotransposons represented in 100 to 200 copies that are dispersed among the mouse chromosomes. On the basis of sequence homology, we have subdivided mouse VL30 members into four distinct U3 subgroups. The use of subgroup-specific probes in Northern (RNA) blot analyses shows that individual VL30 U3 subgroups are expressed in a tissue-specific manner. We show by in situ hybridization of mouse skin treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) that VL30 expression is induced in epidermal keratinocytes but not in dermal fibroblasts. Transient transfections of reporter gene plasmids together with in vitro binding analysis indicate that TPA-induced VL30 transcription specific for keratinocytes is mediated by two cooperating sequence motifs in juxtaposed position. One sequence motif is shown to constitutively bind CREB- and Jun-related proteins in both keratinocytes and fibroblasts, whereas the other is a target for TPA-induced c-Rel/p65(NF-kappa B)-binding activity specifically in keratinocytes. These binding sites are found to be conserved within U3 subgroups and individual U3 regions showing induced expression in TPA-treated mouse epidermis. These results together with a sequence comparison between different U3 subgroups indicate that cell type-specific activity of transcription factors known to regulate VL30 transcription and the presence or absence of their cognate binding sites within individual U3 regions determine inducible and cell type-specific VL30 expression. The variable VL30 U3 regions might thus be useful tools to study inducible and cell type-specific transcription in many different cell systems.
Collapse
Affiliation(s)
- M Nilsson
- Center for Nutrition and Toxicology, Karolinska Institute, NOVUM, Huddinge, Sweden
| | | |
Collapse
|
30
|
Kingsmore SF, Bieniarz MC, Watson ML, Seldin MF. Genetic mapping of Pp11r, a thymocyte gene expressed during apoptosis, to mouse chromosome 15. Mamm Genome 1993; 4:459-60. [PMID: 8104059 DOI: 10.1007/bf00296822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- S F Kingsmore
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | |
Collapse
|
31
|
Abstract
Most of the cytotoxic anticancer drugs in current use have been shown to induce apoptosis in susceptible cells. The fact that disparate agents, which interact with different targets, induce cell death with some common features (endonucleolytic cleavage of DNA, changes in chromatin condensation) suggests that cytotoxicity is determined by the ability of the cell to engage this so-called 'programmed' cell death. The mechanism of the coupling of a stimulus (drug-target interaction) to a response (cell death) is not known, but modulation of this coupling may affect the outcome of drug treatment. This review surveys the recent evidence which supports the idea that the drug-target interaction per se is not the sole determinant of cellular sensitivity of cytotoxic drugs. Studies of the signals which might engage apoptosis, the genes which modulate it and the biochemical process of drug-induced apoptosis itself are described, where possible, for glucocorticoids, topoisomerase inhibitors, alkylating agents, antimetabolites and antihormones. It is suggested that identification of the gene products which couple the stimulus to the response, and so determine intrinsic cellular sensitivity (and resistance), will be important targets for new types of drugs. These might then allow responses to occur in the major cancers of man, which are chemoresistant.
Collapse
Affiliation(s)
- J A Hickman
- CRC Molecular and Cellular Pharmacology Group, School of Biological Sciences, University of Manchester, UK
| |
Collapse
|
32
|
Identification of a novel enhancer element mediating calcium-dependent induction of gene expression in response to either epidermal growth factor or activation of protein kinase C. Mol Cell Biol 1992. [PMID: 1588971 DOI: 10.1128/mcb.12.6.2793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The VL30 family of defective murine retroviruses consists of 100 to 200 members, of which fewer than 5% appear to be transcriptionally active. A genomic clone of the transcriptionally active VL30 element RVL-3 was identified and sequenced. Genetic analysis indicated that a triple-repeat sequence within the RVL-3 long terminal repeat is capable of functioning as an inducible enhancer element responding to a variety of agonists. In Rat-1 fibroblasts, the ability of the RVL-3 enhancer to mediate induction of gene expression from a heterologous promoter in response to either epidermal growth factor (EGF) or phorbol ester treatment required coelevation of intracellular calcium. Two CArG boxes present in the triple-repeat sequence appeared to exert a negative effect on gene expression, as mutation of these sequences elevated the basal level of expression observed without altering the fold induction in response to either EGF or protein kinase C activation. In the presence of these CArG elements, mutation of AP-1-like sites adjacent to the CArG elements significantly inhibited the ability of either EGF or phorbol esters to induce gene expression. The effect of mutating these AP-1-like sites was relieved by simultaneous mutation of the CArG sites, indicating that interactions among these sites modulate RVL-3 expression. Mutational analysis and gel mobility shift experiments have identified a third sequence within the VL30 triple-repeat element that is required for the induction of gene expression and serves as a binding site for nuclear proteins. Sequence comparisons indicate that this enhancer element has not been described previously.
Collapse
|
33
|
Lenormand P, Pribnow D, Rodland KD, Magun BE. Identification of a novel enhancer element mediating calcium-dependent induction of gene expression in response to either epidermal growth factor or activation of protein kinase C. Mol Cell Biol 1992; 12:2793-803. [PMID: 1588971 PMCID: PMC364474 DOI: 10.1128/mcb.12.6.2793-2803.1992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The VL30 family of defective murine retroviruses consists of 100 to 200 members, of which fewer than 5% appear to be transcriptionally active. A genomic clone of the transcriptionally active VL30 element RVL-3 was identified and sequenced. Genetic analysis indicated that a triple-repeat sequence within the RVL-3 long terminal repeat is capable of functioning as an inducible enhancer element responding to a variety of agonists. In Rat-1 fibroblasts, the ability of the RVL-3 enhancer to mediate induction of gene expression from a heterologous promoter in response to either epidermal growth factor (EGF) or phorbol ester treatment required coelevation of intracellular calcium. Two CArG boxes present in the triple-repeat sequence appeared to exert a negative effect on gene expression, as mutation of these sequences elevated the basal level of expression observed without altering the fold induction in response to either EGF or protein kinase C activation. In the presence of these CArG elements, mutation of AP-1-like sites adjacent to the CArG elements significantly inhibited the ability of either EGF or phorbol esters to induce gene expression. The effect of mutating these AP-1-like sites was relieved by simultaneous mutation of the CArG sites, indicating that interactions among these sites modulate RVL-3 expression. Mutational analysis and gel mobility shift experiments have identified a third sequence within the VL30 triple-repeat element that is required for the induction of gene expression and serves as a binding site for nuclear proteins. Sequence comparisons indicate that this enhancer element has not been described previously.
Collapse
Affiliation(s)
- P Lenormand
- Centre de Biochimie, Université de Nice, 06034 France
| | | | | | | |
Collapse
|
34
|
Identification of mRNAs associated with programmed cell death in immature thymocytes. Mol Cell Biol 1991. [PMID: 2072913 DOI: 10.1128/mcb.11.8.4177] [Citation(s) in RCA: 213] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Programmed cell death is an essential cellular process that occurs in epithelial turnover, neural development, and regulation of cell populations of the immune system. Thymocytes undergo programmed cell death in response to several inductive stimuli, including exposure to glucocorticoids or radiation. This program can be blocked by inhibitors of RNA or protein synthesis; this implies that new proteins are required to execute the death programs. To search for possible death-associated mRNAs, we directionally cloned cDNA representing mRNA from control and dexamethasone-treated thymocytes. These libraries were used to produce ample amounts of DNA and RNA used in subtractive hybridization for the removal of sequences present in both control and induced cells. The remaining unhybridized sequences were selectively amplified by polymerase chain reaction and cloned to produce a library enriched for sequences expressed in death-induced cells. From this library we isolated cDNAs of death-associated mRNAs. One of these mRNAs, RP-8, appears within 1 h after exposure to gamma radiation, and a second mRNA, RP-2, is observed within 2 h. Both of these mRNAs accumulate during a period when a reference mRNA, actin, is declining. RP-2 and RP-8 are no longer detectable after 6 h postinduction, when apoptosis and mRNA degradation are evident in the culture. Sequence analysis of RP-8 cDNA indicates the presence of a zinc finger domain suggestive of a possible DNA regulatory role for the RP-8 protein. cDNA sequence results on RP-2 classify the corresponding protein as an integral membrane protein. We conclude that RP-2 and RP-8 are death-associated mRNAs that should be functionally evaluated in the context of the death process. As previously suggested, it may be that a family of "death genes" is activated by various stimuli depending on the type of cell, in a manner somewhat analogous to the induction of heat shock (stress) protein genes.
Collapse
|
35
|
Owens GP, Hahn WE, Cohen JJ. Identification of mRNAs associated with programmed cell death in immature thymocytes. Mol Cell Biol 1991; 11:4177-88. [PMID: 2072913 PMCID: PMC361239 DOI: 10.1128/mcb.11.8.4177-4188.1991] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Programmed cell death is an essential cellular process that occurs in epithelial turnover, neural development, and regulation of cell populations of the immune system. Thymocytes undergo programmed cell death in response to several inductive stimuli, including exposure to glucocorticoids or radiation. This program can be blocked by inhibitors of RNA or protein synthesis; this implies that new proteins are required to execute the death programs. To search for possible death-associated mRNAs, we directionally cloned cDNA representing mRNA from control and dexamethasone-treated thymocytes. These libraries were used to produce ample amounts of DNA and RNA used in subtractive hybridization for the removal of sequences present in both control and induced cells. The remaining unhybridized sequences were selectively amplified by polymerase chain reaction and cloned to produce a library enriched for sequences expressed in death-induced cells. From this library we isolated cDNAs of death-associated mRNAs. One of these mRNAs, RP-8, appears within 1 h after exposure to gamma radiation, and a second mRNA, RP-2, is observed within 2 h. Both of these mRNAs accumulate during a period when a reference mRNA, actin, is declining. RP-2 and RP-8 are no longer detectable after 6 h postinduction, when apoptosis and mRNA degradation are evident in the culture. Sequence analysis of RP-8 cDNA indicates the presence of a zinc finger domain suggestive of a possible DNA regulatory role for the RP-8 protein. cDNA sequence results on RP-2 classify the corresponding protein as an integral membrane protein. We conclude that RP-2 and RP-8 are death-associated mRNAs that should be functionally evaluated in the context of the death process. As previously suggested, it may be that a family of "death genes" is activated by various stimuli depending on the type of cell, in a manner somewhat analogous to the induction of heat shock (stress) protein genes.
Collapse
Affiliation(s)
- G P Owens
- Department of Cellular and Structural Biology, University of Colorado School of Medicine, Denver 80262
| | | | | |
Collapse
|
36
|
Eaton L, Norton JD. Independent regulation of mouse VL30 retrotransposon expression in response to serum and oncogenic cell transformation. Nucleic Acids Res 1990; 18:2069-77. [PMID: 2159638 PMCID: PMC330685 DOI: 10.1093/nar/18.8.2069] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleotide sequence of the long terminal repeats (LTRs) of retrovirus-transmissible mouse VL30 cDNA clones, NVL-1 and NVL-2 were determined and compared with that of the prototype NVL-3. Both shared the typical U3 R U5 structure together with unusual features of redundancy in the tRNAgly primer binding site and adjacent inverted repeat. NVL-1 and NVL-2 LTRs were almost identical and differed from the NVL-3 LTR in the U3 domain harbouring transcriptional regulatory determinants. S1 nuclease analysis of cellular and virus-encapsidated RNA suggested that NVL-1/2 and NVL-3 elements retrotranspose with comparable efficiency but that in contrast to transformation-regulated VL30 expression which affects all types of NVL element, only NVL-1/2 elements were found to be serum responsive. Both modes of VL30 regulation were found to be coupled through protein kinase C-independent pathways. Expression of N-ras transactivated U3 enhancer determinants in all classes of LTR. However the same region of NVL-1/2 LTR did not confer serum responsiveness implying that cis regulatory determinants of VL30 elements mediating growth factor responsiveness are at least in part dissociable from those responsible for cell transformation-regulated expression.
Collapse
Affiliation(s)
- L Eaton
- Department of Haematology, Royal Free Hospital School of Medicine, London, UK
| | | |
Collapse
|